1 //===--- TargetInfo.cpp - Information about Target machine ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInfo and TargetInfoImpl interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Basic/TargetInfo.h" 14 #include "clang/Basic/AddressSpaces.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/TargetParser.h" 22 #include <cstdlib> 23 using namespace clang; 24 25 static const LangASMap DefaultAddrSpaceMap = {0}; 26 27 // TargetInfo Constructor. 28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) { 29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or 30 // SPARC. These should be overridden by concrete targets as needed. 31 BigEndian = !T.isLittleEndian(); 32 TLSSupported = true; 33 VLASupported = true; 34 NoAsmVariants = false; 35 HasLegalHalfType = false; 36 HasFloat128 = false; 37 HasFloat16 = false; 38 HasBFloat16 = false; 39 HasStrictFP = false; 40 PointerWidth = PointerAlign = 32; 41 BoolWidth = BoolAlign = 8; 42 IntWidth = IntAlign = 32; 43 LongWidth = LongAlign = 32; 44 LongLongWidth = LongLongAlign = 64; 45 46 // Fixed point default bit widths 47 ShortAccumWidth = ShortAccumAlign = 16; 48 AccumWidth = AccumAlign = 32; 49 LongAccumWidth = LongAccumAlign = 64; 50 ShortFractWidth = ShortFractAlign = 8; 51 FractWidth = FractAlign = 16; 52 LongFractWidth = LongFractAlign = 32; 53 54 // Fixed point default integral and fractional bit sizes 55 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract 56 // types by default to have the same number of fractional bits between _Accum 57 // and _Fract types. 58 PaddingOnUnsignedFixedPoint = false; 59 ShortAccumScale = 7; 60 AccumScale = 15; 61 LongAccumScale = 31; 62 63 SuitableAlign = 64; 64 DefaultAlignForAttributeAligned = 128; 65 MinGlobalAlign = 0; 66 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte 67 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See 68 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. 69 // This alignment guarantee also applies to Windows and Android. On Darwin, 70 // the alignment is 16 bytes on both 64-bit and 32-bit systems. 71 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid()) 72 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; 73 else if (T.isOSDarwin()) 74 NewAlign = 128; 75 else 76 NewAlign = 0; // Infer from basic type alignment. 77 HalfWidth = 16; 78 HalfAlign = 16; 79 FloatWidth = 32; 80 FloatAlign = 32; 81 DoubleWidth = 64; 82 DoubleAlign = 64; 83 LongDoubleWidth = 64; 84 LongDoubleAlign = 64; 85 Float128Align = 128; 86 LargeArrayMinWidth = 0; 87 LargeArrayAlign = 0; 88 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; 89 MaxVectorAlign = 0; 90 MaxTLSAlign = 0; 91 SimdDefaultAlign = 0; 92 SizeType = UnsignedLong; 93 PtrDiffType = SignedLong; 94 IntMaxType = SignedLongLong; 95 IntPtrType = SignedLong; 96 WCharType = SignedInt; 97 WIntType = SignedInt; 98 Char16Type = UnsignedShort; 99 Char32Type = UnsignedInt; 100 Int64Type = SignedLongLong; 101 SigAtomicType = SignedInt; 102 ProcessIDType = SignedInt; 103 UseSignedCharForObjCBool = true; 104 UseBitFieldTypeAlignment = true; 105 UseZeroLengthBitfieldAlignment = false; 106 UseLeadingZeroLengthBitfield = true; 107 UseExplicitBitFieldAlignment = true; 108 ZeroLengthBitfieldBoundary = 0; 109 MaxAlignedAttribute = 0; 110 HalfFormat = &llvm::APFloat::IEEEhalf(); 111 FloatFormat = &llvm::APFloat::IEEEsingle(); 112 DoubleFormat = &llvm::APFloat::IEEEdouble(); 113 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 114 Float128Format = &llvm::APFloat::IEEEquad(); 115 MCountName = "mcount"; 116 UserLabelPrefix = "_"; 117 RegParmMax = 0; 118 SSERegParmMax = 0; 119 HasAlignMac68kSupport = false; 120 HasBuiltinMSVaList = false; 121 IsRenderScriptTarget = false; 122 HasAArch64SVETypes = false; 123 HasRISCVVTypes = false; 124 AllowAMDGPUUnsafeFPAtomics = false; 125 ARMCDECoprocMask = 0; 126 127 // Default to no types using fpret. 128 RealTypeUsesObjCFPRet = 0; 129 130 // Default to not using fp2ret for __Complex long double 131 ComplexLongDoubleUsesFP2Ret = false; 132 133 // Set the C++ ABI based on the triple. 134 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() 135 ? TargetCXXABI::Microsoft 136 : TargetCXXABI::GenericItanium); 137 138 // Default to an empty address space map. 139 AddrSpaceMap = &DefaultAddrSpaceMap; 140 UseAddrSpaceMapMangling = false; 141 142 // Default to an unknown platform name. 143 PlatformName = "unknown"; 144 PlatformMinVersion = VersionTuple(); 145 146 MaxOpenCLWorkGroupSize = 1024; 147 } 148 149 // Out of line virtual dtor for TargetInfo. 150 TargetInfo::~TargetInfo() {} 151 152 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { 153 DataLayoutString = DL.str(); 154 UserLabelPrefix = ULP; 155 } 156 157 bool 158 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { 159 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; 160 return false; 161 } 162 163 bool 164 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { 165 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; 166 return false; 167 } 168 169 /// getTypeName - Return the user string for the specified integer type enum. 170 /// For example, SignedShort -> "short". 171 const char *TargetInfo::getTypeName(IntType T) { 172 switch (T) { 173 default: llvm_unreachable("not an integer!"); 174 case SignedChar: return "signed char"; 175 case UnsignedChar: return "unsigned char"; 176 case SignedShort: return "short"; 177 case UnsignedShort: return "unsigned short"; 178 case SignedInt: return "int"; 179 case UnsignedInt: return "unsigned int"; 180 case SignedLong: return "long int"; 181 case UnsignedLong: return "long unsigned int"; 182 case SignedLongLong: return "long long int"; 183 case UnsignedLongLong: return "long long unsigned int"; 184 } 185 } 186 187 /// getTypeConstantSuffix - Return the constant suffix for the specified 188 /// integer type enum. For example, SignedLong -> "L". 189 const char *TargetInfo::getTypeConstantSuffix(IntType T) const { 190 switch (T) { 191 default: llvm_unreachable("not an integer!"); 192 case SignedChar: 193 case SignedShort: 194 case SignedInt: return ""; 195 case SignedLong: return "L"; 196 case SignedLongLong: return "LL"; 197 case UnsignedChar: 198 if (getCharWidth() < getIntWidth()) 199 return ""; 200 LLVM_FALLTHROUGH; 201 case UnsignedShort: 202 if (getShortWidth() < getIntWidth()) 203 return ""; 204 LLVM_FALLTHROUGH; 205 case UnsignedInt: return "U"; 206 case UnsignedLong: return "UL"; 207 case UnsignedLongLong: return "ULL"; 208 } 209 } 210 211 /// getTypeFormatModifier - Return the printf format modifier for the 212 /// specified integer type enum. For example, SignedLong -> "l". 213 214 const char *TargetInfo::getTypeFormatModifier(IntType T) { 215 switch (T) { 216 default: llvm_unreachable("not an integer!"); 217 case SignedChar: 218 case UnsignedChar: return "hh"; 219 case SignedShort: 220 case UnsignedShort: return "h"; 221 case SignedInt: 222 case UnsignedInt: return ""; 223 case SignedLong: 224 case UnsignedLong: return "l"; 225 case SignedLongLong: 226 case UnsignedLongLong: return "ll"; 227 } 228 } 229 230 /// getTypeWidth - Return the width (in bits) of the specified integer type 231 /// enum. For example, SignedInt -> getIntWidth(). 232 unsigned TargetInfo::getTypeWidth(IntType T) const { 233 switch (T) { 234 default: llvm_unreachable("not an integer!"); 235 case SignedChar: 236 case UnsignedChar: return getCharWidth(); 237 case SignedShort: 238 case UnsignedShort: return getShortWidth(); 239 case SignedInt: 240 case UnsignedInt: return getIntWidth(); 241 case SignedLong: 242 case UnsignedLong: return getLongWidth(); 243 case SignedLongLong: 244 case UnsignedLongLong: return getLongLongWidth(); 245 }; 246 } 247 248 TargetInfo::IntType TargetInfo::getIntTypeByWidth( 249 unsigned BitWidth, bool IsSigned) const { 250 if (getCharWidth() == BitWidth) 251 return IsSigned ? SignedChar : UnsignedChar; 252 if (getShortWidth() == BitWidth) 253 return IsSigned ? SignedShort : UnsignedShort; 254 if (getIntWidth() == BitWidth) 255 return IsSigned ? SignedInt : UnsignedInt; 256 if (getLongWidth() == BitWidth) 257 return IsSigned ? SignedLong : UnsignedLong; 258 if (getLongLongWidth() == BitWidth) 259 return IsSigned ? SignedLongLong : UnsignedLongLong; 260 return NoInt; 261 } 262 263 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, 264 bool IsSigned) const { 265 if (getCharWidth() >= BitWidth) 266 return IsSigned ? SignedChar : UnsignedChar; 267 if (getShortWidth() >= BitWidth) 268 return IsSigned ? SignedShort : UnsignedShort; 269 if (getIntWidth() >= BitWidth) 270 return IsSigned ? SignedInt : UnsignedInt; 271 if (getLongWidth() >= BitWidth) 272 return IsSigned ? SignedLong : UnsignedLong; 273 if (getLongLongWidth() >= BitWidth) 274 return IsSigned ? SignedLongLong : UnsignedLongLong; 275 return NoInt; 276 } 277 278 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth, 279 bool ExplicitIEEE) const { 280 if (getFloatWidth() == BitWidth) 281 return Float; 282 if (getDoubleWidth() == BitWidth) 283 return Double; 284 285 switch (BitWidth) { 286 case 96: 287 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) 288 return LongDouble; 289 break; 290 case 128: 291 // The caller explicitly asked for an IEEE compliant type but we still 292 // have to check if the target supports it. 293 if (ExplicitIEEE) 294 return hasFloat128Type() ? Float128 : NoFloat; 295 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || 296 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 297 return LongDouble; 298 if (hasFloat128Type()) 299 return Float128; 300 break; 301 } 302 303 return NoFloat; 304 } 305 306 /// getTypeAlign - Return the alignment (in bits) of the specified integer type 307 /// enum. For example, SignedInt -> getIntAlign(). 308 unsigned TargetInfo::getTypeAlign(IntType T) const { 309 switch (T) { 310 default: llvm_unreachable("not an integer!"); 311 case SignedChar: 312 case UnsignedChar: return getCharAlign(); 313 case SignedShort: 314 case UnsignedShort: return getShortAlign(); 315 case SignedInt: 316 case UnsignedInt: return getIntAlign(); 317 case SignedLong: 318 case UnsignedLong: return getLongAlign(); 319 case SignedLongLong: 320 case UnsignedLongLong: return getLongLongAlign(); 321 }; 322 } 323 324 /// isTypeSigned - Return whether an integer types is signed. Returns true if 325 /// the type is signed; false otherwise. 326 bool TargetInfo::isTypeSigned(IntType T) { 327 switch (T) { 328 default: llvm_unreachable("not an integer!"); 329 case SignedChar: 330 case SignedShort: 331 case SignedInt: 332 case SignedLong: 333 case SignedLongLong: 334 return true; 335 case UnsignedChar: 336 case UnsignedShort: 337 case UnsignedInt: 338 case UnsignedLong: 339 case UnsignedLongLong: 340 return false; 341 }; 342 } 343 344 /// adjust - Set forced language options. 345 /// Apply changes to the target information with respect to certain 346 /// language options which change the target configuration and adjust 347 /// the language based on the target options where applicable. 348 void TargetInfo::adjust(LangOptions &Opts) { 349 if (Opts.NoBitFieldTypeAlign) 350 UseBitFieldTypeAlignment = false; 351 352 switch (Opts.WCharSize) { 353 default: llvm_unreachable("invalid wchar_t width"); 354 case 0: break; 355 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; 356 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; 357 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; 358 } 359 360 if (Opts.AlignDouble) { 361 DoubleAlign = LongLongAlign = 64; 362 LongDoubleAlign = 64; 363 } 364 365 if (Opts.OpenCL) { 366 // OpenCL C requires specific widths for types, irrespective of 367 // what these normally are for the target. 368 // We also define long long and long double here, although the 369 // OpenCL standard only mentions these as "reserved". 370 IntWidth = IntAlign = 32; 371 LongWidth = LongAlign = 64; 372 LongLongWidth = LongLongAlign = 128; 373 HalfWidth = HalfAlign = 16; 374 FloatWidth = FloatAlign = 32; 375 376 // Embedded 32-bit targets (OpenCL EP) might have double C type 377 // defined as float. Let's not override this as it might lead 378 // to generating illegal code that uses 64bit doubles. 379 if (DoubleWidth != FloatWidth) { 380 DoubleWidth = DoubleAlign = 64; 381 DoubleFormat = &llvm::APFloat::IEEEdouble(); 382 } 383 LongDoubleWidth = LongDoubleAlign = 128; 384 385 unsigned MaxPointerWidth = getMaxPointerWidth(); 386 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); 387 bool Is32BitArch = MaxPointerWidth == 32; 388 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; 389 PtrDiffType = Is32BitArch ? SignedInt : SignedLong; 390 IntPtrType = Is32BitArch ? SignedInt : SignedLong; 391 392 IntMaxType = SignedLongLong; 393 Int64Type = SignedLong; 394 395 HalfFormat = &llvm::APFloat::IEEEhalf(); 396 FloatFormat = &llvm::APFloat::IEEEsingle(); 397 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 398 } 399 400 if (Opts.DoubleSize) { 401 if (Opts.DoubleSize == 32) { 402 DoubleWidth = 32; 403 LongDoubleWidth = 32; 404 DoubleFormat = &llvm::APFloat::IEEEsingle(); 405 LongDoubleFormat = &llvm::APFloat::IEEEsingle(); 406 } else if (Opts.DoubleSize == 64) { 407 DoubleWidth = 64; 408 LongDoubleWidth = 64; 409 DoubleFormat = &llvm::APFloat::IEEEdouble(); 410 LongDoubleFormat = &llvm::APFloat::IEEEdouble(); 411 } 412 } 413 414 if (Opts.LongDoubleSize) { 415 if (Opts.LongDoubleSize == DoubleWidth) { 416 LongDoubleWidth = DoubleWidth; 417 LongDoubleAlign = DoubleAlign; 418 LongDoubleFormat = DoubleFormat; 419 } else if (Opts.LongDoubleSize == 128) { 420 LongDoubleWidth = LongDoubleAlign = 128; 421 LongDoubleFormat = &llvm::APFloat::IEEEquad(); 422 } 423 } 424 425 if (Opts.NewAlignOverride) 426 NewAlign = Opts.NewAlignOverride * getCharWidth(); 427 428 // Each unsigned fixed point type has the same number of fractional bits as 429 // its corresponding signed type. 430 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; 431 CheckFixedPointBits(); 432 } 433 434 bool TargetInfo::initFeatureMap( 435 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 436 const std::vector<std::string> &FeatureVec) const { 437 for (const auto &F : FeatureVec) { 438 StringRef Name = F; 439 // Apply the feature via the target. 440 bool Enabled = Name[0] == '+'; 441 setFeatureEnabled(Features, Name.substr(1), Enabled); 442 } 443 return true; 444 } 445 446 TargetInfo::CallingConvKind 447 TargetInfo::getCallingConvKind(bool ClangABICompat4) const { 448 if (getCXXABI() != TargetCXXABI::Microsoft && 449 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4)) 450 return CCK_ClangABI4OrPS4; 451 return CCK_Default; 452 } 453 454 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { 455 switch (TK) { 456 case OCLTK_Image: 457 case OCLTK_Pipe: 458 return LangAS::opencl_global; 459 460 case OCLTK_Sampler: 461 return LangAS::opencl_constant; 462 463 default: 464 return LangAS::Default; 465 } 466 } 467 468 //===----------------------------------------------------------------------===// 469 470 471 static StringRef removeGCCRegisterPrefix(StringRef Name) { 472 if (Name[0] == '%' || Name[0] == '#') 473 Name = Name.substr(1); 474 475 return Name; 476 } 477 478 /// isValidClobber - Returns whether the passed in string is 479 /// a valid clobber in an inline asm statement. This is used by 480 /// Sema. 481 bool TargetInfo::isValidClobber(StringRef Name) const { 482 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || 483 Name == "unwind"); 484 } 485 486 /// isValidGCCRegisterName - Returns whether the passed in string 487 /// is a valid register name according to GCC. This is used by Sema for 488 /// inline asm statements. 489 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { 490 if (Name.empty()) 491 return false; 492 493 // Get rid of any register prefix. 494 Name = removeGCCRegisterPrefix(Name); 495 if (Name.empty()) 496 return false; 497 498 ArrayRef<const char *> Names = getGCCRegNames(); 499 500 // If we have a number it maps to an entry in the register name array. 501 if (isDigit(Name[0])) { 502 unsigned n; 503 if (!Name.getAsInteger(0, n)) 504 return n < Names.size(); 505 } 506 507 // Check register names. 508 if (llvm::is_contained(Names, Name)) 509 return true; 510 511 // Check any additional names that we have. 512 for (const AddlRegName &ARN : getGCCAddlRegNames()) 513 for (const char *AN : ARN.Names) { 514 if (!AN) 515 break; 516 // Make sure the register that the additional name is for is within 517 // the bounds of the register names from above. 518 if (AN == Name && ARN.RegNum < Names.size()) 519 return true; 520 } 521 522 // Now check aliases. 523 for (const GCCRegAlias &GRA : getGCCRegAliases()) 524 for (const char *A : GRA.Aliases) { 525 if (!A) 526 break; 527 if (A == Name) 528 return true; 529 } 530 531 return false; 532 } 533 534 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, 535 bool ReturnCanonical) const { 536 assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); 537 538 // Get rid of any register prefix. 539 Name = removeGCCRegisterPrefix(Name); 540 541 ArrayRef<const char *> Names = getGCCRegNames(); 542 543 // First, check if we have a number. 544 if (isDigit(Name[0])) { 545 unsigned n; 546 if (!Name.getAsInteger(0, n)) { 547 assert(n < Names.size() && "Out of bounds register number!"); 548 return Names[n]; 549 } 550 } 551 552 // Check any additional names that we have. 553 for (const AddlRegName &ARN : getGCCAddlRegNames()) 554 for (const char *AN : ARN.Names) { 555 if (!AN) 556 break; 557 // Make sure the register that the additional name is for is within 558 // the bounds of the register names from above. 559 if (AN == Name && ARN.RegNum < Names.size()) 560 return ReturnCanonical ? Names[ARN.RegNum] : Name; 561 } 562 563 // Now check aliases. 564 for (const GCCRegAlias &RA : getGCCRegAliases()) 565 for (const char *A : RA.Aliases) { 566 if (!A) 567 break; 568 if (A == Name) 569 return RA.Register; 570 } 571 572 return Name; 573 } 574 575 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { 576 const char *Name = Info.getConstraintStr().c_str(); 577 // An output constraint must start with '=' or '+' 578 if (*Name != '=' && *Name != '+') 579 return false; 580 581 if (*Name == '+') 582 Info.setIsReadWrite(); 583 584 Name++; 585 while (*Name) { 586 switch (*Name) { 587 default: 588 if (!validateAsmConstraint(Name, Info)) { 589 // FIXME: We temporarily return false 590 // so we can add more constraints as we hit it. 591 // Eventually, an unknown constraint should just be treated as 'g'. 592 return false; 593 } 594 break; 595 case '&': // early clobber. 596 Info.setEarlyClobber(); 597 break; 598 case '%': // commutative. 599 // FIXME: Check that there is a another register after this one. 600 break; 601 case 'r': // general register. 602 Info.setAllowsRegister(); 603 break; 604 case 'm': // memory operand. 605 case 'o': // offsetable memory operand. 606 case 'V': // non-offsetable memory operand. 607 case '<': // autodecrement memory operand. 608 case '>': // autoincrement memory operand. 609 Info.setAllowsMemory(); 610 break; 611 case 'g': // general register, memory operand or immediate integer. 612 case 'X': // any operand. 613 Info.setAllowsRegister(); 614 Info.setAllowsMemory(); 615 break; 616 case ',': // multiple alternative constraint. Pass it. 617 // Handle additional optional '=' or '+' modifiers. 618 if (Name[1] == '=' || Name[1] == '+') 619 Name++; 620 break; 621 case '#': // Ignore as constraint. 622 while (Name[1] && Name[1] != ',') 623 Name++; 624 break; 625 case '?': // Disparage slightly code. 626 case '!': // Disparage severely. 627 case '*': // Ignore for choosing register preferences. 628 case 'i': // Ignore i,n,E,F as output constraints (match from the other 629 // chars) 630 case 'n': 631 case 'E': 632 case 'F': 633 break; // Pass them. 634 } 635 636 Name++; 637 } 638 639 // Early clobber with a read-write constraint which doesn't permit registers 640 // is invalid. 641 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) 642 return false; 643 644 // If a constraint allows neither memory nor register operands it contains 645 // only modifiers. Reject it. 646 return Info.allowsMemory() || Info.allowsRegister(); 647 } 648 649 bool TargetInfo::resolveSymbolicName(const char *&Name, 650 ArrayRef<ConstraintInfo> OutputConstraints, 651 unsigned &Index) const { 652 assert(*Name == '[' && "Symbolic name did not start with '['"); 653 Name++; 654 const char *Start = Name; 655 while (*Name && *Name != ']') 656 Name++; 657 658 if (!*Name) { 659 // Missing ']' 660 return false; 661 } 662 663 std::string SymbolicName(Start, Name - Start); 664 665 for (Index = 0; Index != OutputConstraints.size(); ++Index) 666 if (SymbolicName == OutputConstraints[Index].getName()) 667 return true; 668 669 return false; 670 } 671 672 bool TargetInfo::validateInputConstraint( 673 MutableArrayRef<ConstraintInfo> OutputConstraints, 674 ConstraintInfo &Info) const { 675 const char *Name = Info.ConstraintStr.c_str(); 676 677 if (!*Name) 678 return false; 679 680 while (*Name) { 681 switch (*Name) { 682 default: 683 // Check if we have a matching constraint 684 if (*Name >= '0' && *Name <= '9') { 685 const char *DigitStart = Name; 686 while (Name[1] >= '0' && Name[1] <= '9') 687 Name++; 688 const char *DigitEnd = Name; 689 unsigned i; 690 if (StringRef(DigitStart, DigitEnd - DigitStart + 1) 691 .getAsInteger(10, i)) 692 return false; 693 694 // Check if matching constraint is out of bounds. 695 if (i >= OutputConstraints.size()) return false; 696 697 // A number must refer to an output only operand. 698 if (OutputConstraints[i].isReadWrite()) 699 return false; 700 701 // If the constraint is already tied, it must be tied to the 702 // same operand referenced to by the number. 703 if (Info.hasTiedOperand() && Info.getTiedOperand() != i) 704 return false; 705 706 // The constraint should have the same info as the respective 707 // output constraint. 708 Info.setTiedOperand(i, OutputConstraints[i]); 709 } else if (!validateAsmConstraint(Name, Info)) { 710 // FIXME: This error return is in place temporarily so we can 711 // add more constraints as we hit it. Eventually, an unknown 712 // constraint should just be treated as 'g'. 713 return false; 714 } 715 break; 716 case '[': { 717 unsigned Index = 0; 718 if (!resolveSymbolicName(Name, OutputConstraints, Index)) 719 return false; 720 721 // If the constraint is already tied, it must be tied to the 722 // same operand referenced to by the number. 723 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) 724 return false; 725 726 // A number must refer to an output only operand. 727 if (OutputConstraints[Index].isReadWrite()) 728 return false; 729 730 Info.setTiedOperand(Index, OutputConstraints[Index]); 731 break; 732 } 733 case '%': // commutative 734 // FIXME: Fail if % is used with the last operand. 735 break; 736 case 'i': // immediate integer. 737 break; 738 case 'n': // immediate integer with a known value. 739 Info.setRequiresImmediate(); 740 break; 741 case 'I': // Various constant constraints with target-specific meanings. 742 case 'J': 743 case 'K': 744 case 'L': 745 case 'M': 746 case 'N': 747 case 'O': 748 case 'P': 749 if (!validateAsmConstraint(Name, Info)) 750 return false; 751 break; 752 case 'r': // general register. 753 Info.setAllowsRegister(); 754 break; 755 case 'm': // memory operand. 756 case 'o': // offsettable memory operand. 757 case 'V': // non-offsettable memory operand. 758 case '<': // autodecrement memory operand. 759 case '>': // autoincrement memory operand. 760 Info.setAllowsMemory(); 761 break; 762 case 'g': // general register, memory operand or immediate integer. 763 case 'X': // any operand. 764 Info.setAllowsRegister(); 765 Info.setAllowsMemory(); 766 break; 767 case 'E': // immediate floating point. 768 case 'F': // immediate floating point. 769 case 'p': // address operand. 770 break; 771 case ',': // multiple alternative constraint. Ignore comma. 772 break; 773 case '#': // Ignore as constraint. 774 while (Name[1] && Name[1] != ',') 775 Name++; 776 break; 777 case '?': // Disparage slightly code. 778 case '!': // Disparage severely. 779 case '*': // Ignore for choosing register preferences. 780 break; // Pass them. 781 } 782 783 Name++; 784 } 785 786 return true; 787 } 788 789 void TargetInfo::CheckFixedPointBits() const { 790 // Check that the number of fractional and integral bits (and maybe sign) can 791 // fit into the bits given for a fixed point type. 792 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); 793 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); 794 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); 795 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= 796 ShortAccumWidth); 797 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); 798 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= 799 LongAccumWidth); 800 801 assert(getShortFractScale() + 1 <= ShortFractWidth); 802 assert(getFractScale() + 1 <= FractWidth); 803 assert(getLongFractScale() + 1 <= LongFractWidth); 804 assert(getUnsignedShortFractScale() <= ShortFractWidth); 805 assert(getUnsignedFractScale() <= FractWidth); 806 assert(getUnsignedLongFractScale() <= LongFractWidth); 807 808 // Each unsigned fract type has either the same number of fractional bits 809 // as, or one more fractional bit than, its corresponding signed fract type. 810 assert(getShortFractScale() == getUnsignedShortFractScale() || 811 getShortFractScale() == getUnsignedShortFractScale() - 1); 812 assert(getFractScale() == getUnsignedFractScale() || 813 getFractScale() == getUnsignedFractScale() - 1); 814 assert(getLongFractScale() == getUnsignedLongFractScale() || 815 getLongFractScale() == getUnsignedLongFractScale() - 1); 816 817 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 818 // fractional bits is nondecreasing for each of the following sets of 819 // fixed-point types: 820 // - signed fract types 821 // - unsigned fract types 822 // - signed accum types 823 // - unsigned accum types. 824 assert(getLongFractScale() >= getFractScale() && 825 getFractScale() >= getShortFractScale()); 826 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && 827 getUnsignedFractScale() >= getUnsignedShortFractScale()); 828 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); 829 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && 830 getUnsignedAccumScale() >= getUnsignedShortAccumScale()); 831 832 // When arranged in order of increasing rank (see 6.3.1.3a), the number of 833 // integral bits is nondecreasing for each of the following sets of 834 // fixed-point types: 835 // - signed accum types 836 // - unsigned accum types 837 assert(getLongAccumIBits() >= getAccumIBits() && 838 getAccumIBits() >= getShortAccumIBits()); 839 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && 840 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); 841 842 // Each signed accum type has at least as many integral bits as its 843 // corresponding unsigned accum type. 844 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); 845 assert(getAccumIBits() >= getUnsignedAccumIBits()); 846 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); 847 } 848 849 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { 850 auto *Target = static_cast<TransferrableTargetInfo*>(this); 851 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); 852 *Target = *Src; 853 } 854