1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetParser.h" 23 #include <cstdlib> 24 using namespace clang; 25 26 static const LangASMap DefaultAddrSpaceMap = {0}; 27 28 // TargetInfo Constructor. 29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 30 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 31 // SPARC. These should be overridden by concrete targets as needed. 32 BigEndian = !T.isLittleEndian(); 33 TLSSupported = true; 34 VLASupported = true; 35 NoAsmVariants = false; 36 HasLegalHalfType = false; 37 HasFloat128 = false; 38 HasFloat16 = false; 39 HasBFloat16 = false; 40 HasStrictFP = false; 41 PointerWidth = PointerAlign = 32; 42 BoolWidth = BoolAlign = 8; 43 IntWidth = IntAlign = 32; 44 LongWidth = LongAlign = 32; 45 LongLongWidth = LongLongAlign = 64; 46 47 // Fixed point default bit widths 48 ShortAccumWidth = ShortAccumAlign = 16; 49 AccumWidth = AccumAlign = 32; 50 LongAccumWidth = LongAccumAlign = 64; 51 ShortFractWidth = ShortFractAlign = 8; 52 FractWidth = FractAlign = 16; 53 LongFractWidth = LongFractAlign = 32; 54 55 // Fixed point default integral and fractional bit sizes 56 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 57 // types by default to have the same number of fractional bits between _Accum 58 // and _Fract types. 59 PaddingOnUnsignedFixedPoint = false; 60 ShortAccumScale = 7; 61 AccumScale = 15; 62 LongAccumScale = 31; 63 64 SuitableAlign = 64; 65 DefaultAlignForAttributeAligned = 128; 66 MinGlobalAlign = 0; 67 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 68 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 69 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 70 // This alignment guarantee also applies to Windows and Android. On Darwin, 71 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 72 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 73 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 74 else if (T.isOSDarwin()) 75 NewAlign = 128; 76 else 77 NewAlign = 0; // Infer from basic type alignment. 78 HalfWidth = 16; 79 HalfAlign = 16; 80 FloatWidth = 32; 81 FloatAlign = 32; 82 DoubleWidth = 64; 83 DoubleAlign = 64; 84 LongDoubleWidth = 64; 85 LongDoubleAlign = 64; 86 Float128Align = 128; 87 LargeArrayMinWidth = 0; 88 LargeArrayAlign = 0; 89 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 90 MaxVectorAlign = 0; 91 MaxTLSAlign = 0; 92 SimdDefaultAlign = 0; 93 SizeType = UnsignedLong; 94 PtrDiffType = SignedLong; 95 IntMaxType = SignedLongLong; 96 IntPtrType = SignedLong; 97 WCharType = SignedInt; 98 WIntType = SignedInt; 99 Char16Type = UnsignedShort; 100 Char32Type = UnsignedInt; 101 Int64Type = SignedLongLong; 102 SigAtomicType = SignedInt; 103 ProcessIDType = SignedInt; 104 UseSignedCharForObjCBool = true; 105 UseBitFieldTypeAlignment = true; 106 UseZeroLengthBitfieldAlignment = false; 107 UseLeadingZeroLengthBitfield = true; 108 UseExplicitBitFieldAlignment = true; 109 ZeroLengthBitfieldBoundary = 0; 110 MaxAlignedAttribute = 0; 111 HalfFormat = &llvm::APFloat::IEEEhalf(); 112 FloatFormat = &llvm::APFloat::IEEEsingle(); 113 DoubleFormat = &llvm::APFloat::IEEEdouble(); 114 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 115 Float128Format = &llvm::APFloat::IEEEquad(); 116 MCountName = "mcount"; 117 RegParmMax = 0; 118 SSERegParmMax = 0; 119 HasAlignMac68kSupport = false; 120 HasBuiltinMSVaList = false; 121 IsRenderScriptTarget = false; 122 HasAArch64SVETypes = false; 123 HasRISCVVTypes = false; 124 AllowAMDGPUUnsafeFPAtomics = false; 125 ARMCDECoprocMask = 0; 126 127 // Default to no types using fpret. 128 RealTypeUsesObjCFPRet = 0; 129 130 // Default to not using fp2ret for __Complex long double 131 ComplexLongDoubleUsesFP2Ret = false; 132 133 // Set the C++ ABI based on the triple. 134 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 135 ? TargetCXXABI::Microsoft 136 : TargetCXXABI::GenericItanium); 137 138 // Default to an empty address space map. 139 AddrSpaceMap = &DefaultAddrSpaceMap; 140 UseAddrSpaceMapMangling = false; 141 142 // Default to an unknown platform name. 143 PlatformName = "unknown"; 144 PlatformMinVersion = VersionTuple(); 145 146 MaxOpenCLWorkGroupSize = 1024; 147 } 148 149 // Out of line virtual dtor for TargetInfo. 150 TargetInfo::~TargetInfo() {} 151 152 void TargetInfo::resetDataLayout(StringRef DL) { 153 DataLayout.reset(new llvm::DataLayout(DL)); 154 } 155 156 bool 157 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 158 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 159 return false; 160 } 161 162 bool 163 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 164 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 165 return false; 166 } 167 168 /// getTypeName - Return the user string for the specified integer type enum. 169 /// For example, SignedShort -> "short". 170 const char *TargetInfo::getTypeName(IntType T) { 171 switch (T) { 172 default: llvm_unreachable("not an integer!"); 173 case SignedChar: return "signed char"; 174 case UnsignedChar: return "unsigned char"; 175 case SignedShort: return "short"; 176 case UnsignedShort: return "unsigned short"; 177 case SignedInt: return "int"; 178 case UnsignedInt: return "unsigned int"; 179 case SignedLong: return "long int"; 180 case UnsignedLong: return "long unsigned int"; 181 case SignedLongLong: return "long long int"; 182 case UnsignedLongLong: return "long long unsigned int"; 183 } 184 } 185 186 /// getTypeConstantSuffix - Return the constant suffix for the specified 187 /// integer type enum. For example, SignedLong -> "L". 188 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 189 switch (T) { 190 default: llvm_unreachable("not an integer!"); 191 case SignedChar: 192 case SignedShort: 193 case SignedInt: return ""; 194 case SignedLong: return "L"; 195 case SignedLongLong: return "LL"; 196 case UnsignedChar: 197 if (getCharWidth() < getIntWidth()) 198 return ""; 199 LLVM_FALLTHROUGH; 200 case UnsignedShort: 201 if (getShortWidth() < getIntWidth()) 202 return ""; 203 LLVM_FALLTHROUGH; 204 case UnsignedInt: return "U"; 205 case UnsignedLong: return "UL"; 206 case UnsignedLongLong: return "ULL"; 207 } 208 } 209 210 /// getTypeFormatModifier - Return the printf format modifier for the 211 /// specified integer type enum. For example, SignedLong -> "l". 212 213 const char *TargetInfo::getTypeFormatModifier(IntType T) { 214 switch (T) { 215 default: llvm_unreachable("not an integer!"); 216 case SignedChar: 217 case UnsignedChar: return "hh"; 218 case SignedShort: 219 case UnsignedShort: return "h"; 220 case SignedInt: 221 case UnsignedInt: return ""; 222 case SignedLong: 223 case UnsignedLong: return "l"; 224 case SignedLongLong: 225 case UnsignedLongLong: return "ll"; 226 } 227 } 228 229 /// getTypeWidth - Return the width (in bits) of the specified integer type 230 /// enum. For example, SignedInt -> getIntWidth(). 231 unsigned TargetInfo::getTypeWidth(IntType T) const { 232 switch (T) { 233 default: llvm_unreachable("not an integer!"); 234 case SignedChar: 235 case UnsignedChar: return getCharWidth(); 236 case SignedShort: 237 case UnsignedShort: return getShortWidth(); 238 case SignedInt: 239 case UnsignedInt: return getIntWidth(); 240 case SignedLong: 241 case UnsignedLong: return getLongWidth(); 242 case SignedLongLong: 243 case UnsignedLongLong: return getLongLongWidth(); 244 }; 245 } 246 247 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 248 unsigned BitWidth, bool IsSigned) const { 249 if (getCharWidth() == BitWidth) 250 return IsSigned ? SignedChar : UnsignedChar; 251 if (getShortWidth() == BitWidth) 252 return IsSigned ? SignedShort : UnsignedShort; 253 if (getIntWidth() == BitWidth) 254 return IsSigned ? SignedInt : UnsignedInt; 255 if (getLongWidth() == BitWidth) 256 return IsSigned ? SignedLong : UnsignedLong; 257 if (getLongLongWidth() == BitWidth) 258 return IsSigned ? SignedLongLong : UnsignedLongLong; 259 return NoInt; 260 } 261 262 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 263 bool IsSigned) const { 264 if (getCharWidth() >= BitWidth) 265 return IsSigned ? SignedChar : UnsignedChar; 266 if (getShortWidth() >= BitWidth) 267 return IsSigned ? SignedShort : UnsignedShort; 268 if (getIntWidth() >= BitWidth) 269 return IsSigned ? SignedInt : UnsignedInt; 270 if (getLongWidth() >= BitWidth) 271 return IsSigned ? SignedLong : UnsignedLong; 272 if (getLongLongWidth() >= BitWidth) 273 return IsSigned ? SignedLongLong : UnsignedLongLong; 274 return NoInt; 275 } 276 277 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 278 bool ExplicitIEEE) const { 279 if (getFloatWidth() == BitWidth) 280 return Float; 281 if (getDoubleWidth() == BitWidth) 282 return Double; 283 284 switch (BitWidth) { 285 case 96: 286 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 287 return LongDouble; 288 break; 289 case 128: 290 // The caller explicitly asked for an IEEE compliant type but we still 291 // have to check if the target supports it. 292 if (ExplicitIEEE) 293 return hasFloat128Type() ? Float128 : NoFloat; 294 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 295 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 296 return LongDouble; 297 if (hasFloat128Type()) 298 return Float128; 299 break; 300 } 301 302 return NoFloat; 303 } 304 305 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 306 /// enum. For example, SignedInt -> getIntAlign(). 307 unsigned TargetInfo::getTypeAlign(IntType T) const { 308 switch (T) { 309 default: llvm_unreachable("not an integer!"); 310 case SignedChar: 311 case UnsignedChar: return getCharAlign(); 312 case SignedShort: 313 case UnsignedShort: return getShortAlign(); 314 case SignedInt: 315 case UnsignedInt: return getIntAlign(); 316 case SignedLong: 317 case UnsignedLong: return getLongAlign(); 318 case SignedLongLong: 319 case UnsignedLongLong: return getLongLongAlign(); 320 }; 321 } 322 323 /// isTypeSigned - Return whether an integer types is signed. Returns true if 324 /// the type is signed; false otherwise. 325 bool TargetInfo::isTypeSigned(IntType T) { 326 switch (T) { 327 default: llvm_unreachable("not an integer!"); 328 case SignedChar: 329 case SignedShort: 330 case SignedInt: 331 case SignedLong: 332 case SignedLongLong: 333 return true; 334 case UnsignedChar: 335 case UnsignedShort: 336 case UnsignedInt: 337 case UnsignedLong: 338 case UnsignedLongLong: 339 return false; 340 }; 341 } 342 343 /// adjust - Set forced language options. 344 /// Apply changes to the target information with respect to certain 345 /// language options which change the target configuration and adjust 346 /// the language based on the target options where applicable. 347 void TargetInfo::adjust(LangOptions &Opts) { 348 if (Opts.NoBitFieldTypeAlign) 349 UseBitFieldTypeAlignment = false; 350 351 switch (Opts.WCharSize) { 352 default: llvm_unreachable("invalid wchar_t width"); 353 case 0: break; 354 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 355 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 356 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 357 } 358 359 if (Opts.AlignDouble) { 360 DoubleAlign = LongLongAlign = 64; 361 LongDoubleAlign = 64; 362 } 363 364 if (Opts.OpenCL) { 365 // OpenCL C requires specific widths for types, irrespective of 366 // what these normally are for the target. 367 // We also define long long and long double here, although the 368 // OpenCL standard only mentions these as "reserved". 369 IntWidth = IntAlign = 32; 370 LongWidth = LongAlign = 64; 371 LongLongWidth = LongLongAlign = 128; 372 HalfWidth = HalfAlign = 16; 373 FloatWidth = FloatAlign = 32; 374 375 // Embedded 32-bit targets (OpenCL EP) might have double C type 376 // defined as float. Let's not override this as it might lead 377 // to generating illegal code that uses 64bit doubles. 378 if (DoubleWidth != FloatWidth) { 379 DoubleWidth = DoubleAlign = 64; 380 DoubleFormat = &llvm::APFloat::IEEEdouble(); 381 } 382 LongDoubleWidth = LongDoubleAlign = 128; 383 384 unsigned MaxPointerWidth = getMaxPointerWidth(); 385 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 386 bool Is32BitArch = MaxPointerWidth == 32; 387 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 388 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 389 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 390 391 IntMaxType = SignedLongLong; 392 Int64Type = SignedLong; 393 394 HalfFormat = &llvm::APFloat::IEEEhalf(); 395 FloatFormat = &llvm::APFloat::IEEEsingle(); 396 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 397 } 398 399 if (Opts.DoubleSize) { 400 if (Opts.DoubleSize == 32) { 401 DoubleWidth = 32; 402 LongDoubleWidth = 32; 403 DoubleFormat = &llvm::APFloat::IEEEsingle(); 404 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 405 } else if (Opts.DoubleSize == 64) { 406 DoubleWidth = 64; 407 LongDoubleWidth = 64; 408 DoubleFormat = &llvm::APFloat::IEEEdouble(); 409 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 410 } 411 } 412 413 if (Opts.LongDoubleSize) { 414 if (Opts.LongDoubleSize == DoubleWidth) { 415 LongDoubleWidth = DoubleWidth; 416 LongDoubleAlign = DoubleAlign; 417 LongDoubleFormat = DoubleFormat; 418 } else if (Opts.LongDoubleSize == 128) { 419 LongDoubleWidth = LongDoubleAlign = 128; 420 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 421 } 422 } 423 424 if (Opts.NewAlignOverride) 425 NewAlign = Opts.NewAlignOverride * getCharWidth(); 426 427 // Each unsigned fixed point type has the same number of fractional bits as 428 // its corresponding signed type. 429 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 430 CheckFixedPointBits(); 431 } 432 433 bool TargetInfo::initFeatureMap( 434 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 435 const std::vector<std::string> &FeatureVec) const { 436 for (const auto &F : FeatureVec) { 437 StringRef Name = F; 438 // Apply the feature via the target. 439 bool Enabled = Name[0] == '+'; 440 setFeatureEnabled(Features, Name.substr(1), Enabled); 441 } 442 return true; 443 } 444 445 TargetInfo::CallingConvKind 446 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 447 if (getCXXABI() != TargetCXXABI::Microsoft && 448 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 449 return CCK_ClangABI4OrPS4; 450 return CCK_Default; 451 } 452 453 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 454 switch (TK) { 455 case OCLTK_Image: 456 case OCLTK_Pipe: 457 return LangAS::opencl_global; 458 459 case OCLTK_Sampler: 460 return LangAS::opencl_constant; 461 462 default: 463 return LangAS::Default; 464 } 465 } 466 467 //===----------------------------------------------------------------------===// 468 469 470 static StringRef removeGCCRegisterPrefix(StringRef Name) { 471 if (Name[0] == '%' || Name[0] == '#') 472 Name = Name.substr(1); 473 474 return Name; 475 } 476 477 /// isValidClobber - Returns whether the passed in string is 478 /// a valid clobber in an inline asm statement. This is used by 479 /// Sema. 480 bool TargetInfo::isValidClobber(StringRef Name) const { 481 return (isValidGCCRegisterName(Name) || 482 Name == "memory" || Name == "cc"); 483 } 484 485 /// isValidGCCRegisterName - Returns whether the passed in string 486 /// is a valid register name according to GCC. This is used by Sema for 487 /// inline asm statements. 488 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 489 if (Name.empty()) 490 return false; 491 492 // Get rid of any register prefix. 493 Name = removeGCCRegisterPrefix(Name); 494 if (Name.empty()) 495 return false; 496 497 ArrayRef<const char *> Names = getGCCRegNames(); 498 499 // If we have a number it maps to an entry in the register name array. 500 if (isDigit(Name[0])) { 501 unsigned n; 502 if (!Name.getAsInteger(0, n)) 503 return n < Names.size(); 504 } 505 506 // Check register names. 507 if (llvm::is_contained(Names, Name)) 508 return true; 509 510 // Check any additional names that we have. 511 for (const AddlRegName &ARN : getGCCAddlRegNames()) 512 for (const char *AN : ARN.Names) { 513 if (!AN) 514 break; 515 // Make sure the register that the additional name is for is within 516 // the bounds of the register names from above. 517 if (AN == Name && ARN.RegNum < Names.size()) 518 return true; 519 } 520 521 // Now check aliases. 522 for (const GCCRegAlias &GRA : getGCCRegAliases()) 523 for (const char *A : GRA.Aliases) { 524 if (!A) 525 break; 526 if (A == Name) 527 return true; 528 } 529 530 return false; 531 } 532 533 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 534 bool ReturnCanonical) const { 535 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 536 537 // Get rid of any register prefix. 538 Name = removeGCCRegisterPrefix(Name); 539 540 ArrayRef<const char *> Names = getGCCRegNames(); 541 542 // First, check if we have a number. 543 if (isDigit(Name[0])) { 544 unsigned n; 545 if (!Name.getAsInteger(0, n)) { 546 assert(n < Names.size() && "Out of bounds register number!"); 547 return Names[n]; 548 } 549 } 550 551 // Check any additional names that we have. 552 for (const AddlRegName &ARN : getGCCAddlRegNames()) 553 for (const char *AN : ARN.Names) { 554 if (!AN) 555 break; 556 // Make sure the register that the additional name is for is within 557 // the bounds of the register names from above. 558 if (AN == Name && ARN.RegNum < Names.size()) 559 return ReturnCanonical ? Names[ARN.RegNum] : Name; 560 } 561 562 // Now check aliases. 563 for (const GCCRegAlias &RA : getGCCRegAliases()) 564 for (const char *A : RA.Aliases) { 565 if (!A) 566 break; 567 if (A == Name) 568 return RA.Register; 569 } 570 571 return Name; 572 } 573 574 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 575 const char *Name = Info.getConstraintStr().c_str(); 576 // An output constraint must start with '=' or '+' 577 if (*Name != '=' && *Name != '+') 578 return false; 579 580 if (*Name == '+') 581 Info.setIsReadWrite(); 582 583 Name++; 584 while (*Name) { 585 switch (*Name) { 586 default: 587 if (!validateAsmConstraint(Name, Info)) { 588 // FIXME: We temporarily return false 589 // so we can add more constraints as we hit it. 590 // Eventually, an unknown constraint should just be treated as 'g'. 591 return false; 592 } 593 break; 594 case '&': // early clobber. 595 Info.setEarlyClobber(); 596 break; 597 case '%': // commutative. 598 // FIXME: Check that there is a another register after this one. 599 break; 600 case 'r': // general register. 601 Info.setAllowsRegister(); 602 break; 603 case 'm': // memory operand. 604 case 'o': // offsetable memory operand. 605 case 'V': // non-offsetable memory operand. 606 case '<': // autodecrement memory operand. 607 case '>': // autoincrement memory operand. 608 Info.setAllowsMemory(); 609 break; 610 case 'g': // general register, memory operand or immediate integer. 611 case 'X': // any operand. 612 Info.setAllowsRegister(); 613 Info.setAllowsMemory(); 614 break; 615 case ',': // multiple alternative constraint. Pass it. 616 // Handle additional optional '=' or '+' modifiers. 617 if (Name[1] == '=' || Name[1] == '+') 618 Name++; 619 break; 620 case '#': // Ignore as constraint. 621 while (Name[1] && Name[1] != ',') 622 Name++; 623 break; 624 case '?': // Disparage slightly code. 625 case '!': // Disparage severely. 626 case '*': // Ignore for choosing register preferences. 627 case 'i': // Ignore i,n,E,F as output constraints (match from the other 628 // chars) 629 case 'n': 630 case 'E': 631 case 'F': 632 break; // Pass them. 633 } 634 635 Name++; 636 } 637 638 // Early clobber with a read-write constraint which doesn't permit registers 639 // is invalid. 640 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 641 return false; 642 643 // If a constraint allows neither memory nor register operands it contains 644 // only modifiers. Reject it. 645 return Info.allowsMemory() || Info.allowsRegister(); 646 } 647 648 bool TargetInfo::resolveSymbolicName(const char *&Name, 649 ArrayRef<ConstraintInfo> OutputConstraints, 650 unsigned &Index) const { 651 assert(*Name == '[' && "Symbolic name did not start with '['"); 652 Name++; 653 const char *Start = Name; 654 while (*Name && *Name != ']') 655 Name++; 656 657 if (!*Name) { 658 // Missing ']' 659 return false; 660 } 661 662 std::string SymbolicName(Start, Name - Start); 663 664 for (Index = 0; Index != OutputConstraints.size(); ++Index) 665 if (SymbolicName == OutputConstraints[Index].getName()) 666 return true; 667 668 return false; 669 } 670 671 bool TargetInfo::validateInputConstraint( 672 MutableArrayRef<ConstraintInfo> OutputConstraints, 673 ConstraintInfo &Info) const { 674 const char *Name = Info.ConstraintStr.c_str(); 675 676 if (!*Name) 677 return false; 678 679 while (*Name) { 680 switch (*Name) { 681 default: 682 // Check if we have a matching constraint 683 if (*Name >= '0' && *Name <= '9') { 684 const char *DigitStart = Name; 685 while (Name[1] >= '0' && Name[1] <= '9') 686 Name++; 687 const char *DigitEnd = Name; 688 unsigned i; 689 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 690 .getAsInteger(10, i)) 691 return false; 692 693 // Check if matching constraint is out of bounds. 694 if (i >= OutputConstraints.size()) return false; 695 696 // A number must refer to an output only operand. 697 if (OutputConstraints[i].isReadWrite()) 698 return false; 699 700 // If the constraint is already tied, it must be tied to the 701 // same operand referenced to by the number. 702 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 703 return false; 704 705 // The constraint should have the same info as the respective 706 // output constraint. 707 Info.setTiedOperand(i, OutputConstraints[i]); 708 } else if (!validateAsmConstraint(Name, Info)) { 709 // FIXME: This error return is in place temporarily so we can 710 // add more constraints as we hit it. Eventually, an unknown 711 // constraint should just be treated as 'g'. 712 return false; 713 } 714 break; 715 case '[': { 716 unsigned Index = 0; 717 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 718 return false; 719 720 // If the constraint is already tied, it must be tied to the 721 // same operand referenced to by the number. 722 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 723 return false; 724 725 // A number must refer to an output only operand. 726 if (OutputConstraints[Index].isReadWrite()) 727 return false; 728 729 Info.setTiedOperand(Index, OutputConstraints[Index]); 730 break; 731 } 732 case '%': // commutative 733 // FIXME: Fail if % is used with the last operand. 734 break; 735 case 'i': // immediate integer. 736 break; 737 case 'n': // immediate integer with a known value. 738 Info.setRequiresImmediate(); 739 break; 740 case 'I': // Various constant constraints with target-specific meanings. 741 case 'J': 742 case 'K': 743 case 'L': 744 case 'M': 745 case 'N': 746 case 'O': 747 case 'P': 748 if (!validateAsmConstraint(Name, Info)) 749 return false; 750 break; 751 case 'r': // general register. 752 Info.setAllowsRegister(); 753 break; 754 case 'm': // memory operand. 755 case 'o': // offsettable memory operand. 756 case 'V': // non-offsettable memory operand. 757 case '<': // autodecrement memory operand. 758 case '>': // autoincrement memory operand. 759 Info.setAllowsMemory(); 760 break; 761 case 'g': // general register, memory operand or immediate integer. 762 case 'X': // any operand. 763 Info.setAllowsRegister(); 764 Info.setAllowsMemory(); 765 break; 766 case 'E': // immediate floating point. 767 case 'F': // immediate floating point. 768 case 'p': // address operand. 769 break; 770 case ',': // multiple alternative constraint. Ignore comma. 771 break; 772 case '#': // Ignore as constraint. 773 while (Name[1] && Name[1] != ',') 774 Name++; 775 break; 776 case '?': // Disparage slightly code. 777 case '!': // Disparage severely. 778 case '*': // Ignore for choosing register preferences. 779 break; // Pass them. 780 } 781 782 Name++; 783 } 784 785 return true; 786 } 787 788 void TargetInfo::CheckFixedPointBits() const { 789 // Check that the number of fractional and integral bits (and maybe sign) can 790 // fit into the bits given for a fixed point type. 791 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 792 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 793 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 794 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 795 ShortAccumWidth); 796 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 797 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 798 LongAccumWidth); 799 800 assert(getShortFractScale() + 1 <= ShortFractWidth); 801 assert(getFractScale() + 1 <= FractWidth); 802 assert(getLongFractScale() + 1 <= LongFractWidth); 803 assert(getUnsignedShortFractScale() <= ShortFractWidth); 804 assert(getUnsignedFractScale() <= FractWidth); 805 assert(getUnsignedLongFractScale() <= LongFractWidth); 806 807 // Each unsigned fract type has either the same number of fractional bits 808 // as, or one more fractional bit than, its corresponding signed fract type. 809 assert(getShortFractScale() == getUnsignedShortFractScale() || 810 getShortFractScale() == getUnsignedShortFractScale() - 1); 811 assert(getFractScale() == getUnsignedFractScale() || 812 getFractScale() == getUnsignedFractScale() - 1); 813 assert(getLongFractScale() == getUnsignedLongFractScale() || 814 getLongFractScale() == getUnsignedLongFractScale() - 1); 815 816 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 817 // fractional bits is nondecreasing for each of the following sets of 818 // fixed-point types: 819 // - signed fract types 820 // - unsigned fract types 821 // - signed accum types 822 // - unsigned accum types. 823 assert(getLongFractScale() >= getFractScale() && 824 getFractScale() >= getShortFractScale()); 825 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 826 getUnsignedFractScale() >= getUnsignedShortFractScale()); 827 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 828 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 829 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 830 831 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 832 // integral bits is nondecreasing for each of the following sets of 833 // fixed-point types: 834 // - signed accum types 835 // - unsigned accum types 836 assert(getLongAccumIBits() >= getAccumIBits() && 837 getAccumIBits() >= getShortAccumIBits()); 838 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 839 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 840 841 // Each signed accum type has at least as many integral bits as its 842 // corresponding unsigned accum type. 843 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 844 assert(getAccumIBits() >= getUnsignedAccumIBits()); 845 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 846 } 847 848 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 849 auto *Target = static_cast<TransferrableTargetInfo*>(this); 850 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 851 *Target = *Src; 852 } 853