1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements uninitialized values analysis for source-level CFGs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/UninitializedValues.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/OperationKinds.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
27 #include "clang/Basic/LLVM.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/PackedVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/Support/Casting.h"
36 #include <algorithm>
37 #include <cassert>
38 
39 using namespace clang;
40 
41 #define DEBUG_LOGGING 0
42 
43 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
44   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
45       !vd->isExceptionVariable() && !vd->isInitCapture() &&
46       !vd->isImplicit() && vd->getDeclContext() == dc) {
47     QualType ty = vd->getType();
48     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
49   }
50   return false;
51 }
52 
53 //------------------------------------------------------------------------====//
54 // DeclToIndex: a mapping from Decls we track to value indices.
55 //====------------------------------------------------------------------------//
56 
57 namespace {
58 
59 class DeclToIndex {
60   llvm::DenseMap<const VarDecl *, unsigned> map;
61 
62 public:
63   DeclToIndex() = default;
64 
65   /// Compute the actual mapping from declarations to bits.
66   void computeMap(const DeclContext &dc);
67 
68   /// Return the number of declarations in the map.
69   unsigned size() const { return map.size(); }
70 
71   /// Returns the bit vector index for a given declaration.
72   Optional<unsigned> getValueIndex(const VarDecl *d) const;
73 };
74 
75 } // namespace
76 
77 void DeclToIndex::computeMap(const DeclContext &dc) {
78   unsigned count = 0;
79   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
80                                                E(dc.decls_end());
81   for ( ; I != E; ++I) {
82     const VarDecl *vd = *I;
83     if (isTrackedVar(vd, &dc))
84       map[vd] = count++;
85   }
86 }
87 
88 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
89   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
90   if (I == map.end())
91     return None;
92   return I->second;
93 }
94 
95 //------------------------------------------------------------------------====//
96 // CFGBlockValues: dataflow values for CFG blocks.
97 //====------------------------------------------------------------------------//
98 
99 // These values are defined in such a way that a merge can be done using
100 // a bitwise OR.
101 enum Value { Unknown = 0x0,         /* 00 */
102              Initialized = 0x1,     /* 01 */
103              Uninitialized = 0x2,   /* 10 */
104              MayUninitialized = 0x3 /* 11 */ };
105 
106 static bool isUninitialized(const Value v) {
107   return v >= Uninitialized;
108 }
109 
110 static bool isAlwaysUninit(const Value v) {
111   return v == Uninitialized;
112 }
113 
114 namespace {
115 
116 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
117 
118 class CFGBlockValues {
119   const CFG &cfg;
120   SmallVector<ValueVector, 8> vals;
121   ValueVector scratch;
122   DeclToIndex declToIndex;
123 
124 public:
125   CFGBlockValues(const CFG &cfg);
126 
127   unsigned getNumEntries() const { return declToIndex.size(); }
128 
129   void computeSetOfDeclarations(const DeclContext &dc);
130 
131   ValueVector &getValueVector(const CFGBlock *block) {
132     return vals[block->getBlockID()];
133   }
134 
135   void setAllScratchValues(Value V);
136   void mergeIntoScratch(ValueVector const &source, bool isFirst);
137   bool updateValueVectorWithScratch(const CFGBlock *block);
138 
139   bool hasNoDeclarations() const {
140     return declToIndex.size() == 0;
141   }
142 
143   void resetScratch();
144 
145   ValueVector::reference operator[](const VarDecl *vd);
146 
147   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
148                  const VarDecl *vd) {
149     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
150     assert(idx.hasValue());
151     return getValueVector(block)[idx.getValue()];
152   }
153 };
154 
155 } // namespace
156 
157 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
158 
159 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
160   declToIndex.computeMap(dc);
161   unsigned decls = declToIndex.size();
162   scratch.resize(decls);
163   unsigned n = cfg.getNumBlockIDs();
164   if (!n)
165     return;
166   vals.resize(n);
167   for (auto &val : vals)
168     val.resize(decls);
169 }
170 
171 #if DEBUG_LOGGING
172 static void printVector(const CFGBlock *block, ValueVector &bv,
173                         unsigned num) {
174   llvm::errs() << block->getBlockID() << " :";
175   for (const auto &i : bv)
176     llvm::errs() << ' ' << i;
177   llvm::errs() << " : " << num << '\n';
178 }
179 #endif
180 
181 void CFGBlockValues::setAllScratchValues(Value V) {
182   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
183     scratch[I] = V;
184 }
185 
186 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
187                                       bool isFirst) {
188   if (isFirst)
189     scratch = source;
190   else
191     scratch |= source;
192 }
193 
194 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
195   ValueVector &dst = getValueVector(block);
196   bool changed = (dst != scratch);
197   if (changed)
198     dst = scratch;
199 #if DEBUG_LOGGING
200   printVector(block, scratch, 0);
201 #endif
202   return changed;
203 }
204 
205 void CFGBlockValues::resetScratch() {
206   scratch.reset();
207 }
208 
209 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
210   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
211   assert(idx.hasValue());
212   return scratch[idx.getValue()];
213 }
214 
215 //------------------------------------------------------------------------====//
216 // Worklist: worklist for dataflow analysis.
217 //====------------------------------------------------------------------------//
218 
219 namespace {
220 
221 class DataflowWorklist {
222   PostOrderCFGView::iterator PO_I, PO_E;
223   SmallVector<const CFGBlock *, 20> worklist;
224   llvm::BitVector enqueuedBlocks;
225 
226 public:
227   DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
228       : PO_I(view.begin()), PO_E(view.end()),
229         enqueuedBlocks(cfg.getNumBlockIDs(), true) {
230     // Treat the first block as already analyzed.
231     if (PO_I != PO_E) {
232       assert(*PO_I == &cfg.getEntry());
233       enqueuedBlocks[(*PO_I)->getBlockID()] = false;
234       ++PO_I;
235     }
236   }
237 
238   void enqueueSuccessors(const CFGBlock *block);
239   const CFGBlock *dequeue();
240 };
241 
242 } // namespace
243 
244 void DataflowWorklist::enqueueSuccessors(const CFGBlock *block) {
245   for (CFGBlock::const_succ_iterator I = block->succ_begin(),
246        E = block->succ_end(); I != E; ++I) {
247     const CFGBlock *Successor = *I;
248     if (!Successor || enqueuedBlocks[Successor->getBlockID()])
249       continue;
250     worklist.push_back(Successor);
251     enqueuedBlocks[Successor->getBlockID()] = true;
252   }
253 }
254 
255 const CFGBlock *DataflowWorklist::dequeue() {
256   const CFGBlock *B = nullptr;
257 
258   // First dequeue from the worklist.  This can represent
259   // updates along backedges that we want propagated as quickly as possible.
260   if (!worklist.empty())
261     B = worklist.pop_back_val();
262 
263   // Next dequeue from the initial reverse post order.  This is the
264   // theoretical ideal in the presence of no back edges.
265   else if (PO_I != PO_E) {
266     B = *PO_I;
267     ++PO_I;
268   }
269   else
270     return nullptr;
271 
272   assert(enqueuedBlocks[B->getBlockID()] == true);
273   enqueuedBlocks[B->getBlockID()] = false;
274   return B;
275 }
276 
277 //------------------------------------------------------------------------====//
278 // Classification of DeclRefExprs as use or initialization.
279 //====------------------------------------------------------------------------//
280 
281 namespace {
282 
283 class FindVarResult {
284   const VarDecl *vd;
285   const DeclRefExpr *dr;
286 
287 public:
288   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
289 
290   const DeclRefExpr *getDeclRefExpr() const { return dr; }
291   const VarDecl *getDecl() const { return vd; }
292 };
293 
294 } // namespace
295 
296 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
297   while (Ex) {
298     Ex = Ex->IgnoreParenNoopCasts(C);
299     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
300       if (CE->getCastKind() == CK_LValueBitCast) {
301         Ex = CE->getSubExpr();
302         continue;
303       }
304     }
305     break;
306   }
307   return Ex;
308 }
309 
310 /// If E is an expression comprising a reference to a single variable, find that
311 /// variable.
312 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
313   if (const auto *DRE =
314           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
315     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
316       if (isTrackedVar(VD, DC))
317         return FindVarResult(VD, DRE);
318   return FindVarResult(nullptr, nullptr);
319 }
320 
321 namespace {
322 
323 /// Classify each DeclRefExpr as an initialization or a use. Any
324 /// DeclRefExpr which isn't explicitly classified will be assumed to have
325 /// escaped the analysis and will be treated as an initialization.
326 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
327 public:
328   enum Class {
329     Init,
330     Use,
331     SelfInit,
332     Ignore
333   };
334 
335 private:
336   const DeclContext *DC;
337   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
338 
339   bool isTrackedVar(const VarDecl *VD) const {
340     return ::isTrackedVar(VD, DC);
341   }
342 
343   void classify(const Expr *E, Class C);
344 
345 public:
346   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
347 
348   void VisitDeclStmt(DeclStmt *DS);
349   void VisitUnaryOperator(UnaryOperator *UO);
350   void VisitBinaryOperator(BinaryOperator *BO);
351   void VisitCallExpr(CallExpr *CE);
352   void VisitCastExpr(CastExpr *CE);
353 
354   void operator()(Stmt *S) { Visit(S); }
355 
356   Class get(const DeclRefExpr *DRE) const {
357     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
358         = Classification.find(DRE);
359     if (I != Classification.end())
360       return I->second;
361 
362     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
363     if (!VD || !isTrackedVar(VD))
364       return Ignore;
365 
366     return Init;
367   }
368 };
369 
370 } // namespace
371 
372 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
373   if (VD->getType()->isRecordType())
374     return nullptr;
375   if (Expr *Init = VD->getInit()) {
376     const auto *DRE =
377         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
378     if (DRE && DRE->getDecl() == VD)
379       return DRE;
380   }
381   return nullptr;
382 }
383 
384 void ClassifyRefs::classify(const Expr *E, Class C) {
385   // The result of a ?: could also be an lvalue.
386   E = E->IgnoreParens();
387   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
388     classify(CO->getTrueExpr(), C);
389     classify(CO->getFalseExpr(), C);
390     return;
391   }
392 
393   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
394     classify(BCO->getFalseExpr(), C);
395     return;
396   }
397 
398   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
399     classify(OVE->getSourceExpr(), C);
400     return;
401   }
402 
403   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
404     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
405       if (!VD->isStaticDataMember())
406         classify(ME->getBase(), C);
407     }
408     return;
409   }
410 
411   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
412     switch (BO->getOpcode()) {
413     case BO_PtrMemD:
414     case BO_PtrMemI:
415       classify(BO->getLHS(), C);
416       return;
417     case BO_Comma:
418       classify(BO->getRHS(), C);
419       return;
420     default:
421       return;
422     }
423   }
424 
425   FindVarResult Var = findVar(E, DC);
426   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
427     Classification[DRE] = std::max(Classification[DRE], C);
428 }
429 
430 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
431   for (auto *DI : DS->decls()) {
432     auto *VD = dyn_cast<VarDecl>(DI);
433     if (VD && isTrackedVar(VD))
434       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
435         Classification[DRE] = SelfInit;
436   }
437 }
438 
439 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
440   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
441   // is not a compound-assignment, we will treat it as initializing the variable
442   // when TransferFunctions visits it. A compound-assignment does not affect
443   // whether a variable is uninitialized, and there's no point counting it as a
444   // use.
445   if (BO->isCompoundAssignmentOp())
446     classify(BO->getLHS(), Use);
447   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
448     classify(BO->getLHS(), Ignore);
449 }
450 
451 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
452   // Increment and decrement are uses despite there being no lvalue-to-rvalue
453   // conversion.
454   if (UO->isIncrementDecrementOp())
455     classify(UO->getSubExpr(), Use);
456 }
457 
458 static bool isPointerToConst(const QualType &QT) {
459   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
460 }
461 
462 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
463   // Classify arguments to std::move as used.
464   if (CE->isCallToStdMove()) {
465     // RecordTypes are handled in SemaDeclCXX.cpp.
466     if (!CE->getArg(0)->getType()->isRecordType())
467       classify(CE->getArg(0), Use);
468     return;
469   }
470 
471   // If a value is passed by const pointer or by const reference to a function,
472   // we should not assume that it is initialized by the call, and we
473   // conservatively do not assume that it is used.
474   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
475        I != E; ++I) {
476     if ((*I)->isGLValue()) {
477       if ((*I)->getType().isConstQualified())
478         classify((*I), Ignore);
479     } else if (isPointerToConst((*I)->getType())) {
480       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
481       const auto *UO = dyn_cast<UnaryOperator>(Ex);
482       if (UO && UO->getOpcode() == UO_AddrOf)
483         Ex = UO->getSubExpr();
484       classify(Ex, Ignore);
485     }
486   }
487 }
488 
489 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
490   if (CE->getCastKind() == CK_LValueToRValue)
491     classify(CE->getSubExpr(), Use);
492   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
493     if (CSE->getType()->isVoidType()) {
494       // Squelch any detected load of an uninitialized value if
495       // we cast it to void.
496       // e.g. (void) x;
497       classify(CSE->getSubExpr(), Ignore);
498     }
499   }
500 }
501 
502 //------------------------------------------------------------------------====//
503 // Transfer function for uninitialized values analysis.
504 //====------------------------------------------------------------------------//
505 
506 namespace {
507 
508 class TransferFunctions : public StmtVisitor<TransferFunctions> {
509   CFGBlockValues &vals;
510   const CFG &cfg;
511   const CFGBlock *block;
512   AnalysisDeclContext &ac;
513   const ClassifyRefs &classification;
514   ObjCNoReturn objCNoRet;
515   UninitVariablesHandler &handler;
516 
517 public:
518   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
519                     const CFGBlock *block, AnalysisDeclContext &ac,
520                     const ClassifyRefs &classification,
521                     UninitVariablesHandler &handler)
522       : vals(vals), cfg(cfg), block(block), ac(ac),
523         classification(classification), objCNoRet(ac.getASTContext()),
524         handler(handler) {}
525 
526   void reportUse(const Expr *ex, const VarDecl *vd);
527 
528   void VisitBinaryOperator(BinaryOperator *bo);
529   void VisitBlockExpr(BlockExpr *be);
530   void VisitCallExpr(CallExpr *ce);
531   void VisitDeclRefExpr(DeclRefExpr *dr);
532   void VisitDeclStmt(DeclStmt *ds);
533   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
534   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
535 
536   bool isTrackedVar(const VarDecl *vd) {
537     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
538   }
539 
540   FindVarResult findVar(const Expr *ex) {
541     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
542   }
543 
544   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
545     UninitUse Use(ex, isAlwaysUninit(v));
546 
547     assert(isUninitialized(v));
548     if (Use.getKind() == UninitUse::Always)
549       return Use;
550 
551     // If an edge which leads unconditionally to this use did not initialize
552     // the variable, we can say something stronger than 'may be uninitialized':
553     // we can say 'either it's used uninitialized or you have dead code'.
554     //
555     // We track the number of successors of a node which have been visited, and
556     // visit a node once we have visited all of its successors. Only edges where
557     // the variable might still be uninitialized are followed. Since a variable
558     // can't transfer from being initialized to being uninitialized, this will
559     // trace out the subgraph which inevitably leads to the use and does not
560     // initialize the variable. We do not want to skip past loops, since their
561     // non-termination might be correlated with the initialization condition.
562     //
563     // For example:
564     //
565     //         void f(bool a, bool b) {
566     // block1:   int n;
567     //           if (a) {
568     // block2:     if (b)
569     // block3:       n = 1;
570     // block4:   } else if (b) {
571     // block5:     while (!a) {
572     // block6:       do_work(&a);
573     //               n = 2;
574     //             }
575     //           }
576     // block7:   if (a)
577     // block8:     g();
578     // block9:   return n;
579     //         }
580     //
581     // Starting from the maybe-uninitialized use in block 9:
582     //  * Block 7 is not visited because we have only visited one of its two
583     //    successors.
584     //  * Block 8 is visited because we've visited its only successor.
585     // From block 8:
586     //  * Block 7 is visited because we've now visited both of its successors.
587     // From block 7:
588     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
589     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
590     //  * Block 3 is not visited because it initializes 'n'.
591     // Now the algorithm terminates, having visited blocks 7 and 8, and having
592     // found the frontier is blocks 2, 4, and 5.
593     //
594     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
595     // and 4), so we report that any time either of those edges is taken (in
596     // each case when 'b == false'), 'n' is used uninitialized.
597     SmallVector<const CFGBlock*, 32> Queue;
598     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
599     Queue.push_back(block);
600     // Specify that we've already visited all successors of the starting block.
601     // This has the dual purpose of ensuring we never add it to the queue, and
602     // of marking it as not being a candidate element of the frontier.
603     SuccsVisited[block->getBlockID()] = block->succ_size();
604     while (!Queue.empty()) {
605       const CFGBlock *B = Queue.pop_back_val();
606 
607       // If the use is always reached from the entry block, make a note of that.
608       if (B == &cfg.getEntry())
609         Use.setUninitAfterCall();
610 
611       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
612            I != E; ++I) {
613         const CFGBlock *Pred = *I;
614         if (!Pred)
615           continue;
616 
617         Value AtPredExit = vals.getValue(Pred, B, vd);
618         if (AtPredExit == Initialized)
619           // This block initializes the variable.
620           continue;
621         if (AtPredExit == MayUninitialized &&
622             vals.getValue(B, nullptr, vd) == Uninitialized) {
623           // This block declares the variable (uninitialized), and is reachable
624           // from a block that initializes the variable. We can't guarantee to
625           // give an earlier location for the diagnostic (and it appears that
626           // this code is intended to be reachable) so give a diagnostic here
627           // and go no further down this path.
628           Use.setUninitAfterDecl();
629           continue;
630         }
631 
632         unsigned &SV = SuccsVisited[Pred->getBlockID()];
633         if (!SV) {
634           // When visiting the first successor of a block, mark all NULL
635           // successors as having been visited.
636           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
637                                              SE = Pred->succ_end();
638                SI != SE; ++SI)
639             if (!*SI)
640               ++SV;
641         }
642 
643         if (++SV == Pred->succ_size())
644           // All paths from this block lead to the use and don't initialize the
645           // variable.
646           Queue.push_back(Pred);
647       }
648     }
649 
650     // Scan the frontier, looking for blocks where the variable was
651     // uninitialized.
652     for (const auto *Block : cfg) {
653       unsigned BlockID = Block->getBlockID();
654       const Stmt *Term = Block->getTerminator();
655       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
656           Term) {
657         // This block inevitably leads to the use. If we have an edge from here
658         // to a post-dominator block, and the variable is uninitialized on that
659         // edge, we have found a bug.
660         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
661              E = Block->succ_end(); I != E; ++I) {
662           const CFGBlock *Succ = *I;
663           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
664               vals.getValue(Block, Succ, vd) == Uninitialized) {
665             // Switch cases are a special case: report the label to the caller
666             // as the 'terminator', not the switch statement itself. Suppress
667             // situations where no label matched: we can't be sure that's
668             // possible.
669             if (isa<SwitchStmt>(Term)) {
670               const Stmt *Label = Succ->getLabel();
671               if (!Label || !isa<SwitchCase>(Label))
672                 // Might not be possible.
673                 continue;
674               UninitUse::Branch Branch;
675               Branch.Terminator = Label;
676               Branch.Output = 0; // Ignored.
677               Use.addUninitBranch(Branch);
678             } else {
679               UninitUse::Branch Branch;
680               Branch.Terminator = Term;
681               Branch.Output = I - Block->succ_begin();
682               Use.addUninitBranch(Branch);
683             }
684           }
685         }
686       }
687     }
688 
689     return Use;
690   }
691 };
692 
693 } // namespace
694 
695 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
696   Value v = vals[vd];
697   if (isUninitialized(v))
698     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
699 }
700 
701 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
702   // This represents an initialization of the 'element' value.
703   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
704     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
705     if (isTrackedVar(VD))
706       vals[VD] = Initialized;
707   }
708 }
709 
710 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
711   const BlockDecl *bd = be->getBlockDecl();
712   for (const auto &I : bd->captures()) {
713     const VarDecl *vd = I.getVariable();
714     if (!isTrackedVar(vd))
715       continue;
716     if (I.isByRef()) {
717       vals[vd] = Initialized;
718       continue;
719     }
720     reportUse(be, vd);
721   }
722 }
723 
724 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
725   if (Decl *Callee = ce->getCalleeDecl()) {
726     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
727       // After a call to a function like setjmp or vfork, any variable which is
728       // initialized anywhere within this function may now be initialized. For
729       // now, just assume such a call initializes all variables.  FIXME: Only
730       // mark variables as initialized if they have an initializer which is
731       // reachable from here.
732       vals.setAllScratchValues(Initialized);
733     }
734     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
735       // Functions labeled like "analyzer_noreturn" are often used to denote
736       // "panic" functions that in special debug situations can still return,
737       // but for the most part should not be treated as returning.  This is a
738       // useful annotation borrowed from the static analyzer that is useful for
739       // suppressing branch-specific false positives when we call one of these
740       // functions but keep pretending the path continues (when in reality the
741       // user doesn't care).
742       vals.setAllScratchValues(Unknown);
743     }
744   }
745 }
746 
747 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
748   switch (classification.get(dr)) {
749   case ClassifyRefs::Ignore:
750     break;
751   case ClassifyRefs::Use:
752     reportUse(dr, cast<VarDecl>(dr->getDecl()));
753     break;
754   case ClassifyRefs::Init:
755     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
756     break;
757   case ClassifyRefs::SelfInit:
758       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
759     break;
760   }
761 }
762 
763 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
764   if (BO->getOpcode() == BO_Assign) {
765     FindVarResult Var = findVar(BO->getLHS());
766     if (const VarDecl *VD = Var.getDecl())
767       vals[VD] = Initialized;
768   }
769 }
770 
771 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
772   for (auto *DI : DS->decls()) {
773     auto *VD = dyn_cast<VarDecl>(DI);
774     if (VD && isTrackedVar(VD)) {
775       if (getSelfInitExpr(VD)) {
776         // If the initializer consists solely of a reference to itself, we
777         // explicitly mark the variable as uninitialized. This allows code
778         // like the following:
779         //
780         //   int x = x;
781         //
782         // to deliberately leave a variable uninitialized. Different analysis
783         // clients can detect this pattern and adjust their reporting
784         // appropriately, but we need to continue to analyze subsequent uses
785         // of the variable.
786         vals[VD] = Uninitialized;
787       } else if (VD->getInit()) {
788         // Treat the new variable as initialized.
789         vals[VD] = Initialized;
790       } else {
791         // No initializer: the variable is now uninitialized. This matters
792         // for cases like:
793         //   while (...) {
794         //     int n;
795         //     use(n);
796         //     n = 0;
797         //   }
798         // FIXME: Mark the variable as uninitialized whenever its scope is
799         // left, since its scope could be re-entered by a jump over the
800         // declaration.
801         vals[VD] = Uninitialized;
802       }
803     }
804   }
805 }
806 
807 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
808   // If the Objective-C message expression is an implicit no-return that
809   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
810   if (objCNoRet.isImplicitNoReturn(ME)) {
811     vals.setAllScratchValues(Unknown);
812   }
813 }
814 
815 //------------------------------------------------------------------------====//
816 // High-level "driver" logic for uninitialized values analysis.
817 //====------------------------------------------------------------------------//
818 
819 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
820                        AnalysisDeclContext &ac, CFGBlockValues &vals,
821                        const ClassifyRefs &classification,
822                        llvm::BitVector &wasAnalyzed,
823                        UninitVariablesHandler &handler) {
824   wasAnalyzed[block->getBlockID()] = true;
825   vals.resetScratch();
826   // Merge in values of predecessor blocks.
827   bool isFirst = true;
828   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
829        E = block->pred_end(); I != E; ++I) {
830     const CFGBlock *pred = *I;
831     if (!pred)
832       continue;
833     if (wasAnalyzed[pred->getBlockID()]) {
834       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
835       isFirst = false;
836     }
837   }
838   // Apply the transfer function.
839   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
840   for (const auto &I : *block) {
841     if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
842       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
843   }
844   return vals.updateValueVectorWithScratch(block);
845 }
846 
847 namespace {
848 
849 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
850 /// to detect when a CFGBlock has any *potential* use of an uninitialized
851 /// variable.  It is mainly used to prune out work during the final
852 /// reporting pass.
853 struct PruneBlocksHandler : public UninitVariablesHandler {
854   /// Records if a CFGBlock had a potential use of an uninitialized variable.
855   llvm::BitVector hadUse;
856 
857   /// Records if any CFGBlock had a potential use of an uninitialized variable.
858   bool hadAnyUse = false;
859 
860   /// The current block to scribble use information.
861   unsigned currentBlock = 0;
862 
863   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
864 
865   ~PruneBlocksHandler() override = default;
866 
867   void handleUseOfUninitVariable(const VarDecl *vd,
868                                  const UninitUse &use) override {
869     hadUse[currentBlock] = true;
870     hadAnyUse = true;
871   }
872 
873   /// Called when the uninitialized variable analysis detects the
874   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
875   /// are handled by handleUseOfUninitVariable.
876   void handleSelfInit(const VarDecl *vd) override {
877     hadUse[currentBlock] = true;
878     hadAnyUse = true;
879   }
880 };
881 
882 } // namespace
883 
884 void clang::runUninitializedVariablesAnalysis(
885     const DeclContext &dc,
886     const CFG &cfg,
887     AnalysisDeclContext &ac,
888     UninitVariablesHandler &handler,
889     UninitVariablesAnalysisStats &stats) {
890   CFGBlockValues vals(cfg);
891   vals.computeSetOfDeclarations(dc);
892   if (vals.hasNoDeclarations())
893     return;
894 
895   stats.NumVariablesAnalyzed = vals.getNumEntries();
896 
897   // Precompute which expressions are uses and which are initializations.
898   ClassifyRefs classification(ac);
899   cfg.VisitBlockStmts(classification);
900 
901   // Mark all variables uninitialized at the entry.
902   const CFGBlock &entry = cfg.getEntry();
903   ValueVector &vec = vals.getValueVector(&entry);
904   const unsigned n = vals.getNumEntries();
905   for (unsigned j = 0; j < n; ++j) {
906     vec[j] = Uninitialized;
907   }
908 
909   // Proceed with the workist.
910   DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
911   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
912   worklist.enqueueSuccessors(&cfg.getEntry());
913   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
914   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
915   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
916 
917   while (const CFGBlock *block = worklist.dequeue()) {
918     PBH.currentBlock = block->getBlockID();
919 
920     // Did the block change?
921     bool changed = runOnBlock(block, cfg, ac, vals,
922                               classification, wasAnalyzed, PBH);
923     ++stats.NumBlockVisits;
924     if (changed || !previouslyVisited[block->getBlockID()])
925       worklist.enqueueSuccessors(block);
926     previouslyVisited[block->getBlockID()] = true;
927   }
928 
929   if (!PBH.hadAnyUse)
930     return;
931 
932   // Run through the blocks one more time, and report uninitialized variables.
933   for (const auto *block : cfg)
934     if (PBH.hadUse[block->getBlockID()]) {
935       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
936       ++stats.NumBlockVisits;
937     }
938 }
939 
940 UninitVariablesHandler::~UninitVariablesHandler() = default;
941