1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 VLASupported = true; 35 NoAsmVariants = false; 36 HasLegalHalfType = false; 37 HasFloat128 = false; 38 HasFloat16 = false; 39 PointerWidth = PointerAlign = 32; 40 BoolWidth = BoolAlign = 8; 41 IntWidth = IntAlign = 32; 42 LongWidth = LongAlign = 32; 43 LongLongWidth = LongLongAlign = 64; 44 45 // Fixed point default bit widths 46 ShortAccumWidth = ShortAccumAlign = 16; 47 AccumWidth = AccumAlign = 32; 48 LongAccumWidth = LongAccumAlign = 64; 49 ShortFractWidth = ShortFractAlign = 8; 50 FractWidth = FractAlign = 16; 51 LongFractWidth = LongFractAlign = 32; 52 53 // Fixed point default integral and fractional bit sizes 54 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 55 // types by default to have the same number of fractional bits between _Accum 56 // and _Fract types. 57 PaddingOnUnsignedFixedPoint = false; 58 ShortAccumScale = 7; 59 AccumScale = 15; 60 LongAccumScale = 31; 61 62 SuitableAlign = 64; 63 DefaultAlignForAttributeAligned = 128; 64 MinGlobalAlign = 0; 65 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 66 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 67 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 68 // This alignment guarantee also applies to Windows and Android. 69 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 70 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 71 else 72 NewAlign = 0; // Infer from basic type alignment. 73 HalfWidth = 16; 74 HalfAlign = 16; 75 FloatWidth = 32; 76 FloatAlign = 32; 77 DoubleWidth = 64; 78 DoubleAlign = 64; 79 LongDoubleWidth = 64; 80 LongDoubleAlign = 64; 81 Float128Align = 128; 82 LargeArrayMinWidth = 0; 83 LargeArrayAlign = 0; 84 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 85 MaxVectorAlign = 0; 86 MaxTLSAlign = 0; 87 SimdDefaultAlign = 0; 88 SizeType = UnsignedLong; 89 PtrDiffType = SignedLong; 90 IntMaxType = SignedLongLong; 91 IntPtrType = SignedLong; 92 WCharType = SignedInt; 93 WIntType = SignedInt; 94 Char16Type = UnsignedShort; 95 Char32Type = UnsignedInt; 96 Int64Type = SignedLongLong; 97 SigAtomicType = SignedInt; 98 ProcessIDType = SignedInt; 99 UseSignedCharForObjCBool = true; 100 UseBitFieldTypeAlignment = true; 101 UseZeroLengthBitfieldAlignment = false; 102 UseExplicitBitFieldAlignment = true; 103 ZeroLengthBitfieldBoundary = 0; 104 HalfFormat = &llvm::APFloat::IEEEhalf(); 105 FloatFormat = &llvm::APFloat::IEEEsingle(); 106 DoubleFormat = &llvm::APFloat::IEEEdouble(); 107 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 108 Float128Format = &llvm::APFloat::IEEEquad(); 109 MCountName = "mcount"; 110 RegParmMax = 0; 111 SSERegParmMax = 0; 112 HasAlignMac68kSupport = false; 113 HasBuiltinMSVaList = false; 114 IsRenderScriptTarget = false; 115 HasAArch64SVETypes = false; 116 ARMCDECoprocMask = 0; 117 118 // Default to no types using fpret. 119 RealTypeUsesObjCFPRet = 0; 120 121 // Default to not using fp2ret for __Complex long double 122 ComplexLongDoubleUsesFP2Ret = false; 123 124 // Set the C++ ABI based on the triple. 125 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 126 ? TargetCXXABI::Microsoft 127 : TargetCXXABI::GenericItanium); 128 129 // Default to an empty address space map. 130 AddrSpaceMap = &DefaultAddrSpaceMap; 131 UseAddrSpaceMapMangling = false; 132 133 // Default to an unknown platform name. 134 PlatformName = "unknown"; 135 PlatformMinVersion = VersionTuple(); 136 137 MaxOpenCLWorkGroupSize = 1024; 138 } 139 140 // Out of line virtual dtor for TargetInfo. 141 TargetInfo::~TargetInfo() {} 142 143 void TargetInfo::resetDataLayout(StringRef DL) { 144 DataLayout.reset(new llvm::DataLayout(DL)); 145 } 146 147 bool 148 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 149 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 150 return false; 151 } 152 153 bool 154 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 155 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 156 return false; 157 } 158 159 /// getTypeName - Return the user string for the specified integer type enum. 160 /// For example, SignedShort -> "short". 161 const char *TargetInfo::getTypeName(IntType T) { 162 switch (T) { 163 default: llvm_unreachable("not an integer!"); 164 case SignedChar: return "signed char"; 165 case UnsignedChar: return "unsigned char"; 166 case SignedShort: return "short"; 167 case UnsignedShort: return "unsigned short"; 168 case SignedInt: return "int"; 169 case UnsignedInt: return "unsigned int"; 170 case SignedLong: return "long int"; 171 case UnsignedLong: return "long unsigned int"; 172 case SignedLongLong: return "long long int"; 173 case UnsignedLongLong: return "long long unsigned int"; 174 } 175 } 176 177 /// getTypeConstantSuffix - Return the constant suffix for the specified 178 /// integer type enum. For example, SignedLong -> "L". 179 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 180 switch (T) { 181 default: llvm_unreachable("not an integer!"); 182 case SignedChar: 183 case SignedShort: 184 case SignedInt: return ""; 185 case SignedLong: return "L"; 186 case SignedLongLong: return "LL"; 187 case UnsignedChar: 188 if (getCharWidth() < getIntWidth()) 189 return ""; 190 LLVM_FALLTHROUGH; 191 case UnsignedShort: 192 if (getShortWidth() < getIntWidth()) 193 return ""; 194 LLVM_FALLTHROUGH; 195 case UnsignedInt: return "U"; 196 case UnsignedLong: return "UL"; 197 case UnsignedLongLong: return "ULL"; 198 } 199 } 200 201 /// getTypeFormatModifier - Return the printf format modifier for the 202 /// specified integer type enum. For example, SignedLong -> "l". 203 204 const char *TargetInfo::getTypeFormatModifier(IntType T) { 205 switch (T) { 206 default: llvm_unreachable("not an integer!"); 207 case SignedChar: 208 case UnsignedChar: return "hh"; 209 case SignedShort: 210 case UnsignedShort: return "h"; 211 case SignedInt: 212 case UnsignedInt: return ""; 213 case SignedLong: 214 case UnsignedLong: return "l"; 215 case SignedLongLong: 216 case UnsignedLongLong: return "ll"; 217 } 218 } 219 220 /// getTypeWidth - Return the width (in bits) of the specified integer type 221 /// enum. For example, SignedInt -> getIntWidth(). 222 unsigned TargetInfo::getTypeWidth(IntType T) const { 223 switch (T) { 224 default: llvm_unreachable("not an integer!"); 225 case SignedChar: 226 case UnsignedChar: return getCharWidth(); 227 case SignedShort: 228 case UnsignedShort: return getShortWidth(); 229 case SignedInt: 230 case UnsignedInt: return getIntWidth(); 231 case SignedLong: 232 case UnsignedLong: return getLongWidth(); 233 case SignedLongLong: 234 case UnsignedLongLong: return getLongLongWidth(); 235 }; 236 } 237 238 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 239 unsigned BitWidth, bool IsSigned) const { 240 if (getCharWidth() == BitWidth) 241 return IsSigned ? SignedChar : UnsignedChar; 242 if (getShortWidth() == BitWidth) 243 return IsSigned ? SignedShort : UnsignedShort; 244 if (getIntWidth() == BitWidth) 245 return IsSigned ? SignedInt : UnsignedInt; 246 if (getLongWidth() == BitWidth) 247 return IsSigned ? SignedLong : UnsignedLong; 248 if (getLongLongWidth() == BitWidth) 249 return IsSigned ? SignedLongLong : UnsignedLongLong; 250 return NoInt; 251 } 252 253 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 254 bool IsSigned) const { 255 if (getCharWidth() >= BitWidth) 256 return IsSigned ? SignedChar : UnsignedChar; 257 if (getShortWidth() >= BitWidth) 258 return IsSigned ? SignedShort : UnsignedShort; 259 if (getIntWidth() >= BitWidth) 260 return IsSigned ? SignedInt : UnsignedInt; 261 if (getLongWidth() >= BitWidth) 262 return IsSigned ? SignedLong : UnsignedLong; 263 if (getLongLongWidth() >= BitWidth) 264 return IsSigned ? SignedLongLong : UnsignedLongLong; 265 return NoInt; 266 } 267 268 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const { 269 if (getFloatWidth() == BitWidth) 270 return Float; 271 if (getDoubleWidth() == BitWidth) 272 return Double; 273 274 switch (BitWidth) { 275 case 96: 276 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 277 return LongDouble; 278 break; 279 case 128: 280 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 281 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 282 return LongDouble; 283 if (hasFloat128Type()) 284 return Float128; 285 break; 286 } 287 288 return NoFloat; 289 } 290 291 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 292 /// enum. For example, SignedInt -> getIntAlign(). 293 unsigned TargetInfo::getTypeAlign(IntType T) const { 294 switch (T) { 295 default: llvm_unreachable("not an integer!"); 296 case SignedChar: 297 case UnsignedChar: return getCharAlign(); 298 case SignedShort: 299 case UnsignedShort: return getShortAlign(); 300 case SignedInt: 301 case UnsignedInt: return getIntAlign(); 302 case SignedLong: 303 case UnsignedLong: return getLongAlign(); 304 case SignedLongLong: 305 case UnsignedLongLong: return getLongLongAlign(); 306 }; 307 } 308 309 /// isTypeSigned - Return whether an integer types is signed. Returns true if 310 /// the type is signed; false otherwise. 311 bool TargetInfo::isTypeSigned(IntType T) { 312 switch (T) { 313 default: llvm_unreachable("not an integer!"); 314 case SignedChar: 315 case SignedShort: 316 case SignedInt: 317 case SignedLong: 318 case SignedLongLong: 319 return true; 320 case UnsignedChar: 321 case UnsignedShort: 322 case UnsignedInt: 323 case UnsignedLong: 324 case UnsignedLongLong: 325 return false; 326 }; 327 } 328 329 /// adjust - Set forced language options. 330 /// Apply changes to the target information with respect to certain 331 /// language options which change the target configuration and adjust 332 /// the language based on the target options where applicable. 333 void TargetInfo::adjust(LangOptions &Opts) { 334 if (Opts.NoBitFieldTypeAlign) 335 UseBitFieldTypeAlignment = false; 336 337 switch (Opts.WCharSize) { 338 default: llvm_unreachable("invalid wchar_t width"); 339 case 0: break; 340 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 341 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 342 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 343 } 344 345 if (Opts.AlignDouble) { 346 DoubleAlign = LongLongAlign = 64; 347 LongDoubleAlign = 64; 348 } 349 350 if (Opts.OpenCL) { 351 // OpenCL C requires specific widths for types, irrespective of 352 // what these normally are for the target. 353 // We also define long long and long double here, although the 354 // OpenCL standard only mentions these as "reserved". 355 IntWidth = IntAlign = 32; 356 LongWidth = LongAlign = 64; 357 LongLongWidth = LongLongAlign = 128; 358 HalfWidth = HalfAlign = 16; 359 FloatWidth = FloatAlign = 32; 360 361 // Embedded 32-bit targets (OpenCL EP) might have double C type 362 // defined as float. Let's not override this as it might lead 363 // to generating illegal code that uses 64bit doubles. 364 if (DoubleWidth != FloatWidth) { 365 DoubleWidth = DoubleAlign = 64; 366 DoubleFormat = &llvm::APFloat::IEEEdouble(); 367 } 368 LongDoubleWidth = LongDoubleAlign = 128; 369 370 unsigned MaxPointerWidth = getMaxPointerWidth(); 371 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 372 bool Is32BitArch = MaxPointerWidth == 32; 373 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 374 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 375 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 376 377 IntMaxType = SignedLongLong; 378 Int64Type = SignedLong; 379 380 HalfFormat = &llvm::APFloat::IEEEhalf(); 381 FloatFormat = &llvm::APFloat::IEEEsingle(); 382 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 383 } 384 385 if (Opts.DoubleSize) { 386 if (Opts.DoubleSize == 32) { 387 DoubleWidth = 32; 388 LongDoubleWidth = 32; 389 DoubleFormat = &llvm::APFloat::IEEEsingle(); 390 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 391 } else if (Opts.DoubleSize == 64) { 392 DoubleWidth = 64; 393 LongDoubleWidth = 64; 394 DoubleFormat = &llvm::APFloat::IEEEdouble(); 395 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 396 } 397 } 398 399 if (Opts.LongDoubleSize) { 400 if (Opts.LongDoubleSize == DoubleWidth) { 401 LongDoubleWidth = DoubleWidth; 402 LongDoubleAlign = DoubleAlign; 403 LongDoubleFormat = DoubleFormat; 404 } else if (Opts.LongDoubleSize == 128) { 405 LongDoubleWidth = LongDoubleAlign = 128; 406 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 407 } 408 } 409 410 if (Opts.NewAlignOverride) 411 NewAlign = Opts.NewAlignOverride * getCharWidth(); 412 413 // Each unsigned fixed point type has the same number of fractional bits as 414 // its corresponding signed type. 415 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 416 CheckFixedPointBits(); 417 } 418 419 bool TargetInfo::initFeatureMap( 420 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 421 const std::vector<std::string> &FeatureVec) const { 422 for (const auto &F : FeatureVec) { 423 StringRef Name = F; 424 // Apply the feature via the target. 425 bool Enabled = Name[0] == '+'; 426 setFeatureEnabled(Features, Name.substr(1), Enabled); 427 } 428 return true; 429 } 430 431 TargetInfo::CallingConvKind 432 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 433 if (getCXXABI() != TargetCXXABI::Microsoft && 434 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 435 return CCK_ClangABI4OrPS4; 436 return CCK_Default; 437 } 438 439 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 440 switch (TK) { 441 case OCLTK_Image: 442 case OCLTK_Pipe: 443 return LangAS::opencl_global; 444 445 case OCLTK_Sampler: 446 return LangAS::opencl_constant; 447 448 default: 449 return LangAS::Default; 450 } 451 } 452 453 //===----------------------------------------------------------------------===// 454 455 456 static StringRef removeGCCRegisterPrefix(StringRef Name) { 457 if (Name[0] == '%' || Name[0] == '#') 458 Name = Name.substr(1); 459 460 return Name; 461 } 462 463 /// isValidClobber - Returns whether the passed in string is 464 /// a valid clobber in an inline asm statement. This is used by 465 /// Sema. 466 bool TargetInfo::isValidClobber(StringRef Name) const { 467 return (isValidGCCRegisterName(Name) || 468 Name == "memory" || Name == "cc"); 469 } 470 471 /// isValidGCCRegisterName - Returns whether the passed in string 472 /// is a valid register name according to GCC. This is used by Sema for 473 /// inline asm statements. 474 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 475 if (Name.empty()) 476 return false; 477 478 // Get rid of any register prefix. 479 Name = removeGCCRegisterPrefix(Name); 480 if (Name.empty()) 481 return false; 482 483 ArrayRef<const char *> Names = getGCCRegNames(); 484 485 // If we have a number it maps to an entry in the register name array. 486 if (isDigit(Name[0])) { 487 unsigned n; 488 if (!Name.getAsInteger(0, n)) 489 return n < Names.size(); 490 } 491 492 // Check register names. 493 if (llvm::is_contained(Names, Name)) 494 return true; 495 496 // Check any additional names that we have. 497 for (const AddlRegName &ARN : getGCCAddlRegNames()) 498 for (const char *AN : ARN.Names) { 499 if (!AN) 500 break; 501 // Make sure the register that the additional name is for is within 502 // the bounds of the register names from above. 503 if (AN == Name && ARN.RegNum < Names.size()) 504 return true; 505 } 506 507 // Now check aliases. 508 for (const GCCRegAlias &GRA : getGCCRegAliases()) 509 for (const char *A : GRA.Aliases) { 510 if (!A) 511 break; 512 if (A == Name) 513 return true; 514 } 515 516 return false; 517 } 518 519 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 520 bool ReturnCanonical) const { 521 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 522 523 // Get rid of any register prefix. 524 Name = removeGCCRegisterPrefix(Name); 525 526 ArrayRef<const char *> Names = getGCCRegNames(); 527 528 // First, check if we have a number. 529 if (isDigit(Name[0])) { 530 unsigned n; 531 if (!Name.getAsInteger(0, n)) { 532 assert(n < Names.size() && "Out of bounds register number!"); 533 return Names[n]; 534 } 535 } 536 537 // Check any additional names that we have. 538 for (const AddlRegName &ARN : getGCCAddlRegNames()) 539 for (const char *AN : ARN.Names) { 540 if (!AN) 541 break; 542 // Make sure the register that the additional name is for is within 543 // the bounds of the register names from above. 544 if (AN == Name && ARN.RegNum < Names.size()) 545 return ReturnCanonical ? Names[ARN.RegNum] : Name; 546 } 547 548 // Now check aliases. 549 for (const GCCRegAlias &RA : getGCCRegAliases()) 550 for (const char *A : RA.Aliases) { 551 if (!A) 552 break; 553 if (A == Name) 554 return RA.Register; 555 } 556 557 return Name; 558 } 559 560 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 561 const char *Name = Info.getConstraintStr().c_str(); 562 // An output constraint must start with '=' or '+' 563 if (*Name != '=' && *Name != '+') 564 return false; 565 566 if (*Name == '+') 567 Info.setIsReadWrite(); 568 569 Name++; 570 while (*Name) { 571 switch (*Name) { 572 default: 573 if (!validateAsmConstraint(Name, Info)) { 574 // FIXME: We temporarily return false 575 // so we can add more constraints as we hit it. 576 // Eventually, an unknown constraint should just be treated as 'g'. 577 return false; 578 } 579 break; 580 case '&': // early clobber. 581 Info.setEarlyClobber(); 582 break; 583 case '%': // commutative. 584 // FIXME: Check that there is a another register after this one. 585 break; 586 case 'r': // general register. 587 Info.setAllowsRegister(); 588 break; 589 case 'm': // memory operand. 590 case 'o': // offsetable memory operand. 591 case 'V': // non-offsetable memory operand. 592 case '<': // autodecrement memory operand. 593 case '>': // autoincrement memory operand. 594 Info.setAllowsMemory(); 595 break; 596 case 'g': // general register, memory operand or immediate integer. 597 case 'X': // any operand. 598 Info.setAllowsRegister(); 599 Info.setAllowsMemory(); 600 break; 601 case ',': // multiple alternative constraint. Pass it. 602 // Handle additional optional '=' or '+' modifiers. 603 if (Name[1] == '=' || Name[1] == '+') 604 Name++; 605 break; 606 case '#': // Ignore as constraint. 607 while (Name[1] && Name[1] != ',') 608 Name++; 609 break; 610 case '?': // Disparage slightly code. 611 case '!': // Disparage severely. 612 case '*': // Ignore for choosing register preferences. 613 case 'i': // Ignore i,n,E,F as output constraints (match from the other 614 // chars) 615 case 'n': 616 case 'E': 617 case 'F': 618 break; // Pass them. 619 } 620 621 Name++; 622 } 623 624 // Early clobber with a read-write constraint which doesn't permit registers 625 // is invalid. 626 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 627 return false; 628 629 // If a constraint allows neither memory nor register operands it contains 630 // only modifiers. Reject it. 631 return Info.allowsMemory() || Info.allowsRegister(); 632 } 633 634 bool TargetInfo::resolveSymbolicName(const char *&Name, 635 ArrayRef<ConstraintInfo> OutputConstraints, 636 unsigned &Index) const { 637 assert(*Name == '[' && "Symbolic name did not start with '['"); 638 Name++; 639 const char *Start = Name; 640 while (*Name && *Name != ']') 641 Name++; 642 643 if (!*Name) { 644 // Missing ']' 645 return false; 646 } 647 648 std::string SymbolicName(Start, Name - Start); 649 650 for (Index = 0; Index != OutputConstraints.size(); ++Index) 651 if (SymbolicName == OutputConstraints[Index].getName()) 652 return true; 653 654 return false; 655 } 656 657 bool TargetInfo::validateInputConstraint( 658 MutableArrayRef<ConstraintInfo> OutputConstraints, 659 ConstraintInfo &Info) const { 660 const char *Name = Info.ConstraintStr.c_str(); 661 662 if (!*Name) 663 return false; 664 665 while (*Name) { 666 switch (*Name) { 667 default: 668 // Check if we have a matching constraint 669 if (*Name >= '0' && *Name <= '9') { 670 const char *DigitStart = Name; 671 while (Name[1] >= '0' && Name[1] <= '9') 672 Name++; 673 const char *DigitEnd = Name; 674 unsigned i; 675 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 676 .getAsInteger(10, i)) 677 return false; 678 679 // Check if matching constraint is out of bounds. 680 if (i >= OutputConstraints.size()) return false; 681 682 // A number must refer to an output only operand. 683 if (OutputConstraints[i].isReadWrite()) 684 return false; 685 686 // If the constraint is already tied, it must be tied to the 687 // same operand referenced to by the number. 688 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 689 return false; 690 691 // The constraint should have the same info as the respective 692 // output constraint. 693 Info.setTiedOperand(i, OutputConstraints[i]); 694 } else if (!validateAsmConstraint(Name, Info)) { 695 // FIXME: This error return is in place temporarily so we can 696 // add more constraints as we hit it. Eventually, an unknown 697 // constraint should just be treated as 'g'. 698 return false; 699 } 700 break; 701 case '[': { 702 unsigned Index = 0; 703 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 704 return false; 705 706 // If the constraint is already tied, it must be tied to the 707 // same operand referenced to by the number. 708 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 709 return false; 710 711 // A number must refer to an output only operand. 712 if (OutputConstraints[Index].isReadWrite()) 713 return false; 714 715 Info.setTiedOperand(Index, OutputConstraints[Index]); 716 break; 717 } 718 case '%': // commutative 719 // FIXME: Fail if % is used with the last operand. 720 break; 721 case 'i': // immediate integer. 722 break; 723 case 'n': // immediate integer with a known value. 724 Info.setRequiresImmediate(); 725 break; 726 case 'I': // Various constant constraints with target-specific meanings. 727 case 'J': 728 case 'K': 729 case 'L': 730 case 'M': 731 case 'N': 732 case 'O': 733 case 'P': 734 if (!validateAsmConstraint(Name, Info)) 735 return false; 736 break; 737 case 'r': // general register. 738 Info.setAllowsRegister(); 739 break; 740 case 'm': // memory operand. 741 case 'o': // offsettable memory operand. 742 case 'V': // non-offsettable memory operand. 743 case '<': // autodecrement memory operand. 744 case '>': // autoincrement memory operand. 745 Info.setAllowsMemory(); 746 break; 747 case 'g': // general register, memory operand or immediate integer. 748 case 'X': // any operand. 749 Info.setAllowsRegister(); 750 Info.setAllowsMemory(); 751 break; 752 case 'E': // immediate floating point. 753 case 'F': // immediate floating point. 754 case 'p': // address operand. 755 break; 756 case ',': // multiple alternative constraint. Ignore comma. 757 break; 758 case '#': // Ignore as constraint. 759 while (Name[1] && Name[1] != ',') 760 Name++; 761 break; 762 case '?': // Disparage slightly code. 763 case '!': // Disparage severely. 764 case '*': // Ignore for choosing register preferences. 765 break; // Pass them. 766 } 767 768 Name++; 769 } 770 771 return true; 772 } 773 774 void TargetInfo::CheckFixedPointBits() const { 775 // Check that the number of fractional and integral bits (and maybe sign) can 776 // fit into the bits given for a fixed point type. 777 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 778 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 779 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 780 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 781 ShortAccumWidth); 782 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 783 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 784 LongAccumWidth); 785 786 assert(getShortFractScale() + 1 <= ShortFractWidth); 787 assert(getFractScale() + 1 <= FractWidth); 788 assert(getLongFractScale() + 1 <= LongFractWidth); 789 assert(getUnsignedShortFractScale() <= ShortFractWidth); 790 assert(getUnsignedFractScale() <= FractWidth); 791 assert(getUnsignedLongFractScale() <= LongFractWidth); 792 793 // Each unsigned fract type has either the same number of fractional bits 794 // as, or one more fractional bit than, its corresponding signed fract type. 795 assert(getShortFractScale() == getUnsignedShortFractScale() || 796 getShortFractScale() == getUnsignedShortFractScale() - 1); 797 assert(getFractScale() == getUnsignedFractScale() || 798 getFractScale() == getUnsignedFractScale() - 1); 799 assert(getLongFractScale() == getUnsignedLongFractScale() || 800 getLongFractScale() == getUnsignedLongFractScale() - 1); 801 802 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 803 // fractional bits is nondecreasing for each of the following sets of 804 // fixed-point types: 805 // - signed fract types 806 // - unsigned fract types 807 // - signed accum types 808 // - unsigned accum types. 809 assert(getLongFractScale() >= getFractScale() && 810 getFractScale() >= getShortFractScale()); 811 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 812 getUnsignedFractScale() >= getUnsignedShortFractScale()); 813 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 814 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 815 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 816 817 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 818 // integral bits is nondecreasing for each of the following sets of 819 // fixed-point types: 820 // - signed accum types 821 // - unsigned accum types 822 assert(getLongAccumIBits() >= getAccumIBits() && 823 getAccumIBits() >= getShortAccumIBits()); 824 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 825 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 826 827 // Each signed accum type has at least as many integral bits as its 828 // corresponding unsigned accum type. 829 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 830 assert(getAccumIBits() >= getUnsignedAccumIBits()); 831 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 832 } 833 834 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 835 auto *Target = static_cast<TransferrableTargetInfo*>(this); 836 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 837 *Target = *Src; 838 } 839