1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements uninitialized values analysis for source-level CFGs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/UninitializedValues.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclBase.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/OperationKinds.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/AST/Type.h" 24 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 25 #include "clang/Analysis/AnalysisDeclContext.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" 28 #include "clang/Basic/LLVM.h" 29 #include "llvm/ADT/BitVector.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/PackedVector.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/Support/Casting.h" 37 #include <algorithm> 38 #include <cassert> 39 40 using namespace clang; 41 42 #define DEBUG_LOGGING 0 43 44 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { 45 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 46 !vd->isExceptionVariable() && !vd->isInitCapture() && 47 !vd->isImplicit() && vd->getDeclContext() == dc) { 48 QualType ty = vd->getType(); 49 return ty->isScalarType() || ty->isVectorType() || ty->isRecordType(); 50 } 51 return false; 52 } 53 54 //------------------------------------------------------------------------====// 55 // DeclToIndex: a mapping from Decls we track to value indices. 56 //====------------------------------------------------------------------------// 57 58 namespace { 59 60 class DeclToIndex { 61 llvm::DenseMap<const VarDecl *, unsigned> map; 62 63 public: 64 DeclToIndex() = default; 65 66 /// Compute the actual mapping from declarations to bits. 67 void computeMap(const DeclContext &dc); 68 69 /// Return the number of declarations in the map. 70 unsigned size() const { return map.size(); } 71 72 /// Returns the bit vector index for a given declaration. 73 Optional<unsigned> getValueIndex(const VarDecl *d) const; 74 }; 75 76 } // namespace 77 78 void DeclToIndex::computeMap(const DeclContext &dc) { 79 unsigned count = 0; 80 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), 81 E(dc.decls_end()); 82 for ( ; I != E; ++I) { 83 const VarDecl *vd = *I; 84 if (isTrackedVar(vd, &dc)) 85 map[vd] = count++; 86 } 87 } 88 89 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { 90 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); 91 if (I == map.end()) 92 return None; 93 return I->second; 94 } 95 96 //------------------------------------------------------------------------====// 97 // CFGBlockValues: dataflow values for CFG blocks. 98 //====------------------------------------------------------------------------// 99 100 // These values are defined in such a way that a merge can be done using 101 // a bitwise OR. 102 enum Value { Unknown = 0x0, /* 00 */ 103 Initialized = 0x1, /* 01 */ 104 Uninitialized = 0x2, /* 10 */ 105 MayUninitialized = 0x3 /* 11 */ }; 106 107 static bool isUninitialized(const Value v) { 108 return v >= Uninitialized; 109 } 110 111 static bool isAlwaysUninit(const Value v) { 112 return v == Uninitialized; 113 } 114 115 namespace { 116 117 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>; 118 119 class CFGBlockValues { 120 const CFG &cfg; 121 SmallVector<ValueVector, 8> vals; 122 ValueVector scratch; 123 DeclToIndex declToIndex; 124 125 public: 126 CFGBlockValues(const CFG &cfg); 127 128 unsigned getNumEntries() const { return declToIndex.size(); } 129 130 void computeSetOfDeclarations(const DeclContext &dc); 131 132 ValueVector &getValueVector(const CFGBlock *block) { 133 return vals[block->getBlockID()]; 134 } 135 136 void setAllScratchValues(Value V); 137 void mergeIntoScratch(ValueVector const &source, bool isFirst); 138 bool updateValueVectorWithScratch(const CFGBlock *block); 139 140 bool hasNoDeclarations() const { 141 return declToIndex.size() == 0; 142 } 143 144 void resetScratch(); 145 146 ValueVector::reference operator[](const VarDecl *vd); 147 148 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, 149 const VarDecl *vd) { 150 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 151 assert(idx.hasValue()); 152 return getValueVector(block)[idx.getValue()]; 153 } 154 }; 155 156 } // namespace 157 158 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} 159 160 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { 161 declToIndex.computeMap(dc); 162 unsigned decls = declToIndex.size(); 163 scratch.resize(decls); 164 unsigned n = cfg.getNumBlockIDs(); 165 if (!n) 166 return; 167 vals.resize(n); 168 for (auto &val : vals) 169 val.resize(decls); 170 } 171 172 #if DEBUG_LOGGING 173 static void printVector(const CFGBlock *block, ValueVector &bv, 174 unsigned num) { 175 llvm::errs() << block->getBlockID() << " :"; 176 for (const auto &i : bv) 177 llvm::errs() << ' ' << i; 178 llvm::errs() << " : " << num << '\n'; 179 } 180 #endif 181 182 void CFGBlockValues::setAllScratchValues(Value V) { 183 for (unsigned I = 0, E = scratch.size(); I != E; ++I) 184 scratch[I] = V; 185 } 186 187 void CFGBlockValues::mergeIntoScratch(ValueVector const &source, 188 bool isFirst) { 189 if (isFirst) 190 scratch = source; 191 else 192 scratch |= source; 193 } 194 195 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { 196 ValueVector &dst = getValueVector(block); 197 bool changed = (dst != scratch); 198 if (changed) 199 dst = scratch; 200 #if DEBUG_LOGGING 201 printVector(block, scratch, 0); 202 #endif 203 return changed; 204 } 205 206 void CFGBlockValues::resetScratch() { 207 scratch.reset(); 208 } 209 210 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { 211 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 212 assert(idx.hasValue()); 213 return scratch[idx.getValue()]; 214 } 215 216 //------------------------------------------------------------------------====// 217 // Worklist: worklist for dataflow analysis. 218 //====------------------------------------------------------------------------// 219 220 namespace { 221 222 class DataflowWorklist { 223 PostOrderCFGView::iterator PO_I, PO_E; 224 SmallVector<const CFGBlock *, 20> worklist; 225 llvm::BitVector enqueuedBlocks; 226 227 public: 228 DataflowWorklist(const CFG &cfg, PostOrderCFGView &view) 229 : PO_I(view.begin()), PO_E(view.end()), 230 enqueuedBlocks(cfg.getNumBlockIDs(), true) { 231 // Treat the first block as already analyzed. 232 if (PO_I != PO_E) { 233 assert(*PO_I == &cfg.getEntry()); 234 enqueuedBlocks[(*PO_I)->getBlockID()] = false; 235 ++PO_I; 236 } 237 } 238 239 void enqueueSuccessors(const CFGBlock *block); 240 const CFGBlock *dequeue(); 241 }; 242 243 } // namespace 244 245 void DataflowWorklist::enqueueSuccessors(const CFGBlock *block) { 246 for (CFGBlock::const_succ_iterator I = block->succ_begin(), 247 E = block->succ_end(); I != E; ++I) { 248 const CFGBlock *Successor = *I; 249 if (!Successor || enqueuedBlocks[Successor->getBlockID()]) 250 continue; 251 worklist.push_back(Successor); 252 enqueuedBlocks[Successor->getBlockID()] = true; 253 } 254 } 255 256 const CFGBlock *DataflowWorklist::dequeue() { 257 const CFGBlock *B = nullptr; 258 259 // First dequeue from the worklist. This can represent 260 // updates along backedges that we want propagated as quickly as possible. 261 if (!worklist.empty()) 262 B = worklist.pop_back_val(); 263 264 // Next dequeue from the initial reverse post order. This is the 265 // theoretical ideal in the presence of no back edges. 266 else if (PO_I != PO_E) { 267 B = *PO_I; 268 ++PO_I; 269 } 270 else 271 return nullptr; 272 273 assert(enqueuedBlocks[B->getBlockID()] == true); 274 enqueuedBlocks[B->getBlockID()] = false; 275 return B; 276 } 277 278 //------------------------------------------------------------------------====// 279 // Classification of DeclRefExprs as use or initialization. 280 //====------------------------------------------------------------------------// 281 282 namespace { 283 284 class FindVarResult { 285 const VarDecl *vd; 286 const DeclRefExpr *dr; 287 288 public: 289 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} 290 291 const DeclRefExpr *getDeclRefExpr() const { return dr; } 292 const VarDecl *getDecl() const { return vd; } 293 }; 294 295 } // namespace 296 297 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { 298 while (Ex) { 299 Ex = Ex->IgnoreParenNoopCasts(C); 300 if (const auto *CE = dyn_cast<CastExpr>(Ex)) { 301 if (CE->getCastKind() == CK_LValueBitCast) { 302 Ex = CE->getSubExpr(); 303 continue; 304 } 305 } 306 break; 307 } 308 return Ex; 309 } 310 311 /// If E is an expression comprising a reference to a single variable, find that 312 /// variable. 313 static FindVarResult findVar(const Expr *E, const DeclContext *DC) { 314 if (const auto *DRE = 315 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) 316 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 317 if (isTrackedVar(VD, DC)) 318 return FindVarResult(VD, DRE); 319 return FindVarResult(nullptr, nullptr); 320 } 321 322 namespace { 323 324 /// Classify each DeclRefExpr as an initialization or a use. Any 325 /// DeclRefExpr which isn't explicitly classified will be assumed to have 326 /// escaped the analysis and will be treated as an initialization. 327 class ClassifyRefs : public StmtVisitor<ClassifyRefs> { 328 public: 329 enum Class { 330 Init, 331 Use, 332 SelfInit, 333 Ignore 334 }; 335 336 private: 337 const DeclContext *DC; 338 llvm::DenseMap<const DeclRefExpr *, Class> Classification; 339 340 bool isTrackedVar(const VarDecl *VD) const { 341 return ::isTrackedVar(VD, DC); 342 } 343 344 void classify(const Expr *E, Class C); 345 346 public: 347 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} 348 349 void VisitDeclStmt(DeclStmt *DS); 350 void VisitUnaryOperator(UnaryOperator *UO); 351 void VisitBinaryOperator(BinaryOperator *BO); 352 void VisitCallExpr(CallExpr *CE); 353 void VisitCastExpr(CastExpr *CE); 354 355 void operator()(Stmt *S) { Visit(S); } 356 357 Class get(const DeclRefExpr *DRE) const { 358 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I 359 = Classification.find(DRE); 360 if (I != Classification.end()) 361 return I->second; 362 363 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 364 if (!VD || !isTrackedVar(VD)) 365 return Ignore; 366 367 return Init; 368 } 369 }; 370 371 } // namespace 372 373 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { 374 if (VD->getType()->isRecordType()) 375 return nullptr; 376 if (Expr *Init = VD->getInit()) { 377 const auto *DRE = 378 dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); 379 if (DRE && DRE->getDecl() == VD) 380 return DRE; 381 } 382 return nullptr; 383 } 384 385 void ClassifyRefs::classify(const Expr *E, Class C) { 386 // The result of a ?: could also be an lvalue. 387 E = E->IgnoreParens(); 388 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 389 classify(CO->getTrueExpr(), C); 390 classify(CO->getFalseExpr(), C); 391 return; 392 } 393 394 if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) { 395 classify(BCO->getFalseExpr(), C); 396 return; 397 } 398 399 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 400 classify(OVE->getSourceExpr(), C); 401 return; 402 } 403 404 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 405 if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 406 if (!VD->isStaticDataMember()) 407 classify(ME->getBase(), C); 408 } 409 return; 410 } 411 412 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 413 switch (BO->getOpcode()) { 414 case BO_PtrMemD: 415 case BO_PtrMemI: 416 classify(BO->getLHS(), C); 417 return; 418 case BO_Comma: 419 classify(BO->getRHS(), C); 420 return; 421 default: 422 return; 423 } 424 } 425 426 FindVarResult Var = findVar(E, DC); 427 if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) 428 Classification[DRE] = std::max(Classification[DRE], C); 429 } 430 431 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { 432 for (auto *DI : DS->decls()) { 433 auto *VD = dyn_cast<VarDecl>(DI); 434 if (VD && isTrackedVar(VD)) 435 if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) 436 Classification[DRE] = SelfInit; 437 } 438 } 439 440 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { 441 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this 442 // is not a compound-assignment, we will treat it as initializing the variable 443 // when TransferFunctions visits it. A compound-assignment does not affect 444 // whether a variable is uninitialized, and there's no point counting it as a 445 // use. 446 if (BO->isCompoundAssignmentOp()) 447 classify(BO->getLHS(), Use); 448 else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma) 449 classify(BO->getLHS(), Ignore); 450 } 451 452 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { 453 // Increment and decrement are uses despite there being no lvalue-to-rvalue 454 // conversion. 455 if (UO->isIncrementDecrementOp()) 456 classify(UO->getSubExpr(), Use); 457 } 458 459 static bool isPointerToConst(const QualType &QT) { 460 return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified(); 461 } 462 463 void ClassifyRefs::VisitCallExpr(CallExpr *CE) { 464 // Classify arguments to std::move as used. 465 if (CE->isCallToStdMove()) { 466 // RecordTypes are handled in SemaDeclCXX.cpp. 467 if (!CE->getArg(0)->getType()->isRecordType()) 468 classify(CE->getArg(0), Use); 469 return; 470 } 471 472 // If a value is passed by const pointer or by const reference to a function, 473 // we should not assume that it is initialized by the call, and we 474 // conservatively do not assume that it is used. 475 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); 476 I != E; ++I) { 477 if ((*I)->isGLValue()) { 478 if ((*I)->getType().isConstQualified()) 479 classify((*I), Ignore); 480 } else if (isPointerToConst((*I)->getType())) { 481 const Expr *Ex = stripCasts(DC->getParentASTContext(), *I); 482 const auto *UO = dyn_cast<UnaryOperator>(Ex); 483 if (UO && UO->getOpcode() == UO_AddrOf) 484 Ex = UO->getSubExpr(); 485 classify(Ex, Ignore); 486 } 487 } 488 } 489 490 void ClassifyRefs::VisitCastExpr(CastExpr *CE) { 491 if (CE->getCastKind() == CK_LValueToRValue) 492 classify(CE->getSubExpr(), Use); 493 else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) { 494 if (CSE->getType()->isVoidType()) { 495 // Squelch any detected load of an uninitialized value if 496 // we cast it to void. 497 // e.g. (void) x; 498 classify(CSE->getSubExpr(), Ignore); 499 } 500 } 501 } 502 503 //------------------------------------------------------------------------====// 504 // Transfer function for uninitialized values analysis. 505 //====------------------------------------------------------------------------// 506 507 namespace { 508 509 class TransferFunctions : public StmtVisitor<TransferFunctions> { 510 CFGBlockValues &vals; 511 const CFG &cfg; 512 const CFGBlock *block; 513 AnalysisDeclContext ∾ 514 const ClassifyRefs &classification; 515 ObjCNoReturn objCNoRet; 516 UninitVariablesHandler &handler; 517 518 public: 519 TransferFunctions(CFGBlockValues &vals, const CFG &cfg, 520 const CFGBlock *block, AnalysisDeclContext &ac, 521 const ClassifyRefs &classification, 522 UninitVariablesHandler &handler) 523 : vals(vals), cfg(cfg), block(block), ac(ac), 524 classification(classification), objCNoRet(ac.getASTContext()), 525 handler(handler) {} 526 527 void reportUse(const Expr *ex, const VarDecl *vd); 528 529 void VisitBinaryOperator(BinaryOperator *bo); 530 void VisitBlockExpr(BlockExpr *be); 531 void VisitCallExpr(CallExpr *ce); 532 void VisitDeclRefExpr(DeclRefExpr *dr); 533 void VisitDeclStmt(DeclStmt *ds); 534 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); 535 void VisitObjCMessageExpr(ObjCMessageExpr *ME); 536 537 bool isTrackedVar(const VarDecl *vd) { 538 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); 539 } 540 541 FindVarResult findVar(const Expr *ex) { 542 return ::findVar(ex, cast<DeclContext>(ac.getDecl())); 543 } 544 545 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { 546 UninitUse Use(ex, isAlwaysUninit(v)); 547 548 assert(isUninitialized(v)); 549 if (Use.getKind() == UninitUse::Always) 550 return Use; 551 552 // If an edge which leads unconditionally to this use did not initialize 553 // the variable, we can say something stronger than 'may be uninitialized': 554 // we can say 'either it's used uninitialized or you have dead code'. 555 // 556 // We track the number of successors of a node which have been visited, and 557 // visit a node once we have visited all of its successors. Only edges where 558 // the variable might still be uninitialized are followed. Since a variable 559 // can't transfer from being initialized to being uninitialized, this will 560 // trace out the subgraph which inevitably leads to the use and does not 561 // initialize the variable. We do not want to skip past loops, since their 562 // non-termination might be correlated with the initialization condition. 563 // 564 // For example: 565 // 566 // void f(bool a, bool b) { 567 // block1: int n; 568 // if (a) { 569 // block2: if (b) 570 // block3: n = 1; 571 // block4: } else if (b) { 572 // block5: while (!a) { 573 // block6: do_work(&a); 574 // n = 2; 575 // } 576 // } 577 // block7: if (a) 578 // block8: g(); 579 // block9: return n; 580 // } 581 // 582 // Starting from the maybe-uninitialized use in block 9: 583 // * Block 7 is not visited because we have only visited one of its two 584 // successors. 585 // * Block 8 is visited because we've visited its only successor. 586 // From block 8: 587 // * Block 7 is visited because we've now visited both of its successors. 588 // From block 7: 589 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all 590 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). 591 // * Block 3 is not visited because it initializes 'n'. 592 // Now the algorithm terminates, having visited blocks 7 and 8, and having 593 // found the frontier is blocks 2, 4, and 5. 594 // 595 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 596 // and 4), so we report that any time either of those edges is taken (in 597 // each case when 'b == false'), 'n' is used uninitialized. 598 SmallVector<const CFGBlock*, 32> Queue; 599 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); 600 Queue.push_back(block); 601 // Specify that we've already visited all successors of the starting block. 602 // This has the dual purpose of ensuring we never add it to the queue, and 603 // of marking it as not being a candidate element of the frontier. 604 SuccsVisited[block->getBlockID()] = block->succ_size(); 605 while (!Queue.empty()) { 606 const CFGBlock *B = Queue.pop_back_val(); 607 608 // If the use is always reached from the entry block, make a note of that. 609 if (B == &cfg.getEntry()) 610 Use.setUninitAfterCall(); 611 612 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); 613 I != E; ++I) { 614 const CFGBlock *Pred = *I; 615 if (!Pred) 616 continue; 617 618 Value AtPredExit = vals.getValue(Pred, B, vd); 619 if (AtPredExit == Initialized) 620 // This block initializes the variable. 621 continue; 622 if (AtPredExit == MayUninitialized && 623 vals.getValue(B, nullptr, vd) == Uninitialized) { 624 // This block declares the variable (uninitialized), and is reachable 625 // from a block that initializes the variable. We can't guarantee to 626 // give an earlier location for the diagnostic (and it appears that 627 // this code is intended to be reachable) so give a diagnostic here 628 // and go no further down this path. 629 Use.setUninitAfterDecl(); 630 continue; 631 } 632 633 unsigned &SV = SuccsVisited[Pred->getBlockID()]; 634 if (!SV) { 635 // When visiting the first successor of a block, mark all NULL 636 // successors as having been visited. 637 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), 638 SE = Pred->succ_end(); 639 SI != SE; ++SI) 640 if (!*SI) 641 ++SV; 642 } 643 644 if (++SV == Pred->succ_size()) 645 // All paths from this block lead to the use and don't initialize the 646 // variable. 647 Queue.push_back(Pred); 648 } 649 } 650 651 // Scan the frontier, looking for blocks where the variable was 652 // uninitialized. 653 for (const auto *Block : cfg) { 654 unsigned BlockID = Block->getBlockID(); 655 const Stmt *Term = Block->getTerminator(); 656 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && 657 Term) { 658 // This block inevitably leads to the use. If we have an edge from here 659 // to a post-dominator block, and the variable is uninitialized on that 660 // edge, we have found a bug. 661 for (CFGBlock::const_succ_iterator I = Block->succ_begin(), 662 E = Block->succ_end(); I != E; ++I) { 663 const CFGBlock *Succ = *I; 664 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && 665 vals.getValue(Block, Succ, vd) == Uninitialized) { 666 // Switch cases are a special case: report the label to the caller 667 // as the 'terminator', not the switch statement itself. Suppress 668 // situations where no label matched: we can't be sure that's 669 // possible. 670 if (isa<SwitchStmt>(Term)) { 671 const Stmt *Label = Succ->getLabel(); 672 if (!Label || !isa<SwitchCase>(Label)) 673 // Might not be possible. 674 continue; 675 UninitUse::Branch Branch; 676 Branch.Terminator = Label; 677 Branch.Output = 0; // Ignored. 678 Use.addUninitBranch(Branch); 679 } else { 680 UninitUse::Branch Branch; 681 Branch.Terminator = Term; 682 Branch.Output = I - Block->succ_begin(); 683 Use.addUninitBranch(Branch); 684 } 685 } 686 } 687 } 688 } 689 690 return Use; 691 } 692 }; 693 694 } // namespace 695 696 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { 697 Value v = vals[vd]; 698 if (isUninitialized(v)) 699 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 700 } 701 702 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { 703 // This represents an initialization of the 'element' value. 704 if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) { 705 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 706 if (isTrackedVar(VD)) 707 vals[VD] = Initialized; 708 } 709 } 710 711 void TransferFunctions::VisitBlockExpr(BlockExpr *be) { 712 const BlockDecl *bd = be->getBlockDecl(); 713 for (const auto &I : bd->captures()) { 714 const VarDecl *vd = I.getVariable(); 715 if (!isTrackedVar(vd)) 716 continue; 717 if (I.isByRef()) { 718 vals[vd] = Initialized; 719 continue; 720 } 721 reportUse(be, vd); 722 } 723 } 724 725 void TransferFunctions::VisitCallExpr(CallExpr *ce) { 726 if (Decl *Callee = ce->getCalleeDecl()) { 727 if (Callee->hasAttr<ReturnsTwiceAttr>()) { 728 // After a call to a function like setjmp or vfork, any variable which is 729 // initialized anywhere within this function may now be initialized. For 730 // now, just assume such a call initializes all variables. FIXME: Only 731 // mark variables as initialized if they have an initializer which is 732 // reachable from here. 733 vals.setAllScratchValues(Initialized); 734 } 735 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { 736 // Functions labeled like "analyzer_noreturn" are often used to denote 737 // "panic" functions that in special debug situations can still return, 738 // but for the most part should not be treated as returning. This is a 739 // useful annotation borrowed from the static analyzer that is useful for 740 // suppressing branch-specific false positives when we call one of these 741 // functions but keep pretending the path continues (when in reality the 742 // user doesn't care). 743 vals.setAllScratchValues(Unknown); 744 } 745 } 746 } 747 748 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { 749 switch (classification.get(dr)) { 750 case ClassifyRefs::Ignore: 751 break; 752 case ClassifyRefs::Use: 753 reportUse(dr, cast<VarDecl>(dr->getDecl())); 754 break; 755 case ClassifyRefs::Init: 756 vals[cast<VarDecl>(dr->getDecl())] = Initialized; 757 break; 758 case ClassifyRefs::SelfInit: 759 handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); 760 break; 761 } 762 } 763 764 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { 765 if (BO->getOpcode() == BO_Assign) { 766 FindVarResult Var = findVar(BO->getLHS()); 767 if (const VarDecl *VD = Var.getDecl()) 768 vals[VD] = Initialized; 769 } 770 } 771 772 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { 773 for (auto *DI : DS->decls()) { 774 auto *VD = dyn_cast<VarDecl>(DI); 775 if (VD && isTrackedVar(VD)) { 776 if (getSelfInitExpr(VD)) { 777 // If the initializer consists solely of a reference to itself, we 778 // explicitly mark the variable as uninitialized. This allows code 779 // like the following: 780 // 781 // int x = x; 782 // 783 // to deliberately leave a variable uninitialized. Different analysis 784 // clients can detect this pattern and adjust their reporting 785 // appropriately, but we need to continue to analyze subsequent uses 786 // of the variable. 787 vals[VD] = Uninitialized; 788 } else if (VD->getInit()) { 789 // Treat the new variable as initialized. 790 vals[VD] = Initialized; 791 } else { 792 // No initializer: the variable is now uninitialized. This matters 793 // for cases like: 794 // while (...) { 795 // int n; 796 // use(n); 797 // n = 0; 798 // } 799 // FIXME: Mark the variable as uninitialized whenever its scope is 800 // left, since its scope could be re-entered by a jump over the 801 // declaration. 802 vals[VD] = Uninitialized; 803 } 804 } 805 } 806 } 807 808 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { 809 // If the Objective-C message expression is an implicit no-return that 810 // is not modeled in the CFG, set the tracked dataflow values to Unknown. 811 if (objCNoRet.isImplicitNoReturn(ME)) { 812 vals.setAllScratchValues(Unknown); 813 } 814 } 815 816 //------------------------------------------------------------------------====// 817 // High-level "driver" logic for uninitialized values analysis. 818 //====------------------------------------------------------------------------// 819 820 static bool runOnBlock(const CFGBlock *block, const CFG &cfg, 821 AnalysisDeclContext &ac, CFGBlockValues &vals, 822 const ClassifyRefs &classification, 823 llvm::BitVector &wasAnalyzed, 824 UninitVariablesHandler &handler) { 825 wasAnalyzed[block->getBlockID()] = true; 826 vals.resetScratch(); 827 // Merge in values of predecessor blocks. 828 bool isFirst = true; 829 for (CFGBlock::const_pred_iterator I = block->pred_begin(), 830 E = block->pred_end(); I != E; ++I) { 831 const CFGBlock *pred = *I; 832 if (!pred) 833 continue; 834 if (wasAnalyzed[pred->getBlockID()]) { 835 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); 836 isFirst = false; 837 } 838 } 839 // Apply the transfer function. 840 TransferFunctions tf(vals, cfg, block, ac, classification, handler); 841 for (const auto &I : *block) { 842 if (Optional<CFGStmt> cs = I.getAs<CFGStmt>()) 843 tf.Visit(const_cast<Stmt *>(cs->getStmt())); 844 } 845 return vals.updateValueVectorWithScratch(block); 846 } 847 848 namespace { 849 850 /// PruneBlocksHandler is a special UninitVariablesHandler that is used 851 /// to detect when a CFGBlock has any *potential* use of an uninitialized 852 /// variable. It is mainly used to prune out work during the final 853 /// reporting pass. 854 struct PruneBlocksHandler : public UninitVariablesHandler { 855 /// Records if a CFGBlock had a potential use of an uninitialized variable. 856 llvm::BitVector hadUse; 857 858 /// Records if any CFGBlock had a potential use of an uninitialized variable. 859 bool hadAnyUse = false; 860 861 /// The current block to scribble use information. 862 unsigned currentBlock = 0; 863 864 PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {} 865 866 ~PruneBlocksHandler() override = default; 867 868 void handleUseOfUninitVariable(const VarDecl *vd, 869 const UninitUse &use) override { 870 hadUse[currentBlock] = true; 871 hadAnyUse = true; 872 } 873 874 /// Called when the uninitialized variable analysis detects the 875 /// idiom 'int x = x'. All other uses of 'x' within the initializer 876 /// are handled by handleUseOfUninitVariable. 877 void handleSelfInit(const VarDecl *vd) override { 878 hadUse[currentBlock] = true; 879 hadAnyUse = true; 880 } 881 }; 882 883 } // namespace 884 885 void clang::runUninitializedVariablesAnalysis( 886 const DeclContext &dc, 887 const CFG &cfg, 888 AnalysisDeclContext &ac, 889 UninitVariablesHandler &handler, 890 UninitVariablesAnalysisStats &stats) { 891 CFGBlockValues vals(cfg); 892 vals.computeSetOfDeclarations(dc); 893 if (vals.hasNoDeclarations()) 894 return; 895 896 stats.NumVariablesAnalyzed = vals.getNumEntries(); 897 898 // Precompute which expressions are uses and which are initializations. 899 ClassifyRefs classification(ac); 900 cfg.VisitBlockStmts(classification); 901 902 // Mark all variables uninitialized at the entry. 903 const CFGBlock &entry = cfg.getEntry(); 904 ValueVector &vec = vals.getValueVector(&entry); 905 const unsigned n = vals.getNumEntries(); 906 for (unsigned j = 0; j < n; ++j) { 907 vec[j] = Uninitialized; 908 } 909 910 // Proceed with the workist. 911 DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>()); 912 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); 913 worklist.enqueueSuccessors(&cfg.getEntry()); 914 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); 915 wasAnalyzed[cfg.getEntry().getBlockID()] = true; 916 PruneBlocksHandler PBH(cfg.getNumBlockIDs()); 917 918 while (const CFGBlock *block = worklist.dequeue()) { 919 PBH.currentBlock = block->getBlockID(); 920 921 // Did the block change? 922 bool changed = runOnBlock(block, cfg, ac, vals, 923 classification, wasAnalyzed, PBH); 924 ++stats.NumBlockVisits; 925 if (changed || !previouslyVisited[block->getBlockID()]) 926 worklist.enqueueSuccessors(block); 927 previouslyVisited[block->getBlockID()] = true; 928 } 929 930 if (!PBH.hadAnyUse) 931 return; 932 933 // Run through the blocks one more time, and report uninitialized variables. 934 for (const auto *block : cfg) 935 if (PBH.hadUse[block->getBlockID()]) { 936 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); 937 ++stats.NumBlockVisits; 938 } 939 } 940 941 UninitVariablesHandler::~UninitVariablesHandler() = default; 942