1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasIbm128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasStrictFP = false; 41 PointerWidth = PointerAlign = 32; 42 BoolWidth = BoolAlign = 8; 43 IntWidth = IntAlign = 32; 44 LongWidth = LongAlign = 32; 45 LongLongWidth = LongLongAlign = 64; 46 47 // Fixed point default bit widths 48 ShortAccumWidth = ShortAccumAlign = 16; 49 AccumWidth = AccumAlign = 32; 50 LongAccumWidth = LongAccumAlign = 64; 51 ShortFractWidth = ShortFractAlign = 8; 52 FractWidth = FractAlign = 16; 53 LongFractWidth = LongFractAlign = 32; 54 55 // Fixed point default integral and fractional bit sizes 56 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 57 // types by default to have the same number of fractional bits between _Accum 58 // and _Fract types. 59 PaddingOnUnsignedFixedPoint = false; 60 ShortAccumScale = 7; 61 AccumScale = 15; 62 LongAccumScale = 31; 63 64 SuitableAlign = 64; 65 DefaultAlignForAttributeAligned = 128; 66 MinGlobalAlign = 0; 67 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 68 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 69 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 70 // This alignment guarantee also applies to Windows and Android. On Darwin, 71 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 72 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 73 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 74 else if (T.isOSDarwin()) 75 NewAlign = 128; 76 else 77 NewAlign = 0; // Infer from basic type alignment. 78 HalfWidth = 16; 79 HalfAlign = 16; 80 FloatWidth = 32; 81 FloatAlign = 32; 82 DoubleWidth = 64; 83 DoubleAlign = 64; 84 LongDoubleWidth = 64; 85 LongDoubleAlign = 64; 86 Float128Align = 128; 87 Ibm128Align = 128; 88 LargeArrayMinWidth = 0; 89 LargeArrayAlign = 0; 90 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 91 MaxVectorAlign = 0; 92 MaxTLSAlign = 0; 93 SimdDefaultAlign = 0; 94 SizeType = UnsignedLong; 95 PtrDiffType = SignedLong; 96 IntMaxType = SignedLongLong; 97 IntPtrType = SignedLong; 98 WCharType = SignedInt; 99 WIntType = SignedInt; 100 Char16Type = UnsignedShort; 101 Char32Type = UnsignedInt; 102 Int64Type = SignedLongLong; 103 Int16Type = SignedShort; 104 SigAtomicType = SignedInt; 105 ProcessIDType = SignedInt; 106 UseSignedCharForObjCBool = true; 107 UseBitFieldTypeAlignment = true; 108 UseZeroLengthBitfieldAlignment = false; 109 UseLeadingZeroLengthBitfield = true; 110 UseExplicitBitFieldAlignment = true; 111 ZeroLengthBitfieldBoundary = 0; 112 MaxAlignedAttribute = 0; 113 HalfFormat = &llvm::APFloat::IEEEhalf(); 114 FloatFormat = &llvm::APFloat::IEEEsingle(); 115 DoubleFormat = &llvm::APFloat::IEEEdouble(); 116 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 117 Float128Format = &llvm::APFloat::IEEEquad(); 118 Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); 119 MCountName = "mcount"; 120 UserLabelPrefix = "_"; 121 RegParmMax = 0; 122 SSERegParmMax = 0; 123 HasAlignMac68kSupport = false; 124 HasBuiltinMSVaList = false; 125 IsRenderScriptTarget = false; 126 HasAArch64SVETypes = false; 127 HasRISCVVTypes = false; 128 AllowAMDGPUUnsafeFPAtomics = false; 129 ARMCDECoprocMask = 0; 130 131 // Default to no types using fpret. 132 RealTypeUsesObjCFPRet = 0; 133 134 // Default to not using fp2ret for __Complex long double 135 ComplexLongDoubleUsesFP2Ret = false; 136 137 // Set the C++ ABI based on the triple. 138 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 139 ? TargetCXXABI::Microsoft 140 : TargetCXXABI::GenericItanium); 141 142 // Default to an empty address space map. 143 AddrSpaceMap = &DefaultAddrSpaceMap; 144 UseAddrSpaceMapMangling = false; 145 146 // Default to an unknown platform name. 147 PlatformName = "unknown"; 148 PlatformMinVersion = VersionTuple(); 149 150 MaxOpenCLWorkGroupSize = 1024; 151 } 152 153 // Out of line virtual dtor for TargetInfo. 154 TargetInfo::~TargetInfo() {} 155 156 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 157 DataLayoutString = DL.str(); 158 UserLabelPrefix = ULP; 159 } 160 161 bool 162 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 163 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 164 return false; 165 } 166 167 bool 168 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 169 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 170 return false; 171 } 172 173 /// getTypeName - Return the user string for the specified integer type enum. 174 /// For example, SignedShort -> "short". 175 const char *TargetInfo::getTypeName(IntType T) { 176 switch (T) { 177 default: llvm_unreachable("not an integer!"); 178 case SignedChar: return "signed char"; 179 case UnsignedChar: return "unsigned char"; 180 case SignedShort: return "short"; 181 case UnsignedShort: return "unsigned short"; 182 case SignedInt: return "int"; 183 case UnsignedInt: return "unsigned int"; 184 case SignedLong: return "long int"; 185 case UnsignedLong: return "long unsigned int"; 186 case SignedLongLong: return "long long int"; 187 case UnsignedLongLong: return "long long unsigned int"; 188 } 189 } 190 191 /// getTypeConstantSuffix - Return the constant suffix for the specified 192 /// integer type enum. For example, SignedLong -> "L". 193 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 194 switch (T) { 195 default: llvm_unreachable("not an integer!"); 196 case SignedChar: 197 case SignedShort: 198 case SignedInt: return ""; 199 case SignedLong: return "L"; 200 case SignedLongLong: return "LL"; 201 case UnsignedChar: 202 if (getCharWidth() < getIntWidth()) 203 return ""; 204 LLVM_FALLTHROUGH; 205 case UnsignedShort: 206 if (getShortWidth() < getIntWidth()) 207 return ""; 208 LLVM_FALLTHROUGH; 209 case UnsignedInt: return "U"; 210 case UnsignedLong: return "UL"; 211 case UnsignedLongLong: return "ULL"; 212 } 213 } 214 215 /// getTypeFormatModifier - Return the printf format modifier for the 216 /// specified integer type enum. For example, SignedLong -> "l". 217 218 const char *TargetInfo::getTypeFormatModifier(IntType T) { 219 switch (T) { 220 default: llvm_unreachable("not an integer!"); 221 case SignedChar: 222 case UnsignedChar: return "hh"; 223 case SignedShort: 224 case UnsignedShort: return "h"; 225 case SignedInt: 226 case UnsignedInt: return ""; 227 case SignedLong: 228 case UnsignedLong: return "l"; 229 case SignedLongLong: 230 case UnsignedLongLong: return "ll"; 231 } 232 } 233 234 /// getTypeWidth - Return the width (in bits) of the specified integer type 235 /// enum. For example, SignedInt -> getIntWidth(). 236 unsigned TargetInfo::getTypeWidth(IntType T) const { 237 switch (T) { 238 default: llvm_unreachable("not an integer!"); 239 case SignedChar: 240 case UnsignedChar: return getCharWidth(); 241 case SignedShort: 242 case UnsignedShort: return getShortWidth(); 243 case SignedInt: 244 case UnsignedInt: return getIntWidth(); 245 case SignedLong: 246 case UnsignedLong: return getLongWidth(); 247 case SignedLongLong: 248 case UnsignedLongLong: return getLongLongWidth(); 249 }; 250 } 251 252 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 253 unsigned BitWidth, bool IsSigned) const { 254 if (getCharWidth() == BitWidth) 255 return IsSigned ? SignedChar : UnsignedChar; 256 if (getShortWidth() == BitWidth) 257 return IsSigned ? SignedShort : UnsignedShort; 258 if (getIntWidth() == BitWidth) 259 return IsSigned ? SignedInt : UnsignedInt; 260 if (getLongWidth() == BitWidth) 261 return IsSigned ? SignedLong : UnsignedLong; 262 if (getLongLongWidth() == BitWidth) 263 return IsSigned ? SignedLongLong : UnsignedLongLong; 264 return NoInt; 265 } 266 267 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 268 bool IsSigned) const { 269 if (getCharWidth() >= BitWidth) 270 return IsSigned ? SignedChar : UnsignedChar; 271 if (getShortWidth() >= BitWidth) 272 return IsSigned ? SignedShort : UnsignedShort; 273 if (getIntWidth() >= BitWidth) 274 return IsSigned ? SignedInt : UnsignedInt; 275 if (getLongWidth() >= BitWidth) 276 return IsSigned ? SignedLong : UnsignedLong; 277 if (getLongLongWidth() >= BitWidth) 278 return IsSigned ? SignedLongLong : UnsignedLongLong; 279 return NoInt; 280 } 281 282 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, 283 FloatModeKind ExplicitType) const { 284 if (getFloatWidth() == BitWidth) 285 return FloatModeKind::Float; 286 if (getDoubleWidth() == BitWidth) 287 return FloatModeKind::Double; 288 289 switch (BitWidth) { 290 case 96: 291 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 292 return FloatModeKind::LongDouble; 293 break; 294 case 128: 295 // The caller explicitly asked for an IEEE compliant type but we still 296 // have to check if the target supports it. 297 if (ExplicitType == FloatModeKind::Float128) 298 return hasFloat128Type() ? FloatModeKind::Float128 299 : FloatModeKind::NoFloat; 300 if (ExplicitType == FloatModeKind::Ibm128) 301 return hasIbm128Type() ? FloatModeKind::Ibm128 302 : FloatModeKind::NoFloat; 303 if (ExplicitType == FloatModeKind::LongDouble) 304 return ExplicitType; 305 break; 306 } 307 308 return FloatModeKind::NoFloat; 309 } 310 311 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 312 /// enum. For example, SignedInt -> getIntAlign(). 313 unsigned TargetInfo::getTypeAlign(IntType T) const { 314 switch (T) { 315 default: llvm_unreachable("not an integer!"); 316 case SignedChar: 317 case UnsignedChar: return getCharAlign(); 318 case SignedShort: 319 case UnsignedShort: return getShortAlign(); 320 case SignedInt: 321 case UnsignedInt: return getIntAlign(); 322 case SignedLong: 323 case UnsignedLong: return getLongAlign(); 324 case SignedLongLong: 325 case UnsignedLongLong: return getLongLongAlign(); 326 }; 327 } 328 329 /// isTypeSigned - Return whether an integer types is signed. Returns true if 330 /// the type is signed; false otherwise. 331 bool TargetInfo::isTypeSigned(IntType T) { 332 switch (T) { 333 default: llvm_unreachable("not an integer!"); 334 case SignedChar: 335 case SignedShort: 336 case SignedInt: 337 case SignedLong: 338 case SignedLongLong: 339 return true; 340 case UnsignedChar: 341 case UnsignedShort: 342 case UnsignedInt: 343 case UnsignedLong: 344 case UnsignedLongLong: 345 return false; 346 }; 347 } 348 349 /// adjust - Set forced language options. 350 /// Apply changes to the target information with respect to certain 351 /// language options which change the target configuration and adjust 352 /// the language based on the target options where applicable. 353 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 354 if (Opts.NoBitFieldTypeAlign) 355 UseBitFieldTypeAlignment = false; 356 357 switch (Opts.WCharSize) { 358 default: llvm_unreachable("invalid wchar_t width"); 359 case 0: break; 360 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 361 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 362 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 363 } 364 365 if (Opts.AlignDouble) { 366 DoubleAlign = LongLongAlign = 64; 367 LongDoubleAlign = 64; 368 } 369 370 if (Opts.OpenCL) { 371 // OpenCL C requires specific widths for types, irrespective of 372 // what these normally are for the target. 373 // We also define long long and long double here, although the 374 // OpenCL standard only mentions these as "reserved". 375 IntWidth = IntAlign = 32; 376 LongWidth = LongAlign = 64; 377 LongLongWidth = LongLongAlign = 128; 378 HalfWidth = HalfAlign = 16; 379 FloatWidth = FloatAlign = 32; 380 381 // Embedded 32-bit targets (OpenCL EP) might have double C type 382 // defined as float. Let's not override this as it might lead 383 // to generating illegal code that uses 64bit doubles. 384 if (DoubleWidth != FloatWidth) { 385 DoubleWidth = DoubleAlign = 64; 386 DoubleFormat = &llvm::APFloat::IEEEdouble(); 387 } 388 LongDoubleWidth = LongDoubleAlign = 128; 389 390 unsigned MaxPointerWidth = getMaxPointerWidth(); 391 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 392 bool Is32BitArch = MaxPointerWidth == 32; 393 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 394 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 395 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 396 397 IntMaxType = SignedLongLong; 398 Int64Type = SignedLong; 399 400 HalfFormat = &llvm::APFloat::IEEEhalf(); 401 FloatFormat = &llvm::APFloat::IEEEsingle(); 402 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 403 404 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for 405 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space 406 // feature 407 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 408 // or later and __opencl_c_pipes feature 409 // FIXME: These language options are also defined in setLangDefaults() 410 // for OpenCL C 2.0 but with no access to target capabilities. Target 411 // should be immutable once created and thus these language options need 412 // to be defined only once. 413 if (Opts.getOpenCLCompatibleVersion() == 300) { 414 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); 415 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( 416 OpenCLFeaturesMap, "__opencl_c_generic_address_space"); 417 Opts.OpenCLPipes = 418 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); 419 } 420 } 421 422 if (Opts.DoubleSize) { 423 if (Opts.DoubleSize == 32) { 424 DoubleWidth = 32; 425 LongDoubleWidth = 32; 426 DoubleFormat = &llvm::APFloat::IEEEsingle(); 427 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 428 } else if (Opts.DoubleSize == 64) { 429 DoubleWidth = 64; 430 LongDoubleWidth = 64; 431 DoubleFormat = &llvm::APFloat::IEEEdouble(); 432 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 433 } 434 } 435 436 if (Opts.LongDoubleSize) { 437 if (Opts.LongDoubleSize == DoubleWidth) { 438 LongDoubleWidth = DoubleWidth; 439 LongDoubleAlign = DoubleAlign; 440 LongDoubleFormat = DoubleFormat; 441 } else if (Opts.LongDoubleSize == 128) { 442 LongDoubleWidth = LongDoubleAlign = 128; 443 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 444 } 445 } 446 447 if (Opts.NewAlignOverride) 448 NewAlign = Opts.NewAlignOverride * getCharWidth(); 449 450 // Each unsigned fixed point type has the same number of fractional bits as 451 // its corresponding signed type. 452 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 453 CheckFixedPointBits(); 454 455 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 456 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 457 Opts.ProtectParens = false; 458 } 459 } 460 461 bool TargetInfo::initFeatureMap( 462 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 463 const std::vector<std::string> &FeatureVec) const { 464 for (const auto &F : FeatureVec) { 465 StringRef Name = F; 466 // Apply the feature via the target. 467 bool Enabled = Name[0] == '+'; 468 setFeatureEnabled(Features, Name.substr(1), Enabled); 469 } 470 return true; 471 } 472 473 TargetInfo::CallingConvKind 474 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 475 if (getCXXABI() != TargetCXXABI::Microsoft && 476 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 477 return CCK_ClangABI4OrPS4; 478 return CCK_Default; 479 } 480 481 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 482 switch (TK) { 483 case OCLTK_Image: 484 case OCLTK_Pipe: 485 return LangAS::opencl_global; 486 487 case OCLTK_Sampler: 488 return LangAS::opencl_constant; 489 490 default: 491 return LangAS::Default; 492 } 493 } 494 495 //===----------------------------------------------------------------------===// 496 497 498 static StringRef removeGCCRegisterPrefix(StringRef Name) { 499 if (Name[0] == '%' || Name[0] == '#') 500 Name = Name.substr(1); 501 502 return Name; 503 } 504 505 /// isValidClobber - Returns whether the passed in string is 506 /// a valid clobber in an inline asm statement. This is used by 507 /// Sema. 508 bool TargetInfo::isValidClobber(StringRef Name) const { 509 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 510 Name == "unwind"); 511 } 512 513 /// isValidGCCRegisterName - Returns whether the passed in string 514 /// is a valid register name according to GCC. This is used by Sema for 515 /// inline asm statements. 516 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 517 if (Name.empty()) 518 return false; 519 520 // Get rid of any register prefix. 521 Name = removeGCCRegisterPrefix(Name); 522 if (Name.empty()) 523 return false; 524 525 ArrayRef<const char *> Names = getGCCRegNames(); 526 527 // If we have a number it maps to an entry in the register name array. 528 if (isDigit(Name[0])) { 529 unsigned n; 530 if (!Name.getAsInteger(0, n)) 531 return n < Names.size(); 532 } 533 534 // Check register names. 535 if (llvm::is_contained(Names, Name)) 536 return true; 537 538 // Check any additional names that we have. 539 for (const AddlRegName &ARN : getGCCAddlRegNames()) 540 for (const char *AN : ARN.Names) { 541 if (!AN) 542 break; 543 // Make sure the register that the additional name is for is within 544 // the bounds of the register names from above. 545 if (AN == Name && ARN.RegNum < Names.size()) 546 return true; 547 } 548 549 // Now check aliases. 550 for (const GCCRegAlias &GRA : getGCCRegAliases()) 551 for (const char *A : GRA.Aliases) { 552 if (!A) 553 break; 554 if (A == Name) 555 return true; 556 } 557 558 return false; 559 } 560 561 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 562 bool ReturnCanonical) const { 563 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 564 565 // Get rid of any register prefix. 566 Name = removeGCCRegisterPrefix(Name); 567 568 ArrayRef<const char *> Names = getGCCRegNames(); 569 570 // First, check if we have a number. 571 if (isDigit(Name[0])) { 572 unsigned n; 573 if (!Name.getAsInteger(0, n)) { 574 assert(n < Names.size() && "Out of bounds register number!"); 575 return Names[n]; 576 } 577 } 578 579 // Check any additional names that we have. 580 for (const AddlRegName &ARN : getGCCAddlRegNames()) 581 for (const char *AN : ARN.Names) { 582 if (!AN) 583 break; 584 // Make sure the register that the additional name is for is within 585 // the bounds of the register names from above. 586 if (AN == Name && ARN.RegNum < Names.size()) 587 return ReturnCanonical ? Names[ARN.RegNum] : Name; 588 } 589 590 // Now check aliases. 591 for (const GCCRegAlias &RA : getGCCRegAliases()) 592 for (const char *A : RA.Aliases) { 593 if (!A) 594 break; 595 if (A == Name) 596 return RA.Register; 597 } 598 599 return Name; 600 } 601 602 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 603 const char *Name = Info.getConstraintStr().c_str(); 604 // An output constraint must start with '=' or '+' 605 if (*Name != '=' && *Name != '+') 606 return false; 607 608 if (*Name == '+') 609 Info.setIsReadWrite(); 610 611 Name++; 612 while (*Name) { 613 switch (*Name) { 614 default: 615 if (!validateAsmConstraint(Name, Info)) { 616 // FIXME: We temporarily return false 617 // so we can add more constraints as we hit it. 618 // Eventually, an unknown constraint should just be treated as 'g'. 619 return false; 620 } 621 break; 622 case '&': // early clobber. 623 Info.setEarlyClobber(); 624 break; 625 case '%': // commutative. 626 // FIXME: Check that there is a another register after this one. 627 break; 628 case 'r': // general register. 629 Info.setAllowsRegister(); 630 break; 631 case 'm': // memory operand. 632 case 'o': // offsetable memory operand. 633 case 'V': // non-offsetable memory operand. 634 case '<': // autodecrement memory operand. 635 case '>': // autoincrement memory operand. 636 Info.setAllowsMemory(); 637 break; 638 case 'g': // general register, memory operand or immediate integer. 639 case 'X': // any operand. 640 Info.setAllowsRegister(); 641 Info.setAllowsMemory(); 642 break; 643 case ',': // multiple alternative constraint. Pass it. 644 // Handle additional optional '=' or '+' modifiers. 645 if (Name[1] == '=' || Name[1] == '+') 646 Name++; 647 break; 648 case '#': // Ignore as constraint. 649 while (Name[1] && Name[1] != ',') 650 Name++; 651 break; 652 case '?': // Disparage slightly code. 653 case '!': // Disparage severely. 654 case '*': // Ignore for choosing register preferences. 655 case 'i': // Ignore i,n,E,F as output constraints (match from the other 656 // chars) 657 case 'n': 658 case 'E': 659 case 'F': 660 break; // Pass them. 661 } 662 663 Name++; 664 } 665 666 // Early clobber with a read-write constraint which doesn't permit registers 667 // is invalid. 668 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 669 return false; 670 671 // If a constraint allows neither memory nor register operands it contains 672 // only modifiers. Reject it. 673 return Info.allowsMemory() || Info.allowsRegister(); 674 } 675 676 bool TargetInfo::resolveSymbolicName(const char *&Name, 677 ArrayRef<ConstraintInfo> OutputConstraints, 678 unsigned &Index) const { 679 assert(*Name == '[' && "Symbolic name did not start with '['"); 680 Name++; 681 const char *Start = Name; 682 while (*Name && *Name != ']') 683 Name++; 684 685 if (!*Name) { 686 // Missing ']' 687 return false; 688 } 689 690 std::string SymbolicName(Start, Name - Start); 691 692 for (Index = 0; Index != OutputConstraints.size(); ++Index) 693 if (SymbolicName == OutputConstraints[Index].getName()) 694 return true; 695 696 return false; 697 } 698 699 bool TargetInfo::validateInputConstraint( 700 MutableArrayRef<ConstraintInfo> OutputConstraints, 701 ConstraintInfo &Info) const { 702 const char *Name = Info.ConstraintStr.c_str(); 703 704 if (!*Name) 705 return false; 706 707 while (*Name) { 708 switch (*Name) { 709 default: 710 // Check if we have a matching constraint 711 if (*Name >= '0' && *Name <= '9') { 712 const char *DigitStart = Name; 713 while (Name[1] >= '0' && Name[1] <= '9') 714 Name++; 715 const char *DigitEnd = Name; 716 unsigned i; 717 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 718 .getAsInteger(10, i)) 719 return false; 720 721 // Check if matching constraint is out of bounds. 722 if (i >= OutputConstraints.size()) return false; 723 724 // A number must refer to an output only operand. 725 if (OutputConstraints[i].isReadWrite()) 726 return false; 727 728 // If the constraint is already tied, it must be tied to the 729 // same operand referenced to by the number. 730 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 731 return false; 732 733 // The constraint should have the same info as the respective 734 // output constraint. 735 Info.setTiedOperand(i, OutputConstraints[i]); 736 } else if (!validateAsmConstraint(Name, Info)) { 737 // FIXME: This error return is in place temporarily so we can 738 // add more constraints as we hit it. Eventually, an unknown 739 // constraint should just be treated as 'g'. 740 return false; 741 } 742 break; 743 case '[': { 744 unsigned Index = 0; 745 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 746 return false; 747 748 // If the constraint is already tied, it must be tied to the 749 // same operand referenced to by the number. 750 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 751 return false; 752 753 // A number must refer to an output only operand. 754 if (OutputConstraints[Index].isReadWrite()) 755 return false; 756 757 Info.setTiedOperand(Index, OutputConstraints[Index]); 758 break; 759 } 760 case '%': // commutative 761 // FIXME: Fail if % is used with the last operand. 762 break; 763 case 'i': // immediate integer. 764 break; 765 case 'n': // immediate integer with a known value. 766 Info.setRequiresImmediate(); 767 break; 768 case 'I': // Various constant constraints with target-specific meanings. 769 case 'J': 770 case 'K': 771 case 'L': 772 case 'M': 773 case 'N': 774 case 'O': 775 case 'P': 776 if (!validateAsmConstraint(Name, Info)) 777 return false; 778 break; 779 case 'r': // general register. 780 Info.setAllowsRegister(); 781 break; 782 case 'm': // memory operand. 783 case 'o': // offsettable memory operand. 784 case 'V': // non-offsettable memory operand. 785 case '<': // autodecrement memory operand. 786 case '>': // autoincrement memory operand. 787 Info.setAllowsMemory(); 788 break; 789 case 'g': // general register, memory operand or immediate integer. 790 case 'X': // any operand. 791 Info.setAllowsRegister(); 792 Info.setAllowsMemory(); 793 break; 794 case 'E': // immediate floating point. 795 case 'F': // immediate floating point. 796 case 'p': // address operand. 797 break; 798 case ',': // multiple alternative constraint. Ignore comma. 799 break; 800 case '#': // Ignore as constraint. 801 while (Name[1] && Name[1] != ',') 802 Name++; 803 break; 804 case '?': // Disparage slightly code. 805 case '!': // Disparage severely. 806 case '*': // Ignore for choosing register preferences. 807 break; // Pass them. 808 } 809 810 Name++; 811 } 812 813 return true; 814 } 815 816 void TargetInfo::CheckFixedPointBits() const { 817 // Check that the number of fractional and integral bits (and maybe sign) can 818 // fit into the bits given for a fixed point type. 819 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 820 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 821 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 822 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 823 ShortAccumWidth); 824 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 825 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 826 LongAccumWidth); 827 828 assert(getShortFractScale() + 1 <= ShortFractWidth); 829 assert(getFractScale() + 1 <= FractWidth); 830 assert(getLongFractScale() + 1 <= LongFractWidth); 831 assert(getUnsignedShortFractScale() <= ShortFractWidth); 832 assert(getUnsignedFractScale() <= FractWidth); 833 assert(getUnsignedLongFractScale() <= LongFractWidth); 834 835 // Each unsigned fract type has either the same number of fractional bits 836 // as, or one more fractional bit than, its corresponding signed fract type. 837 assert(getShortFractScale() == getUnsignedShortFractScale() || 838 getShortFractScale() == getUnsignedShortFractScale() - 1); 839 assert(getFractScale() == getUnsignedFractScale() || 840 getFractScale() == getUnsignedFractScale() - 1); 841 assert(getLongFractScale() == getUnsignedLongFractScale() || 842 getLongFractScale() == getUnsignedLongFractScale() - 1); 843 844 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 845 // fractional bits is nondecreasing for each of the following sets of 846 // fixed-point types: 847 // - signed fract types 848 // - unsigned fract types 849 // - signed accum types 850 // - unsigned accum types. 851 assert(getLongFractScale() >= getFractScale() && 852 getFractScale() >= getShortFractScale()); 853 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 854 getUnsignedFractScale() >= getUnsignedShortFractScale()); 855 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 856 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 857 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 858 859 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 860 // integral bits is nondecreasing for each of the following sets of 861 // fixed-point types: 862 // - signed accum types 863 // - unsigned accum types 864 assert(getLongAccumIBits() >= getAccumIBits() && 865 getAccumIBits() >= getShortAccumIBits()); 866 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 867 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 868 869 // Each signed accum type has at least as many integral bits as its 870 // corresponding unsigned accum type. 871 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 872 assert(getAccumIBits() >= getUnsignedAccumIBits()); 873 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 874 } 875 876 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 877 auto *Target = static_cast<TransferrableTargetInfo*>(this); 878 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 879 *Target = *Src; 880 } 881