1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasIbm128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasStrictFP = false; 41 PointerWidth = PointerAlign = 32; 42 BoolWidth = BoolAlign = 8; 43 IntWidth = IntAlign = 32; 44 LongWidth = LongAlign = 32; 45 LongLongWidth = LongLongAlign = 64; 46 47 // Fixed point default bit widths 48 ShortAccumWidth = ShortAccumAlign = 16; 49 AccumWidth = AccumAlign = 32; 50 LongAccumWidth = LongAccumAlign = 64; 51 ShortFractWidth = ShortFractAlign = 8; 52 FractWidth = FractAlign = 16; 53 LongFractWidth = LongFractAlign = 32; 54 55 // Fixed point default integral and fractional bit sizes 56 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 57 // types by default to have the same number of fractional bits between _Accum 58 // and _Fract types. 59 PaddingOnUnsignedFixedPoint = false; 60 ShortAccumScale = 7; 61 AccumScale = 15; 62 LongAccumScale = 31; 63 64 SuitableAlign = 64; 65 DefaultAlignForAttributeAligned = 128; 66 MinGlobalAlign = 0; 67 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 68 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 69 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 70 // This alignment guarantee also applies to Windows and Android. On Darwin, 71 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 72 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 73 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 74 else if (T.isOSDarwin()) 75 NewAlign = 128; 76 else 77 NewAlign = 0; // Infer from basic type alignment. 78 HalfWidth = 16; 79 HalfAlign = 16; 80 FloatWidth = 32; 81 FloatAlign = 32; 82 DoubleWidth = 64; 83 DoubleAlign = 64; 84 LongDoubleWidth = 64; 85 LongDoubleAlign = 64; 86 Float128Align = 128; 87 Ibm128Align = 128; 88 LargeArrayMinWidth = 0; 89 LargeArrayAlign = 0; 90 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 91 MaxVectorAlign = 0; 92 MaxTLSAlign = 0; 93 SimdDefaultAlign = 0; 94 SizeType = UnsignedLong; 95 PtrDiffType = SignedLong; 96 IntMaxType = SignedLongLong; 97 IntPtrType = SignedLong; 98 WCharType = SignedInt; 99 WIntType = SignedInt; 100 Char16Type = UnsignedShort; 101 Char32Type = UnsignedInt; 102 Int64Type = SignedLongLong; 103 Int16Type = SignedShort; 104 SigAtomicType = SignedInt; 105 ProcessIDType = SignedInt; 106 UseSignedCharForObjCBool = true; 107 UseBitFieldTypeAlignment = true; 108 UseZeroLengthBitfieldAlignment = false; 109 UseLeadingZeroLengthBitfield = true; 110 UseExplicitBitFieldAlignment = true; 111 ZeroLengthBitfieldBoundary = 0; 112 MaxAlignedAttribute = 0; 113 HalfFormat = &llvm::APFloat::IEEEhalf(); 114 FloatFormat = &llvm::APFloat::IEEEsingle(); 115 DoubleFormat = &llvm::APFloat::IEEEdouble(); 116 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 117 Float128Format = &llvm::APFloat::IEEEquad(); 118 Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); 119 MCountName = "mcount"; 120 UserLabelPrefix = "_"; 121 RegParmMax = 0; 122 SSERegParmMax = 0; 123 HasAlignMac68kSupport = false; 124 HasBuiltinMSVaList = false; 125 IsRenderScriptTarget = false; 126 HasAArch64SVETypes = false; 127 HasRISCVVTypes = false; 128 AllowAMDGPUUnsafeFPAtomics = false; 129 ARMCDECoprocMask = 0; 130 131 // Default to no types using fpret. 132 RealTypeUsesObjCFPRet = 0; 133 134 // Default to not using fp2ret for __Complex long double 135 ComplexLongDoubleUsesFP2Ret = false; 136 137 // Set the C++ ABI based on the triple. 138 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 139 ? TargetCXXABI::Microsoft 140 : TargetCXXABI::GenericItanium); 141 142 // Default to an empty address space map. 143 AddrSpaceMap = &DefaultAddrSpaceMap; 144 UseAddrSpaceMapMangling = false; 145 146 // Default to an unknown platform name. 147 PlatformName = "unknown"; 148 PlatformMinVersion = VersionTuple(); 149 150 MaxOpenCLWorkGroupSize = 1024; 151 } 152 153 // Out of line virtual dtor for TargetInfo. 154 TargetInfo::~TargetInfo() {} 155 156 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 157 DataLayoutString = DL.str(); 158 UserLabelPrefix = ULP; 159 } 160 161 bool 162 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 163 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 164 return false; 165 } 166 167 bool 168 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 169 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 170 return false; 171 } 172 173 /// getTypeName - Return the user string for the specified integer type enum. 174 /// For example, SignedShort -> "short". 175 const char *TargetInfo::getTypeName(IntType T) { 176 switch (T) { 177 default: llvm_unreachable("not an integer!"); 178 case SignedChar: return "signed char"; 179 case UnsignedChar: return "unsigned char"; 180 case SignedShort: return "short"; 181 case UnsignedShort: return "unsigned short"; 182 case SignedInt: return "int"; 183 case UnsignedInt: return "unsigned int"; 184 case SignedLong: return "long int"; 185 case UnsignedLong: return "long unsigned int"; 186 case SignedLongLong: return "long long int"; 187 case UnsignedLongLong: return "long long unsigned int"; 188 } 189 } 190 191 /// getTypeConstantSuffix - Return the constant suffix for the specified 192 /// integer type enum. For example, SignedLong -> "L". 193 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 194 switch (T) { 195 default: llvm_unreachable("not an integer!"); 196 case SignedChar: 197 case SignedShort: 198 case SignedInt: return ""; 199 case SignedLong: return "L"; 200 case SignedLongLong: return "LL"; 201 case UnsignedChar: 202 if (getCharWidth() < getIntWidth()) 203 return ""; 204 LLVM_FALLTHROUGH; 205 case UnsignedShort: 206 if (getShortWidth() < getIntWidth()) 207 return ""; 208 LLVM_FALLTHROUGH; 209 case UnsignedInt: return "U"; 210 case UnsignedLong: return "UL"; 211 case UnsignedLongLong: return "ULL"; 212 } 213 } 214 215 /// getTypeFormatModifier - Return the printf format modifier for the 216 /// specified integer type enum. For example, SignedLong -> "l". 217 218 const char *TargetInfo::getTypeFormatModifier(IntType T) { 219 switch (T) { 220 default: llvm_unreachable("not an integer!"); 221 case SignedChar: 222 case UnsignedChar: return "hh"; 223 case SignedShort: 224 case UnsignedShort: return "h"; 225 case SignedInt: 226 case UnsignedInt: return ""; 227 case SignedLong: 228 case UnsignedLong: return "l"; 229 case SignedLongLong: 230 case UnsignedLongLong: return "ll"; 231 } 232 } 233 234 /// getTypeWidth - Return the width (in bits) of the specified integer type 235 /// enum. For example, SignedInt -> getIntWidth(). 236 unsigned TargetInfo::getTypeWidth(IntType T) const { 237 switch (T) { 238 default: llvm_unreachable("not an integer!"); 239 case SignedChar: 240 case UnsignedChar: return getCharWidth(); 241 case SignedShort: 242 case UnsignedShort: return getShortWidth(); 243 case SignedInt: 244 case UnsignedInt: return getIntWidth(); 245 case SignedLong: 246 case UnsignedLong: return getLongWidth(); 247 case SignedLongLong: 248 case UnsignedLongLong: return getLongLongWidth(); 249 }; 250 } 251 252 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 253 unsigned BitWidth, bool IsSigned) const { 254 if (getCharWidth() == BitWidth) 255 return IsSigned ? SignedChar : UnsignedChar; 256 if (getShortWidth() == BitWidth) 257 return IsSigned ? SignedShort : UnsignedShort; 258 if (getIntWidth() == BitWidth) 259 return IsSigned ? SignedInt : UnsignedInt; 260 if (getLongWidth() == BitWidth) 261 return IsSigned ? SignedLong : UnsignedLong; 262 if (getLongLongWidth() == BitWidth) 263 return IsSigned ? SignedLongLong : UnsignedLongLong; 264 return NoInt; 265 } 266 267 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 268 bool IsSigned) const { 269 if (getCharWidth() >= BitWidth) 270 return IsSigned ? SignedChar : UnsignedChar; 271 if (getShortWidth() >= BitWidth) 272 return IsSigned ? SignedShort : UnsignedShort; 273 if (getIntWidth() >= BitWidth) 274 return IsSigned ? SignedInt : UnsignedInt; 275 if (getLongWidth() >= BitWidth) 276 return IsSigned ? SignedLong : UnsignedLong; 277 if (getLongLongWidth() >= BitWidth) 278 return IsSigned ? SignedLongLong : UnsignedLongLong; 279 return NoInt; 280 } 281 282 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, 283 FloatModeKind ExplicitType) const { 284 if (getFloatWidth() == BitWidth) 285 return FloatModeKind::Float; 286 if (getDoubleWidth() == BitWidth) 287 return FloatModeKind::Double; 288 289 switch (BitWidth) { 290 case 96: 291 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 292 return FloatModeKind::LongDouble; 293 break; 294 case 128: 295 // The caller explicitly asked for an IEEE compliant type but we still 296 // have to check if the target supports it. 297 if (ExplicitType == FloatModeKind::Float128) 298 return hasFloat128Type() ? FloatModeKind::Float128 299 : FloatModeKind::NoFloat; 300 if (ExplicitType == FloatModeKind::Ibm128) 301 return hasIbm128Type() ? FloatModeKind::Ibm128 302 : FloatModeKind::NoFloat; 303 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 304 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 305 return FloatModeKind::LongDouble; 306 if (hasFloat128Type()) 307 return FloatModeKind::Float128; 308 break; 309 } 310 311 return FloatModeKind::NoFloat; 312 } 313 314 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 315 /// enum. For example, SignedInt -> getIntAlign(). 316 unsigned TargetInfo::getTypeAlign(IntType T) const { 317 switch (T) { 318 default: llvm_unreachable("not an integer!"); 319 case SignedChar: 320 case UnsignedChar: return getCharAlign(); 321 case SignedShort: 322 case UnsignedShort: return getShortAlign(); 323 case SignedInt: 324 case UnsignedInt: return getIntAlign(); 325 case SignedLong: 326 case UnsignedLong: return getLongAlign(); 327 case SignedLongLong: 328 case UnsignedLongLong: return getLongLongAlign(); 329 }; 330 } 331 332 /// isTypeSigned - Return whether an integer types is signed. Returns true if 333 /// the type is signed; false otherwise. 334 bool TargetInfo::isTypeSigned(IntType T) { 335 switch (T) { 336 default: llvm_unreachable("not an integer!"); 337 case SignedChar: 338 case SignedShort: 339 case SignedInt: 340 case SignedLong: 341 case SignedLongLong: 342 return true; 343 case UnsignedChar: 344 case UnsignedShort: 345 case UnsignedInt: 346 case UnsignedLong: 347 case UnsignedLongLong: 348 return false; 349 }; 350 } 351 352 /// adjust - Set forced language options. 353 /// Apply changes to the target information with respect to certain 354 /// language options which change the target configuration and adjust 355 /// the language based on the target options where applicable. 356 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { 357 if (Opts.NoBitFieldTypeAlign) 358 UseBitFieldTypeAlignment = false; 359 360 switch (Opts.WCharSize) { 361 default: llvm_unreachable("invalid wchar_t width"); 362 case 0: break; 363 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 364 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 365 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 366 } 367 368 if (Opts.AlignDouble) { 369 DoubleAlign = LongLongAlign = 64; 370 LongDoubleAlign = 64; 371 } 372 373 if (Opts.OpenCL) { 374 // OpenCL C requires specific widths for types, irrespective of 375 // what these normally are for the target. 376 // We also define long long and long double here, although the 377 // OpenCL standard only mentions these as "reserved". 378 IntWidth = IntAlign = 32; 379 LongWidth = LongAlign = 64; 380 LongLongWidth = LongLongAlign = 128; 381 HalfWidth = HalfAlign = 16; 382 FloatWidth = FloatAlign = 32; 383 384 // Embedded 32-bit targets (OpenCL EP) might have double C type 385 // defined as float. Let's not override this as it might lead 386 // to generating illegal code that uses 64bit doubles. 387 if (DoubleWidth != FloatWidth) { 388 DoubleWidth = DoubleAlign = 64; 389 DoubleFormat = &llvm::APFloat::IEEEdouble(); 390 } 391 LongDoubleWidth = LongDoubleAlign = 128; 392 393 unsigned MaxPointerWidth = getMaxPointerWidth(); 394 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 395 bool Is32BitArch = MaxPointerWidth == 32; 396 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 397 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 398 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 399 400 IntMaxType = SignedLongLong; 401 Int64Type = SignedLong; 402 403 HalfFormat = &llvm::APFloat::IEEEhalf(); 404 FloatFormat = &llvm::APFloat::IEEEsingle(); 405 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 406 407 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for 408 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space 409 // feature 410 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 411 // or later and __opencl_c_pipes feature 412 // FIXME: These language options are also defined in setLangDefaults() 413 // for OpenCL C 2.0 but with no access to target capabilities. Target 414 // should be immutable once created and thus these language options need 415 // to be defined only once. 416 if (Opts.getOpenCLCompatibleVersion() == 300) { 417 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); 418 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( 419 OpenCLFeaturesMap, "__opencl_c_generic_address_space"); 420 Opts.OpenCLPipes = 421 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); 422 } 423 } 424 425 if (Opts.DoubleSize) { 426 if (Opts.DoubleSize == 32) { 427 DoubleWidth = 32; 428 LongDoubleWidth = 32; 429 DoubleFormat = &llvm::APFloat::IEEEsingle(); 430 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 431 } else if (Opts.DoubleSize == 64) { 432 DoubleWidth = 64; 433 LongDoubleWidth = 64; 434 DoubleFormat = &llvm::APFloat::IEEEdouble(); 435 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 436 } 437 } 438 439 if (Opts.LongDoubleSize) { 440 if (Opts.LongDoubleSize == DoubleWidth) { 441 LongDoubleWidth = DoubleWidth; 442 LongDoubleAlign = DoubleAlign; 443 LongDoubleFormat = DoubleFormat; 444 } else if (Opts.LongDoubleSize == 128) { 445 LongDoubleWidth = LongDoubleAlign = 128; 446 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 447 } 448 } 449 450 if (Opts.NewAlignOverride) 451 NewAlign = Opts.NewAlignOverride * getCharWidth(); 452 453 // Each unsigned fixed point type has the same number of fractional bits as 454 // its corresponding signed type. 455 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 456 CheckFixedPointBits(); 457 458 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { 459 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; 460 Opts.ProtectParens = false; 461 } 462 } 463 464 bool TargetInfo::initFeatureMap( 465 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 466 const std::vector<std::string> &FeatureVec) const { 467 for (const auto &F : FeatureVec) { 468 StringRef Name = F; 469 // Apply the feature via the target. 470 bool Enabled = Name[0] == '+'; 471 setFeatureEnabled(Features, Name.substr(1), Enabled); 472 } 473 return true; 474 } 475 476 TargetInfo::CallingConvKind 477 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 478 if (getCXXABI() != TargetCXXABI::Microsoft && 479 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 480 return CCK_ClangABI4OrPS4; 481 return CCK_Default; 482 } 483 484 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 485 switch (TK) { 486 case OCLTK_Image: 487 case OCLTK_Pipe: 488 return LangAS::opencl_global; 489 490 case OCLTK_Sampler: 491 return LangAS::opencl_constant; 492 493 default: 494 return LangAS::Default; 495 } 496 } 497 498 //===----------------------------------------------------------------------===// 499 500 501 static StringRef removeGCCRegisterPrefix(StringRef Name) { 502 if (Name[0] == '%' || Name[0] == '#') 503 Name = Name.substr(1); 504 505 return Name; 506 } 507 508 /// isValidClobber - Returns whether the passed in string is 509 /// a valid clobber in an inline asm statement. This is used by 510 /// Sema. 511 bool TargetInfo::isValidClobber(StringRef Name) const { 512 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 513 Name == "unwind"); 514 } 515 516 /// isValidGCCRegisterName - Returns whether the passed in string 517 /// is a valid register name according to GCC. This is used by Sema for 518 /// inline asm statements. 519 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 520 if (Name.empty()) 521 return false; 522 523 // Get rid of any register prefix. 524 Name = removeGCCRegisterPrefix(Name); 525 if (Name.empty()) 526 return false; 527 528 ArrayRef<const char *> Names = getGCCRegNames(); 529 530 // If we have a number it maps to an entry in the register name array. 531 if (isDigit(Name[0])) { 532 unsigned n; 533 if (!Name.getAsInteger(0, n)) 534 return n < Names.size(); 535 } 536 537 // Check register names. 538 if (llvm::is_contained(Names, Name)) 539 return true; 540 541 // Check any additional names that we have. 542 for (const AddlRegName &ARN : getGCCAddlRegNames()) 543 for (const char *AN : ARN.Names) { 544 if (!AN) 545 break; 546 // Make sure the register that the additional name is for is within 547 // the bounds of the register names from above. 548 if (AN == Name && ARN.RegNum < Names.size()) 549 return true; 550 } 551 552 // Now check aliases. 553 for (const GCCRegAlias &GRA : getGCCRegAliases()) 554 for (const char *A : GRA.Aliases) { 555 if (!A) 556 break; 557 if (A == Name) 558 return true; 559 } 560 561 return false; 562 } 563 564 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 565 bool ReturnCanonical) const { 566 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 567 568 // Get rid of any register prefix. 569 Name = removeGCCRegisterPrefix(Name); 570 571 ArrayRef<const char *> Names = getGCCRegNames(); 572 573 // First, check if we have a number. 574 if (isDigit(Name[0])) { 575 unsigned n; 576 if (!Name.getAsInteger(0, n)) { 577 assert(n < Names.size() && "Out of bounds register number!"); 578 return Names[n]; 579 } 580 } 581 582 // Check any additional names that we have. 583 for (const AddlRegName &ARN : getGCCAddlRegNames()) 584 for (const char *AN : ARN.Names) { 585 if (!AN) 586 break; 587 // Make sure the register that the additional name is for is within 588 // the bounds of the register names from above. 589 if (AN == Name && ARN.RegNum < Names.size()) 590 return ReturnCanonical ? Names[ARN.RegNum] : Name; 591 } 592 593 // Now check aliases. 594 for (const GCCRegAlias &RA : getGCCRegAliases()) 595 for (const char *A : RA.Aliases) { 596 if (!A) 597 break; 598 if (A == Name) 599 return RA.Register; 600 } 601 602 return Name; 603 } 604 605 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 606 const char *Name = Info.getConstraintStr().c_str(); 607 // An output constraint must start with '=' or '+' 608 if (*Name != '=' && *Name != '+') 609 return false; 610 611 if (*Name == '+') 612 Info.setIsReadWrite(); 613 614 Name++; 615 while (*Name) { 616 switch (*Name) { 617 default: 618 if (!validateAsmConstraint(Name, Info)) { 619 // FIXME: We temporarily return false 620 // so we can add more constraints as we hit it. 621 // Eventually, an unknown constraint should just be treated as 'g'. 622 return false; 623 } 624 break; 625 case '&': // early clobber. 626 Info.setEarlyClobber(); 627 break; 628 case '%': // commutative. 629 // FIXME: Check that there is a another register after this one. 630 break; 631 case 'r': // general register. 632 Info.setAllowsRegister(); 633 break; 634 case 'm': // memory operand. 635 case 'o': // offsetable memory operand. 636 case 'V': // non-offsetable memory operand. 637 case '<': // autodecrement memory operand. 638 case '>': // autoincrement memory operand. 639 Info.setAllowsMemory(); 640 break; 641 case 'g': // general register, memory operand or immediate integer. 642 case 'X': // any operand. 643 Info.setAllowsRegister(); 644 Info.setAllowsMemory(); 645 break; 646 case ',': // multiple alternative constraint. Pass it. 647 // Handle additional optional '=' or '+' modifiers. 648 if (Name[1] == '=' || Name[1] == '+') 649 Name++; 650 break; 651 case '#': // Ignore as constraint. 652 while (Name[1] && Name[1] != ',') 653 Name++; 654 break; 655 case '?': // Disparage slightly code. 656 case '!': // Disparage severely. 657 case '*': // Ignore for choosing register preferences. 658 case 'i': // Ignore i,n,E,F as output constraints (match from the other 659 // chars) 660 case 'n': 661 case 'E': 662 case 'F': 663 break; // Pass them. 664 } 665 666 Name++; 667 } 668 669 // Early clobber with a read-write constraint which doesn't permit registers 670 // is invalid. 671 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 672 return false; 673 674 // If a constraint allows neither memory nor register operands it contains 675 // only modifiers. Reject it. 676 return Info.allowsMemory() || Info.allowsRegister(); 677 } 678 679 bool TargetInfo::resolveSymbolicName(const char *&Name, 680 ArrayRef<ConstraintInfo> OutputConstraints, 681 unsigned &Index) const { 682 assert(*Name == '[' && "Symbolic name did not start with '['"); 683 Name++; 684 const char *Start = Name; 685 while (*Name && *Name != ']') 686 Name++; 687 688 if (!*Name) { 689 // Missing ']' 690 return false; 691 } 692 693 std::string SymbolicName(Start, Name - Start); 694 695 for (Index = 0; Index != OutputConstraints.size(); ++Index) 696 if (SymbolicName == OutputConstraints[Index].getName()) 697 return true; 698 699 return false; 700 } 701 702 bool TargetInfo::validateInputConstraint( 703 MutableArrayRef<ConstraintInfo> OutputConstraints, 704 ConstraintInfo &Info) const { 705 const char *Name = Info.ConstraintStr.c_str(); 706 707 if (!*Name) 708 return false; 709 710 while (*Name) { 711 switch (*Name) { 712 default: 713 // Check if we have a matching constraint 714 if (*Name >= '0' && *Name <= '9') { 715 const char *DigitStart = Name; 716 while (Name[1] >= '0' && Name[1] <= '9') 717 Name++; 718 const char *DigitEnd = Name; 719 unsigned i; 720 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 721 .getAsInteger(10, i)) 722 return false; 723 724 // Check if matching constraint is out of bounds. 725 if (i >= OutputConstraints.size()) return false; 726 727 // A number must refer to an output only operand. 728 if (OutputConstraints[i].isReadWrite()) 729 return false; 730 731 // If the constraint is already tied, it must be tied to the 732 // same operand referenced to by the number. 733 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 734 return false; 735 736 // The constraint should have the same info as the respective 737 // output constraint. 738 Info.setTiedOperand(i, OutputConstraints[i]); 739 } else if (!validateAsmConstraint(Name, Info)) { 740 // FIXME: This error return is in place temporarily so we can 741 // add more constraints as we hit it. Eventually, an unknown 742 // constraint should just be treated as 'g'. 743 return false; 744 } 745 break; 746 case '[': { 747 unsigned Index = 0; 748 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 749 return false; 750 751 // If the constraint is already tied, it must be tied to the 752 // same operand referenced to by the number. 753 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 754 return false; 755 756 // A number must refer to an output only operand. 757 if (OutputConstraints[Index].isReadWrite()) 758 return false; 759 760 Info.setTiedOperand(Index, OutputConstraints[Index]); 761 break; 762 } 763 case '%': // commutative 764 // FIXME: Fail if % is used with the last operand. 765 break; 766 case 'i': // immediate integer. 767 break; 768 case 'n': // immediate integer with a known value. 769 Info.setRequiresImmediate(); 770 break; 771 case 'I': // Various constant constraints with target-specific meanings. 772 case 'J': 773 case 'K': 774 case 'L': 775 case 'M': 776 case 'N': 777 case 'O': 778 case 'P': 779 if (!validateAsmConstraint(Name, Info)) 780 return false; 781 break; 782 case 'r': // general register. 783 Info.setAllowsRegister(); 784 break; 785 case 'm': // memory operand. 786 case 'o': // offsettable memory operand. 787 case 'V': // non-offsettable memory operand. 788 case '<': // autodecrement memory operand. 789 case '>': // autoincrement memory operand. 790 Info.setAllowsMemory(); 791 break; 792 case 'g': // general register, memory operand or immediate integer. 793 case 'X': // any operand. 794 Info.setAllowsRegister(); 795 Info.setAllowsMemory(); 796 break; 797 case 'E': // immediate floating point. 798 case 'F': // immediate floating point. 799 case 'p': // address operand. 800 break; 801 case ',': // multiple alternative constraint. Ignore comma. 802 break; 803 case '#': // Ignore as constraint. 804 while (Name[1] && Name[1] != ',') 805 Name++; 806 break; 807 case '?': // Disparage slightly code. 808 case '!': // Disparage severely. 809 case '*': // Ignore for choosing register preferences. 810 break; // Pass them. 811 } 812 813 Name++; 814 } 815 816 return true; 817 } 818 819 void TargetInfo::CheckFixedPointBits() const { 820 // Check that the number of fractional and integral bits (and maybe sign) can 821 // fit into the bits given for a fixed point type. 822 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 823 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 824 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 825 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 826 ShortAccumWidth); 827 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 828 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 829 LongAccumWidth); 830 831 assert(getShortFractScale() + 1 <= ShortFractWidth); 832 assert(getFractScale() + 1 <= FractWidth); 833 assert(getLongFractScale() + 1 <= LongFractWidth); 834 assert(getUnsignedShortFractScale() <= ShortFractWidth); 835 assert(getUnsignedFractScale() <= FractWidth); 836 assert(getUnsignedLongFractScale() <= LongFractWidth); 837 838 // Each unsigned fract type has either the same number of fractional bits 839 // as, or one more fractional bit than, its corresponding signed fract type. 840 assert(getShortFractScale() == getUnsignedShortFractScale() || 841 getShortFractScale() == getUnsignedShortFractScale() - 1); 842 assert(getFractScale() == getUnsignedFractScale() || 843 getFractScale() == getUnsignedFractScale() - 1); 844 assert(getLongFractScale() == getUnsignedLongFractScale() || 845 getLongFractScale() == getUnsignedLongFractScale() - 1); 846 847 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 848 // fractional bits is nondecreasing for each of the following sets of 849 // fixed-point types: 850 // - signed fract types 851 // - unsigned fract types 852 // - signed accum types 853 // - unsigned accum types. 854 assert(getLongFractScale() >= getFractScale() && 855 getFractScale() >= getShortFractScale()); 856 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 857 getUnsignedFractScale() >= getUnsignedShortFractScale()); 858 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 859 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 860 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 861 862 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 863 // integral bits is nondecreasing for each of the following sets of 864 // fixed-point types: 865 // - signed accum types 866 // - unsigned accum types 867 assert(getLongAccumIBits() >= getAccumIBits() && 868 getAccumIBits() >= getShortAccumIBits()); 869 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 870 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 871 872 // Each signed accum type has at least as many integral bits as its 873 // corresponding unsigned accum type. 874 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 875 assert(getAccumIBits() >= getUnsignedAccumIBits()); 876 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 877 } 878 879 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 880 auto *Target = static_cast<TransferrableTargetInfo*>(this); 881 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 882 *Target = *Src; 883 } 884