1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 VLASupported = true; 35 NoAsmVariants = false; 36 HasLegalHalfType = false; 37 HasFloat128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasStrictFP = false; 41 PointerWidth = PointerAlign = 32; 42 BoolWidth = BoolAlign = 8; 43 IntWidth = IntAlign = 32; 44 LongWidth = LongAlign = 32; 45 LongLongWidth = LongLongAlign = 64; 46 47 // Fixed point default bit widths 48 ShortAccumWidth = ShortAccumAlign = 16; 49 AccumWidth = AccumAlign = 32; 50 LongAccumWidth = LongAccumAlign = 64; 51 ShortFractWidth = ShortFractAlign = 8; 52 FractWidth = FractAlign = 16; 53 LongFractWidth = LongFractAlign = 32; 54 55 // Fixed point default integral and fractional bit sizes 56 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 57 // types by default to have the same number of fractional bits between _Accum 58 // and _Fract types. 59 PaddingOnUnsignedFixedPoint = false; 60 ShortAccumScale = 7; 61 AccumScale = 15; 62 LongAccumScale = 31; 63 64 SuitableAlign = 64; 65 DefaultAlignForAttributeAligned = 128; 66 MinGlobalAlign = 0; 67 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 68 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 69 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 70 // This alignment guarantee also applies to Windows and Android. On Darwin, 71 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 72 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 73 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 74 else if (T.isOSDarwin()) 75 NewAlign = 128; 76 else 77 NewAlign = 0; // Infer from basic type alignment. 78 HalfWidth = 16; 79 HalfAlign = 16; 80 FloatWidth = 32; 81 FloatAlign = 32; 82 DoubleWidth = 64; 83 DoubleAlign = 64; 84 LongDoubleWidth = 64; 85 LongDoubleAlign = 64; 86 Float128Align = 128; 87 LargeArrayMinWidth = 0; 88 LargeArrayAlign = 0; 89 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 90 MaxVectorAlign = 0; 91 MaxTLSAlign = 0; 92 SimdDefaultAlign = 0; 93 SizeType = UnsignedLong; 94 PtrDiffType = SignedLong; 95 IntMaxType = SignedLongLong; 96 IntPtrType = SignedLong; 97 WCharType = SignedInt; 98 WIntType = SignedInt; 99 Char16Type = UnsignedShort; 100 Char32Type = UnsignedInt; 101 Int64Type = SignedLongLong; 102 SigAtomicType = SignedInt; 103 ProcessIDType = SignedInt; 104 UseSignedCharForObjCBool = true; 105 UseBitFieldTypeAlignment = true; 106 UseZeroLengthBitfieldAlignment = false; 107 UseLeadingZeroLengthBitfield = true; 108 UseExplicitBitFieldAlignment = true; 109 ZeroLengthBitfieldBoundary = 0; 110 HalfFormat = &llvm::APFloat::IEEEhalf(); 111 FloatFormat = &llvm::APFloat::IEEEsingle(); 112 DoubleFormat = &llvm::APFloat::IEEEdouble(); 113 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 114 Float128Format = &llvm::APFloat::IEEEquad(); 115 MCountName = "mcount"; 116 RegParmMax = 0; 117 SSERegParmMax = 0; 118 HasAlignMac68kSupport = false; 119 HasBuiltinMSVaList = false; 120 IsRenderScriptTarget = false; 121 HasAArch64SVETypes = false; 122 HasRISCVVTypes = false; 123 AllowAMDGPUUnsafeFPAtomics = false; 124 ARMCDECoprocMask = 0; 125 126 // Default to no types using fpret. 127 RealTypeUsesObjCFPRet = 0; 128 129 // Default to not using fp2ret for __Complex long double 130 ComplexLongDoubleUsesFP2Ret = false; 131 132 // Set the C++ ABI based on the triple. 133 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 134 ? TargetCXXABI::Microsoft 135 : TargetCXXABI::GenericItanium); 136 137 // Default to an empty address space map. 138 AddrSpaceMap = &DefaultAddrSpaceMap; 139 UseAddrSpaceMapMangling = false; 140 141 // Default to an unknown platform name. 142 PlatformName = "unknown"; 143 PlatformMinVersion = VersionTuple(); 144 145 MaxOpenCLWorkGroupSize = 1024; 146 } 147 148 // Out of line virtual dtor for TargetInfo. 149 TargetInfo::~TargetInfo() {} 150 151 void TargetInfo::resetDataLayout(StringRef DL) { 152 DataLayout.reset(new llvm::DataLayout(DL)); 153 } 154 155 bool 156 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 157 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 158 return false; 159 } 160 161 bool 162 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 163 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 164 return false; 165 } 166 167 /// getTypeName - Return the user string for the specified integer type enum. 168 /// For example, SignedShort -> "short". 169 const char *TargetInfo::getTypeName(IntType T) { 170 switch (T) { 171 default: llvm_unreachable("not an integer!"); 172 case SignedChar: return "signed char"; 173 case UnsignedChar: return "unsigned char"; 174 case SignedShort: return "short"; 175 case UnsignedShort: return "unsigned short"; 176 case SignedInt: return "int"; 177 case UnsignedInt: return "unsigned int"; 178 case SignedLong: return "long int"; 179 case UnsignedLong: return "long unsigned int"; 180 case SignedLongLong: return "long long int"; 181 case UnsignedLongLong: return "long long unsigned int"; 182 } 183 } 184 185 /// getTypeConstantSuffix - Return the constant suffix for the specified 186 /// integer type enum. For example, SignedLong -> "L". 187 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 188 switch (T) { 189 default: llvm_unreachable("not an integer!"); 190 case SignedChar: 191 case SignedShort: 192 case SignedInt: return ""; 193 case SignedLong: return "L"; 194 case SignedLongLong: return "LL"; 195 case UnsignedChar: 196 if (getCharWidth() < getIntWidth()) 197 return ""; 198 LLVM_FALLTHROUGH; 199 case UnsignedShort: 200 if (getShortWidth() < getIntWidth()) 201 return ""; 202 LLVM_FALLTHROUGH; 203 case UnsignedInt: return "U"; 204 case UnsignedLong: return "UL"; 205 case UnsignedLongLong: return "ULL"; 206 } 207 } 208 209 /// getTypeFormatModifier - Return the printf format modifier for the 210 /// specified integer type enum. For example, SignedLong -> "l". 211 212 const char *TargetInfo::getTypeFormatModifier(IntType T) { 213 switch (T) { 214 default: llvm_unreachable("not an integer!"); 215 case SignedChar: 216 case UnsignedChar: return "hh"; 217 case SignedShort: 218 case UnsignedShort: return "h"; 219 case SignedInt: 220 case UnsignedInt: return ""; 221 case SignedLong: 222 case UnsignedLong: return "l"; 223 case SignedLongLong: 224 case UnsignedLongLong: return "ll"; 225 } 226 } 227 228 /// getTypeWidth - Return the width (in bits) of the specified integer type 229 /// enum. For example, SignedInt -> getIntWidth(). 230 unsigned TargetInfo::getTypeWidth(IntType T) const { 231 switch (T) { 232 default: llvm_unreachable("not an integer!"); 233 case SignedChar: 234 case UnsignedChar: return getCharWidth(); 235 case SignedShort: 236 case UnsignedShort: return getShortWidth(); 237 case SignedInt: 238 case UnsignedInt: return getIntWidth(); 239 case SignedLong: 240 case UnsignedLong: return getLongWidth(); 241 case SignedLongLong: 242 case UnsignedLongLong: return getLongLongWidth(); 243 }; 244 } 245 246 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 247 unsigned BitWidth, bool IsSigned) const { 248 if (getCharWidth() == BitWidth) 249 return IsSigned ? SignedChar : UnsignedChar; 250 if (getShortWidth() == BitWidth) 251 return IsSigned ? SignedShort : UnsignedShort; 252 if (getIntWidth() == BitWidth) 253 return IsSigned ? SignedInt : UnsignedInt; 254 if (getLongWidth() == BitWidth) 255 return IsSigned ? SignedLong : UnsignedLong; 256 if (getLongLongWidth() == BitWidth) 257 return IsSigned ? SignedLongLong : UnsignedLongLong; 258 return NoInt; 259 } 260 261 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 262 bool IsSigned) const { 263 if (getCharWidth() >= BitWidth) 264 return IsSigned ? SignedChar : UnsignedChar; 265 if (getShortWidth() >= BitWidth) 266 return IsSigned ? SignedShort : UnsignedShort; 267 if (getIntWidth() >= BitWidth) 268 return IsSigned ? SignedInt : UnsignedInt; 269 if (getLongWidth() >= BitWidth) 270 return IsSigned ? SignedLong : UnsignedLong; 271 if (getLongLongWidth() >= BitWidth) 272 return IsSigned ? SignedLongLong : UnsignedLongLong; 273 return NoInt; 274 } 275 276 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 277 bool ExplicitIEEE) const { 278 if (getFloatWidth() == BitWidth) 279 return Float; 280 if (getDoubleWidth() == BitWidth) 281 return Double; 282 283 switch (BitWidth) { 284 case 96: 285 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 286 return LongDouble; 287 break; 288 case 128: 289 // The caller explicitly asked for an IEEE compliant type but we still 290 // have to check if the target supports it. 291 if (ExplicitIEEE) 292 return hasFloat128Type() ? Float128 : NoFloat; 293 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 294 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 295 return LongDouble; 296 if (hasFloat128Type()) 297 return Float128; 298 break; 299 } 300 301 return NoFloat; 302 } 303 304 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 305 /// enum. For example, SignedInt -> getIntAlign(). 306 unsigned TargetInfo::getTypeAlign(IntType T) const { 307 switch (T) { 308 default: llvm_unreachable("not an integer!"); 309 case SignedChar: 310 case UnsignedChar: return getCharAlign(); 311 case SignedShort: 312 case UnsignedShort: return getShortAlign(); 313 case SignedInt: 314 case UnsignedInt: return getIntAlign(); 315 case SignedLong: 316 case UnsignedLong: return getLongAlign(); 317 case SignedLongLong: 318 case UnsignedLongLong: return getLongLongAlign(); 319 }; 320 } 321 322 /// isTypeSigned - Return whether an integer types is signed. Returns true if 323 /// the type is signed; false otherwise. 324 bool TargetInfo::isTypeSigned(IntType T) { 325 switch (T) { 326 default: llvm_unreachable("not an integer!"); 327 case SignedChar: 328 case SignedShort: 329 case SignedInt: 330 case SignedLong: 331 case SignedLongLong: 332 return true; 333 case UnsignedChar: 334 case UnsignedShort: 335 case UnsignedInt: 336 case UnsignedLong: 337 case UnsignedLongLong: 338 return false; 339 }; 340 } 341 342 /// adjust - Set forced language options. 343 /// Apply changes to the target information with respect to certain 344 /// language options which change the target configuration and adjust 345 /// the language based on the target options where applicable. 346 void TargetInfo::adjust(LangOptions &Opts) { 347 if (Opts.NoBitFieldTypeAlign) 348 UseBitFieldTypeAlignment = false; 349 350 switch (Opts.WCharSize) { 351 default: llvm_unreachable("invalid wchar_t width"); 352 case 0: break; 353 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 354 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 355 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 356 } 357 358 if (Opts.AlignDouble) { 359 DoubleAlign = LongLongAlign = 64; 360 LongDoubleAlign = 64; 361 } 362 363 if (Opts.OpenCL) { 364 // OpenCL C requires specific widths for types, irrespective of 365 // what these normally are for the target. 366 // We also define long long and long double here, although the 367 // OpenCL standard only mentions these as "reserved". 368 IntWidth = IntAlign = 32; 369 LongWidth = LongAlign = 64; 370 LongLongWidth = LongLongAlign = 128; 371 HalfWidth = HalfAlign = 16; 372 FloatWidth = FloatAlign = 32; 373 374 // Embedded 32-bit targets (OpenCL EP) might have double C type 375 // defined as float. Let's not override this as it might lead 376 // to generating illegal code that uses 64bit doubles. 377 if (DoubleWidth != FloatWidth) { 378 DoubleWidth = DoubleAlign = 64; 379 DoubleFormat = &llvm::APFloat::IEEEdouble(); 380 } 381 LongDoubleWidth = LongDoubleAlign = 128; 382 383 unsigned MaxPointerWidth = getMaxPointerWidth(); 384 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 385 bool Is32BitArch = MaxPointerWidth == 32; 386 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 387 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 388 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 389 390 IntMaxType = SignedLongLong; 391 Int64Type = SignedLong; 392 393 HalfFormat = &llvm::APFloat::IEEEhalf(); 394 FloatFormat = &llvm::APFloat::IEEEsingle(); 395 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 396 } 397 398 if (Opts.DoubleSize) { 399 if (Opts.DoubleSize == 32) { 400 DoubleWidth = 32; 401 LongDoubleWidth = 32; 402 DoubleFormat = &llvm::APFloat::IEEEsingle(); 403 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 404 } else if (Opts.DoubleSize == 64) { 405 DoubleWidth = 64; 406 LongDoubleWidth = 64; 407 DoubleFormat = &llvm::APFloat::IEEEdouble(); 408 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 409 } 410 } 411 412 if (Opts.LongDoubleSize) { 413 if (Opts.LongDoubleSize == DoubleWidth) { 414 LongDoubleWidth = DoubleWidth; 415 LongDoubleAlign = DoubleAlign; 416 LongDoubleFormat = DoubleFormat; 417 } else if (Opts.LongDoubleSize == 128) { 418 LongDoubleWidth = LongDoubleAlign = 128; 419 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 420 } 421 } 422 423 if (Opts.NewAlignOverride) 424 NewAlign = Opts.NewAlignOverride * getCharWidth(); 425 426 // Each unsigned fixed point type has the same number of fractional bits as 427 // its corresponding signed type. 428 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 429 CheckFixedPointBits(); 430 } 431 432 bool TargetInfo::initFeatureMap( 433 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 434 const std::vector<std::string> &FeatureVec) const { 435 for (const auto &F : FeatureVec) { 436 StringRef Name = F; 437 // Apply the feature via the target. 438 bool Enabled = Name[0] == '+'; 439 setFeatureEnabled(Features, Name.substr(1), Enabled); 440 } 441 return true; 442 } 443 444 TargetInfo::CallingConvKind 445 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 446 if (getCXXABI() != TargetCXXABI::Microsoft && 447 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 448 return CCK_ClangABI4OrPS4; 449 return CCK_Default; 450 } 451 452 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 453 switch (TK) { 454 case OCLTK_Image: 455 case OCLTK_Pipe: 456 return LangAS::opencl_global; 457 458 case OCLTK_Sampler: 459 return LangAS::opencl_constant; 460 461 default: 462 return LangAS::Default; 463 } 464 } 465 466 //===----------------------------------------------------------------------===// 467 468 469 static StringRef removeGCCRegisterPrefix(StringRef Name) { 470 if (Name[0] == '%' || Name[0] == '#') 471 Name = Name.substr(1); 472 473 return Name; 474 } 475 476 /// isValidClobber - Returns whether the passed in string is 477 /// a valid clobber in an inline asm statement. This is used by 478 /// Sema. 479 bool TargetInfo::isValidClobber(StringRef Name) const { 480 return (isValidGCCRegisterName(Name) || 481 Name == "memory" || Name == "cc"); 482 } 483 484 /// isValidGCCRegisterName - Returns whether the passed in string 485 /// is a valid register name according to GCC. This is used by Sema for 486 /// inline asm statements. 487 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 488 if (Name.empty()) 489 return false; 490 491 // Get rid of any register prefix. 492 Name = removeGCCRegisterPrefix(Name); 493 if (Name.empty()) 494 return false; 495 496 ArrayRef<const char *> Names = getGCCRegNames(); 497 498 // If we have a number it maps to an entry in the register name array. 499 if (isDigit(Name[0])) { 500 unsigned n; 501 if (!Name.getAsInteger(0, n)) 502 return n < Names.size(); 503 } 504 505 // Check register names. 506 if (llvm::is_contained(Names, Name)) 507 return true; 508 509 // Check any additional names that we have. 510 for (const AddlRegName &ARN : getGCCAddlRegNames()) 511 for (const char *AN : ARN.Names) { 512 if (!AN) 513 break; 514 // Make sure the register that the additional name is for is within 515 // the bounds of the register names from above. 516 if (AN == Name && ARN.RegNum < Names.size()) 517 return true; 518 } 519 520 // Now check aliases. 521 for (const GCCRegAlias &GRA : getGCCRegAliases()) 522 for (const char *A : GRA.Aliases) { 523 if (!A) 524 break; 525 if (A == Name) 526 return true; 527 } 528 529 return false; 530 } 531 532 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 533 bool ReturnCanonical) const { 534 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 535 536 // Get rid of any register prefix. 537 Name = removeGCCRegisterPrefix(Name); 538 539 ArrayRef<const char *> Names = getGCCRegNames(); 540 541 // First, check if we have a number. 542 if (isDigit(Name[0])) { 543 unsigned n; 544 if (!Name.getAsInteger(0, n)) { 545 assert(n < Names.size() && "Out of bounds register number!"); 546 return Names[n]; 547 } 548 } 549 550 // Check any additional names that we have. 551 for (const AddlRegName &ARN : getGCCAddlRegNames()) 552 for (const char *AN : ARN.Names) { 553 if (!AN) 554 break; 555 // Make sure the register that the additional name is for is within 556 // the bounds of the register names from above. 557 if (AN == Name && ARN.RegNum < Names.size()) 558 return ReturnCanonical ? Names[ARN.RegNum] : Name; 559 } 560 561 // Now check aliases. 562 for (const GCCRegAlias &RA : getGCCRegAliases()) 563 for (const char *A : RA.Aliases) { 564 if (!A) 565 break; 566 if (A == Name) 567 return RA.Register; 568 } 569 570 return Name; 571 } 572 573 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 574 const char *Name = Info.getConstraintStr().c_str(); 575 // An output constraint must start with '=' or '+' 576 if (*Name != '=' && *Name != '+') 577 return false; 578 579 if (*Name == '+') 580 Info.setIsReadWrite(); 581 582 Name++; 583 while (*Name) { 584 switch (*Name) { 585 default: 586 if (!validateAsmConstraint(Name, Info)) { 587 // FIXME: We temporarily return false 588 // so we can add more constraints as we hit it. 589 // Eventually, an unknown constraint should just be treated as 'g'. 590 return false; 591 } 592 break; 593 case '&': // early clobber. 594 Info.setEarlyClobber(); 595 break; 596 case '%': // commutative. 597 // FIXME: Check that there is a another register after this one. 598 break; 599 case 'r': // general register. 600 Info.setAllowsRegister(); 601 break; 602 case 'm': // memory operand. 603 case 'o': // offsetable memory operand. 604 case 'V': // non-offsetable memory operand. 605 case '<': // autodecrement memory operand. 606 case '>': // autoincrement memory operand. 607 Info.setAllowsMemory(); 608 break; 609 case 'g': // general register, memory operand or immediate integer. 610 case 'X': // any operand. 611 Info.setAllowsRegister(); 612 Info.setAllowsMemory(); 613 break; 614 case ',': // multiple alternative constraint. Pass it. 615 // Handle additional optional '=' or '+' modifiers. 616 if (Name[1] == '=' || Name[1] == '+') 617 Name++; 618 break; 619 case '#': // Ignore as constraint. 620 while (Name[1] && Name[1] != ',') 621 Name++; 622 break; 623 case '?': // Disparage slightly code. 624 case '!': // Disparage severely. 625 case '*': // Ignore for choosing register preferences. 626 case 'i': // Ignore i,n,E,F as output constraints (match from the other 627 // chars) 628 case 'n': 629 case 'E': 630 case 'F': 631 break; // Pass them. 632 } 633 634 Name++; 635 } 636 637 // Early clobber with a read-write constraint which doesn't permit registers 638 // is invalid. 639 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 640 return false; 641 642 // If a constraint allows neither memory nor register operands it contains 643 // only modifiers. Reject it. 644 return Info.allowsMemory() || Info.allowsRegister(); 645 } 646 647 bool TargetInfo::resolveSymbolicName(const char *&Name, 648 ArrayRef<ConstraintInfo> OutputConstraints, 649 unsigned &Index) const { 650 assert(*Name == '[' && "Symbolic name did not start with '['"); 651 Name++; 652 const char *Start = Name; 653 while (*Name && *Name != ']') 654 Name++; 655 656 if (!*Name) { 657 // Missing ']' 658 return false; 659 } 660 661 std::string SymbolicName(Start, Name - Start); 662 663 for (Index = 0; Index != OutputConstraints.size(); ++Index) 664 if (SymbolicName == OutputConstraints[Index].getName()) 665 return true; 666 667 return false; 668 } 669 670 bool TargetInfo::validateInputConstraint( 671 MutableArrayRef<ConstraintInfo> OutputConstraints, 672 ConstraintInfo &Info) const { 673 const char *Name = Info.ConstraintStr.c_str(); 674 675 if (!*Name) 676 return false; 677 678 while (*Name) { 679 switch (*Name) { 680 default: 681 // Check if we have a matching constraint 682 if (*Name >= '0' && *Name <= '9') { 683 const char *DigitStart = Name; 684 while (Name[1] >= '0' && Name[1] <= '9') 685 Name++; 686 const char *DigitEnd = Name; 687 unsigned i; 688 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 689 .getAsInteger(10, i)) 690 return false; 691 692 // Check if matching constraint is out of bounds. 693 if (i >= OutputConstraints.size()) return false; 694 695 // A number must refer to an output only operand. 696 if (OutputConstraints[i].isReadWrite()) 697 return false; 698 699 // If the constraint is already tied, it must be tied to the 700 // same operand referenced to by the number. 701 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 702 return false; 703 704 // The constraint should have the same info as the respective 705 // output constraint. 706 Info.setTiedOperand(i, OutputConstraints[i]); 707 } else if (!validateAsmConstraint(Name, Info)) { 708 // FIXME: This error return is in place temporarily so we can 709 // add more constraints as we hit it. Eventually, an unknown 710 // constraint should just be treated as 'g'. 711 return false; 712 } 713 break; 714 case '[': { 715 unsigned Index = 0; 716 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 717 return false; 718 719 // If the constraint is already tied, it must be tied to the 720 // same operand referenced to by the number. 721 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 722 return false; 723 724 // A number must refer to an output only operand. 725 if (OutputConstraints[Index].isReadWrite()) 726 return false; 727 728 Info.setTiedOperand(Index, OutputConstraints[Index]); 729 break; 730 } 731 case '%': // commutative 732 // FIXME: Fail if % is used with the last operand. 733 break; 734 case 'i': // immediate integer. 735 break; 736 case 'n': // immediate integer with a known value. 737 Info.setRequiresImmediate(); 738 break; 739 case 'I': // Various constant constraints with target-specific meanings. 740 case 'J': 741 case 'K': 742 case 'L': 743 case 'M': 744 case 'N': 745 case 'O': 746 case 'P': 747 if (!validateAsmConstraint(Name, Info)) 748 return false; 749 break; 750 case 'r': // general register. 751 Info.setAllowsRegister(); 752 break; 753 case 'm': // memory operand. 754 case 'o': // offsettable memory operand. 755 case 'V': // non-offsettable memory operand. 756 case '<': // autodecrement memory operand. 757 case '>': // autoincrement memory operand. 758 Info.setAllowsMemory(); 759 break; 760 case 'g': // general register, memory operand or immediate integer. 761 case 'X': // any operand. 762 Info.setAllowsRegister(); 763 Info.setAllowsMemory(); 764 break; 765 case 'E': // immediate floating point. 766 case 'F': // immediate floating point. 767 case 'p': // address operand. 768 break; 769 case ',': // multiple alternative constraint. Ignore comma. 770 break; 771 case '#': // Ignore as constraint. 772 while (Name[1] && Name[1] != ',') 773 Name++; 774 break; 775 case '?': // Disparage slightly code. 776 case '!': // Disparage severely. 777 case '*': // Ignore for choosing register preferences. 778 break; // Pass them. 779 } 780 781 Name++; 782 } 783 784 return true; 785 } 786 787 void TargetInfo::CheckFixedPointBits() const { 788 // Check that the number of fractional and integral bits (and maybe sign) can 789 // fit into the bits given for a fixed point type. 790 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 791 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 792 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 793 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 794 ShortAccumWidth); 795 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 796 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 797 LongAccumWidth); 798 799 assert(getShortFractScale() + 1 <= ShortFractWidth); 800 assert(getFractScale() + 1 <= FractWidth); 801 assert(getLongFractScale() + 1 <= LongFractWidth); 802 assert(getUnsignedShortFractScale() <= ShortFractWidth); 803 assert(getUnsignedFractScale() <= FractWidth); 804 assert(getUnsignedLongFractScale() <= LongFractWidth); 805 806 // Each unsigned fract type has either the same number of fractional bits 807 // as, or one more fractional bit than, its corresponding signed fract type. 808 assert(getShortFractScale() == getUnsignedShortFractScale() || 809 getShortFractScale() == getUnsignedShortFractScale() - 1); 810 assert(getFractScale() == getUnsignedFractScale() || 811 getFractScale() == getUnsignedFractScale() - 1); 812 assert(getLongFractScale() == getUnsignedLongFractScale() || 813 getLongFractScale() == getUnsignedLongFractScale() - 1); 814 815 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 816 // fractional bits is nondecreasing for each of the following sets of 817 // fixed-point types: 818 // - signed fract types 819 // - unsigned fract types 820 // - signed accum types 821 // - unsigned accum types. 822 assert(getLongFractScale() >= getFractScale() && 823 getFractScale() >= getShortFractScale()); 824 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 825 getUnsignedFractScale() >= getUnsignedShortFractScale()); 826 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 827 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 828 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 829 830 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 831 // integral bits is nondecreasing for each of the following sets of 832 // fixed-point types: 833 // - signed accum types 834 // - unsigned accum types 835 assert(getLongAccumIBits() >= getAccumIBits() && 836 getAccumIBits() >= getShortAccumIBits()); 837 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 838 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 839 840 // Each signed accum type has at least as many integral bits as its 841 // corresponding unsigned accum type. 842 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 843 assert(getAccumIBits() >= getUnsignedAccumIBits()); 844 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 845 } 846 847 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 848 auto *Target = static_cast<TransferrableTargetInfo*>(this); 849 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 850 *Target = *Src; 851 } 852