1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasIbm128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasStrictFP = false; 41 PointerWidth = PointerAlign = 32; 42 BoolWidth = BoolAlign = 8; 43 IntWidth = IntAlign = 32; 44 LongWidth = LongAlign = 32; 45 LongLongWidth = LongLongAlign = 64; 46 47 // Fixed point default bit widths 48 ShortAccumWidth = ShortAccumAlign = 16; 49 AccumWidth = AccumAlign = 32; 50 LongAccumWidth = LongAccumAlign = 64; 51 ShortFractWidth = ShortFractAlign = 8; 52 FractWidth = FractAlign = 16; 53 LongFractWidth = LongFractAlign = 32; 54 55 // Fixed point default integral and fractional bit sizes 56 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 57 // types by default to have the same number of fractional bits between _Accum 58 // and _Fract types. 59 PaddingOnUnsignedFixedPoint = false; 60 ShortAccumScale = 7; 61 AccumScale = 15; 62 LongAccumScale = 31; 63 64 SuitableAlign = 64; 65 DefaultAlignForAttributeAligned = 128; 66 MinGlobalAlign = 0; 67 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 68 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 69 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 70 // This alignment guarantee also applies to Windows and Android. On Darwin, 71 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 72 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 73 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 74 else if (T.isOSDarwin()) 75 NewAlign = 128; 76 else 77 NewAlign = 0; // Infer from basic type alignment. 78 HalfWidth = 16; 79 HalfAlign = 16; 80 FloatWidth = 32; 81 FloatAlign = 32; 82 DoubleWidth = 64; 83 DoubleAlign = 64; 84 LongDoubleWidth = 64; 85 LongDoubleAlign = 64; 86 Float128Align = 128; 87 Ibm128Align = 128; 88 LargeArrayMinWidth = 0; 89 LargeArrayAlign = 0; 90 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 91 MaxVectorAlign = 0; 92 MaxTLSAlign = 0; 93 SimdDefaultAlign = 0; 94 SizeType = UnsignedLong; 95 PtrDiffType = SignedLong; 96 IntMaxType = SignedLongLong; 97 IntPtrType = SignedLong; 98 WCharType = SignedInt; 99 WIntType = SignedInt; 100 Char16Type = UnsignedShort; 101 Char32Type = UnsignedInt; 102 Int64Type = SignedLongLong; 103 Int16Type = SignedShort; 104 SigAtomicType = SignedInt; 105 ProcessIDType = SignedInt; 106 UseSignedCharForObjCBool = true; 107 UseBitFieldTypeAlignment = true; 108 UseZeroLengthBitfieldAlignment = false; 109 UseLeadingZeroLengthBitfield = true; 110 UseExplicitBitFieldAlignment = true; 111 ZeroLengthBitfieldBoundary = 0; 112 MaxAlignedAttribute = 0; 113 HalfFormat = &llvm::APFloat::IEEEhalf(); 114 FloatFormat = &llvm::APFloat::IEEEsingle(); 115 DoubleFormat = &llvm::APFloat::IEEEdouble(); 116 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 117 Float128Format = &llvm::APFloat::IEEEquad(); 118 Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); 119 MCountName = "mcount"; 120 UserLabelPrefix = "_"; 121 RegParmMax = 0; 122 SSERegParmMax = 0; 123 HasAlignMac68kSupport = false; 124 HasBuiltinMSVaList = false; 125 IsRenderScriptTarget = false; 126 HasAArch64SVETypes = false; 127 HasRISCVVTypes = false; 128 AllowAMDGPUUnsafeFPAtomics = false; 129 ARMCDECoprocMask = 0; 130 131 // Default to no types using fpret. 132 RealTypeUsesObjCFPRet = 0; 133 134 // Default to not using fp2ret for __Complex long double 135 ComplexLongDoubleUsesFP2Ret = false; 136 137 // Set the C++ ABI based on the triple. 138 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 139 ? TargetCXXABI::Microsoft 140 : TargetCXXABI::GenericItanium); 141 142 // Default to an empty address space map. 143 AddrSpaceMap = &DefaultAddrSpaceMap; 144 UseAddrSpaceMapMangling = false; 145 146 // Default to an unknown platform name. 147 PlatformName = "unknown"; 148 PlatformMinVersion = VersionTuple(); 149 150 MaxOpenCLWorkGroupSize = 1024; 151 } 152 153 // Out of line virtual dtor for TargetInfo. 154 TargetInfo::~TargetInfo() {} 155 156 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 157 DataLayoutString = DL.str(); 158 UserLabelPrefix = ULP; 159 } 160 161 bool 162 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 163 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 164 return false; 165 } 166 167 bool 168 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 169 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 170 return false; 171 } 172 173 /// getTypeName - Return the user string for the specified integer type enum. 174 /// For example, SignedShort -> "short". 175 const char *TargetInfo::getTypeName(IntType T) { 176 switch (T) { 177 default: llvm_unreachable("not an integer!"); 178 case SignedChar: return "signed char"; 179 case UnsignedChar: return "unsigned char"; 180 case SignedShort: return "short"; 181 case UnsignedShort: return "unsigned short"; 182 case SignedInt: return "int"; 183 case UnsignedInt: return "unsigned int"; 184 case SignedLong: return "long int"; 185 case UnsignedLong: return "long unsigned int"; 186 case SignedLongLong: return "long long int"; 187 case UnsignedLongLong: return "long long unsigned int"; 188 } 189 } 190 191 /// getTypeConstantSuffix - Return the constant suffix for the specified 192 /// integer type enum. For example, SignedLong -> "L". 193 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 194 switch (T) { 195 default: llvm_unreachable("not an integer!"); 196 case SignedChar: 197 case SignedShort: 198 case SignedInt: return ""; 199 case SignedLong: return "L"; 200 case SignedLongLong: return "LL"; 201 case UnsignedChar: 202 if (getCharWidth() < getIntWidth()) 203 return ""; 204 LLVM_FALLTHROUGH; 205 case UnsignedShort: 206 if (getShortWidth() < getIntWidth()) 207 return ""; 208 LLVM_FALLTHROUGH; 209 case UnsignedInt: return "U"; 210 case UnsignedLong: return "UL"; 211 case UnsignedLongLong: return "ULL"; 212 } 213 } 214 215 /// getTypeFormatModifier - Return the printf format modifier for the 216 /// specified integer type enum. For example, SignedLong -> "l". 217 218 const char *TargetInfo::getTypeFormatModifier(IntType T) { 219 switch (T) { 220 default: llvm_unreachable("not an integer!"); 221 case SignedChar: 222 case UnsignedChar: return "hh"; 223 case SignedShort: 224 case UnsignedShort: return "h"; 225 case SignedInt: 226 case UnsignedInt: return ""; 227 case SignedLong: 228 case UnsignedLong: return "l"; 229 case SignedLongLong: 230 case UnsignedLongLong: return "ll"; 231 } 232 } 233 234 /// getTypeWidth - Return the width (in bits) of the specified integer type 235 /// enum. For example, SignedInt -> getIntWidth(). 236 unsigned TargetInfo::getTypeWidth(IntType T) const { 237 switch (T) { 238 default: llvm_unreachable("not an integer!"); 239 case SignedChar: 240 case UnsignedChar: return getCharWidth(); 241 case SignedShort: 242 case UnsignedShort: return getShortWidth(); 243 case SignedInt: 244 case UnsignedInt: return getIntWidth(); 245 case SignedLong: 246 case UnsignedLong: return getLongWidth(); 247 case SignedLongLong: 248 case UnsignedLongLong: return getLongLongWidth(); 249 }; 250 } 251 252 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 253 unsigned BitWidth, bool IsSigned) const { 254 if (getCharWidth() == BitWidth) 255 return IsSigned ? SignedChar : UnsignedChar; 256 if (getShortWidth() == BitWidth) 257 return IsSigned ? SignedShort : UnsignedShort; 258 if (getIntWidth() == BitWidth) 259 return IsSigned ? SignedInt : UnsignedInt; 260 if (getLongWidth() == BitWidth) 261 return IsSigned ? SignedLong : UnsignedLong; 262 if (getLongLongWidth() == BitWidth) 263 return IsSigned ? SignedLongLong : UnsignedLongLong; 264 return NoInt; 265 } 266 267 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 268 bool IsSigned) const { 269 if (getCharWidth() >= BitWidth) 270 return IsSigned ? SignedChar : UnsignedChar; 271 if (getShortWidth() >= BitWidth) 272 return IsSigned ? SignedShort : UnsignedShort; 273 if (getIntWidth() >= BitWidth) 274 return IsSigned ? SignedInt : UnsignedInt; 275 if (getLongWidth() >= BitWidth) 276 return IsSigned ? SignedLong : UnsignedLong; 277 if (getLongLongWidth() >= BitWidth) 278 return IsSigned ? SignedLongLong : UnsignedLongLong; 279 return NoInt; 280 } 281 282 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 283 bool ExplicitIEEE) const { 284 if (getFloatWidth() == BitWidth) 285 return Float; 286 if (getDoubleWidth() == BitWidth) 287 return Double; 288 289 switch (BitWidth) { 290 case 96: 291 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 292 return LongDouble; 293 break; 294 case 128: 295 // The caller explicitly asked for an IEEE compliant type but we still 296 // have to check if the target supports it. 297 if (ExplicitIEEE) 298 return hasFloat128Type() ? Float128 : NoFloat; 299 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 300 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 301 return LongDouble; 302 if (hasFloat128Type()) 303 return Float128; 304 break; 305 } 306 307 return NoFloat; 308 } 309 310 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 311 /// enum. For example, SignedInt -> getIntAlign(). 312 unsigned TargetInfo::getTypeAlign(IntType T) const { 313 switch (T) { 314 default: llvm_unreachable("not an integer!"); 315 case SignedChar: 316 case UnsignedChar: return getCharAlign(); 317 case SignedShort: 318 case UnsignedShort: return getShortAlign(); 319 case SignedInt: 320 case UnsignedInt: return getIntAlign(); 321 case SignedLong: 322 case UnsignedLong: return getLongAlign(); 323 case SignedLongLong: 324 case UnsignedLongLong: return getLongLongAlign(); 325 }; 326 } 327 328 /// isTypeSigned - Return whether an integer types is signed. Returns true if 329 /// the type is signed; false otherwise. 330 bool TargetInfo::isTypeSigned(IntType T) { 331 switch (T) { 332 default: llvm_unreachable("not an integer!"); 333 case SignedChar: 334 case SignedShort: 335 case SignedInt: 336 case SignedLong: 337 case SignedLongLong: 338 return true; 339 case UnsignedChar: 340 case UnsignedShort: 341 case UnsignedInt: 342 case UnsignedLong: 343 case UnsignedLongLong: 344 return false; 345 }; 346 } 347 348 /// adjust - Set forced language options. 349 /// Apply changes to the target information with respect to certain 350 /// language options which change the target configuration and adjust 351 /// the language based on the target options where applicable. 352 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 353 if (Opts.NoBitFieldTypeAlign) 354 UseBitFieldTypeAlignment = false; 355 356 switch (Opts.WCharSize) { 357 default: llvm_unreachable("invalid wchar_t width"); 358 case 0: break; 359 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 360 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 361 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 362 } 363 364 if (Opts.AlignDouble) { 365 DoubleAlign = LongLongAlign = 64; 366 LongDoubleAlign = 64; 367 } 368 369 if (Opts.OpenCL) { 370 // OpenCL C requires specific widths for types, irrespective of 371 // what these normally are for the target. 372 // We also define long long and long double here, although the 373 // OpenCL standard only mentions these as "reserved". 374 IntWidth = IntAlign = 32; 375 LongWidth = LongAlign = 64; 376 LongLongWidth = LongLongAlign = 128; 377 HalfWidth = HalfAlign = 16; 378 FloatWidth = FloatAlign = 32; 379 380 // Embedded 32-bit targets (OpenCL EP) might have double C type 381 // defined as float. Let's not override this as it might lead 382 // to generating illegal code that uses 64bit doubles. 383 if (DoubleWidth != FloatWidth) { 384 DoubleWidth = DoubleAlign = 64; 385 DoubleFormat = &llvm::APFloat::IEEEdouble(); 386 } 387 LongDoubleWidth = LongDoubleAlign = 128; 388 389 unsigned MaxPointerWidth = getMaxPointerWidth(); 390 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 391 bool Is32BitArch = MaxPointerWidth == 32; 392 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 393 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 394 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 395 396 IntMaxType = SignedLongLong; 397 Int64Type = SignedLong; 398 399 HalfFormat = &llvm::APFloat::IEEEhalf(); 400 FloatFormat = &llvm::APFloat::IEEEsingle(); 401 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 402 403 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for 404 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space 405 // feature 406 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 407 // or later and __opencl_c_pipes feature 408 // FIXME: These language options are also defined in setLangDefaults() 409 // for OpenCL C 2.0 but with no access to target capabilities. Target 410 // should be immutable once created and thus these language options need 411 // to be defined only once. 412 if (Opts.getOpenCLCompatibleVersion() == 300) { 413 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); 414 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( 415 OpenCLFeaturesMap, "__opencl_c_generic_address_space"); 416 Opts.OpenCLPipes = 417 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); 418 } 419 } 420 421 if (Opts.DoubleSize) { 422 if (Opts.DoubleSize == 32) { 423 DoubleWidth = 32; 424 LongDoubleWidth = 32; 425 DoubleFormat = &llvm::APFloat::IEEEsingle(); 426 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 427 } else if (Opts.DoubleSize == 64) { 428 DoubleWidth = 64; 429 LongDoubleWidth = 64; 430 DoubleFormat = &llvm::APFloat::IEEEdouble(); 431 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 432 } 433 } 434 435 if (Opts.LongDoubleSize) { 436 if (Opts.LongDoubleSize == DoubleWidth) { 437 LongDoubleWidth = DoubleWidth; 438 LongDoubleAlign = DoubleAlign; 439 LongDoubleFormat = DoubleFormat; 440 } else if (Opts.LongDoubleSize == 128) { 441 LongDoubleWidth = LongDoubleAlign = 128; 442 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 443 } 444 } 445 446 if (Opts.NewAlignOverride) 447 NewAlign = Opts.NewAlignOverride * getCharWidth(); 448 449 // Each unsigned fixed point type has the same number of fractional bits as 450 // its corresponding signed type. 451 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 452 CheckFixedPointBits(); 453 454 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 455 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 456 Opts.ProtectParens = false; 457 } 458 } 459 460 bool TargetInfo::initFeatureMap( 461 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 462 const std::vector<std::string> &FeatureVec) const { 463 for (const auto &F : FeatureVec) { 464 StringRef Name = F; 465 // Apply the feature via the target. 466 bool Enabled = Name[0] == '+'; 467 setFeatureEnabled(Features, Name.substr(1), Enabled); 468 } 469 return true; 470 } 471 472 TargetInfo::CallingConvKind 473 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 474 if (getCXXABI() != TargetCXXABI::Microsoft && 475 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 476 return CCK_ClangABI4OrPS4; 477 return CCK_Default; 478 } 479 480 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 481 switch (TK) { 482 case OCLTK_Image: 483 case OCLTK_Pipe: 484 return LangAS::opencl_global; 485 486 case OCLTK_Sampler: 487 return LangAS::opencl_constant; 488 489 default: 490 return LangAS::Default; 491 } 492 } 493 494 //===----------------------------------------------------------------------===// 495 496 497 static StringRef removeGCCRegisterPrefix(StringRef Name) { 498 if (Name[0] == '%' || Name[0] == '#') 499 Name = Name.substr(1); 500 501 return Name; 502 } 503 504 /// isValidClobber - Returns whether the passed in string is 505 /// a valid clobber in an inline asm statement. This is used by 506 /// Sema. 507 bool TargetInfo::isValidClobber(StringRef Name) const { 508 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 509 Name == "unwind"); 510 } 511 512 /// isValidGCCRegisterName - Returns whether the passed in string 513 /// is a valid register name according to GCC. This is used by Sema for 514 /// inline asm statements. 515 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 516 if (Name.empty()) 517 return false; 518 519 // Get rid of any register prefix. 520 Name = removeGCCRegisterPrefix(Name); 521 if (Name.empty()) 522 return false; 523 524 ArrayRef<const char *> Names = getGCCRegNames(); 525 526 // If we have a number it maps to an entry in the register name array. 527 if (isDigit(Name[0])) { 528 unsigned n; 529 if (!Name.getAsInteger(0, n)) 530 return n < Names.size(); 531 } 532 533 // Check register names. 534 if (llvm::is_contained(Names, Name)) 535 return true; 536 537 // Check any additional names that we have. 538 for (const AddlRegName &ARN : getGCCAddlRegNames()) 539 for (const char *AN : ARN.Names) { 540 if (!AN) 541 break; 542 // Make sure the register that the additional name is for is within 543 // the bounds of the register names from above. 544 if (AN == Name && ARN.RegNum < Names.size()) 545 return true; 546 } 547 548 // Now check aliases. 549 for (const GCCRegAlias &GRA : getGCCRegAliases()) 550 for (const char *A : GRA.Aliases) { 551 if (!A) 552 break; 553 if (A == Name) 554 return true; 555 } 556 557 return false; 558 } 559 560 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 561 bool ReturnCanonical) const { 562 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 563 564 // Get rid of any register prefix. 565 Name = removeGCCRegisterPrefix(Name); 566 567 ArrayRef<const char *> Names = getGCCRegNames(); 568 569 // First, check if we have a number. 570 if (isDigit(Name[0])) { 571 unsigned n; 572 if (!Name.getAsInteger(0, n)) { 573 assert(n < Names.size() && "Out of bounds register number!"); 574 return Names[n]; 575 } 576 } 577 578 // Check any additional names that we have. 579 for (const AddlRegName &ARN : getGCCAddlRegNames()) 580 for (const char *AN : ARN.Names) { 581 if (!AN) 582 break; 583 // Make sure the register that the additional name is for is within 584 // the bounds of the register names from above. 585 if (AN == Name && ARN.RegNum < Names.size()) 586 return ReturnCanonical ? Names[ARN.RegNum] : Name; 587 } 588 589 // Now check aliases. 590 for (const GCCRegAlias &RA : getGCCRegAliases()) 591 for (const char *A : RA.Aliases) { 592 if (!A) 593 break; 594 if (A == Name) 595 return RA.Register; 596 } 597 598 return Name; 599 } 600 601 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 602 const char *Name = Info.getConstraintStr().c_str(); 603 // An output constraint must start with '=' or '+' 604 if (*Name != '=' && *Name != '+') 605 return false; 606 607 if (*Name == '+') 608 Info.setIsReadWrite(); 609 610 Name++; 611 while (*Name) { 612 switch (*Name) { 613 default: 614 if (!validateAsmConstraint(Name, Info)) { 615 // FIXME: We temporarily return false 616 // so we can add more constraints as we hit it. 617 // Eventually, an unknown constraint should just be treated as 'g'. 618 return false; 619 } 620 break; 621 case '&': // early clobber. 622 Info.setEarlyClobber(); 623 break; 624 case '%': // commutative. 625 // FIXME: Check that there is a another register after this one. 626 break; 627 case 'r': // general register. 628 Info.setAllowsRegister(); 629 break; 630 case 'm': // memory operand. 631 case 'o': // offsetable memory operand. 632 case 'V': // non-offsetable memory operand. 633 case '<': // autodecrement memory operand. 634 case '>': // autoincrement memory operand. 635 Info.setAllowsMemory(); 636 break; 637 case 'g': // general register, memory operand or immediate integer. 638 case 'X': // any operand. 639 Info.setAllowsRegister(); 640 Info.setAllowsMemory(); 641 break; 642 case ',': // multiple alternative constraint. Pass it. 643 // Handle additional optional '=' or '+' modifiers. 644 if (Name[1] == '=' || Name[1] == '+') 645 Name++; 646 break; 647 case '#': // Ignore as constraint. 648 while (Name[1] && Name[1] != ',') 649 Name++; 650 break; 651 case '?': // Disparage slightly code. 652 case '!': // Disparage severely. 653 case '*': // Ignore for choosing register preferences. 654 case 'i': // Ignore i,n,E,F as output constraints (match from the other 655 // chars) 656 case 'n': 657 case 'E': 658 case 'F': 659 break; // Pass them. 660 } 661 662 Name++; 663 } 664 665 // Early clobber with a read-write constraint which doesn't permit registers 666 // is invalid. 667 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 668 return false; 669 670 // If a constraint allows neither memory nor register operands it contains 671 // only modifiers. Reject it. 672 return Info.allowsMemory() || Info.allowsRegister(); 673 } 674 675 bool TargetInfo::resolveSymbolicName(const char *&Name, 676 ArrayRef<ConstraintInfo> OutputConstraints, 677 unsigned &Index) const { 678 assert(*Name == '[' && "Symbolic name did not start with '['"); 679 Name++; 680 const char *Start = Name; 681 while (*Name && *Name != ']') 682 Name++; 683 684 if (!*Name) { 685 // Missing ']' 686 return false; 687 } 688 689 std::string SymbolicName(Start, Name - Start); 690 691 for (Index = 0; Index != OutputConstraints.size(); ++Index) 692 if (SymbolicName == OutputConstraints[Index].getName()) 693 return true; 694 695 return false; 696 } 697 698 bool TargetInfo::validateInputConstraint( 699 MutableArrayRef<ConstraintInfo> OutputConstraints, 700 ConstraintInfo &Info) const { 701 const char *Name = Info.ConstraintStr.c_str(); 702 703 if (!*Name) 704 return false; 705 706 while (*Name) { 707 switch (*Name) { 708 default: 709 // Check if we have a matching constraint 710 if (*Name >= '0' && *Name <= '9') { 711 const char *DigitStart = Name; 712 while (Name[1] >= '0' && Name[1] <= '9') 713 Name++; 714 const char *DigitEnd = Name; 715 unsigned i; 716 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 717 .getAsInteger(10, i)) 718 return false; 719 720 // Check if matching constraint is out of bounds. 721 if (i >= OutputConstraints.size()) return false; 722 723 // A number must refer to an output only operand. 724 if (OutputConstraints[i].isReadWrite()) 725 return false; 726 727 // If the constraint is already tied, it must be tied to the 728 // same operand referenced to by the number. 729 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 730 return false; 731 732 // The constraint should have the same info as the respective 733 // output constraint. 734 Info.setTiedOperand(i, OutputConstraints[i]); 735 } else if (!validateAsmConstraint(Name, Info)) { 736 // FIXME: This error return is in place temporarily so we can 737 // add more constraints as we hit it. Eventually, an unknown 738 // constraint should just be treated as 'g'. 739 return false; 740 } 741 break; 742 case '[': { 743 unsigned Index = 0; 744 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 745 return false; 746 747 // If the constraint is already tied, it must be tied to the 748 // same operand referenced to by the number. 749 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 750 return false; 751 752 // A number must refer to an output only operand. 753 if (OutputConstraints[Index].isReadWrite()) 754 return false; 755 756 Info.setTiedOperand(Index, OutputConstraints[Index]); 757 break; 758 } 759 case '%': // commutative 760 // FIXME: Fail if % is used with the last operand. 761 break; 762 case 'i': // immediate integer. 763 break; 764 case 'n': // immediate integer with a known value. 765 Info.setRequiresImmediate(); 766 break; 767 case 'I': // Various constant constraints with target-specific meanings. 768 case 'J': 769 case 'K': 770 case 'L': 771 case 'M': 772 case 'N': 773 case 'O': 774 case 'P': 775 if (!validateAsmConstraint(Name, Info)) 776 return false; 777 break; 778 case 'r': // general register. 779 Info.setAllowsRegister(); 780 break; 781 case 'm': // memory operand. 782 case 'o': // offsettable memory operand. 783 case 'V': // non-offsettable memory operand. 784 case '<': // autodecrement memory operand. 785 case '>': // autoincrement memory operand. 786 Info.setAllowsMemory(); 787 break; 788 case 'g': // general register, memory operand or immediate integer. 789 case 'X': // any operand. 790 Info.setAllowsRegister(); 791 Info.setAllowsMemory(); 792 break; 793 case 'E': // immediate floating point. 794 case 'F': // immediate floating point. 795 case 'p': // address operand. 796 break; 797 case ',': // multiple alternative constraint. Ignore comma. 798 break; 799 case '#': // Ignore as constraint. 800 while (Name[1] && Name[1] != ',') 801 Name++; 802 break; 803 case '?': // Disparage slightly code. 804 case '!': // Disparage severely. 805 case '*': // Ignore for choosing register preferences. 806 break; // Pass them. 807 } 808 809 Name++; 810 } 811 812 return true; 813 } 814 815 void TargetInfo::CheckFixedPointBits() const { 816 // Check that the number of fractional and integral bits (and maybe sign) can 817 // fit into the bits given for a fixed point type. 818 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 819 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 820 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 821 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 822 ShortAccumWidth); 823 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 824 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 825 LongAccumWidth); 826 827 assert(getShortFractScale() + 1 <= ShortFractWidth); 828 assert(getFractScale() + 1 <= FractWidth); 829 assert(getLongFractScale() + 1 <= LongFractWidth); 830 assert(getUnsignedShortFractScale() <= ShortFractWidth); 831 assert(getUnsignedFractScale() <= FractWidth); 832 assert(getUnsignedLongFractScale() <= LongFractWidth); 833 834 // Each unsigned fract type has either the same number of fractional bits 835 // as, or one more fractional bit than, its corresponding signed fract type. 836 assert(getShortFractScale() == getUnsignedShortFractScale() || 837 getShortFractScale() == getUnsignedShortFractScale() - 1); 838 assert(getFractScale() == getUnsignedFractScale() || 839 getFractScale() == getUnsignedFractScale() - 1); 840 assert(getLongFractScale() == getUnsignedLongFractScale() || 841 getLongFractScale() == getUnsignedLongFractScale() - 1); 842 843 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 844 // fractional bits is nondecreasing for each of the following sets of 845 // fixed-point types: 846 // - signed fract types 847 // - unsigned fract types 848 // - signed accum types 849 // - unsigned accum types. 850 assert(getLongFractScale() >= getFractScale() && 851 getFractScale() >= getShortFractScale()); 852 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 853 getUnsignedFractScale() >= getUnsignedShortFractScale()); 854 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 855 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 856 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 857 858 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 859 // integral bits is nondecreasing for each of the following sets of 860 // fixed-point types: 861 // - signed accum types 862 // - unsigned accum types 863 assert(getLongAccumIBits() >= getAccumIBits() && 864 getAccumIBits() >= getShortAccumIBits()); 865 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 866 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 867 868 // Each signed accum type has at least as many integral bits as its 869 // corresponding unsigned accum type. 870 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 871 assert(getAccumIBits() >= getUnsignedAccumIBits()); 872 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 873 } 874 875 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 876 auto *Target = static_cast<TransferrableTargetInfo*>(this); 877 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 878 *Target = *Src; 879 } 880