1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInfo and TargetInfoImpl interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/TargetInfo.h" 15 #include "clang/AST/Type.h" 16 #include "clang/Basic/AddressSpaces.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/Basic/LangOptions.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 NoAsmVariants = false; 35 HasFloat128 = false; 36 PointerWidth = PointerAlign = 32; 37 BoolWidth = BoolAlign = 8; 38 IntWidth = IntAlign = 32; 39 LongWidth = LongAlign = 32; 40 LongLongWidth = LongLongAlign = 64; 41 SuitableAlign = 64; 42 DefaultAlignForAttributeAligned = 128; 43 MinGlobalAlign = 0; 44 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 45 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 46 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html 47 if (T.isGNUEnvironment()) 48 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 49 else 50 NewAlign = 0; // Infer from basic type alignment. 51 HalfWidth = 16; 52 HalfAlign = 16; 53 FloatWidth = 32; 54 FloatAlign = 32; 55 DoubleWidth = 64; 56 DoubleAlign = 64; 57 LongDoubleWidth = 64; 58 LongDoubleAlign = 64; 59 Float128Align = 128; 60 LargeArrayMinWidth = 0; 61 LargeArrayAlign = 0; 62 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 63 MaxVectorAlign = 0; 64 MaxTLSAlign = 0; 65 SimdDefaultAlign = 0; 66 SizeType = UnsignedLong; 67 PtrDiffType = SignedLong; 68 IntMaxType = SignedLongLong; 69 IntPtrType = SignedLong; 70 WCharType = SignedInt; 71 WIntType = SignedInt; 72 Char16Type = UnsignedShort; 73 Char32Type = UnsignedInt; 74 Int64Type = SignedLongLong; 75 SigAtomicType = SignedInt; 76 ProcessIDType = SignedInt; 77 UseSignedCharForObjCBool = true; 78 UseBitFieldTypeAlignment = true; 79 UseZeroLengthBitfieldAlignment = false; 80 UseExplicitBitFieldAlignment = true; 81 ZeroLengthBitfieldBoundary = 0; 82 HalfFormat = &llvm::APFloat::IEEEhalf(); 83 FloatFormat = &llvm::APFloat::IEEEsingle(); 84 DoubleFormat = &llvm::APFloat::IEEEdouble(); 85 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 86 Float128Format = &llvm::APFloat::IEEEquad(); 87 MCountName = "mcount"; 88 RegParmMax = 0; 89 SSERegParmMax = 0; 90 HasAlignMac68kSupport = false; 91 HasBuiltinMSVaList = false; 92 IsRenderScriptTarget = false; 93 94 // Default to no types using fpret. 95 RealTypeUsesObjCFPRet = 0; 96 97 // Default to not using fp2ret for __Complex long double 98 ComplexLongDoubleUsesFP2Ret = false; 99 100 // Set the C++ ABI based on the triple. 101 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 102 ? TargetCXXABI::Microsoft 103 : TargetCXXABI::GenericItanium); 104 105 // Default to an empty address space map. 106 AddrSpaceMap = &DefaultAddrSpaceMap; 107 UseAddrSpaceMapMangling = false; 108 109 // Default to an unknown platform name. 110 PlatformName = "unknown"; 111 PlatformMinVersion = VersionTuple(); 112 } 113 114 // Out of line virtual dtor for TargetInfo. 115 TargetInfo::~TargetInfo() {} 116 117 /// getTypeName - Return the user string for the specified integer type enum. 118 /// For example, SignedShort -> "short". 119 const char *TargetInfo::getTypeName(IntType T) { 120 switch (T) { 121 default: llvm_unreachable("not an integer!"); 122 case SignedChar: return "signed char"; 123 case UnsignedChar: return "unsigned char"; 124 case SignedShort: return "short"; 125 case UnsignedShort: return "unsigned short"; 126 case SignedInt: return "int"; 127 case UnsignedInt: return "unsigned int"; 128 case SignedLong: return "long int"; 129 case UnsignedLong: return "long unsigned int"; 130 case SignedLongLong: return "long long int"; 131 case UnsignedLongLong: return "long long unsigned int"; 132 } 133 } 134 135 /// getTypeConstantSuffix - Return the constant suffix for the specified 136 /// integer type enum. For example, SignedLong -> "L". 137 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 138 switch (T) { 139 default: llvm_unreachable("not an integer!"); 140 case SignedChar: 141 case SignedShort: 142 case SignedInt: return ""; 143 case SignedLong: return "L"; 144 case SignedLongLong: return "LL"; 145 case UnsignedChar: 146 if (getCharWidth() < getIntWidth()) 147 return ""; 148 LLVM_FALLTHROUGH; 149 case UnsignedShort: 150 if (getShortWidth() < getIntWidth()) 151 return ""; 152 LLVM_FALLTHROUGH; 153 case UnsignedInt: return "U"; 154 case UnsignedLong: return "UL"; 155 case UnsignedLongLong: return "ULL"; 156 } 157 } 158 159 /// getTypeFormatModifier - Return the printf format modifier for the 160 /// specified integer type enum. For example, SignedLong -> "l". 161 162 const char *TargetInfo::getTypeFormatModifier(IntType T) { 163 switch (T) { 164 default: llvm_unreachable("not an integer!"); 165 case SignedChar: 166 case UnsignedChar: return "hh"; 167 case SignedShort: 168 case UnsignedShort: return "h"; 169 case SignedInt: 170 case UnsignedInt: return ""; 171 case SignedLong: 172 case UnsignedLong: return "l"; 173 case SignedLongLong: 174 case UnsignedLongLong: return "ll"; 175 } 176 } 177 178 /// getTypeWidth - Return the width (in bits) of the specified integer type 179 /// enum. For example, SignedInt -> getIntWidth(). 180 unsigned TargetInfo::getTypeWidth(IntType T) const { 181 switch (T) { 182 default: llvm_unreachable("not an integer!"); 183 case SignedChar: 184 case UnsignedChar: return getCharWidth(); 185 case SignedShort: 186 case UnsignedShort: return getShortWidth(); 187 case SignedInt: 188 case UnsignedInt: return getIntWidth(); 189 case SignedLong: 190 case UnsignedLong: return getLongWidth(); 191 case SignedLongLong: 192 case UnsignedLongLong: return getLongLongWidth(); 193 }; 194 } 195 196 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 197 unsigned BitWidth, bool IsSigned) const { 198 if (getCharWidth() == BitWidth) 199 return IsSigned ? SignedChar : UnsignedChar; 200 if (getShortWidth() == BitWidth) 201 return IsSigned ? SignedShort : UnsignedShort; 202 if (getIntWidth() == BitWidth) 203 return IsSigned ? SignedInt : UnsignedInt; 204 if (getLongWidth() == BitWidth) 205 return IsSigned ? SignedLong : UnsignedLong; 206 if (getLongLongWidth() == BitWidth) 207 return IsSigned ? SignedLongLong : UnsignedLongLong; 208 return NoInt; 209 } 210 211 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 212 bool IsSigned) const { 213 if (getCharWidth() >= BitWidth) 214 return IsSigned ? SignedChar : UnsignedChar; 215 if (getShortWidth() >= BitWidth) 216 return IsSigned ? SignedShort : UnsignedShort; 217 if (getIntWidth() >= BitWidth) 218 return IsSigned ? SignedInt : UnsignedInt; 219 if (getLongWidth() >= BitWidth) 220 return IsSigned ? SignedLong : UnsignedLong; 221 if (getLongLongWidth() >= BitWidth) 222 return IsSigned ? SignedLongLong : UnsignedLongLong; 223 return NoInt; 224 } 225 226 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const { 227 if (getFloatWidth() == BitWidth) 228 return Float; 229 if (getDoubleWidth() == BitWidth) 230 return Double; 231 232 switch (BitWidth) { 233 case 96: 234 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 235 return LongDouble; 236 break; 237 case 128: 238 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 239 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 240 return LongDouble; 241 if (hasFloat128Type()) 242 return Float128; 243 break; 244 } 245 246 return NoFloat; 247 } 248 249 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 250 /// enum. For example, SignedInt -> getIntAlign(). 251 unsigned TargetInfo::getTypeAlign(IntType T) const { 252 switch (T) { 253 default: llvm_unreachable("not an integer!"); 254 case SignedChar: 255 case UnsignedChar: return getCharAlign(); 256 case SignedShort: 257 case UnsignedShort: return getShortAlign(); 258 case SignedInt: 259 case UnsignedInt: return getIntAlign(); 260 case SignedLong: 261 case UnsignedLong: return getLongAlign(); 262 case SignedLongLong: 263 case UnsignedLongLong: return getLongLongAlign(); 264 }; 265 } 266 267 /// isTypeSigned - Return whether an integer types is signed. Returns true if 268 /// the type is signed; false otherwise. 269 bool TargetInfo::isTypeSigned(IntType T) { 270 switch (T) { 271 default: llvm_unreachable("not an integer!"); 272 case SignedChar: 273 case SignedShort: 274 case SignedInt: 275 case SignedLong: 276 case SignedLongLong: 277 return true; 278 case UnsignedChar: 279 case UnsignedShort: 280 case UnsignedInt: 281 case UnsignedLong: 282 case UnsignedLongLong: 283 return false; 284 }; 285 } 286 287 /// adjust - Set forced language options. 288 /// Apply changes to the target information with respect to certain 289 /// language options which change the target configuration and adjust 290 /// the language based on the target options where applicable. 291 void TargetInfo::adjust(LangOptions &Opts) { 292 if (Opts.NoBitFieldTypeAlign) 293 UseBitFieldTypeAlignment = false; 294 295 switch (Opts.WCharSize) { 296 default: llvm_unreachable("invalid wchar_t width"); 297 case 0: break; 298 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 299 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 300 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 301 } 302 303 if (Opts.AlignDouble) { 304 DoubleAlign = LongLongAlign = 64; 305 LongDoubleAlign = 64; 306 } 307 308 if (Opts.OpenCL) { 309 // OpenCL C requires specific widths for types, irrespective of 310 // what these normally are for the target. 311 // We also define long long and long double here, although the 312 // OpenCL standard only mentions these as "reserved". 313 IntWidth = IntAlign = 32; 314 LongWidth = LongAlign = 64; 315 LongLongWidth = LongLongAlign = 128; 316 HalfWidth = HalfAlign = 16; 317 FloatWidth = FloatAlign = 32; 318 319 // Embedded 32-bit targets (OpenCL EP) might have double C type 320 // defined as float. Let's not override this as it might lead 321 // to generating illegal code that uses 64bit doubles. 322 if (DoubleWidth != FloatWidth) { 323 DoubleWidth = DoubleAlign = 64; 324 DoubleFormat = &llvm::APFloat::IEEEdouble(); 325 } 326 LongDoubleWidth = LongDoubleAlign = 128; 327 328 unsigned MaxPointerWidth = getMaxPointerWidth(); 329 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 330 bool Is32BitArch = MaxPointerWidth == 32; 331 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 332 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 333 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 334 335 IntMaxType = SignedLongLong; 336 Int64Type = SignedLong; 337 338 HalfFormat = &llvm::APFloat::IEEEhalf(); 339 FloatFormat = &llvm::APFloat::IEEEsingle(); 340 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 341 } 342 343 if (Opts.NewAlignOverride) 344 NewAlign = Opts.NewAlignOverride * getCharWidth(); 345 } 346 347 bool TargetInfo::initFeatureMap( 348 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 349 const std::vector<std::string> &FeatureVec) const { 350 for (const auto &F : FeatureVec) { 351 StringRef Name = F; 352 // Apply the feature via the target. 353 bool Enabled = Name[0] == '+'; 354 setFeatureEnabled(Features, Name.substr(1), Enabled); 355 } 356 return true; 357 } 358 359 LangAS TargetInfo::getOpenCLTypeAddrSpace(const Type *T) const { 360 auto BT = dyn_cast<BuiltinType>(T); 361 362 if (!BT) { 363 if (isa<PipeType>(T)) 364 return LangAS::opencl_global; 365 366 return LangAS::Default; 367 } 368 369 switch (BT->getKind()) { 370 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 371 case BuiltinType::Id: \ 372 return LangAS::opencl_global; 373 #include "clang/Basic/OpenCLImageTypes.def" 374 375 case BuiltinType::OCLSampler: 376 return LangAS::opencl_constant; 377 378 default: 379 return LangAS::Default; 380 } 381 } 382 383 //===----------------------------------------------------------------------===// 384 385 386 static StringRef removeGCCRegisterPrefix(StringRef Name) { 387 if (Name[0] == '%' || Name[0] == '#') 388 Name = Name.substr(1); 389 390 return Name; 391 } 392 393 /// isValidClobber - Returns whether the passed in string is 394 /// a valid clobber in an inline asm statement. This is used by 395 /// Sema. 396 bool TargetInfo::isValidClobber(StringRef Name) const { 397 return (isValidGCCRegisterName(Name) || 398 Name == "memory" || Name == "cc"); 399 } 400 401 /// isValidGCCRegisterName - Returns whether the passed in string 402 /// is a valid register name according to GCC. This is used by Sema for 403 /// inline asm statements. 404 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 405 if (Name.empty()) 406 return false; 407 408 // Get rid of any register prefix. 409 Name = removeGCCRegisterPrefix(Name); 410 if (Name.empty()) 411 return false; 412 413 ArrayRef<const char *> Names = getGCCRegNames(); 414 415 // If we have a number it maps to an entry in the register name array. 416 if (isDigit(Name[0])) { 417 unsigned n; 418 if (!Name.getAsInteger(0, n)) 419 return n < Names.size(); 420 } 421 422 // Check register names. 423 if (std::find(Names.begin(), Names.end(), Name) != Names.end()) 424 return true; 425 426 // Check any additional names that we have. 427 for (const AddlRegName &ARN : getGCCAddlRegNames()) 428 for (const char *AN : ARN.Names) { 429 if (!AN) 430 break; 431 // Make sure the register that the additional name is for is within 432 // the bounds of the register names from above. 433 if (AN == Name && ARN.RegNum < Names.size()) 434 return true; 435 } 436 437 // Now check aliases. 438 for (const GCCRegAlias &GRA : getGCCRegAliases()) 439 for (const char *A : GRA.Aliases) { 440 if (!A) 441 break; 442 if (A == Name) 443 return true; 444 } 445 446 return false; 447 } 448 449 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 450 bool ReturnCanonical) const { 451 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 452 453 // Get rid of any register prefix. 454 Name = removeGCCRegisterPrefix(Name); 455 456 ArrayRef<const char *> Names = getGCCRegNames(); 457 458 // First, check if we have a number. 459 if (isDigit(Name[0])) { 460 unsigned n; 461 if (!Name.getAsInteger(0, n)) { 462 assert(n < Names.size() && "Out of bounds register number!"); 463 return Names[n]; 464 } 465 } 466 467 // Check any additional names that we have. 468 for (const AddlRegName &ARN : getGCCAddlRegNames()) 469 for (const char *AN : ARN.Names) { 470 if (!AN) 471 break; 472 // Make sure the register that the additional name is for is within 473 // the bounds of the register names from above. 474 if (AN == Name && ARN.RegNum < Names.size()) 475 return ReturnCanonical ? Names[ARN.RegNum] : Name; 476 } 477 478 // Now check aliases. 479 for (const GCCRegAlias &RA : getGCCRegAliases()) 480 for (const char *A : RA.Aliases) { 481 if (!A) 482 break; 483 if (A == Name) 484 return RA.Register; 485 } 486 487 return Name; 488 } 489 490 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 491 const char *Name = Info.getConstraintStr().c_str(); 492 // An output constraint must start with '=' or '+' 493 if (*Name != '=' && *Name != '+') 494 return false; 495 496 if (*Name == '+') 497 Info.setIsReadWrite(); 498 499 Name++; 500 while (*Name) { 501 switch (*Name) { 502 default: 503 if (!validateAsmConstraint(Name, Info)) { 504 // FIXME: We temporarily return false 505 // so we can add more constraints as we hit it. 506 // Eventually, an unknown constraint should just be treated as 'g'. 507 return false; 508 } 509 break; 510 case '&': // early clobber. 511 Info.setEarlyClobber(); 512 break; 513 case '%': // commutative. 514 // FIXME: Check that there is a another register after this one. 515 break; 516 case 'r': // general register. 517 Info.setAllowsRegister(); 518 break; 519 case 'm': // memory operand. 520 case 'o': // offsetable memory operand. 521 case 'V': // non-offsetable memory operand. 522 case '<': // autodecrement memory operand. 523 case '>': // autoincrement memory operand. 524 Info.setAllowsMemory(); 525 break; 526 case 'g': // general register, memory operand or immediate integer. 527 case 'X': // any operand. 528 Info.setAllowsRegister(); 529 Info.setAllowsMemory(); 530 break; 531 case ',': // multiple alternative constraint. Pass it. 532 // Handle additional optional '=' or '+' modifiers. 533 if (Name[1] == '=' || Name[1] == '+') 534 Name++; 535 break; 536 case '#': // Ignore as constraint. 537 while (Name[1] && Name[1] != ',') 538 Name++; 539 break; 540 case '?': // Disparage slightly code. 541 case '!': // Disparage severely. 542 case '*': // Ignore for choosing register preferences. 543 case 'i': // Ignore i,n,E,F as output constraints (match from the other 544 // chars) 545 case 'n': 546 case 'E': 547 case 'F': 548 break; // Pass them. 549 } 550 551 Name++; 552 } 553 554 // Early clobber with a read-write constraint which doesn't permit registers 555 // is invalid. 556 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 557 return false; 558 559 // If a constraint allows neither memory nor register operands it contains 560 // only modifiers. Reject it. 561 return Info.allowsMemory() || Info.allowsRegister(); 562 } 563 564 bool TargetInfo::resolveSymbolicName(const char *&Name, 565 ArrayRef<ConstraintInfo> OutputConstraints, 566 unsigned &Index) const { 567 assert(*Name == '[' && "Symbolic name did not start with '['"); 568 Name++; 569 const char *Start = Name; 570 while (*Name && *Name != ']') 571 Name++; 572 573 if (!*Name) { 574 // Missing ']' 575 return false; 576 } 577 578 std::string SymbolicName(Start, Name - Start); 579 580 for (Index = 0; Index != OutputConstraints.size(); ++Index) 581 if (SymbolicName == OutputConstraints[Index].getName()) 582 return true; 583 584 return false; 585 } 586 587 bool TargetInfo::validateInputConstraint( 588 MutableArrayRef<ConstraintInfo> OutputConstraints, 589 ConstraintInfo &Info) const { 590 const char *Name = Info.ConstraintStr.c_str(); 591 592 if (!*Name) 593 return false; 594 595 while (*Name) { 596 switch (*Name) { 597 default: 598 // Check if we have a matching constraint 599 if (*Name >= '0' && *Name <= '9') { 600 const char *DigitStart = Name; 601 while (Name[1] >= '0' && Name[1] <= '9') 602 Name++; 603 const char *DigitEnd = Name; 604 unsigned i; 605 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 606 .getAsInteger(10, i)) 607 return false; 608 609 // Check if matching constraint is out of bounds. 610 if (i >= OutputConstraints.size()) return false; 611 612 // A number must refer to an output only operand. 613 if (OutputConstraints[i].isReadWrite()) 614 return false; 615 616 // If the constraint is already tied, it must be tied to the 617 // same operand referenced to by the number. 618 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 619 return false; 620 621 // The constraint should have the same info as the respective 622 // output constraint. 623 Info.setTiedOperand(i, OutputConstraints[i]); 624 } else if (!validateAsmConstraint(Name, Info)) { 625 // FIXME: This error return is in place temporarily so we can 626 // add more constraints as we hit it. Eventually, an unknown 627 // constraint should just be treated as 'g'. 628 return false; 629 } 630 break; 631 case '[': { 632 unsigned Index = 0; 633 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 634 return false; 635 636 // If the constraint is already tied, it must be tied to the 637 // same operand referenced to by the number. 638 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 639 return false; 640 641 // A number must refer to an output only operand. 642 if (OutputConstraints[Index].isReadWrite()) 643 return false; 644 645 Info.setTiedOperand(Index, OutputConstraints[Index]); 646 break; 647 } 648 case '%': // commutative 649 // FIXME: Fail if % is used with the last operand. 650 break; 651 case 'i': // immediate integer. 652 case 'n': // immediate integer with a known value. 653 break; 654 case 'I': // Various constant constraints with target-specific meanings. 655 case 'J': 656 case 'K': 657 case 'L': 658 case 'M': 659 case 'N': 660 case 'O': 661 case 'P': 662 if (!validateAsmConstraint(Name, Info)) 663 return false; 664 break; 665 case 'r': // general register. 666 Info.setAllowsRegister(); 667 break; 668 case 'm': // memory operand. 669 case 'o': // offsettable memory operand. 670 case 'V': // non-offsettable memory operand. 671 case '<': // autodecrement memory operand. 672 case '>': // autoincrement memory operand. 673 Info.setAllowsMemory(); 674 break; 675 case 'g': // general register, memory operand or immediate integer. 676 case 'X': // any operand. 677 Info.setAllowsRegister(); 678 Info.setAllowsMemory(); 679 break; 680 case 'E': // immediate floating point. 681 case 'F': // immediate floating point. 682 case 'p': // address operand. 683 break; 684 case ',': // multiple alternative constraint. Ignore comma. 685 break; 686 case '#': // Ignore as constraint. 687 while (Name[1] && Name[1] != ',') 688 Name++; 689 break; 690 case '?': // Disparage slightly code. 691 case '!': // Disparage severely. 692 case '*': // Ignore for choosing register preferences. 693 break; // Pass them. 694 } 695 696 Name++; 697 } 698 699 return true; 700 } 701