1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements uninitialized values analysis for source-level CFGs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/UninitializedValues.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/OperationKinds.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
27 #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
28 #include "clang/Basic/LLVM.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/PackedVector.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/Support/Casting.h"
37 #include <algorithm>
38 #include <cassert>
39 
40 using namespace clang;
41 
42 #define DEBUG_LOGGING 0
43 
44 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
45   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
46       !vd->isExceptionVariable() && !vd->isInitCapture() &&
47       !vd->isImplicit() && vd->getDeclContext() == dc) {
48     QualType ty = vd->getType();
49     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
50   }
51   return false;
52 }
53 
54 //------------------------------------------------------------------------====//
55 // DeclToIndex: a mapping from Decls we track to value indices.
56 //====------------------------------------------------------------------------//
57 
58 namespace {
59 
60 class DeclToIndex {
61   llvm::DenseMap<const VarDecl *, unsigned> map;
62 
63 public:
64   DeclToIndex() = default;
65 
66   /// Compute the actual mapping from declarations to bits.
67   void computeMap(const DeclContext &dc);
68 
69   /// Return the number of declarations in the map.
70   unsigned size() const { return map.size(); }
71 
72   /// Returns the bit vector index for a given declaration.
73   Optional<unsigned> getValueIndex(const VarDecl *d) const;
74 };
75 
76 } // namespace
77 
78 void DeclToIndex::computeMap(const DeclContext &dc) {
79   unsigned count = 0;
80   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
81                                                E(dc.decls_end());
82   for ( ; I != E; ++I) {
83     const VarDecl *vd = *I;
84     if (isTrackedVar(vd, &dc))
85       map[vd] = count++;
86   }
87 }
88 
89 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
90   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
91   if (I == map.end())
92     return None;
93   return I->second;
94 }
95 
96 //------------------------------------------------------------------------====//
97 // CFGBlockValues: dataflow values for CFG blocks.
98 //====------------------------------------------------------------------------//
99 
100 // These values are defined in such a way that a merge can be done using
101 // a bitwise OR.
102 enum Value { Unknown = 0x0,         /* 00 */
103              Initialized = 0x1,     /* 01 */
104              Uninitialized = 0x2,   /* 10 */
105              MayUninitialized = 0x3 /* 11 */ };
106 
107 static bool isUninitialized(const Value v) {
108   return v >= Uninitialized;
109 }
110 
111 static bool isAlwaysUninit(const Value v) {
112   return v == Uninitialized;
113 }
114 
115 namespace {
116 
117 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
118 
119 class CFGBlockValues {
120   const CFG &cfg;
121   SmallVector<ValueVector, 8> vals;
122   ValueVector scratch;
123   DeclToIndex declToIndex;
124 
125 public:
126   CFGBlockValues(const CFG &cfg);
127 
128   unsigned getNumEntries() const { return declToIndex.size(); }
129 
130   void computeSetOfDeclarations(const DeclContext &dc);
131 
132   ValueVector &getValueVector(const CFGBlock *block) {
133     return vals[block->getBlockID()];
134   }
135 
136   void setAllScratchValues(Value V);
137   void mergeIntoScratch(ValueVector const &source, bool isFirst);
138   bool updateValueVectorWithScratch(const CFGBlock *block);
139 
140   bool hasNoDeclarations() const {
141     return declToIndex.size() == 0;
142   }
143 
144   void resetScratch();
145 
146   ValueVector::reference operator[](const VarDecl *vd);
147 
148   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
149                  const VarDecl *vd) {
150     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
151     assert(idx.hasValue());
152     return getValueVector(block)[idx.getValue()];
153   }
154 };
155 
156 } // namespace
157 
158 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
159 
160 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
161   declToIndex.computeMap(dc);
162   unsigned decls = declToIndex.size();
163   scratch.resize(decls);
164   unsigned n = cfg.getNumBlockIDs();
165   if (!n)
166     return;
167   vals.resize(n);
168   for (auto &val : vals)
169     val.resize(decls);
170 }
171 
172 #if DEBUG_LOGGING
173 static void printVector(const CFGBlock *block, ValueVector &bv,
174                         unsigned num) {
175   llvm::errs() << block->getBlockID() << " :";
176   for (const auto &i : bv)
177     llvm::errs() << ' ' << i;
178   llvm::errs() << " : " << num << '\n';
179 }
180 #endif
181 
182 void CFGBlockValues::setAllScratchValues(Value V) {
183   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
184     scratch[I] = V;
185 }
186 
187 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
188                                       bool isFirst) {
189   if (isFirst)
190     scratch = source;
191   else
192     scratch |= source;
193 }
194 
195 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
196   ValueVector &dst = getValueVector(block);
197   bool changed = (dst != scratch);
198   if (changed)
199     dst = scratch;
200 #if DEBUG_LOGGING
201   printVector(block, scratch, 0);
202 #endif
203   return changed;
204 }
205 
206 void CFGBlockValues::resetScratch() {
207   scratch.reset();
208 }
209 
210 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
211   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
212   assert(idx.hasValue());
213   return scratch[idx.getValue()];
214 }
215 
216 //------------------------------------------------------------------------====//
217 // Classification of DeclRefExprs as use or initialization.
218 //====------------------------------------------------------------------------//
219 
220 namespace {
221 
222 class FindVarResult {
223   const VarDecl *vd;
224   const DeclRefExpr *dr;
225 
226 public:
227   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
228 
229   const DeclRefExpr *getDeclRefExpr() const { return dr; }
230   const VarDecl *getDecl() const { return vd; }
231 };
232 
233 } // namespace
234 
235 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
236   while (Ex) {
237     Ex = Ex->IgnoreParenNoopCasts(C);
238     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
239       if (CE->getCastKind() == CK_LValueBitCast) {
240         Ex = CE->getSubExpr();
241         continue;
242       }
243     }
244     break;
245   }
246   return Ex;
247 }
248 
249 /// If E is an expression comprising a reference to a single variable, find that
250 /// variable.
251 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
252   if (const auto *DRE =
253           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
254     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
255       if (isTrackedVar(VD, DC))
256         return FindVarResult(VD, DRE);
257   return FindVarResult(nullptr, nullptr);
258 }
259 
260 namespace {
261 
262 /// Classify each DeclRefExpr as an initialization or a use. Any
263 /// DeclRefExpr which isn't explicitly classified will be assumed to have
264 /// escaped the analysis and will be treated as an initialization.
265 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
266 public:
267   enum Class {
268     Init,
269     Use,
270     SelfInit,
271     ConstRefUse,
272     Ignore
273   };
274 
275 private:
276   const DeclContext *DC;
277   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
278 
279   bool isTrackedVar(const VarDecl *VD) const {
280     return ::isTrackedVar(VD, DC);
281   }
282 
283   void classify(const Expr *E, Class C);
284 
285 public:
286   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
287 
288   void VisitDeclStmt(DeclStmt *DS);
289   void VisitUnaryOperator(UnaryOperator *UO);
290   void VisitBinaryOperator(BinaryOperator *BO);
291   void VisitCallExpr(CallExpr *CE);
292   void VisitCastExpr(CastExpr *CE);
293   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
294 
295   void operator()(Stmt *S) { Visit(S); }
296 
297   Class get(const DeclRefExpr *DRE) const {
298     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
299         = Classification.find(DRE);
300     if (I != Classification.end())
301       return I->second;
302 
303     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
304     if (!VD || !isTrackedVar(VD))
305       return Ignore;
306 
307     return Init;
308   }
309 };
310 
311 } // namespace
312 
313 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
314   if (VD->getType()->isRecordType())
315     return nullptr;
316   if (Expr *Init = VD->getInit()) {
317     const auto *DRE =
318         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
319     if (DRE && DRE->getDecl() == VD)
320       return DRE;
321   }
322   return nullptr;
323 }
324 
325 void ClassifyRefs::classify(const Expr *E, Class C) {
326   // The result of a ?: could also be an lvalue.
327   E = E->IgnoreParens();
328   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
329     classify(CO->getTrueExpr(), C);
330     classify(CO->getFalseExpr(), C);
331     return;
332   }
333 
334   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
335     classify(BCO->getFalseExpr(), C);
336     return;
337   }
338 
339   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
340     classify(OVE->getSourceExpr(), C);
341     return;
342   }
343 
344   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
345     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
346       if (!VD->isStaticDataMember())
347         classify(ME->getBase(), C);
348     }
349     return;
350   }
351 
352   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
353     switch (BO->getOpcode()) {
354     case BO_PtrMemD:
355     case BO_PtrMemI:
356       classify(BO->getLHS(), C);
357       return;
358     case BO_Comma:
359       classify(BO->getRHS(), C);
360       return;
361     default:
362       return;
363     }
364   }
365 
366   FindVarResult Var = findVar(E, DC);
367   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
368     Classification[DRE] = std::max(Classification[DRE], C);
369 }
370 
371 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
372   for (auto *DI : DS->decls()) {
373     auto *VD = dyn_cast<VarDecl>(DI);
374     if (VD && isTrackedVar(VD))
375       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
376         Classification[DRE] = SelfInit;
377   }
378 }
379 
380 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
381   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
382   // is not a compound-assignment, we will treat it as initializing the variable
383   // when TransferFunctions visits it. A compound-assignment does not affect
384   // whether a variable is uninitialized, and there's no point counting it as a
385   // use.
386   if (BO->isCompoundAssignmentOp())
387     classify(BO->getLHS(), Use);
388   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
389     classify(BO->getLHS(), Ignore);
390 }
391 
392 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
393   // Increment and decrement are uses despite there being no lvalue-to-rvalue
394   // conversion.
395   if (UO->isIncrementDecrementOp())
396     classify(UO->getSubExpr(), Use);
397 }
398 
399 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
400   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
401     classify(cast<Expr>(S), Use);
402 }
403 
404 static bool isPointerToConst(const QualType &QT) {
405   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
406 }
407 
408 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
409   // Classify arguments to std::move as used.
410   if (CE->isCallToStdMove()) {
411     // RecordTypes are handled in SemaDeclCXX.cpp.
412     if (!CE->getArg(0)->getType()->isRecordType())
413       classify(CE->getArg(0), Use);
414     return;
415   }
416 
417   // If a value is passed by const pointer to a function,
418   // we should not assume that it is initialized by the call, and we
419   // conservatively do not assume that it is used.
420   // If a value is passed by const reference to a function,
421   // it should already be initialized.
422   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
423        I != E; ++I) {
424     if ((*I)->isGLValue()) {
425       if ((*I)->getType().isConstQualified())
426         classify((*I), ConstRefUse);
427     } else if (isPointerToConst((*I)->getType())) {
428       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
429       const auto *UO = dyn_cast<UnaryOperator>(Ex);
430       if (UO && UO->getOpcode() == UO_AddrOf)
431         Ex = UO->getSubExpr();
432       classify(Ex, Ignore);
433     }
434   }
435 }
436 
437 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
438   if (CE->getCastKind() == CK_LValueToRValue)
439     classify(CE->getSubExpr(), Use);
440   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
441     if (CSE->getType()->isVoidType()) {
442       // Squelch any detected load of an uninitialized value if
443       // we cast it to void.
444       // e.g. (void) x;
445       classify(CSE->getSubExpr(), Ignore);
446     }
447   }
448 }
449 
450 //------------------------------------------------------------------------====//
451 // Transfer function for uninitialized values analysis.
452 //====------------------------------------------------------------------------//
453 
454 namespace {
455 
456 class TransferFunctions : public StmtVisitor<TransferFunctions> {
457   CFGBlockValues &vals;
458   const CFG &cfg;
459   const CFGBlock *block;
460   AnalysisDeclContext &ac;
461   const ClassifyRefs &classification;
462   ObjCNoReturn objCNoRet;
463   UninitVariablesHandler &handler;
464 
465 public:
466   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
467                     const CFGBlock *block, AnalysisDeclContext &ac,
468                     const ClassifyRefs &classification,
469                     UninitVariablesHandler &handler)
470       : vals(vals), cfg(cfg), block(block), ac(ac),
471         classification(classification), objCNoRet(ac.getASTContext()),
472         handler(handler) {}
473 
474   void reportUse(const Expr *ex, const VarDecl *vd);
475   void reportConstRefUse(const Expr *ex, const VarDecl *vd);
476 
477   void VisitBinaryOperator(BinaryOperator *bo);
478   void VisitBlockExpr(BlockExpr *be);
479   void VisitCallExpr(CallExpr *ce);
480   void VisitDeclRefExpr(DeclRefExpr *dr);
481   void VisitDeclStmt(DeclStmt *ds);
482   void VisitGCCAsmStmt(GCCAsmStmt *as);
483   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
484   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
485   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
486 
487   bool isTrackedVar(const VarDecl *vd) {
488     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
489   }
490 
491   FindVarResult findVar(const Expr *ex) {
492     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
493   }
494 
495   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
496     UninitUse Use(ex, isAlwaysUninit(v));
497 
498     assert(isUninitialized(v));
499     if (Use.getKind() == UninitUse::Always)
500       return Use;
501 
502     // If an edge which leads unconditionally to this use did not initialize
503     // the variable, we can say something stronger than 'may be uninitialized':
504     // we can say 'either it's used uninitialized or you have dead code'.
505     //
506     // We track the number of successors of a node which have been visited, and
507     // visit a node once we have visited all of its successors. Only edges where
508     // the variable might still be uninitialized are followed. Since a variable
509     // can't transfer from being initialized to being uninitialized, this will
510     // trace out the subgraph which inevitably leads to the use and does not
511     // initialize the variable. We do not want to skip past loops, since their
512     // non-termination might be correlated with the initialization condition.
513     //
514     // For example:
515     //
516     //         void f(bool a, bool b) {
517     // block1:   int n;
518     //           if (a) {
519     // block2:     if (b)
520     // block3:       n = 1;
521     // block4:   } else if (b) {
522     // block5:     while (!a) {
523     // block6:       do_work(&a);
524     //               n = 2;
525     //             }
526     //           }
527     // block7:   if (a)
528     // block8:     g();
529     // block9:   return n;
530     //         }
531     //
532     // Starting from the maybe-uninitialized use in block 9:
533     //  * Block 7 is not visited because we have only visited one of its two
534     //    successors.
535     //  * Block 8 is visited because we've visited its only successor.
536     // From block 8:
537     //  * Block 7 is visited because we've now visited both of its successors.
538     // From block 7:
539     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
540     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
541     //  * Block 3 is not visited because it initializes 'n'.
542     // Now the algorithm terminates, having visited blocks 7 and 8, and having
543     // found the frontier is blocks 2, 4, and 5.
544     //
545     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
546     // and 4), so we report that any time either of those edges is taken (in
547     // each case when 'b == false'), 'n' is used uninitialized.
548     SmallVector<const CFGBlock*, 32> Queue;
549     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
550     Queue.push_back(block);
551     // Specify that we've already visited all successors of the starting block.
552     // This has the dual purpose of ensuring we never add it to the queue, and
553     // of marking it as not being a candidate element of the frontier.
554     SuccsVisited[block->getBlockID()] = block->succ_size();
555     while (!Queue.empty()) {
556       const CFGBlock *B = Queue.pop_back_val();
557 
558       // If the use is always reached from the entry block, make a note of that.
559       if (B == &cfg.getEntry())
560         Use.setUninitAfterCall();
561 
562       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
563            I != E; ++I) {
564         const CFGBlock *Pred = *I;
565         if (!Pred)
566           continue;
567 
568         Value AtPredExit = vals.getValue(Pred, B, vd);
569         if (AtPredExit == Initialized)
570           // This block initializes the variable.
571           continue;
572         if (AtPredExit == MayUninitialized &&
573             vals.getValue(B, nullptr, vd) == Uninitialized) {
574           // This block declares the variable (uninitialized), and is reachable
575           // from a block that initializes the variable. We can't guarantee to
576           // give an earlier location for the diagnostic (and it appears that
577           // this code is intended to be reachable) so give a diagnostic here
578           // and go no further down this path.
579           Use.setUninitAfterDecl();
580           continue;
581         }
582 
583         if (AtPredExit == MayUninitialized) {
584           // If the predecessor's terminator is an "asm goto" that initializes
585           // the variable, then it won't be counted as "initialized" on the
586           // non-fallthrough paths.
587           CFGTerminator term = Pred->getTerminator();
588           if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
589             const CFGBlock *fallthrough = *Pred->succ_begin();
590             if (as->isAsmGoto() &&
591                 llvm::any_of(as->outputs(), [&](const Expr *output) {
592                     return vd == findVar(output).getDecl() &&
593                         llvm::any_of(as->labels(),
594                                      [&](const AddrLabelExpr *label) {
595                           return label->getLabel()->getStmt() == B->Label &&
596                               B != fallthrough;
597                         });
598                 })) {
599               Use.setUninitAfterDecl();
600               continue;
601             }
602           }
603         }
604 
605         unsigned &SV = SuccsVisited[Pred->getBlockID()];
606         if (!SV) {
607           // When visiting the first successor of a block, mark all NULL
608           // successors as having been visited.
609           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
610                                              SE = Pred->succ_end();
611                SI != SE; ++SI)
612             if (!*SI)
613               ++SV;
614         }
615 
616         if (++SV == Pred->succ_size())
617           // All paths from this block lead to the use and don't initialize the
618           // variable.
619           Queue.push_back(Pred);
620       }
621     }
622 
623     // Scan the frontier, looking for blocks where the variable was
624     // uninitialized.
625     for (const auto *Block : cfg) {
626       unsigned BlockID = Block->getBlockID();
627       const Stmt *Term = Block->getTerminatorStmt();
628       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
629           Term) {
630         // This block inevitably leads to the use. If we have an edge from here
631         // to a post-dominator block, and the variable is uninitialized on that
632         // edge, we have found a bug.
633         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
634              E = Block->succ_end(); I != E; ++I) {
635           const CFGBlock *Succ = *I;
636           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
637               vals.getValue(Block, Succ, vd) == Uninitialized) {
638             // Switch cases are a special case: report the label to the caller
639             // as the 'terminator', not the switch statement itself. Suppress
640             // situations where no label matched: we can't be sure that's
641             // possible.
642             if (isa<SwitchStmt>(Term)) {
643               const Stmt *Label = Succ->getLabel();
644               if (!Label || !isa<SwitchCase>(Label))
645                 // Might not be possible.
646                 continue;
647               UninitUse::Branch Branch;
648               Branch.Terminator = Label;
649               Branch.Output = 0; // Ignored.
650               Use.addUninitBranch(Branch);
651             } else {
652               UninitUse::Branch Branch;
653               Branch.Terminator = Term;
654               Branch.Output = I - Block->succ_begin();
655               Use.addUninitBranch(Branch);
656             }
657           }
658         }
659       }
660     }
661 
662     return Use;
663   }
664 };
665 
666 } // namespace
667 
668 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
669   Value v = vals[vd];
670   if (isUninitialized(v))
671     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
672 }
673 
674 void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) {
675   Value v = vals[vd];
676   if (isAlwaysUninit(v))
677     handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
678 }
679 
680 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
681   // This represents an initialization of the 'element' value.
682   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
683     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
684     if (isTrackedVar(VD))
685       vals[VD] = Initialized;
686   }
687 }
688 
689 void TransferFunctions::VisitOMPExecutableDirective(
690     OMPExecutableDirective *ED) {
691   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
692     assert(S && "Expected non-null used-in-clause child.");
693     Visit(S);
694   }
695   if (!ED->isStandaloneDirective())
696     Visit(ED->getStructuredBlock());
697 }
698 
699 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
700   const BlockDecl *bd = be->getBlockDecl();
701   for (const auto &I : bd->captures()) {
702     const VarDecl *vd = I.getVariable();
703     if (!isTrackedVar(vd))
704       continue;
705     if (I.isByRef()) {
706       vals[vd] = Initialized;
707       continue;
708     }
709     reportUse(be, vd);
710   }
711 }
712 
713 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
714   if (Decl *Callee = ce->getCalleeDecl()) {
715     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
716       // After a call to a function like setjmp or vfork, any variable which is
717       // initialized anywhere within this function may now be initialized. For
718       // now, just assume such a call initializes all variables.  FIXME: Only
719       // mark variables as initialized if they have an initializer which is
720       // reachable from here.
721       vals.setAllScratchValues(Initialized);
722     }
723     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
724       // Functions labeled like "analyzer_noreturn" are often used to denote
725       // "panic" functions that in special debug situations can still return,
726       // but for the most part should not be treated as returning.  This is a
727       // useful annotation borrowed from the static analyzer that is useful for
728       // suppressing branch-specific false positives when we call one of these
729       // functions but keep pretending the path continues (when in reality the
730       // user doesn't care).
731       vals.setAllScratchValues(Unknown);
732     }
733   }
734 }
735 
736 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
737   switch (classification.get(dr)) {
738   case ClassifyRefs::Ignore:
739     break;
740   case ClassifyRefs::Use:
741     reportUse(dr, cast<VarDecl>(dr->getDecl()));
742     break;
743   case ClassifyRefs::Init:
744     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
745     break;
746   case ClassifyRefs::SelfInit:
747     handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
748     break;
749   case ClassifyRefs::ConstRefUse:
750     reportConstRefUse(dr, cast<VarDecl>(dr->getDecl()));
751     break;
752   }
753 }
754 
755 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
756   if (BO->getOpcode() == BO_Assign) {
757     FindVarResult Var = findVar(BO->getLHS());
758     if (const VarDecl *VD = Var.getDecl())
759       vals[VD] = Initialized;
760   }
761 }
762 
763 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
764   for (auto *DI : DS->decls()) {
765     auto *VD = dyn_cast<VarDecl>(DI);
766     if (VD && isTrackedVar(VD)) {
767       if (getSelfInitExpr(VD)) {
768         // If the initializer consists solely of a reference to itself, we
769         // explicitly mark the variable as uninitialized. This allows code
770         // like the following:
771         //
772         //   int x = x;
773         //
774         // to deliberately leave a variable uninitialized. Different analysis
775         // clients can detect this pattern and adjust their reporting
776         // appropriately, but we need to continue to analyze subsequent uses
777         // of the variable.
778         vals[VD] = Uninitialized;
779       } else if (VD->getInit()) {
780         // Treat the new variable as initialized.
781         vals[VD] = Initialized;
782       } else {
783         // No initializer: the variable is now uninitialized. This matters
784         // for cases like:
785         //   while (...) {
786         //     int n;
787         //     use(n);
788         //     n = 0;
789         //   }
790         // FIXME: Mark the variable as uninitialized whenever its scope is
791         // left, since its scope could be re-entered by a jump over the
792         // declaration.
793         vals[VD] = Uninitialized;
794       }
795     }
796   }
797 }
798 
799 void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
800   // An "asm goto" statement is a terminator that may initialize some variables.
801   if (!as->isAsmGoto())
802     return;
803 
804   for (const Expr *o : as->outputs())
805     if (const VarDecl *VD = findVar(o).getDecl())
806       if (vals[VD] != Initialized)
807         // If the variable isn't initialized by the time we get here, then we
808         // mark it as potentially uninitialized for those cases where it's used
809         // on an indirect path, where it's not guaranteed to be defined.
810         vals[VD] = MayUninitialized;
811 }
812 
813 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
814   // If the Objective-C message expression is an implicit no-return that
815   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
816   if (objCNoRet.isImplicitNoReturn(ME)) {
817     vals.setAllScratchValues(Unknown);
818   }
819 }
820 
821 //------------------------------------------------------------------------====//
822 // High-level "driver" logic for uninitialized values analysis.
823 //====------------------------------------------------------------------------//
824 
825 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
826                        AnalysisDeclContext &ac, CFGBlockValues &vals,
827                        const ClassifyRefs &classification,
828                        llvm::BitVector &wasAnalyzed,
829                        UninitVariablesHandler &handler) {
830   wasAnalyzed[block->getBlockID()] = true;
831   vals.resetScratch();
832   // Merge in values of predecessor blocks.
833   bool isFirst = true;
834   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
835        E = block->pred_end(); I != E; ++I) {
836     const CFGBlock *pred = *I;
837     if (!pred)
838       continue;
839     if (wasAnalyzed[pred->getBlockID()]) {
840       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
841       isFirst = false;
842     }
843   }
844   // Apply the transfer function.
845   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
846   for (const auto &I : *block) {
847     if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
848       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
849   }
850   CFGTerminator terminator = block->getTerminator();
851   if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
852     if (as->isAsmGoto())
853       tf.Visit(as);
854   return vals.updateValueVectorWithScratch(block);
855 }
856 
857 namespace {
858 
859 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
860 /// to detect when a CFGBlock has any *potential* use of an uninitialized
861 /// variable.  It is mainly used to prune out work during the final
862 /// reporting pass.
863 struct PruneBlocksHandler : public UninitVariablesHandler {
864   /// Records if a CFGBlock had a potential use of an uninitialized variable.
865   llvm::BitVector hadUse;
866 
867   /// Records if any CFGBlock had a potential use of an uninitialized variable.
868   bool hadAnyUse = false;
869 
870   /// The current block to scribble use information.
871   unsigned currentBlock = 0;
872 
873   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
874 
875   ~PruneBlocksHandler() override = default;
876 
877   void handleUseOfUninitVariable(const VarDecl *vd,
878                                  const UninitUse &use) override {
879     hadUse[currentBlock] = true;
880     hadAnyUse = true;
881   }
882 
883   void handleConstRefUseOfUninitVariable(const VarDecl *vd,
884                                          const UninitUse &use) override {
885     hadUse[currentBlock] = true;
886     hadAnyUse = true;
887   }
888 
889   /// Called when the uninitialized variable analysis detects the
890   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
891   /// are handled by handleUseOfUninitVariable.
892   void handleSelfInit(const VarDecl *vd) override {
893     hadUse[currentBlock] = true;
894     hadAnyUse = true;
895   }
896 };
897 
898 } // namespace
899 
900 void clang::runUninitializedVariablesAnalysis(
901     const DeclContext &dc,
902     const CFG &cfg,
903     AnalysisDeclContext &ac,
904     UninitVariablesHandler &handler,
905     UninitVariablesAnalysisStats &stats) {
906   CFGBlockValues vals(cfg);
907   vals.computeSetOfDeclarations(dc);
908   if (vals.hasNoDeclarations())
909     return;
910 
911   stats.NumVariablesAnalyzed = vals.getNumEntries();
912 
913   // Precompute which expressions are uses and which are initializations.
914   ClassifyRefs classification(ac);
915   cfg.VisitBlockStmts(classification);
916 
917   // Mark all variables uninitialized at the entry.
918   const CFGBlock &entry = cfg.getEntry();
919   ValueVector &vec = vals.getValueVector(&entry);
920   const unsigned n = vals.getNumEntries();
921   for (unsigned j = 0; j < n; ++j) {
922     vec[j] = Uninitialized;
923   }
924 
925   // Proceed with the workist.
926   ForwardDataflowWorklist worklist(cfg, ac);
927   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
928   worklist.enqueueSuccessors(&cfg.getEntry());
929   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
930   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
931   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
932 
933   while (const CFGBlock *block = worklist.dequeue()) {
934     PBH.currentBlock = block->getBlockID();
935 
936     // Did the block change?
937     bool changed = runOnBlock(block, cfg, ac, vals,
938                               classification, wasAnalyzed, PBH);
939     ++stats.NumBlockVisits;
940     if (changed || !previouslyVisited[block->getBlockID()])
941       worklist.enqueueSuccessors(block);
942     previouslyVisited[block->getBlockID()] = true;
943   }
944 
945   if (!PBH.hadAnyUse)
946     return;
947 
948   // Run through the blocks one more time, and report uninitialized variables.
949   for (const auto *block : cfg)
950     if (PBH.hadUse[block->getBlockID()]) {
951       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
952       ++stats.NumBlockVisits;
953     }
954 }
955 
956 UninitVariablesHandler::~UninitVariablesHandler() = default;
957