1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasFloat16 = false; 38 HasBFloat16 = false; 39 HasStrictFP = false; 40 PointerWidth = PointerAlign = 32; 41 BoolWidth = BoolAlign = 8; 42 IntWidth = IntAlign = 32; 43 LongWidth = LongAlign = 32; 44 LongLongWidth = LongLongAlign = 64; 45 46 // Fixed point default bit widths 47 ShortAccumWidth = ShortAccumAlign = 16; 48 AccumWidth = AccumAlign = 32; 49 LongAccumWidth = LongAccumAlign = 64; 50 ShortFractWidth = ShortFractAlign = 8; 51 FractWidth = FractAlign = 16; 52 LongFractWidth = LongFractAlign = 32; 53 54 // Fixed point default integral and fractional bit sizes 55 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 56 // types by default to have the same number of fractional bits between _Accum 57 // and _Fract types. 58 PaddingOnUnsignedFixedPoint = false; 59 ShortAccumScale = 7; 60 AccumScale = 15; 61 LongAccumScale = 31; 62 63 SuitableAlign = 64; 64 DefaultAlignForAttributeAligned = 128; 65 MinGlobalAlign = 0; 66 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 67 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 68 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 69 // This alignment guarantee also applies to Windows and Android. On Darwin, 70 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 71 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 72 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 73 else if (T.isOSDarwin()) 74 NewAlign = 128; 75 else 76 NewAlign = 0; // Infer from basic type alignment. 77 HalfWidth = 16; 78 HalfAlign = 16; 79 FloatWidth = 32; 80 FloatAlign = 32; 81 DoubleWidth = 64; 82 DoubleAlign = 64; 83 LongDoubleWidth = 64; 84 LongDoubleAlign = 64; 85 Float128Align = 128; 86 LargeArrayMinWidth = 0; 87 LargeArrayAlign = 0; 88 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 89 MaxVectorAlign = 0; 90 MaxTLSAlign = 0; 91 SimdDefaultAlign = 0; 92 SizeType = UnsignedLong; 93 PtrDiffType = SignedLong; 94 IntMaxType = SignedLongLong; 95 IntPtrType = SignedLong; 96 WCharType = SignedInt; 97 WIntType = SignedInt; 98 Char16Type = UnsignedShort; 99 Char32Type = UnsignedInt; 100 Int64Type = SignedLongLong; 101 Int16Type = SignedShort; 102 SigAtomicType = SignedInt; 103 ProcessIDType = SignedInt; 104 UseSignedCharForObjCBool = true; 105 UseBitFieldTypeAlignment = true; 106 UseZeroLengthBitfieldAlignment = false; 107 UseLeadingZeroLengthBitfield = true; 108 UseExplicitBitFieldAlignment = true; 109 ZeroLengthBitfieldBoundary = 0; 110 MaxAlignedAttribute = 0; 111 HalfFormat = &llvm::APFloat::IEEEhalf(); 112 FloatFormat = &llvm::APFloat::IEEEsingle(); 113 DoubleFormat = &llvm::APFloat::IEEEdouble(); 114 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 115 Float128Format = &llvm::APFloat::IEEEquad(); 116 MCountName = "mcount"; 117 UserLabelPrefix = "_"; 118 RegParmMax = 0; 119 SSERegParmMax = 0; 120 HasAlignMac68kSupport = false; 121 HasBuiltinMSVaList = false; 122 IsRenderScriptTarget = false; 123 HasAArch64SVETypes = false; 124 HasRISCVVTypes = false; 125 AllowAMDGPUUnsafeFPAtomics = false; 126 ARMCDECoprocMask = 0; 127 128 // Default to no types using fpret. 129 RealTypeUsesObjCFPRet = 0; 130 131 // Default to not using fp2ret for __Complex long double 132 ComplexLongDoubleUsesFP2Ret = false; 133 134 // Set the C++ ABI based on the triple. 135 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 136 ? TargetCXXABI::Microsoft 137 : TargetCXXABI::GenericItanium); 138 139 // Default to an empty address space map. 140 AddrSpaceMap = &DefaultAddrSpaceMap; 141 UseAddrSpaceMapMangling = false; 142 143 // Default to an unknown platform name. 144 PlatformName = "unknown"; 145 PlatformMinVersion = VersionTuple(); 146 147 MaxOpenCLWorkGroupSize = 1024; 148 } 149 150 // Out of line virtual dtor for TargetInfo. 151 TargetInfo::~TargetInfo() {} 152 153 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 154 DataLayoutString = DL.str(); 155 UserLabelPrefix = ULP; 156 } 157 158 bool 159 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 160 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 161 return false; 162 } 163 164 bool 165 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 166 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 167 return false; 168 } 169 170 /// getTypeName - Return the user string for the specified integer type enum. 171 /// For example, SignedShort -> "short". 172 const char *TargetInfo::getTypeName(IntType T) { 173 switch (T) { 174 default: llvm_unreachable("not an integer!"); 175 case SignedChar: return "signed char"; 176 case UnsignedChar: return "unsigned char"; 177 case SignedShort: return "short"; 178 case UnsignedShort: return "unsigned short"; 179 case SignedInt: return "int"; 180 case UnsignedInt: return "unsigned int"; 181 case SignedLong: return "long int"; 182 case UnsignedLong: return "long unsigned int"; 183 case SignedLongLong: return "long long int"; 184 case UnsignedLongLong: return "long long unsigned int"; 185 } 186 } 187 188 /// getTypeConstantSuffix - Return the constant suffix for the specified 189 /// integer type enum. For example, SignedLong -> "L". 190 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 191 switch (T) { 192 default: llvm_unreachable("not an integer!"); 193 case SignedChar: 194 case SignedShort: 195 case SignedInt: return ""; 196 case SignedLong: return "L"; 197 case SignedLongLong: return "LL"; 198 case UnsignedChar: 199 if (getCharWidth() < getIntWidth()) 200 return ""; 201 LLVM_FALLTHROUGH; 202 case UnsignedShort: 203 if (getShortWidth() < getIntWidth()) 204 return ""; 205 LLVM_FALLTHROUGH; 206 case UnsignedInt: return "U"; 207 case UnsignedLong: return "UL"; 208 case UnsignedLongLong: return "ULL"; 209 } 210 } 211 212 /// getTypeFormatModifier - Return the printf format modifier for the 213 /// specified integer type enum. For example, SignedLong -> "l". 214 215 const char *TargetInfo::getTypeFormatModifier(IntType T) { 216 switch (T) { 217 default: llvm_unreachable("not an integer!"); 218 case SignedChar: 219 case UnsignedChar: return "hh"; 220 case SignedShort: 221 case UnsignedShort: return "h"; 222 case SignedInt: 223 case UnsignedInt: return ""; 224 case SignedLong: 225 case UnsignedLong: return "l"; 226 case SignedLongLong: 227 case UnsignedLongLong: return "ll"; 228 } 229 } 230 231 /// getTypeWidth - Return the width (in bits) of the specified integer type 232 /// enum. For example, SignedInt -> getIntWidth(). 233 unsigned TargetInfo::getTypeWidth(IntType T) const { 234 switch (T) { 235 default: llvm_unreachable("not an integer!"); 236 case SignedChar: 237 case UnsignedChar: return getCharWidth(); 238 case SignedShort: 239 case UnsignedShort: return getShortWidth(); 240 case SignedInt: 241 case UnsignedInt: return getIntWidth(); 242 case SignedLong: 243 case UnsignedLong: return getLongWidth(); 244 case SignedLongLong: 245 case UnsignedLongLong: return getLongLongWidth(); 246 }; 247 } 248 249 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 250 unsigned BitWidth, bool IsSigned) const { 251 if (getCharWidth() == BitWidth) 252 return IsSigned ? SignedChar : UnsignedChar; 253 if (getShortWidth() == BitWidth) 254 return IsSigned ? SignedShort : UnsignedShort; 255 if (getIntWidth() == BitWidth) 256 return IsSigned ? SignedInt : UnsignedInt; 257 if (getLongWidth() == BitWidth) 258 return IsSigned ? SignedLong : UnsignedLong; 259 if (getLongLongWidth() == BitWidth) 260 return IsSigned ? SignedLongLong : UnsignedLongLong; 261 return NoInt; 262 } 263 264 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 265 bool IsSigned) const { 266 if (getCharWidth() >= BitWidth) 267 return IsSigned ? SignedChar : UnsignedChar; 268 if (getShortWidth() >= BitWidth) 269 return IsSigned ? SignedShort : UnsignedShort; 270 if (getIntWidth() >= BitWidth) 271 return IsSigned ? SignedInt : UnsignedInt; 272 if (getLongWidth() >= BitWidth) 273 return IsSigned ? SignedLong : UnsignedLong; 274 if (getLongLongWidth() >= BitWidth) 275 return IsSigned ? SignedLongLong : UnsignedLongLong; 276 return NoInt; 277 } 278 279 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 280 bool ExplicitIEEE) const { 281 if (getFloatWidth() == BitWidth) 282 return Float; 283 if (getDoubleWidth() == BitWidth) 284 return Double; 285 286 switch (BitWidth) { 287 case 96: 288 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 289 return LongDouble; 290 break; 291 case 128: 292 // The caller explicitly asked for an IEEE compliant type but we still 293 // have to check if the target supports it. 294 if (ExplicitIEEE) 295 return hasFloat128Type() ? Float128 : NoFloat; 296 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 297 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 298 return LongDouble; 299 if (hasFloat128Type()) 300 return Float128; 301 break; 302 } 303 304 return NoFloat; 305 } 306 307 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 308 /// enum. For example, SignedInt -> getIntAlign(). 309 unsigned TargetInfo::getTypeAlign(IntType T) const { 310 switch (T) { 311 default: llvm_unreachable("not an integer!"); 312 case SignedChar: 313 case UnsignedChar: return getCharAlign(); 314 case SignedShort: 315 case UnsignedShort: return getShortAlign(); 316 case SignedInt: 317 case UnsignedInt: return getIntAlign(); 318 case SignedLong: 319 case UnsignedLong: return getLongAlign(); 320 case SignedLongLong: 321 case UnsignedLongLong: return getLongLongAlign(); 322 }; 323 } 324 325 /// isTypeSigned - Return whether an integer types is signed. Returns true if 326 /// the type is signed; false otherwise. 327 bool TargetInfo::isTypeSigned(IntType T) { 328 switch (T) { 329 default: llvm_unreachable("not an integer!"); 330 case SignedChar: 331 case SignedShort: 332 case SignedInt: 333 case SignedLong: 334 case SignedLongLong: 335 return true; 336 case UnsignedChar: 337 case UnsignedShort: 338 case UnsignedInt: 339 case UnsignedLong: 340 case UnsignedLongLong: 341 return false; 342 }; 343 } 344 345 /// adjust - Set forced language options. 346 /// Apply changes to the target information with respect to certain 347 /// language options which change the target configuration and adjust 348 /// the language based on the target options where applicable. 349 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 350 if (Opts.NoBitFieldTypeAlign) 351 UseBitFieldTypeAlignment = false; 352 353 switch (Opts.WCharSize) { 354 default: llvm_unreachable("invalid wchar_t width"); 355 case 0: break; 356 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 357 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 358 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 359 } 360 361 if (Opts.AlignDouble) { 362 DoubleAlign = LongLongAlign = 64; 363 LongDoubleAlign = 64; 364 } 365 366 if (Opts.OpenCL) { 367 // OpenCL C requires specific widths for types, irrespective of 368 // what these normally are for the target. 369 // We also define long long and long double here, although the 370 // OpenCL standard only mentions these as "reserved". 371 IntWidth = IntAlign = 32; 372 LongWidth = LongAlign = 64; 373 LongLongWidth = LongLongAlign = 128; 374 HalfWidth = HalfAlign = 16; 375 FloatWidth = FloatAlign = 32; 376 377 // Embedded 32-bit targets (OpenCL EP) might have double C type 378 // defined as float. Let's not override this as it might lead 379 // to generating illegal code that uses 64bit doubles. 380 if (DoubleWidth != FloatWidth) { 381 DoubleWidth = DoubleAlign = 64; 382 DoubleFormat = &llvm::APFloat::IEEEdouble(); 383 } 384 LongDoubleWidth = LongDoubleAlign = 128; 385 386 unsigned MaxPointerWidth = getMaxPointerWidth(); 387 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 388 bool Is32BitArch = MaxPointerWidth == 32; 389 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 390 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 391 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 392 393 IntMaxType = SignedLongLong; 394 Int64Type = SignedLong; 395 396 HalfFormat = &llvm::APFloat::IEEEhalf(); 397 FloatFormat = &llvm::APFloat::IEEEsingle(); 398 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 399 } 400 401 if (Opts.DoubleSize) { 402 if (Opts.DoubleSize == 32) { 403 DoubleWidth = 32; 404 LongDoubleWidth = 32; 405 DoubleFormat = &llvm::APFloat::IEEEsingle(); 406 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 407 } else if (Opts.DoubleSize == 64) { 408 DoubleWidth = 64; 409 LongDoubleWidth = 64; 410 DoubleFormat = &llvm::APFloat::IEEEdouble(); 411 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 412 } 413 } 414 415 if (Opts.LongDoubleSize) { 416 if (Opts.LongDoubleSize == DoubleWidth) { 417 LongDoubleWidth = DoubleWidth; 418 LongDoubleAlign = DoubleAlign; 419 LongDoubleFormat = DoubleFormat; 420 } else if (Opts.LongDoubleSize == 128) { 421 LongDoubleWidth = LongDoubleAlign = 128; 422 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 423 } 424 } 425 426 if (Opts.NewAlignOverride) 427 NewAlign = Opts.NewAlignOverride * getCharWidth(); 428 429 // Each unsigned fixed point type has the same number of fractional bits as 430 // its corresponding signed type. 431 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 432 CheckFixedPointBits(); 433 434 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 435 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 436 Opts.ProtectParens = false; 437 } 438 } 439 440 bool TargetInfo::initFeatureMap( 441 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 442 const std::vector<std::string> &FeatureVec) const { 443 for (const auto &F : FeatureVec) { 444 StringRef Name = F; 445 // Apply the feature via the target. 446 bool Enabled = Name[0] == '+'; 447 setFeatureEnabled(Features, Name.substr(1), Enabled); 448 } 449 return true; 450 } 451 452 TargetInfo::CallingConvKind 453 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 454 if (getCXXABI() != TargetCXXABI::Microsoft && 455 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 456 return CCK_ClangABI4OrPS4; 457 return CCK_Default; 458 } 459 460 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 461 switch (TK) { 462 case OCLTK_Image: 463 case OCLTK_Pipe: 464 return LangAS::opencl_global; 465 466 case OCLTK_Sampler: 467 return LangAS::opencl_constant; 468 469 default: 470 return LangAS::Default; 471 } 472 } 473 474 //===----------------------------------------------------------------------===// 475 476 477 static StringRef removeGCCRegisterPrefix(StringRef Name) { 478 if (Name[0] == '%' || Name[0] == '#') 479 Name = Name.substr(1); 480 481 return Name; 482 } 483 484 /// isValidClobber - Returns whether the passed in string is 485 /// a valid clobber in an inline asm statement. This is used by 486 /// Sema. 487 bool TargetInfo::isValidClobber(StringRef Name) const { 488 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 489 Name == "unwind"); 490 } 491 492 /// isValidGCCRegisterName - Returns whether the passed in string 493 /// is a valid register name according to GCC. This is used by Sema for 494 /// inline asm statements. 495 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 496 if (Name.empty()) 497 return false; 498 499 // Get rid of any register prefix. 500 Name = removeGCCRegisterPrefix(Name); 501 if (Name.empty()) 502 return false; 503 504 ArrayRef<const char *> Names = getGCCRegNames(); 505 506 // If we have a number it maps to an entry in the register name array. 507 if (isDigit(Name[0])) { 508 unsigned n; 509 if (!Name.getAsInteger(0, n)) 510 return n < Names.size(); 511 } 512 513 // Check register names. 514 if (llvm::is_contained(Names, Name)) 515 return true; 516 517 // Check any additional names that we have. 518 for (const AddlRegName &ARN : getGCCAddlRegNames()) 519 for (const char *AN : ARN.Names) { 520 if (!AN) 521 break; 522 // Make sure the register that the additional name is for is within 523 // the bounds of the register names from above. 524 if (AN == Name && ARN.RegNum < Names.size()) 525 return true; 526 } 527 528 // Now check aliases. 529 for (const GCCRegAlias &GRA : getGCCRegAliases()) 530 for (const char *A : GRA.Aliases) { 531 if (!A) 532 break; 533 if (A == Name) 534 return true; 535 } 536 537 return false; 538 } 539 540 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 541 bool ReturnCanonical) const { 542 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 543 544 // Get rid of any register prefix. 545 Name = removeGCCRegisterPrefix(Name); 546 547 ArrayRef<const char *> Names = getGCCRegNames(); 548 549 // First, check if we have a number. 550 if (isDigit(Name[0])) { 551 unsigned n; 552 if (!Name.getAsInteger(0, n)) { 553 assert(n < Names.size() && "Out of bounds register number!"); 554 return Names[n]; 555 } 556 } 557 558 // Check any additional names that we have. 559 for (const AddlRegName &ARN : getGCCAddlRegNames()) 560 for (const char *AN : ARN.Names) { 561 if (!AN) 562 break; 563 // Make sure the register that the additional name is for is within 564 // the bounds of the register names from above. 565 if (AN == Name && ARN.RegNum < Names.size()) 566 return ReturnCanonical ? Names[ARN.RegNum] : Name; 567 } 568 569 // Now check aliases. 570 for (const GCCRegAlias &RA : getGCCRegAliases()) 571 for (const char *A : RA.Aliases) { 572 if (!A) 573 break; 574 if (A == Name) 575 return RA.Register; 576 } 577 578 return Name; 579 } 580 581 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 582 const char *Name = Info.getConstraintStr().c_str(); 583 // An output constraint must start with '=' or '+' 584 if (*Name != '=' && *Name != '+') 585 return false; 586 587 if (*Name == '+') 588 Info.setIsReadWrite(); 589 590 Name++; 591 while (*Name) { 592 switch (*Name) { 593 default: 594 if (!validateAsmConstraint(Name, Info)) { 595 // FIXME: We temporarily return false 596 // so we can add more constraints as we hit it. 597 // Eventually, an unknown constraint should just be treated as 'g'. 598 return false; 599 } 600 break; 601 case '&': // early clobber. 602 Info.setEarlyClobber(); 603 break; 604 case '%': // commutative. 605 // FIXME: Check that there is a another register after this one. 606 break; 607 case 'r': // general register. 608 Info.setAllowsRegister(); 609 break; 610 case 'm': // memory operand. 611 case 'o': // offsetable memory operand. 612 case 'V': // non-offsetable memory operand. 613 case '<': // autodecrement memory operand. 614 case '>': // autoincrement memory operand. 615 Info.setAllowsMemory(); 616 break; 617 case 'g': // general register, memory operand or immediate integer. 618 case 'X': // any operand. 619 Info.setAllowsRegister(); 620 Info.setAllowsMemory(); 621 break; 622 case ',': // multiple alternative constraint. Pass it. 623 // Handle additional optional '=' or '+' modifiers. 624 if (Name[1] == '=' || Name[1] == '+') 625 Name++; 626 break; 627 case '#': // Ignore as constraint. 628 while (Name[1] && Name[1] != ',') 629 Name++; 630 break; 631 case '?': // Disparage slightly code. 632 case '!': // Disparage severely. 633 case '*': // Ignore for choosing register preferences. 634 case 'i': // Ignore i,n,E,F as output constraints (match from the other 635 // chars) 636 case 'n': 637 case 'E': 638 case 'F': 639 break; // Pass them. 640 } 641 642 Name++; 643 } 644 645 // Early clobber with a read-write constraint which doesn't permit registers 646 // is invalid. 647 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 648 return false; 649 650 // If a constraint allows neither memory nor register operands it contains 651 // only modifiers. Reject it. 652 return Info.allowsMemory() || Info.allowsRegister(); 653 } 654 655 bool TargetInfo::resolveSymbolicName(const char *&Name, 656 ArrayRef<ConstraintInfo> OutputConstraints, 657 unsigned &Index) const { 658 assert(*Name == '[' && "Symbolic name did not start with '['"); 659 Name++; 660 const char *Start = Name; 661 while (*Name && *Name != ']') 662 Name++; 663 664 if (!*Name) { 665 // Missing ']' 666 return false; 667 } 668 669 std::string SymbolicName(Start, Name - Start); 670 671 for (Index = 0; Index != OutputConstraints.size(); ++Index) 672 if (SymbolicName == OutputConstraints[Index].getName()) 673 return true; 674 675 return false; 676 } 677 678 bool TargetInfo::validateInputConstraint( 679 MutableArrayRef<ConstraintInfo> OutputConstraints, 680 ConstraintInfo &Info) const { 681 const char *Name = Info.ConstraintStr.c_str(); 682 683 if (!*Name) 684 return false; 685 686 while (*Name) { 687 switch (*Name) { 688 default: 689 // Check if we have a matching constraint 690 if (*Name >= '0' && *Name <= '9') { 691 const char *DigitStart = Name; 692 while (Name[1] >= '0' && Name[1] <= '9') 693 Name++; 694 const char *DigitEnd = Name; 695 unsigned i; 696 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 697 .getAsInteger(10, i)) 698 return false; 699 700 // Check if matching constraint is out of bounds. 701 if (i >= OutputConstraints.size()) return false; 702 703 // A number must refer to an output only operand. 704 if (OutputConstraints[i].isReadWrite()) 705 return false; 706 707 // If the constraint is already tied, it must be tied to the 708 // same operand referenced to by the number. 709 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 710 return false; 711 712 // The constraint should have the same info as the respective 713 // output constraint. 714 Info.setTiedOperand(i, OutputConstraints[i]); 715 } else if (!validateAsmConstraint(Name, Info)) { 716 // FIXME: This error return is in place temporarily so we can 717 // add more constraints as we hit it. Eventually, an unknown 718 // constraint should just be treated as 'g'. 719 return false; 720 } 721 break; 722 case '[': { 723 unsigned Index = 0; 724 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 725 return false; 726 727 // If the constraint is already tied, it must be tied to the 728 // same operand referenced to by the number. 729 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 730 return false; 731 732 // A number must refer to an output only operand. 733 if (OutputConstraints[Index].isReadWrite()) 734 return false; 735 736 Info.setTiedOperand(Index, OutputConstraints[Index]); 737 break; 738 } 739 case '%': // commutative 740 // FIXME: Fail if % is used with the last operand. 741 break; 742 case 'i': // immediate integer. 743 break; 744 case 'n': // immediate integer with a known value. 745 Info.setRequiresImmediate(); 746 break; 747 case 'I': // Various constant constraints with target-specific meanings. 748 case 'J': 749 case 'K': 750 case 'L': 751 case 'M': 752 case 'N': 753 case 'O': 754 case 'P': 755 if (!validateAsmConstraint(Name, Info)) 756 return false; 757 break; 758 case 'r': // general register. 759 Info.setAllowsRegister(); 760 break; 761 case 'm': // memory operand. 762 case 'o': // offsettable memory operand. 763 case 'V': // non-offsettable memory operand. 764 case '<': // autodecrement memory operand. 765 case '>': // autoincrement memory operand. 766 Info.setAllowsMemory(); 767 break; 768 case 'g': // general register, memory operand or immediate integer. 769 case 'X': // any operand. 770 Info.setAllowsRegister(); 771 Info.setAllowsMemory(); 772 break; 773 case 'E': // immediate floating point. 774 case 'F': // immediate floating point. 775 case 'p': // address operand. 776 break; 777 case ',': // multiple alternative constraint. Ignore comma. 778 break; 779 case '#': // Ignore as constraint. 780 while (Name[1] && Name[1] != ',') 781 Name++; 782 break; 783 case '?': // Disparage slightly code. 784 case '!': // Disparage severely. 785 case '*': // Ignore for choosing register preferences. 786 break; // Pass them. 787 } 788 789 Name++; 790 } 791 792 return true; 793 } 794 795 void TargetInfo::CheckFixedPointBits() const { 796 // Check that the number of fractional and integral bits (and maybe sign) can 797 // fit into the bits given for a fixed point type. 798 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 799 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 800 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 801 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 802 ShortAccumWidth); 803 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 804 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 805 LongAccumWidth); 806 807 assert(getShortFractScale() + 1 <= ShortFractWidth); 808 assert(getFractScale() + 1 <= FractWidth); 809 assert(getLongFractScale() + 1 <= LongFractWidth); 810 assert(getUnsignedShortFractScale() <= ShortFractWidth); 811 assert(getUnsignedFractScale() <= FractWidth); 812 assert(getUnsignedLongFractScale() <= LongFractWidth); 813 814 // Each unsigned fract type has either the same number of fractional bits 815 // as, or one more fractional bit than, its corresponding signed fract type. 816 assert(getShortFractScale() == getUnsignedShortFractScale() || 817 getShortFractScale() == getUnsignedShortFractScale() - 1); 818 assert(getFractScale() == getUnsignedFractScale() || 819 getFractScale() == getUnsignedFractScale() - 1); 820 assert(getLongFractScale() == getUnsignedLongFractScale() || 821 getLongFractScale() == getUnsignedLongFractScale() - 1); 822 823 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 824 // fractional bits is nondecreasing for each of the following sets of 825 // fixed-point types: 826 // - signed fract types 827 // - unsigned fract types 828 // - signed accum types 829 // - unsigned accum types. 830 assert(getLongFractScale() >= getFractScale() && 831 getFractScale() >= getShortFractScale()); 832 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 833 getUnsignedFractScale() >= getUnsignedShortFractScale()); 834 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 835 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 836 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 837 838 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 839 // integral bits is nondecreasing for each of the following sets of 840 // fixed-point types: 841 // - signed accum types 842 // - unsigned accum types 843 assert(getLongAccumIBits() >= getAccumIBits() && 844 getAccumIBits() >= getShortAccumIBits()); 845 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 846 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 847 848 // Each signed accum type has at least as many integral bits as its 849 // corresponding unsigned accum type. 850 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 851 assert(getAccumIBits() >= getUnsignedAccumIBits()); 852 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 853 } 854 855 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 856 auto *Target = static_cast<TransferrableTargetInfo*>(this); 857 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 858 *Target = *Src; 859 } 860