1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TargetParser.h"
23 #include <cstdlib>
24 using namespace clang;
25 
26 static const LangASMap DefaultAddrSpaceMap = {0};
27 
28 // TargetInfo Constructor.
29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
30   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
31   // SPARC.  These should be overridden by concrete targets as needed.
32   BigEndian = !T.isLittleEndian();
33   TLSSupported = true;
34   VLASupported = true;
35   NoAsmVariants = false;
36   HasLegalHalfType = false;
37   HasFloat128 = false;
38   HasFloat16 = false;
39   HasBFloat16 = false;
40   PointerWidth = PointerAlign = 32;
41   BoolWidth = BoolAlign = 8;
42   IntWidth = IntAlign = 32;
43   LongWidth = LongAlign = 32;
44   LongLongWidth = LongLongAlign = 64;
45 
46   // Fixed point default bit widths
47   ShortAccumWidth = ShortAccumAlign = 16;
48   AccumWidth = AccumAlign = 32;
49   LongAccumWidth = LongAccumAlign = 64;
50   ShortFractWidth = ShortFractAlign = 8;
51   FractWidth = FractAlign = 16;
52   LongFractWidth = LongFractAlign = 32;
53 
54   // Fixed point default integral and fractional bit sizes
55   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
56   // types by default to have the same number of fractional bits between _Accum
57   // and _Fract types.
58   PaddingOnUnsignedFixedPoint = false;
59   ShortAccumScale = 7;
60   AccumScale = 15;
61   LongAccumScale = 31;
62 
63   SuitableAlign = 64;
64   DefaultAlignForAttributeAligned = 128;
65   MinGlobalAlign = 0;
66   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
67   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
68   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
69   // This alignment guarantee also applies to Windows and Android.
70   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
71     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
72   else
73     NewAlign = 0; // Infer from basic type alignment.
74   HalfWidth = 16;
75   HalfAlign = 16;
76   FloatWidth = 32;
77   FloatAlign = 32;
78   DoubleWidth = 64;
79   DoubleAlign = 64;
80   LongDoubleWidth = 64;
81   LongDoubleAlign = 64;
82   Float128Align = 128;
83   LargeArrayMinWidth = 0;
84   LargeArrayAlign = 0;
85   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
86   MaxVectorAlign = 0;
87   MaxTLSAlign = 0;
88   SimdDefaultAlign = 0;
89   SizeType = UnsignedLong;
90   PtrDiffType = SignedLong;
91   IntMaxType = SignedLongLong;
92   IntPtrType = SignedLong;
93   WCharType = SignedInt;
94   WIntType = SignedInt;
95   Char16Type = UnsignedShort;
96   Char32Type = UnsignedInt;
97   Int64Type = SignedLongLong;
98   SigAtomicType = SignedInt;
99   ProcessIDType = SignedInt;
100   UseSignedCharForObjCBool = true;
101   UseBitFieldTypeAlignment = true;
102   UseZeroLengthBitfieldAlignment = false;
103   UseExplicitBitFieldAlignment = true;
104   ZeroLengthBitfieldBoundary = 0;
105   HalfFormat = &llvm::APFloat::IEEEhalf();
106   FloatFormat = &llvm::APFloat::IEEEsingle();
107   DoubleFormat = &llvm::APFloat::IEEEdouble();
108   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
109   Float128Format = &llvm::APFloat::IEEEquad();
110   MCountName = "mcount";
111   RegParmMax = 0;
112   SSERegParmMax = 0;
113   HasAlignMac68kSupport = false;
114   HasBuiltinMSVaList = false;
115   IsRenderScriptTarget = false;
116   HasAArch64SVETypes = false;
117   ARMCDECoprocMask = 0;
118 
119   // Default to no types using fpret.
120   RealTypeUsesObjCFPRet = 0;
121 
122   // Default to not using fp2ret for __Complex long double
123   ComplexLongDoubleUsesFP2Ret = false;
124 
125   // Set the C++ ABI based on the triple.
126   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
127                     ? TargetCXXABI::Microsoft
128                     : TargetCXXABI::GenericItanium);
129 
130   // Default to an empty address space map.
131   AddrSpaceMap = &DefaultAddrSpaceMap;
132   UseAddrSpaceMapMangling = false;
133 
134   // Default to an unknown platform name.
135   PlatformName = "unknown";
136   PlatformMinVersion = VersionTuple();
137 
138   MaxOpenCLWorkGroupSize = 1024;
139 }
140 
141 // Out of line virtual dtor for TargetInfo.
142 TargetInfo::~TargetInfo() {}
143 
144 void TargetInfo::resetDataLayout(StringRef DL) {
145   DataLayout.reset(new llvm::DataLayout(DL));
146 }
147 
148 bool
149 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
150   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
151   return false;
152 }
153 
154 bool
155 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
156   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
157   return false;
158 }
159 
160 /// getTypeName - Return the user string for the specified integer type enum.
161 /// For example, SignedShort -> "short".
162 const char *TargetInfo::getTypeName(IntType T) {
163   switch (T) {
164   default: llvm_unreachable("not an integer!");
165   case SignedChar:       return "signed char";
166   case UnsignedChar:     return "unsigned char";
167   case SignedShort:      return "short";
168   case UnsignedShort:    return "unsigned short";
169   case SignedInt:        return "int";
170   case UnsignedInt:      return "unsigned int";
171   case SignedLong:       return "long int";
172   case UnsignedLong:     return "long unsigned int";
173   case SignedLongLong:   return "long long int";
174   case UnsignedLongLong: return "long long unsigned int";
175   }
176 }
177 
178 /// getTypeConstantSuffix - Return the constant suffix for the specified
179 /// integer type enum. For example, SignedLong -> "L".
180 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
181   switch (T) {
182   default: llvm_unreachable("not an integer!");
183   case SignedChar:
184   case SignedShort:
185   case SignedInt:        return "";
186   case SignedLong:       return "L";
187   case SignedLongLong:   return "LL";
188   case UnsignedChar:
189     if (getCharWidth() < getIntWidth())
190       return "";
191     LLVM_FALLTHROUGH;
192   case UnsignedShort:
193     if (getShortWidth() < getIntWidth())
194       return "";
195     LLVM_FALLTHROUGH;
196   case UnsignedInt:      return "U";
197   case UnsignedLong:     return "UL";
198   case UnsignedLongLong: return "ULL";
199   }
200 }
201 
202 /// getTypeFormatModifier - Return the printf format modifier for the
203 /// specified integer type enum. For example, SignedLong -> "l".
204 
205 const char *TargetInfo::getTypeFormatModifier(IntType T) {
206   switch (T) {
207   default: llvm_unreachable("not an integer!");
208   case SignedChar:
209   case UnsignedChar:     return "hh";
210   case SignedShort:
211   case UnsignedShort:    return "h";
212   case SignedInt:
213   case UnsignedInt:      return "";
214   case SignedLong:
215   case UnsignedLong:     return "l";
216   case SignedLongLong:
217   case UnsignedLongLong: return "ll";
218   }
219 }
220 
221 /// getTypeWidth - Return the width (in bits) of the specified integer type
222 /// enum. For example, SignedInt -> getIntWidth().
223 unsigned TargetInfo::getTypeWidth(IntType T) const {
224   switch (T) {
225   default: llvm_unreachable("not an integer!");
226   case SignedChar:
227   case UnsignedChar:     return getCharWidth();
228   case SignedShort:
229   case UnsignedShort:    return getShortWidth();
230   case SignedInt:
231   case UnsignedInt:      return getIntWidth();
232   case SignedLong:
233   case UnsignedLong:     return getLongWidth();
234   case SignedLongLong:
235   case UnsignedLongLong: return getLongLongWidth();
236   };
237 }
238 
239 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
240     unsigned BitWidth, bool IsSigned) const {
241   if (getCharWidth() == BitWidth)
242     return IsSigned ? SignedChar : UnsignedChar;
243   if (getShortWidth() == BitWidth)
244     return IsSigned ? SignedShort : UnsignedShort;
245   if (getIntWidth() == BitWidth)
246     return IsSigned ? SignedInt : UnsignedInt;
247   if (getLongWidth() == BitWidth)
248     return IsSigned ? SignedLong : UnsignedLong;
249   if (getLongLongWidth() == BitWidth)
250     return IsSigned ? SignedLongLong : UnsignedLongLong;
251   return NoInt;
252 }
253 
254 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
255                                                        bool IsSigned) const {
256   if (getCharWidth() >= BitWidth)
257     return IsSigned ? SignedChar : UnsignedChar;
258   if (getShortWidth() >= BitWidth)
259     return IsSigned ? SignedShort : UnsignedShort;
260   if (getIntWidth() >= BitWidth)
261     return IsSigned ? SignedInt : UnsignedInt;
262   if (getLongWidth() >= BitWidth)
263     return IsSigned ? SignedLong : UnsignedLong;
264   if (getLongLongWidth() >= BitWidth)
265     return IsSigned ? SignedLongLong : UnsignedLongLong;
266   return NoInt;
267 }
268 
269 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth,
270                                                     bool ExplicitIEEE) const {
271   if (getFloatWidth() == BitWidth)
272     return Float;
273   if (getDoubleWidth() == BitWidth)
274     return Double;
275 
276   switch (BitWidth) {
277   case 96:
278     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
279       return LongDouble;
280     break;
281   case 128:
282     // The caller explicitly asked for an IEEE compliant type but we still
283     // have to check if the target supports it.
284     if (ExplicitIEEE)
285       return hasFloat128Type() ? Float128 : NoFloat;
286     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
287         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
288       return LongDouble;
289     if (hasFloat128Type())
290       return Float128;
291     break;
292   }
293 
294   return NoFloat;
295 }
296 
297 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
298 /// enum. For example, SignedInt -> getIntAlign().
299 unsigned TargetInfo::getTypeAlign(IntType T) const {
300   switch (T) {
301   default: llvm_unreachable("not an integer!");
302   case SignedChar:
303   case UnsignedChar:     return getCharAlign();
304   case SignedShort:
305   case UnsignedShort:    return getShortAlign();
306   case SignedInt:
307   case UnsignedInt:      return getIntAlign();
308   case SignedLong:
309   case UnsignedLong:     return getLongAlign();
310   case SignedLongLong:
311   case UnsignedLongLong: return getLongLongAlign();
312   };
313 }
314 
315 /// isTypeSigned - Return whether an integer types is signed. Returns true if
316 /// the type is signed; false otherwise.
317 bool TargetInfo::isTypeSigned(IntType T) {
318   switch (T) {
319   default: llvm_unreachable("not an integer!");
320   case SignedChar:
321   case SignedShort:
322   case SignedInt:
323   case SignedLong:
324   case SignedLongLong:
325     return true;
326   case UnsignedChar:
327   case UnsignedShort:
328   case UnsignedInt:
329   case UnsignedLong:
330   case UnsignedLongLong:
331     return false;
332   };
333 }
334 
335 /// adjust - Set forced language options.
336 /// Apply changes to the target information with respect to certain
337 /// language options which change the target configuration and adjust
338 /// the language based on the target options where applicable.
339 void TargetInfo::adjust(LangOptions &Opts) {
340   if (Opts.NoBitFieldTypeAlign)
341     UseBitFieldTypeAlignment = false;
342 
343   switch (Opts.WCharSize) {
344   default: llvm_unreachable("invalid wchar_t width");
345   case 0: break;
346   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
347   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
348   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
349   }
350 
351   if (Opts.AlignDouble) {
352     DoubleAlign = LongLongAlign = 64;
353     LongDoubleAlign = 64;
354   }
355 
356   if (Opts.OpenCL) {
357     // OpenCL C requires specific widths for types, irrespective of
358     // what these normally are for the target.
359     // We also define long long and long double here, although the
360     // OpenCL standard only mentions these as "reserved".
361     IntWidth = IntAlign = 32;
362     LongWidth = LongAlign = 64;
363     LongLongWidth = LongLongAlign = 128;
364     HalfWidth = HalfAlign = 16;
365     FloatWidth = FloatAlign = 32;
366 
367     // Embedded 32-bit targets (OpenCL EP) might have double C type
368     // defined as float. Let's not override this as it might lead
369     // to generating illegal code that uses 64bit doubles.
370     if (DoubleWidth != FloatWidth) {
371       DoubleWidth = DoubleAlign = 64;
372       DoubleFormat = &llvm::APFloat::IEEEdouble();
373     }
374     LongDoubleWidth = LongDoubleAlign = 128;
375 
376     unsigned MaxPointerWidth = getMaxPointerWidth();
377     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
378     bool Is32BitArch = MaxPointerWidth == 32;
379     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
380     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
381     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
382 
383     IntMaxType = SignedLongLong;
384     Int64Type = SignedLong;
385 
386     HalfFormat = &llvm::APFloat::IEEEhalf();
387     FloatFormat = &llvm::APFloat::IEEEsingle();
388     LongDoubleFormat = &llvm::APFloat::IEEEquad();
389   }
390 
391   if (Opts.DoubleSize) {
392     if (Opts.DoubleSize == 32) {
393       DoubleWidth = 32;
394       LongDoubleWidth = 32;
395       DoubleFormat = &llvm::APFloat::IEEEsingle();
396       LongDoubleFormat = &llvm::APFloat::IEEEsingle();
397     } else if (Opts.DoubleSize == 64) {
398       DoubleWidth = 64;
399       LongDoubleWidth = 64;
400       DoubleFormat = &llvm::APFloat::IEEEdouble();
401       LongDoubleFormat = &llvm::APFloat::IEEEdouble();
402     }
403   }
404 
405   if (Opts.LongDoubleSize) {
406     if (Opts.LongDoubleSize == DoubleWidth) {
407       LongDoubleWidth = DoubleWidth;
408       LongDoubleAlign = DoubleAlign;
409       LongDoubleFormat = DoubleFormat;
410     } else if (Opts.LongDoubleSize == 128) {
411       LongDoubleWidth = LongDoubleAlign = 128;
412       LongDoubleFormat = &llvm::APFloat::IEEEquad();
413     }
414   }
415 
416   if (Opts.NewAlignOverride)
417     NewAlign = Opts.NewAlignOverride * getCharWidth();
418 
419   // Each unsigned fixed point type has the same number of fractional bits as
420   // its corresponding signed type.
421   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
422   CheckFixedPointBits();
423 }
424 
425 bool TargetInfo::initFeatureMap(
426     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
427     const std::vector<std::string> &FeatureVec) const {
428   for (const auto &F : FeatureVec) {
429     StringRef Name = F;
430     // Apply the feature via the target.
431     bool Enabled = Name[0] == '+';
432     setFeatureEnabled(Features, Name.substr(1), Enabled);
433   }
434   return true;
435 }
436 
437 TargetInfo::CallingConvKind
438 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
439   if (getCXXABI() != TargetCXXABI::Microsoft &&
440       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
441     return CCK_ClangABI4OrPS4;
442   return CCK_Default;
443 }
444 
445 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
446   switch (TK) {
447   case OCLTK_Image:
448   case OCLTK_Pipe:
449     return LangAS::opencl_global;
450 
451   case OCLTK_Sampler:
452     return LangAS::opencl_constant;
453 
454   default:
455     return LangAS::Default;
456   }
457 }
458 
459 //===----------------------------------------------------------------------===//
460 
461 
462 static StringRef removeGCCRegisterPrefix(StringRef Name) {
463   if (Name[0] == '%' || Name[0] == '#')
464     Name = Name.substr(1);
465 
466   return Name;
467 }
468 
469 /// isValidClobber - Returns whether the passed in string is
470 /// a valid clobber in an inline asm statement. This is used by
471 /// Sema.
472 bool TargetInfo::isValidClobber(StringRef Name) const {
473   return (isValidGCCRegisterName(Name) ||
474           Name == "memory" || Name == "cc");
475 }
476 
477 /// isValidGCCRegisterName - Returns whether the passed in string
478 /// is a valid register name according to GCC. This is used by Sema for
479 /// inline asm statements.
480 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
481   if (Name.empty())
482     return false;
483 
484   // Get rid of any register prefix.
485   Name = removeGCCRegisterPrefix(Name);
486   if (Name.empty())
487     return false;
488 
489   ArrayRef<const char *> Names = getGCCRegNames();
490 
491   // If we have a number it maps to an entry in the register name array.
492   if (isDigit(Name[0])) {
493     unsigned n;
494     if (!Name.getAsInteger(0, n))
495       return n < Names.size();
496   }
497 
498   // Check register names.
499   if (llvm::is_contained(Names, Name))
500     return true;
501 
502   // Check any additional names that we have.
503   for (const AddlRegName &ARN : getGCCAddlRegNames())
504     for (const char *AN : ARN.Names) {
505       if (!AN)
506         break;
507       // Make sure the register that the additional name is for is within
508       // the bounds of the register names from above.
509       if (AN == Name && ARN.RegNum < Names.size())
510         return true;
511     }
512 
513   // Now check aliases.
514   for (const GCCRegAlias &GRA : getGCCRegAliases())
515     for (const char *A : GRA.Aliases) {
516       if (!A)
517         break;
518       if (A == Name)
519         return true;
520     }
521 
522   return false;
523 }
524 
525 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
526                                                    bool ReturnCanonical) const {
527   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
528 
529   // Get rid of any register prefix.
530   Name = removeGCCRegisterPrefix(Name);
531 
532   ArrayRef<const char *> Names = getGCCRegNames();
533 
534   // First, check if we have a number.
535   if (isDigit(Name[0])) {
536     unsigned n;
537     if (!Name.getAsInteger(0, n)) {
538       assert(n < Names.size() && "Out of bounds register number!");
539       return Names[n];
540     }
541   }
542 
543   // Check any additional names that we have.
544   for (const AddlRegName &ARN : getGCCAddlRegNames())
545     for (const char *AN : ARN.Names) {
546       if (!AN)
547         break;
548       // Make sure the register that the additional name is for is within
549       // the bounds of the register names from above.
550       if (AN == Name && ARN.RegNum < Names.size())
551         return ReturnCanonical ? Names[ARN.RegNum] : Name;
552     }
553 
554   // Now check aliases.
555   for (const GCCRegAlias &RA : getGCCRegAliases())
556     for (const char *A : RA.Aliases) {
557       if (!A)
558         break;
559       if (A == Name)
560         return RA.Register;
561     }
562 
563   return Name;
564 }
565 
566 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
567   const char *Name = Info.getConstraintStr().c_str();
568   // An output constraint must start with '=' or '+'
569   if (*Name != '=' && *Name != '+')
570     return false;
571 
572   if (*Name == '+')
573     Info.setIsReadWrite();
574 
575   Name++;
576   while (*Name) {
577     switch (*Name) {
578     default:
579       if (!validateAsmConstraint(Name, Info)) {
580         // FIXME: We temporarily return false
581         // so we can add more constraints as we hit it.
582         // Eventually, an unknown constraint should just be treated as 'g'.
583         return false;
584       }
585       break;
586     case '&': // early clobber.
587       Info.setEarlyClobber();
588       break;
589     case '%': // commutative.
590       // FIXME: Check that there is a another register after this one.
591       break;
592     case 'r': // general register.
593       Info.setAllowsRegister();
594       break;
595     case 'm': // memory operand.
596     case 'o': // offsetable memory operand.
597     case 'V': // non-offsetable memory operand.
598     case '<': // autodecrement memory operand.
599     case '>': // autoincrement memory operand.
600       Info.setAllowsMemory();
601       break;
602     case 'g': // general register, memory operand or immediate integer.
603     case 'X': // any operand.
604       Info.setAllowsRegister();
605       Info.setAllowsMemory();
606       break;
607     case ',': // multiple alternative constraint.  Pass it.
608       // Handle additional optional '=' or '+' modifiers.
609       if (Name[1] == '=' || Name[1] == '+')
610         Name++;
611       break;
612     case '#': // Ignore as constraint.
613       while (Name[1] && Name[1] != ',')
614         Name++;
615       break;
616     case '?': // Disparage slightly code.
617     case '!': // Disparage severely.
618     case '*': // Ignore for choosing register preferences.
619     case 'i': // Ignore i,n,E,F as output constraints (match from the other
620               // chars)
621     case 'n':
622     case 'E':
623     case 'F':
624       break;  // Pass them.
625     }
626 
627     Name++;
628   }
629 
630   // Early clobber with a read-write constraint which doesn't permit registers
631   // is invalid.
632   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
633     return false;
634 
635   // If a constraint allows neither memory nor register operands it contains
636   // only modifiers. Reject it.
637   return Info.allowsMemory() || Info.allowsRegister();
638 }
639 
640 bool TargetInfo::resolveSymbolicName(const char *&Name,
641                                      ArrayRef<ConstraintInfo> OutputConstraints,
642                                      unsigned &Index) const {
643   assert(*Name == '[' && "Symbolic name did not start with '['");
644   Name++;
645   const char *Start = Name;
646   while (*Name && *Name != ']')
647     Name++;
648 
649   if (!*Name) {
650     // Missing ']'
651     return false;
652   }
653 
654   std::string SymbolicName(Start, Name - Start);
655 
656   for (Index = 0; Index != OutputConstraints.size(); ++Index)
657     if (SymbolicName == OutputConstraints[Index].getName())
658       return true;
659 
660   return false;
661 }
662 
663 bool TargetInfo::validateInputConstraint(
664                               MutableArrayRef<ConstraintInfo> OutputConstraints,
665                               ConstraintInfo &Info) const {
666   const char *Name = Info.ConstraintStr.c_str();
667 
668   if (!*Name)
669     return false;
670 
671   while (*Name) {
672     switch (*Name) {
673     default:
674       // Check if we have a matching constraint
675       if (*Name >= '0' && *Name <= '9') {
676         const char *DigitStart = Name;
677         while (Name[1] >= '0' && Name[1] <= '9')
678           Name++;
679         const char *DigitEnd = Name;
680         unsigned i;
681         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
682                 .getAsInteger(10, i))
683           return false;
684 
685         // Check if matching constraint is out of bounds.
686         if (i >= OutputConstraints.size()) return false;
687 
688         // A number must refer to an output only operand.
689         if (OutputConstraints[i].isReadWrite())
690           return false;
691 
692         // If the constraint is already tied, it must be tied to the
693         // same operand referenced to by the number.
694         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
695           return false;
696 
697         // The constraint should have the same info as the respective
698         // output constraint.
699         Info.setTiedOperand(i, OutputConstraints[i]);
700       } else if (!validateAsmConstraint(Name, Info)) {
701         // FIXME: This error return is in place temporarily so we can
702         // add more constraints as we hit it.  Eventually, an unknown
703         // constraint should just be treated as 'g'.
704         return false;
705       }
706       break;
707     case '[': {
708       unsigned Index = 0;
709       if (!resolveSymbolicName(Name, OutputConstraints, Index))
710         return false;
711 
712       // If the constraint is already tied, it must be tied to the
713       // same operand referenced to by the number.
714       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
715         return false;
716 
717       // A number must refer to an output only operand.
718       if (OutputConstraints[Index].isReadWrite())
719         return false;
720 
721       Info.setTiedOperand(Index, OutputConstraints[Index]);
722       break;
723     }
724     case '%': // commutative
725       // FIXME: Fail if % is used with the last operand.
726       break;
727     case 'i': // immediate integer.
728       break;
729     case 'n': // immediate integer with a known value.
730       Info.setRequiresImmediate();
731       break;
732     case 'I':  // Various constant constraints with target-specific meanings.
733     case 'J':
734     case 'K':
735     case 'L':
736     case 'M':
737     case 'N':
738     case 'O':
739     case 'P':
740       if (!validateAsmConstraint(Name, Info))
741         return false;
742       break;
743     case 'r': // general register.
744       Info.setAllowsRegister();
745       break;
746     case 'm': // memory operand.
747     case 'o': // offsettable memory operand.
748     case 'V': // non-offsettable memory operand.
749     case '<': // autodecrement memory operand.
750     case '>': // autoincrement memory operand.
751       Info.setAllowsMemory();
752       break;
753     case 'g': // general register, memory operand or immediate integer.
754     case 'X': // any operand.
755       Info.setAllowsRegister();
756       Info.setAllowsMemory();
757       break;
758     case 'E': // immediate floating point.
759     case 'F': // immediate floating point.
760     case 'p': // address operand.
761       break;
762     case ',': // multiple alternative constraint.  Ignore comma.
763       break;
764     case '#': // Ignore as constraint.
765       while (Name[1] && Name[1] != ',')
766         Name++;
767       break;
768     case '?': // Disparage slightly code.
769     case '!': // Disparage severely.
770     case '*': // Ignore for choosing register preferences.
771       break;  // Pass them.
772     }
773 
774     Name++;
775   }
776 
777   return true;
778 }
779 
780 void TargetInfo::CheckFixedPointBits() const {
781   // Check that the number of fractional and integral bits (and maybe sign) can
782   // fit into the bits given for a fixed point type.
783   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
784   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
785   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
786   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
787          ShortAccumWidth);
788   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
789   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
790          LongAccumWidth);
791 
792   assert(getShortFractScale() + 1 <= ShortFractWidth);
793   assert(getFractScale() + 1 <= FractWidth);
794   assert(getLongFractScale() + 1 <= LongFractWidth);
795   assert(getUnsignedShortFractScale() <= ShortFractWidth);
796   assert(getUnsignedFractScale() <= FractWidth);
797   assert(getUnsignedLongFractScale() <= LongFractWidth);
798 
799   // Each unsigned fract type has either the same number of fractional bits
800   // as, or one more fractional bit than, its corresponding signed fract type.
801   assert(getShortFractScale() == getUnsignedShortFractScale() ||
802          getShortFractScale() == getUnsignedShortFractScale() - 1);
803   assert(getFractScale() == getUnsignedFractScale() ||
804          getFractScale() == getUnsignedFractScale() - 1);
805   assert(getLongFractScale() == getUnsignedLongFractScale() ||
806          getLongFractScale() == getUnsignedLongFractScale() - 1);
807 
808   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
809   // fractional bits is nondecreasing for each of the following sets of
810   // fixed-point types:
811   // - signed fract types
812   // - unsigned fract types
813   // - signed accum types
814   // - unsigned accum types.
815   assert(getLongFractScale() >= getFractScale() &&
816          getFractScale() >= getShortFractScale());
817   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
818          getUnsignedFractScale() >= getUnsignedShortFractScale());
819   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
820   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
821          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
822 
823   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
824   // integral bits is nondecreasing for each of the following sets of
825   // fixed-point types:
826   // - signed accum types
827   // - unsigned accum types
828   assert(getLongAccumIBits() >= getAccumIBits() &&
829          getAccumIBits() >= getShortAccumIBits());
830   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
831          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
832 
833   // Each signed accum type has at least as many integral bits as its
834   // corresponding unsigned accum type.
835   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
836   assert(getAccumIBits() >= getUnsignedAccumIBits());
837   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
838 }
839 
840 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
841   auto *Target = static_cast<TransferrableTargetInfo*>(this);
842   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
843   *Target = *Src;
844 }
845