1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/TargetParser.h"
22 #include <cstdlib>
23 using namespace clang;
24 
25 static const LangASMap DefaultAddrSpaceMap = {0};
26 
27 // TargetInfo Constructor.
28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
29   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
30   // SPARC.  These should be overridden by concrete targets as needed.
31   BigEndian = !T.isLittleEndian();
32   TLSSupported = true;
33   VLASupported = true;
34   NoAsmVariants = false;
35   HasLegalHalfType = false;
36   HasFloat128 = false;
37   PointerWidth = PointerAlign = 32;
38   BoolWidth = BoolAlign = 8;
39   IntWidth = IntAlign = 32;
40   LongWidth = LongAlign = 32;
41   LongLongWidth = LongLongAlign = 64;
42 
43   // Fixed point default bit widths
44   ShortAccumWidth = ShortAccumAlign = 16;
45   AccumWidth = AccumAlign = 32;
46   LongAccumWidth = LongAccumAlign = 64;
47   ShortFractWidth = ShortFractAlign = 8;
48   FractWidth = FractAlign = 16;
49   LongFractWidth = LongFractAlign = 32;
50 
51   // Fixed point default integral and fractional bit sizes
52   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
53   // types by default to have the same number of fractional bits between _Accum
54   // and _Fract types.
55   PaddingOnUnsignedFixedPoint = false;
56   ShortAccumScale = 7;
57   AccumScale = 15;
58   LongAccumScale = 31;
59 
60   SuitableAlign = 64;
61   DefaultAlignForAttributeAligned = 128;
62   MinGlobalAlign = 0;
63   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
64   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
65   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
66   // This alignment guarantee also applies to Windows and Android.
67   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
68     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
69   else
70     NewAlign = 0; // Infer from basic type alignment.
71   HalfWidth = 16;
72   HalfAlign = 16;
73   FloatWidth = 32;
74   FloatAlign = 32;
75   DoubleWidth = 64;
76   DoubleAlign = 64;
77   LongDoubleWidth = 64;
78   LongDoubleAlign = 64;
79   Float128Align = 128;
80   LargeArrayMinWidth = 0;
81   LargeArrayAlign = 0;
82   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
83   MaxVectorAlign = 0;
84   MaxTLSAlign = 0;
85   SimdDefaultAlign = 0;
86   SizeType = UnsignedLong;
87   PtrDiffType = SignedLong;
88   IntMaxType = SignedLongLong;
89   IntPtrType = SignedLong;
90   WCharType = SignedInt;
91   WIntType = SignedInt;
92   Char16Type = UnsignedShort;
93   Char32Type = UnsignedInt;
94   Int64Type = SignedLongLong;
95   SigAtomicType = SignedInt;
96   ProcessIDType = SignedInt;
97   UseSignedCharForObjCBool = true;
98   UseBitFieldTypeAlignment = true;
99   UseZeroLengthBitfieldAlignment = false;
100   UseExplicitBitFieldAlignment = true;
101   ZeroLengthBitfieldBoundary = 0;
102   HalfFormat = &llvm::APFloat::IEEEhalf();
103   FloatFormat = &llvm::APFloat::IEEEsingle();
104   DoubleFormat = &llvm::APFloat::IEEEdouble();
105   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
106   Float128Format = &llvm::APFloat::IEEEquad();
107   MCountName = "mcount";
108   RegParmMax = 0;
109   SSERegParmMax = 0;
110   HasAlignMac68kSupport = false;
111   HasBuiltinMSVaList = false;
112   IsRenderScriptTarget = false;
113 
114   // Default to no types using fpret.
115   RealTypeUsesObjCFPRet = 0;
116 
117   // Default to not using fp2ret for __Complex long double
118   ComplexLongDoubleUsesFP2Ret = false;
119 
120   // Set the C++ ABI based on the triple.
121   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
122                     ? TargetCXXABI::Microsoft
123                     : TargetCXXABI::GenericItanium);
124 
125   // Default to an empty address space map.
126   AddrSpaceMap = &DefaultAddrSpaceMap;
127   UseAddrSpaceMapMangling = false;
128 
129   // Default to an unknown platform name.
130   PlatformName = "unknown";
131   PlatformMinVersion = VersionTuple();
132 }
133 
134 // Out of line virtual dtor for TargetInfo.
135 TargetInfo::~TargetInfo() {}
136 
137 bool
138 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
139   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
140   return false;
141 }
142 
143 bool
144 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
145   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
146   return false;
147 }
148 
149 /// getTypeName - Return the user string for the specified integer type enum.
150 /// For example, SignedShort -> "short".
151 const char *TargetInfo::getTypeName(IntType T) {
152   switch (T) {
153   default: llvm_unreachable("not an integer!");
154   case SignedChar:       return "signed char";
155   case UnsignedChar:     return "unsigned char";
156   case SignedShort:      return "short";
157   case UnsignedShort:    return "unsigned short";
158   case SignedInt:        return "int";
159   case UnsignedInt:      return "unsigned int";
160   case SignedLong:       return "long int";
161   case UnsignedLong:     return "long unsigned int";
162   case SignedLongLong:   return "long long int";
163   case UnsignedLongLong: return "long long unsigned int";
164   }
165 }
166 
167 /// getTypeConstantSuffix - Return the constant suffix for the specified
168 /// integer type enum. For example, SignedLong -> "L".
169 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
170   switch (T) {
171   default: llvm_unreachable("not an integer!");
172   case SignedChar:
173   case SignedShort:
174   case SignedInt:        return "";
175   case SignedLong:       return "L";
176   case SignedLongLong:   return "LL";
177   case UnsignedChar:
178     if (getCharWidth() < getIntWidth())
179       return "";
180     LLVM_FALLTHROUGH;
181   case UnsignedShort:
182     if (getShortWidth() < getIntWidth())
183       return "";
184     LLVM_FALLTHROUGH;
185   case UnsignedInt:      return "U";
186   case UnsignedLong:     return "UL";
187   case UnsignedLongLong: return "ULL";
188   }
189 }
190 
191 /// getTypeFormatModifier - Return the printf format modifier for the
192 /// specified integer type enum. For example, SignedLong -> "l".
193 
194 const char *TargetInfo::getTypeFormatModifier(IntType T) {
195   switch (T) {
196   default: llvm_unreachable("not an integer!");
197   case SignedChar:
198   case UnsignedChar:     return "hh";
199   case SignedShort:
200   case UnsignedShort:    return "h";
201   case SignedInt:
202   case UnsignedInt:      return "";
203   case SignedLong:
204   case UnsignedLong:     return "l";
205   case SignedLongLong:
206   case UnsignedLongLong: return "ll";
207   }
208 }
209 
210 /// getTypeWidth - Return the width (in bits) of the specified integer type
211 /// enum. For example, SignedInt -> getIntWidth().
212 unsigned TargetInfo::getTypeWidth(IntType T) const {
213   switch (T) {
214   default: llvm_unreachable("not an integer!");
215   case SignedChar:
216   case UnsignedChar:     return getCharWidth();
217   case SignedShort:
218   case UnsignedShort:    return getShortWidth();
219   case SignedInt:
220   case UnsignedInt:      return getIntWidth();
221   case SignedLong:
222   case UnsignedLong:     return getLongWidth();
223   case SignedLongLong:
224   case UnsignedLongLong: return getLongLongWidth();
225   };
226 }
227 
228 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
229     unsigned BitWidth, bool IsSigned) const {
230   if (getCharWidth() == BitWidth)
231     return IsSigned ? SignedChar : UnsignedChar;
232   if (getShortWidth() == BitWidth)
233     return IsSigned ? SignedShort : UnsignedShort;
234   if (getIntWidth() == BitWidth)
235     return IsSigned ? SignedInt : UnsignedInt;
236   if (getLongWidth() == BitWidth)
237     return IsSigned ? SignedLong : UnsignedLong;
238   if (getLongLongWidth() == BitWidth)
239     return IsSigned ? SignedLongLong : UnsignedLongLong;
240   return NoInt;
241 }
242 
243 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
244                                                        bool IsSigned) const {
245   if (getCharWidth() >= BitWidth)
246     return IsSigned ? SignedChar : UnsignedChar;
247   if (getShortWidth() >= BitWidth)
248     return IsSigned ? SignedShort : UnsignedShort;
249   if (getIntWidth() >= BitWidth)
250     return IsSigned ? SignedInt : UnsignedInt;
251   if (getLongWidth() >= BitWidth)
252     return IsSigned ? SignedLong : UnsignedLong;
253   if (getLongLongWidth() >= BitWidth)
254     return IsSigned ? SignedLongLong : UnsignedLongLong;
255   return NoInt;
256 }
257 
258 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
259   if (getFloatWidth() == BitWidth)
260     return Float;
261   if (getDoubleWidth() == BitWidth)
262     return Double;
263 
264   switch (BitWidth) {
265   case 96:
266     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
267       return LongDouble;
268     break;
269   case 128:
270     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
271         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
272       return LongDouble;
273     if (hasFloat128Type())
274       return Float128;
275     break;
276   }
277 
278   return NoFloat;
279 }
280 
281 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
282 /// enum. For example, SignedInt -> getIntAlign().
283 unsigned TargetInfo::getTypeAlign(IntType T) const {
284   switch (T) {
285   default: llvm_unreachable("not an integer!");
286   case SignedChar:
287   case UnsignedChar:     return getCharAlign();
288   case SignedShort:
289   case UnsignedShort:    return getShortAlign();
290   case SignedInt:
291   case UnsignedInt:      return getIntAlign();
292   case SignedLong:
293   case UnsignedLong:     return getLongAlign();
294   case SignedLongLong:
295   case UnsignedLongLong: return getLongLongAlign();
296   };
297 }
298 
299 /// isTypeSigned - Return whether an integer types is signed. Returns true if
300 /// the type is signed; false otherwise.
301 bool TargetInfo::isTypeSigned(IntType T) {
302   switch (T) {
303   default: llvm_unreachable("not an integer!");
304   case SignedChar:
305   case SignedShort:
306   case SignedInt:
307   case SignedLong:
308   case SignedLongLong:
309     return true;
310   case UnsignedChar:
311   case UnsignedShort:
312   case UnsignedInt:
313   case UnsignedLong:
314   case UnsignedLongLong:
315     return false;
316   };
317 }
318 
319 /// adjust - Set forced language options.
320 /// Apply changes to the target information with respect to certain
321 /// language options which change the target configuration and adjust
322 /// the language based on the target options where applicable.
323 void TargetInfo::adjust(LangOptions &Opts) {
324   if (Opts.NoBitFieldTypeAlign)
325     UseBitFieldTypeAlignment = false;
326 
327   switch (Opts.WCharSize) {
328   default: llvm_unreachable("invalid wchar_t width");
329   case 0: break;
330   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
331   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
332   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
333   }
334 
335   if (Opts.AlignDouble) {
336     DoubleAlign = LongLongAlign = 64;
337     LongDoubleAlign = 64;
338   }
339 
340   if (Opts.OpenCL) {
341     // OpenCL C requires specific widths for types, irrespective of
342     // what these normally are for the target.
343     // We also define long long and long double here, although the
344     // OpenCL standard only mentions these as "reserved".
345     IntWidth = IntAlign = 32;
346     LongWidth = LongAlign = 64;
347     LongLongWidth = LongLongAlign = 128;
348     HalfWidth = HalfAlign = 16;
349     FloatWidth = FloatAlign = 32;
350 
351     // Embedded 32-bit targets (OpenCL EP) might have double C type
352     // defined as float. Let's not override this as it might lead
353     // to generating illegal code that uses 64bit doubles.
354     if (DoubleWidth != FloatWidth) {
355       DoubleWidth = DoubleAlign = 64;
356       DoubleFormat = &llvm::APFloat::IEEEdouble();
357     }
358     LongDoubleWidth = LongDoubleAlign = 128;
359 
360     unsigned MaxPointerWidth = getMaxPointerWidth();
361     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
362     bool Is32BitArch = MaxPointerWidth == 32;
363     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
364     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
365     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
366 
367     IntMaxType = SignedLongLong;
368     Int64Type = SignedLong;
369 
370     HalfFormat = &llvm::APFloat::IEEEhalf();
371     FloatFormat = &llvm::APFloat::IEEEsingle();
372     LongDoubleFormat = &llvm::APFloat::IEEEquad();
373   }
374 
375   if (Opts.NewAlignOverride)
376     NewAlign = Opts.NewAlignOverride * getCharWidth();
377 
378   // Each unsigned fixed point type has the same number of fractional bits as
379   // its corresponding signed type.
380   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
381   CheckFixedPointBits();
382 }
383 
384 bool TargetInfo::initFeatureMap(
385     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
386     const std::vector<std::string> &FeatureVec) const {
387   for (const auto &F : FeatureVec) {
388     StringRef Name = F;
389     // Apply the feature via the target.
390     bool Enabled = Name[0] == '+';
391     setFeatureEnabled(Features, Name.substr(1), Enabled);
392   }
393   return true;
394 }
395 
396 TargetInfo::CallingConvKind
397 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
398   if (getCXXABI() != TargetCXXABI::Microsoft &&
399       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
400     return CCK_ClangABI4OrPS4;
401   return CCK_Default;
402 }
403 
404 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
405   switch (TK) {
406   case OCLTK_Image:
407   case OCLTK_Pipe:
408     return LangAS::opencl_global;
409 
410   case OCLTK_Sampler:
411     return LangAS::opencl_constant;
412 
413   default:
414     return LangAS::Default;
415   }
416 }
417 
418 //===----------------------------------------------------------------------===//
419 
420 
421 static StringRef removeGCCRegisterPrefix(StringRef Name) {
422   if (Name[0] == '%' || Name[0] == '#')
423     Name = Name.substr(1);
424 
425   return Name;
426 }
427 
428 /// isValidClobber - Returns whether the passed in string is
429 /// a valid clobber in an inline asm statement. This is used by
430 /// Sema.
431 bool TargetInfo::isValidClobber(StringRef Name) const {
432   return (isValidGCCRegisterName(Name) ||
433           Name == "memory" || Name == "cc");
434 }
435 
436 /// isValidGCCRegisterName - Returns whether the passed in string
437 /// is a valid register name according to GCC. This is used by Sema for
438 /// inline asm statements.
439 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
440   if (Name.empty())
441     return false;
442 
443   // Get rid of any register prefix.
444   Name = removeGCCRegisterPrefix(Name);
445   if (Name.empty())
446     return false;
447 
448   ArrayRef<const char *> Names = getGCCRegNames();
449 
450   // If we have a number it maps to an entry in the register name array.
451   if (isDigit(Name[0])) {
452     unsigned n;
453     if (!Name.getAsInteger(0, n))
454       return n < Names.size();
455   }
456 
457   // Check register names.
458   if (std::find(Names.begin(), Names.end(), Name) != Names.end())
459     return true;
460 
461   // Check any additional names that we have.
462   for (const AddlRegName &ARN : getGCCAddlRegNames())
463     for (const char *AN : ARN.Names) {
464       if (!AN)
465         break;
466       // Make sure the register that the additional name is for is within
467       // the bounds of the register names from above.
468       if (AN == Name && ARN.RegNum < Names.size())
469         return true;
470     }
471 
472   // Now check aliases.
473   for (const GCCRegAlias &GRA : getGCCRegAliases())
474     for (const char *A : GRA.Aliases) {
475       if (!A)
476         break;
477       if (A == Name)
478         return true;
479     }
480 
481   return false;
482 }
483 
484 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
485                                                    bool ReturnCanonical) const {
486   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
487 
488   // Get rid of any register prefix.
489   Name = removeGCCRegisterPrefix(Name);
490 
491   ArrayRef<const char *> Names = getGCCRegNames();
492 
493   // First, check if we have a number.
494   if (isDigit(Name[0])) {
495     unsigned n;
496     if (!Name.getAsInteger(0, n)) {
497       assert(n < Names.size() && "Out of bounds register number!");
498       return Names[n];
499     }
500   }
501 
502   // Check any additional names that we have.
503   for (const AddlRegName &ARN : getGCCAddlRegNames())
504     for (const char *AN : ARN.Names) {
505       if (!AN)
506         break;
507       // Make sure the register that the additional name is for is within
508       // the bounds of the register names from above.
509       if (AN == Name && ARN.RegNum < Names.size())
510         return ReturnCanonical ? Names[ARN.RegNum] : Name;
511     }
512 
513   // Now check aliases.
514   for (const GCCRegAlias &RA : getGCCRegAliases())
515     for (const char *A : RA.Aliases) {
516       if (!A)
517         break;
518       if (A == Name)
519         return RA.Register;
520     }
521 
522   return Name;
523 }
524 
525 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
526   const char *Name = Info.getConstraintStr().c_str();
527   // An output constraint must start with '=' or '+'
528   if (*Name != '=' && *Name != '+')
529     return false;
530 
531   if (*Name == '+')
532     Info.setIsReadWrite();
533 
534   Name++;
535   while (*Name) {
536     switch (*Name) {
537     default:
538       if (!validateAsmConstraint(Name, Info)) {
539         // FIXME: We temporarily return false
540         // so we can add more constraints as we hit it.
541         // Eventually, an unknown constraint should just be treated as 'g'.
542         return false;
543       }
544       break;
545     case '&': // early clobber.
546       Info.setEarlyClobber();
547       break;
548     case '%': // commutative.
549       // FIXME: Check that there is a another register after this one.
550       break;
551     case 'r': // general register.
552       Info.setAllowsRegister();
553       break;
554     case 'm': // memory operand.
555     case 'o': // offsetable memory operand.
556     case 'V': // non-offsetable memory operand.
557     case '<': // autodecrement memory operand.
558     case '>': // autoincrement memory operand.
559       Info.setAllowsMemory();
560       break;
561     case 'g': // general register, memory operand or immediate integer.
562     case 'X': // any operand.
563       Info.setAllowsRegister();
564       Info.setAllowsMemory();
565       break;
566     case ',': // multiple alternative constraint.  Pass it.
567       // Handle additional optional '=' or '+' modifiers.
568       if (Name[1] == '=' || Name[1] == '+')
569         Name++;
570       break;
571     case '#': // Ignore as constraint.
572       while (Name[1] && Name[1] != ',')
573         Name++;
574       break;
575     case '?': // Disparage slightly code.
576     case '!': // Disparage severely.
577     case '*': // Ignore for choosing register preferences.
578     case 'i': // Ignore i,n,E,F as output constraints (match from the other
579               // chars)
580     case 'n':
581     case 'E':
582     case 'F':
583       break;  // Pass them.
584     }
585 
586     Name++;
587   }
588 
589   // Early clobber with a read-write constraint which doesn't permit registers
590   // is invalid.
591   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
592     return false;
593 
594   // If a constraint allows neither memory nor register operands it contains
595   // only modifiers. Reject it.
596   return Info.allowsMemory() || Info.allowsRegister();
597 }
598 
599 bool TargetInfo::resolveSymbolicName(const char *&Name,
600                                      ArrayRef<ConstraintInfo> OutputConstraints,
601                                      unsigned &Index) const {
602   assert(*Name == '[' && "Symbolic name did not start with '['");
603   Name++;
604   const char *Start = Name;
605   while (*Name && *Name != ']')
606     Name++;
607 
608   if (!*Name) {
609     // Missing ']'
610     return false;
611   }
612 
613   std::string SymbolicName(Start, Name - Start);
614 
615   for (Index = 0; Index != OutputConstraints.size(); ++Index)
616     if (SymbolicName == OutputConstraints[Index].getName())
617       return true;
618 
619   return false;
620 }
621 
622 bool TargetInfo::validateInputConstraint(
623                               MutableArrayRef<ConstraintInfo> OutputConstraints,
624                               ConstraintInfo &Info) const {
625   const char *Name = Info.ConstraintStr.c_str();
626 
627   if (!*Name)
628     return false;
629 
630   while (*Name) {
631     switch (*Name) {
632     default:
633       // Check if we have a matching constraint
634       if (*Name >= '0' && *Name <= '9') {
635         const char *DigitStart = Name;
636         while (Name[1] >= '0' && Name[1] <= '9')
637           Name++;
638         const char *DigitEnd = Name;
639         unsigned i;
640         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
641                 .getAsInteger(10, i))
642           return false;
643 
644         // Check if matching constraint is out of bounds.
645         if (i >= OutputConstraints.size()) return false;
646 
647         // A number must refer to an output only operand.
648         if (OutputConstraints[i].isReadWrite())
649           return false;
650 
651         // If the constraint is already tied, it must be tied to the
652         // same operand referenced to by the number.
653         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
654           return false;
655 
656         // The constraint should have the same info as the respective
657         // output constraint.
658         Info.setTiedOperand(i, OutputConstraints[i]);
659       } else if (!validateAsmConstraint(Name, Info)) {
660         // FIXME: This error return is in place temporarily so we can
661         // add more constraints as we hit it.  Eventually, an unknown
662         // constraint should just be treated as 'g'.
663         return false;
664       }
665       break;
666     case '[': {
667       unsigned Index = 0;
668       if (!resolveSymbolicName(Name, OutputConstraints, Index))
669         return false;
670 
671       // If the constraint is already tied, it must be tied to the
672       // same operand referenced to by the number.
673       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
674         return false;
675 
676       // A number must refer to an output only operand.
677       if (OutputConstraints[Index].isReadWrite())
678         return false;
679 
680       Info.setTiedOperand(Index, OutputConstraints[Index]);
681       break;
682     }
683     case '%': // commutative
684       // FIXME: Fail if % is used with the last operand.
685       break;
686     case 'i': // immediate integer.
687       break;
688     case 'n': // immediate integer with a known value.
689       Info.setRequiresImmediate();
690       break;
691     case 'I':  // Various constant constraints with target-specific meanings.
692     case 'J':
693     case 'K':
694     case 'L':
695     case 'M':
696     case 'N':
697     case 'O':
698     case 'P':
699       if (!validateAsmConstraint(Name, Info))
700         return false;
701       break;
702     case 'r': // general register.
703       Info.setAllowsRegister();
704       break;
705     case 'm': // memory operand.
706     case 'o': // offsettable memory operand.
707     case 'V': // non-offsettable memory operand.
708     case '<': // autodecrement memory operand.
709     case '>': // autoincrement memory operand.
710       Info.setAllowsMemory();
711       break;
712     case 'g': // general register, memory operand or immediate integer.
713     case 'X': // any operand.
714       Info.setAllowsRegister();
715       Info.setAllowsMemory();
716       break;
717     case 'E': // immediate floating point.
718     case 'F': // immediate floating point.
719     case 'p': // address operand.
720       break;
721     case ',': // multiple alternative constraint.  Ignore comma.
722       break;
723     case '#': // Ignore as constraint.
724       while (Name[1] && Name[1] != ',')
725         Name++;
726       break;
727     case '?': // Disparage slightly code.
728     case '!': // Disparage severely.
729     case '*': // Ignore for choosing register preferences.
730       break;  // Pass them.
731     }
732 
733     Name++;
734   }
735 
736   return true;
737 }
738 
739 void TargetInfo::CheckFixedPointBits() const {
740   // Check that the number of fractional and integral bits (and maybe sign) can
741   // fit into the bits given for a fixed point type.
742   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
743   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
744   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
745   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
746          ShortAccumWidth);
747   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
748   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
749          LongAccumWidth);
750 
751   assert(getShortFractScale() + 1 <= ShortFractWidth);
752   assert(getFractScale() + 1 <= FractWidth);
753   assert(getLongFractScale() + 1 <= LongFractWidth);
754   assert(getUnsignedShortFractScale() <= ShortFractWidth);
755   assert(getUnsignedFractScale() <= FractWidth);
756   assert(getUnsignedLongFractScale() <= LongFractWidth);
757 
758   // Each unsigned fract type has either the same number of fractional bits
759   // as, or one more fractional bit than, its corresponding signed fract type.
760   assert(getShortFractScale() == getUnsignedShortFractScale() ||
761          getShortFractScale() == getUnsignedShortFractScale() - 1);
762   assert(getFractScale() == getUnsignedFractScale() ||
763          getFractScale() == getUnsignedFractScale() - 1);
764   assert(getLongFractScale() == getUnsignedLongFractScale() ||
765          getLongFractScale() == getUnsignedLongFractScale() - 1);
766 
767   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
768   // fractional bits is nondecreasing for each of the following sets of
769   // fixed-point types:
770   // - signed fract types
771   // - unsigned fract types
772   // - signed accum types
773   // - unsigned accum types.
774   assert(getLongFractScale() >= getFractScale() &&
775          getFractScale() >= getShortFractScale());
776   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
777          getUnsignedFractScale() >= getUnsignedShortFractScale());
778   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
779   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
780          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
781 
782   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
783   // integral bits is nondecreasing for each of the following sets of
784   // fixed-point types:
785   // - signed accum types
786   // - unsigned accum types
787   assert(getLongAccumIBits() >= getAccumIBits() &&
788          getAccumIBits() >= getShortAccumIBits());
789   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
790          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
791 
792   // Each signed accum type has at least as many integral bits as its
793   // corresponding unsigned accum type.
794   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
795   assert(getAccumIBits() >= getUnsignedAccumIBits());
796   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
797 }
798