1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 23 #include "clang/Analysis/AnalysisContext.h" 24 #include "clang/Analysis/CFG.h" 25 #include "clang/Basic/OperatorKinds.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/StringRef.h" 31 32 #include <algorithm> 33 #include <climits> 34 #include <vector> 35 36 37 namespace clang { 38 namespace threadSafety { 39 40 // From ThreadSafetyUtil.h 41 std::string getSourceLiteralString(const clang::Expr *CE) { 42 switch (CE->getStmtClass()) { 43 case Stmt::IntegerLiteralClass: 44 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 45 case Stmt::StringLiteralClass: { 46 std::string ret("\""); 47 ret += cast<StringLiteral>(CE)->getString(); 48 ret += "\""; 49 return ret; 50 } 51 case Stmt::CharacterLiteralClass: 52 case Stmt::CXXNullPtrLiteralExprClass: 53 case Stmt::GNUNullExprClass: 54 case Stmt::CXXBoolLiteralExprClass: 55 case Stmt::FloatingLiteralClass: 56 case Stmt::ImaginaryLiteralClass: 57 case Stmt::ObjCStringLiteralClass: 58 default: 59 return "#lit"; 60 } 61 } 62 63 namespace til { 64 65 // Return true if E is a variable that points to an incomplete Phi node. 66 static bool isIncompletePhi(const SExpr *E) { 67 if (const auto *Ph = dyn_cast<Phi>(E)) 68 return Ph->status() == Phi::PH_Incomplete; 69 return false; 70 } 71 72 } // end namespace til 73 74 75 typedef SExprBuilder::CallingContext CallingContext; 76 77 78 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 79 auto It = SMap.find(S); 80 if (It != SMap.end()) 81 return It->second; 82 return nullptr; 83 } 84 85 86 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 87 Walker.walk(*this); 88 return Scfg; 89 } 90 91 92 93 inline bool isCalleeArrow(const Expr *E) { 94 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 95 return ME ? ME->isArrow() : false; 96 } 97 98 99 /// \brief Translate a clang expression in an attribute to a til::SExpr. 100 /// Constructs the context from D, DeclExp, and SelfDecl. 101 /// 102 /// \param AttrExp The expression to translate. 103 /// \param D The declaration to which the attribute is attached. 104 /// \param DeclExp An expression involving the Decl to which the attribute 105 /// is attached. E.g. the call to a function. 106 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 107 const NamedDecl *D, 108 const Expr *DeclExp, 109 VarDecl *SelfDecl) { 110 // If we are processing a raw attribute expression, with no substitutions. 111 if (!DeclExp) 112 return translateAttrExpr(AttrExp, nullptr); 113 114 CallingContext Ctx(nullptr, D); 115 116 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 117 // for formal parameters when we call buildMutexID later. 118 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 119 Ctx.SelfArg = ME->getBase(); 120 Ctx.SelfArrow = ME->isArrow(); 121 } else if (const CXXMemberCallExpr *CE = 122 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 123 Ctx.SelfArg = CE->getImplicitObjectArgument(); 124 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 125 Ctx.NumArgs = CE->getNumArgs(); 126 Ctx.FunArgs = CE->getArgs(); 127 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 128 Ctx.NumArgs = CE->getNumArgs(); 129 Ctx.FunArgs = CE->getArgs(); 130 } else if (const CXXConstructExpr *CE = 131 dyn_cast<CXXConstructExpr>(DeclExp)) { 132 Ctx.SelfArg = nullptr; // Will be set below 133 Ctx.NumArgs = CE->getNumArgs(); 134 Ctx.FunArgs = CE->getArgs(); 135 } else if (D && isa<CXXDestructorDecl>(D)) { 136 // There's no such thing as a "destructor call" in the AST. 137 Ctx.SelfArg = DeclExp; 138 } 139 140 // Hack to handle constructors, where self cannot be recovered from 141 // the expression. 142 if (SelfDecl && !Ctx.SelfArg) { 143 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 144 SelfDecl->getLocation()); 145 Ctx.SelfArg = &SelfDRE; 146 147 // If the attribute has no arguments, then assume the argument is "this". 148 if (!AttrExp) 149 return translateAttrExpr(Ctx.SelfArg, nullptr); 150 else // For most attributes. 151 return translateAttrExpr(AttrExp, &Ctx); 152 } 153 154 // If the attribute has no arguments, then assume the argument is "this". 155 if (!AttrExp) 156 return translateAttrExpr(Ctx.SelfArg, nullptr); 157 else // For most attributes. 158 return translateAttrExpr(AttrExp, &Ctx); 159 } 160 161 162 /// \brief Translate a clang expression in an attribute to a til::SExpr. 163 // This assumes a CallingContext has already been created. 164 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 165 CallingContext *Ctx) { 166 if (!AttrExp) 167 return CapabilityExpr(nullptr, false); 168 169 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 170 if (SLit->getString() == StringRef("*")) 171 // The "*" expr is a universal lock, which essentially turns off 172 // checks until it is removed from the lockset. 173 return CapabilityExpr(new (Arena) til::Wildcard(), false); 174 else 175 // Ignore other string literals for now. 176 return CapabilityExpr(nullptr, false); 177 } 178 179 bool Neg = false; 180 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 181 if (OE->getOperator() == OO_Exclaim) { 182 Neg = true; 183 AttrExp = OE->getArg(0); 184 } 185 } 186 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 187 if (UO->getOpcode() == UO_LNot) { 188 Neg = true; 189 AttrExp = UO->getSubExpr(); 190 } 191 } 192 193 til::SExpr *E = translate(AttrExp, Ctx); 194 195 // Trap mutex expressions like nullptr, or 0. 196 // Any literal value is nonsense. 197 if (!E || isa<til::Literal>(E)) 198 return CapabilityExpr(nullptr, false); 199 200 // Hack to deal with smart pointers -- strip off top-level pointer casts. 201 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { 202 if (CE->castOpcode() == til::CAST_objToPtr) 203 return CapabilityExpr(CE->expr(), Neg); 204 } 205 return CapabilityExpr(E, Neg); 206 } 207 208 209 210 // Translate a clang statement or expression to a TIL expression. 211 // Also performs substitution of variables; Ctx provides the context. 212 // Dispatches on the type of S. 213 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 214 if (!S) 215 return nullptr; 216 217 // Check if S has already been translated and cached. 218 // This handles the lookup of SSA names for DeclRefExprs here. 219 if (til::SExpr *E = lookupStmt(S)) 220 return E; 221 222 switch (S->getStmtClass()) { 223 case Stmt::DeclRefExprClass: 224 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 225 case Stmt::CXXThisExprClass: 226 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 227 case Stmt::MemberExprClass: 228 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 229 case Stmt::CallExprClass: 230 return translateCallExpr(cast<CallExpr>(S), Ctx); 231 case Stmt::CXXMemberCallExprClass: 232 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 233 case Stmt::CXXOperatorCallExprClass: 234 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 235 case Stmt::UnaryOperatorClass: 236 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 237 case Stmt::BinaryOperatorClass: 238 case Stmt::CompoundAssignOperatorClass: 239 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 240 241 case Stmt::ArraySubscriptExprClass: 242 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 243 case Stmt::ConditionalOperatorClass: 244 return translateAbstractConditionalOperator( 245 cast<ConditionalOperator>(S), Ctx); 246 case Stmt::BinaryConditionalOperatorClass: 247 return translateAbstractConditionalOperator( 248 cast<BinaryConditionalOperator>(S), Ctx); 249 250 // We treat these as no-ops 251 case Stmt::ParenExprClass: 252 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 253 case Stmt::ExprWithCleanupsClass: 254 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 255 case Stmt::CXXBindTemporaryExprClass: 256 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 257 258 // Collect all literals 259 case Stmt::CharacterLiteralClass: 260 case Stmt::CXXNullPtrLiteralExprClass: 261 case Stmt::GNUNullExprClass: 262 case Stmt::CXXBoolLiteralExprClass: 263 case Stmt::FloatingLiteralClass: 264 case Stmt::ImaginaryLiteralClass: 265 case Stmt::IntegerLiteralClass: 266 case Stmt::StringLiteralClass: 267 case Stmt::ObjCStringLiteralClass: 268 return new (Arena) til::Literal(cast<Expr>(S)); 269 270 case Stmt::DeclStmtClass: 271 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 272 default: 273 break; 274 } 275 if (const CastExpr *CE = dyn_cast<CastExpr>(S)) 276 return translateCastExpr(CE, Ctx); 277 278 return new (Arena) til::Undefined(S); 279 } 280 281 282 283 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 284 CallingContext *Ctx) { 285 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 286 287 // Function parameters require substitution and/or renaming. 288 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 289 const FunctionDecl *FD = 290 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 291 unsigned I = PV->getFunctionScopeIndex(); 292 293 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 294 // Substitute call arguments for references to function parameters 295 assert(I < Ctx->NumArgs); 296 return translate(Ctx->FunArgs[I], Ctx->Prev); 297 } 298 // Map the param back to the param of the original function declaration 299 // for consistent comparisons. 300 VD = FD->getParamDecl(I); 301 } 302 303 // For non-local variables, treat it as a referenced to a named object. 304 return new (Arena) til::LiteralPtr(VD); 305 } 306 307 308 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 309 CallingContext *Ctx) { 310 // Substitute for 'this' 311 if (Ctx && Ctx->SelfArg) 312 return translate(Ctx->SelfArg, Ctx->Prev); 313 assert(SelfVar && "We have no variable for 'this'!"); 314 return SelfVar; 315 } 316 317 318 const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 319 if (auto *V = dyn_cast<til::Variable>(E)) 320 return V->clangDecl(); 321 if (auto *Ph = dyn_cast<til::Phi>(E)) 322 return Ph->clangDecl(); 323 if (auto *P = dyn_cast<til::Project>(E)) 324 return P->clangDecl(); 325 if (auto *L = dyn_cast<til::LiteralPtr>(E)) 326 return L->clangDecl(); 327 return 0; 328 } 329 330 bool hasCppPointerType(const til::SExpr *E) { 331 auto *VD = getValueDeclFromSExpr(E); 332 if (VD && VD->getType()->isPointerType()) 333 return true; 334 if (auto *C = dyn_cast<til::Cast>(E)) 335 return C->castOpcode() == til::CAST_objToPtr; 336 337 return false; 338 } 339 340 341 // Grab the very first declaration of virtual method D 342 const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) { 343 while (true) { 344 D = D->getCanonicalDecl(); 345 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), 346 E = D->end_overridden_methods(); 347 if (I == E) 348 return D; // Method does not override anything 349 D = *I; // FIXME: this does not work with multiple inheritance. 350 } 351 return nullptr; 352 } 353 354 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 355 CallingContext *Ctx) { 356 til::SExpr *BE = translate(ME->getBase(), Ctx); 357 til::SExpr *E = new (Arena) til::SApply(BE); 358 359 const ValueDecl *D = ME->getMemberDecl(); 360 if (auto *VD = dyn_cast<CXXMethodDecl>(D)) 361 D = getFirstVirtualDecl(VD); 362 363 til::Project *P = new (Arena) til::Project(E, D); 364 if (hasCppPointerType(BE)) 365 P->setArrow(true); 366 return P; 367 } 368 369 370 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 371 CallingContext *Ctx, 372 const Expr *SelfE) { 373 if (CapabilityExprMode) { 374 // Handle LOCK_RETURNED 375 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 376 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 377 CallingContext LRCallCtx(Ctx); 378 LRCallCtx.AttrDecl = CE->getDirectCallee(); 379 LRCallCtx.SelfArg = SelfE; 380 LRCallCtx.NumArgs = CE->getNumArgs(); 381 LRCallCtx.FunArgs = CE->getArgs(); 382 return const_cast<til::SExpr*>( 383 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 384 } 385 } 386 387 til::SExpr *E = translate(CE->getCallee(), Ctx); 388 for (const auto *Arg : CE->arguments()) { 389 til::SExpr *A = translate(Arg, Ctx); 390 E = new (Arena) til::Apply(E, A); 391 } 392 return new (Arena) til::Call(E, CE); 393 } 394 395 396 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 397 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 398 if (CapabilityExprMode) { 399 // Ignore calls to get() on smart pointers. 400 if (ME->getMethodDecl()->getNameAsString() == "get" && 401 ME->getNumArgs() == 0) { 402 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 403 return new (Arena) til::Cast(til::CAST_objToPtr, E); 404 // return E; 405 } 406 } 407 return translateCallExpr(cast<CallExpr>(ME), Ctx, 408 ME->getImplicitObjectArgument()); 409 } 410 411 412 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 413 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 414 if (CapabilityExprMode) { 415 // Ignore operator * and operator -> on smart pointers. 416 OverloadedOperatorKind k = OCE->getOperator(); 417 if (k == OO_Star || k == OO_Arrow) { 418 auto *E = translate(OCE->getArg(0), Ctx); 419 return new (Arena) til::Cast(til::CAST_objToPtr, E); 420 // return E; 421 } 422 } 423 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 424 } 425 426 427 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 428 CallingContext *Ctx) { 429 switch (UO->getOpcode()) { 430 case UO_PostInc: 431 case UO_PostDec: 432 case UO_PreInc: 433 case UO_PreDec: 434 return new (Arena) til::Undefined(UO); 435 436 case UO_AddrOf: { 437 if (CapabilityExprMode) { 438 // interpret &Graph::mu_ as an existential. 439 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 440 if (DRE->getDecl()->isCXXInstanceMember()) { 441 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 442 // We interpret this syntax specially, as a wildcard. 443 auto *W = new (Arena) til::Wildcard(); 444 return new (Arena) til::Project(W, DRE->getDecl()); 445 } 446 } 447 } 448 // otherwise, & is a no-op 449 return translate(UO->getSubExpr(), Ctx); 450 } 451 452 // We treat these as no-ops 453 case UO_Deref: 454 case UO_Plus: 455 return translate(UO->getSubExpr(), Ctx); 456 457 case UO_Minus: 458 return new (Arena) 459 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 460 case UO_Not: 461 return new (Arena) 462 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 463 case UO_LNot: 464 return new (Arena) 465 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 466 467 // Currently unsupported 468 case UO_Real: 469 case UO_Imag: 470 case UO_Extension: 471 return new (Arena) til::Undefined(UO); 472 } 473 return new (Arena) til::Undefined(UO); 474 } 475 476 477 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 478 const BinaryOperator *BO, 479 CallingContext *Ctx, bool Reverse) { 480 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 481 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 482 if (Reverse) 483 return new (Arena) til::BinaryOp(Op, E1, E0); 484 else 485 return new (Arena) til::BinaryOp(Op, E0, E1); 486 } 487 488 489 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 490 const BinaryOperator *BO, 491 CallingContext *Ctx, 492 bool Assign) { 493 const Expr *LHS = BO->getLHS(); 494 const Expr *RHS = BO->getRHS(); 495 til::SExpr *E0 = translate(LHS, Ctx); 496 til::SExpr *E1 = translate(RHS, Ctx); 497 498 const ValueDecl *VD = nullptr; 499 til::SExpr *CV = nullptr; 500 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { 501 VD = DRE->getDecl(); 502 CV = lookupVarDecl(VD); 503 } 504 505 if (!Assign) { 506 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 507 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 508 E1 = addStatement(E1, nullptr, VD); 509 } 510 if (VD && CV) 511 return updateVarDecl(VD, E1); 512 return new (Arena) til::Store(E0, E1); 513 } 514 515 516 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 517 CallingContext *Ctx) { 518 switch (BO->getOpcode()) { 519 case BO_PtrMemD: 520 case BO_PtrMemI: 521 return new (Arena) til::Undefined(BO); 522 523 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 524 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 525 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 526 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 527 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 528 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 529 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 530 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 531 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 532 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 533 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 534 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 535 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 536 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 537 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 538 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 539 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 540 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 541 542 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 543 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 544 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 545 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 546 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 547 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 548 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 549 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 550 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 551 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 552 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 553 554 case BO_Comma: 555 // The clang CFG should have already processed both sides. 556 return translate(BO->getRHS(), Ctx); 557 } 558 return new (Arena) til::Undefined(BO); 559 } 560 561 562 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 563 CallingContext *Ctx) { 564 clang::CastKind K = CE->getCastKind(); 565 switch (K) { 566 case CK_LValueToRValue: { 567 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 568 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 569 if (E0) 570 return E0; 571 } 572 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 573 return E0; 574 // FIXME!! -- get Load working properly 575 // return new (Arena) til::Load(E0); 576 } 577 case CK_NoOp: 578 case CK_DerivedToBase: 579 case CK_UncheckedDerivedToBase: 580 case CK_ArrayToPointerDecay: 581 case CK_FunctionToPointerDecay: { 582 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 583 return E0; 584 } 585 default: { 586 // FIXME: handle different kinds of casts. 587 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 588 if (CapabilityExprMode) 589 return E0; 590 return new (Arena) til::Cast(til::CAST_none, E0); 591 } 592 } 593 } 594 595 596 til::SExpr * 597 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 598 CallingContext *Ctx) { 599 til::SExpr *E0 = translate(E->getBase(), Ctx); 600 til::SExpr *E1 = translate(E->getIdx(), Ctx); 601 return new (Arena) til::ArrayIndex(E0, E1); 602 } 603 604 605 til::SExpr * 606 SExprBuilder::translateAbstractConditionalOperator( 607 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 608 auto *C = translate(CO->getCond(), Ctx); 609 auto *T = translate(CO->getTrueExpr(), Ctx); 610 auto *E = translate(CO->getFalseExpr(), Ctx); 611 return new (Arena) til::IfThenElse(C, T, E); 612 } 613 614 615 til::SExpr * 616 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 617 DeclGroupRef DGrp = S->getDeclGroup(); 618 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 619 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 620 Expr *E = VD->getInit(); 621 til::SExpr* SE = translate(E, Ctx); 622 623 // Add local variables with trivial type to the variable map 624 QualType T = VD->getType(); 625 if (T.isTrivialType(VD->getASTContext())) { 626 return addVarDecl(VD, SE); 627 } 628 else { 629 // TODO: add alloca 630 } 631 } 632 } 633 return nullptr; 634 } 635 636 637 638 // If (E) is non-trivial, then add it to the current basic block, and 639 // update the statement map so that S refers to E. Returns a new variable 640 // that refers to E. 641 // If E is trivial returns E. 642 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 643 const ValueDecl *VD) { 644 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 645 return E; 646 if (VD) 647 E = new (Arena) til::Variable(E, VD); 648 CurrentInstructions.push_back(E); 649 if (S) 650 insertStmt(S, E); 651 return E; 652 } 653 654 655 // Returns the current value of VD, if known, and nullptr otherwise. 656 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 657 auto It = LVarIdxMap.find(VD); 658 if (It != LVarIdxMap.end()) { 659 assert(CurrentLVarMap[It->second].first == VD); 660 return CurrentLVarMap[It->second].second; 661 } 662 return nullptr; 663 } 664 665 666 // if E is a til::Variable, update its clangDecl. 667 inline void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 668 if (!E) 669 return; 670 if (til::Variable *V = dyn_cast<til::Variable>(E)) { 671 if (!V->clangDecl()) 672 V->setClangDecl(VD); 673 } 674 } 675 676 // Adds a new variable declaration. 677 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 678 maybeUpdateVD(E, VD); 679 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 680 CurrentLVarMap.makeWritable(); 681 CurrentLVarMap.push_back(std::make_pair(VD, E)); 682 return E; 683 } 684 685 686 // Updates a current variable declaration. (E.g. by assignment) 687 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 688 maybeUpdateVD(E, VD); 689 auto It = LVarIdxMap.find(VD); 690 if (It == LVarIdxMap.end()) { 691 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 692 til::SExpr *St = new (Arena) til::Store(Ptr, E); 693 return St; 694 } 695 CurrentLVarMap.makeWritable(); 696 CurrentLVarMap.elem(It->second).second = E; 697 return E; 698 } 699 700 701 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 702 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 703 // If E == null, this is a backedge and will be set later. 704 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 705 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 706 assert(ArgIndex > 0 && ArgIndex < NPreds); 707 708 til::SExpr *CurrE = CurrentLVarMap[i].second; 709 if (CurrE->block() == CurrentBB) { 710 // We already have a Phi node in the current block, 711 // so just add the new variable to the Phi node. 712 til::Phi *Ph = dyn_cast<til::Phi>(CurrE); 713 assert(Ph && "Expecting Phi node."); 714 if (E) 715 Ph->values()[ArgIndex] = E; 716 return; 717 } 718 719 // Make a new phi node: phi(..., E) 720 // All phi args up to the current index are set to the current value. 721 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 722 Ph->values().setValues(NPreds, nullptr); 723 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 724 Ph->values()[PIdx] = CurrE; 725 if (E) 726 Ph->values()[ArgIndex] = E; 727 Ph->setClangDecl(CurrentLVarMap[i].first); 728 // If E is from a back-edge, or either E or CurrE are incomplete, then 729 // mark this node as incomplete; we may need to remove it later. 730 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { 731 Ph->setStatus(til::Phi::PH_Incomplete); 732 } 733 734 // Add Phi node to current block, and update CurrentLVarMap[i] 735 CurrentArguments.push_back(Ph); 736 if (Ph->status() == til::Phi::PH_Incomplete) 737 IncompleteArgs.push_back(Ph); 738 739 CurrentLVarMap.makeWritable(); 740 CurrentLVarMap.elem(i).second = Ph; 741 } 742 743 744 // Merge values from Map into the current variable map. 745 // This will construct Phi nodes in the current basic block as necessary. 746 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 747 assert(CurrentBlockInfo && "Not processing a block!"); 748 749 if (!CurrentLVarMap.valid()) { 750 // Steal Map, using copy-on-write. 751 CurrentLVarMap = std::move(Map); 752 return; 753 } 754 if (CurrentLVarMap.sameAs(Map)) 755 return; // Easy merge: maps from different predecessors are unchanged. 756 757 unsigned NPreds = CurrentBB->numPredecessors(); 758 unsigned ESz = CurrentLVarMap.size(); 759 unsigned MSz = Map.size(); 760 unsigned Sz = std::min(ESz, MSz); 761 762 for (unsigned i=0; i<Sz; ++i) { 763 if (CurrentLVarMap[i].first != Map[i].first) { 764 // We've reached the end of variables in common. 765 CurrentLVarMap.makeWritable(); 766 CurrentLVarMap.downsize(i); 767 break; 768 } 769 if (CurrentLVarMap[i].second != Map[i].second) 770 makePhiNodeVar(i, NPreds, Map[i].second); 771 } 772 if (ESz > MSz) { 773 CurrentLVarMap.makeWritable(); 774 CurrentLVarMap.downsize(Map.size()); 775 } 776 } 777 778 779 // Merge a back edge into the current variable map. 780 // This will create phi nodes for all variables in the variable map. 781 void SExprBuilder::mergeEntryMapBackEdge() { 782 // We don't have definitions for variables on the backedge, because we 783 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 784 // we conservatively create Phi nodes for all variables. Unnecessary Phi 785 // nodes will be marked as incomplete, and stripped out at the end. 786 // 787 // An Phi node is unnecessary if it only refers to itself and one other 788 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 789 790 assert(CurrentBlockInfo && "Not processing a block!"); 791 792 if (CurrentBlockInfo->HasBackEdges) 793 return; 794 CurrentBlockInfo->HasBackEdges = true; 795 796 CurrentLVarMap.makeWritable(); 797 unsigned Sz = CurrentLVarMap.size(); 798 unsigned NPreds = CurrentBB->numPredecessors(); 799 800 for (unsigned i=0; i < Sz; ++i) { 801 makePhiNodeVar(i, NPreds, nullptr); 802 } 803 } 804 805 806 // Update the phi nodes that were initially created for a back edge 807 // once the variable definitions have been computed. 808 // I.e., merge the current variable map into the phi nodes for Blk. 809 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 810 til::BasicBlock *BB = lookupBlock(Blk); 811 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 812 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 813 814 for (til::SExpr *PE : BB->arguments()) { 815 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); 816 assert(Ph && "Expecting Phi Node."); 817 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 818 819 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 820 assert(E && "Couldn't find local variable for Phi node."); 821 Ph->values()[ArgIndex] = E; 822 } 823 } 824 825 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 826 const CFGBlock *First) { 827 // Perform initial setup operations. 828 unsigned NBlocks = Cfg->getNumBlockIDs(); 829 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 830 831 // allocate all basic blocks immediately, to handle forward references. 832 BBInfo.resize(NBlocks); 833 BlockMap.resize(NBlocks, nullptr); 834 // create map from clang blockID to til::BasicBlocks 835 for (auto *B : *Cfg) { 836 auto *BB = new (Arena) til::BasicBlock(Arena); 837 BB->reserveInstructions(B->size()); 838 BlockMap[B->getBlockID()] = BB; 839 } 840 841 CurrentBB = lookupBlock(&Cfg->getEntry()); 842 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 843 : cast<FunctionDecl>(D)->parameters(); 844 for (auto *Pm : Parms) { 845 QualType T = Pm->getType(); 846 if (!T.isTrivialType(Pm->getASTContext())) 847 continue; 848 849 // Add parameters to local variable map. 850 // FIXME: right now we emulate params with loads; that should be fixed. 851 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 852 til::SExpr *Ld = new (Arena) til::Load(Lp); 853 til::SExpr *V = addStatement(Ld, nullptr, Pm); 854 addVarDecl(Pm, V); 855 } 856 } 857 858 859 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 860 // Intialize TIL basic block and add it to the CFG. 861 CurrentBB = lookupBlock(B); 862 CurrentBB->reservePredecessors(B->pred_size()); 863 Scfg->add(CurrentBB); 864 865 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 866 867 // CurrentLVarMap is moved to ExitMap on block exit. 868 // FIXME: the entry block will hold function parameters. 869 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 870 } 871 872 873 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 874 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 875 876 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 877 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 878 assert(PredInfo->UnprocessedSuccessors > 0); 879 880 if (--PredInfo->UnprocessedSuccessors == 0) 881 mergeEntryMap(std::move(PredInfo->ExitMap)); 882 else 883 mergeEntryMap(PredInfo->ExitMap.clone()); 884 885 ++CurrentBlockInfo->ProcessedPredecessors; 886 } 887 888 889 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 890 mergeEntryMapBackEdge(); 891 } 892 893 894 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 895 // The merge*() methods have created arguments. 896 // Push those arguments onto the basic block. 897 CurrentBB->arguments().reserve( 898 static_cast<unsigned>(CurrentArguments.size()), Arena); 899 for (auto *A : CurrentArguments) 900 CurrentBB->addArgument(A); 901 } 902 903 904 void SExprBuilder::handleStatement(const Stmt *S) { 905 til::SExpr *E = translate(S, nullptr); 906 addStatement(E, S); 907 } 908 909 910 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 911 const CXXDestructorDecl *DD) { 912 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 913 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 914 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 915 til::SExpr *E = new (Arena) til::Call(Ap); 916 addStatement(E, nullptr); 917 } 918 919 920 921 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 922 CurrentBB->instructions().reserve( 923 static_cast<unsigned>(CurrentInstructions.size()), Arena); 924 for (auto *V : CurrentInstructions) 925 CurrentBB->addInstruction(V); 926 927 // Create an appropriate terminator 928 unsigned N = B->succ_size(); 929 auto It = B->succ_begin(); 930 if (N == 1) { 931 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 932 // TODO: set index 933 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 934 auto *Tm = new (Arena) til::Goto(BB, Idx); 935 CurrentBB->setTerminator(Tm); 936 } 937 else if (N == 2) { 938 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 939 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 940 ++It; 941 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 942 // FIXME: make sure these arent' critical edges. 943 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 944 CurrentBB->setTerminator(Tm); 945 } 946 } 947 948 949 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 950 ++CurrentBlockInfo->UnprocessedSuccessors; 951 } 952 953 954 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 955 mergePhiNodesBackEdge(Succ); 956 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 957 } 958 959 960 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 961 CurrentArguments.clear(); 962 CurrentInstructions.clear(); 963 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 964 CurrentBB = nullptr; 965 CurrentBlockInfo = nullptr; 966 } 967 968 969 void SExprBuilder::exitCFG(const CFGBlock *Last) { 970 for (auto *Ph : IncompleteArgs) { 971 if (Ph->status() == til::Phi::PH_Incomplete) 972 simplifyIncompleteArg(Ph); 973 } 974 975 CurrentArguments.clear(); 976 CurrentInstructions.clear(); 977 IncompleteArgs.clear(); 978 } 979 980 981 /* 982 void printSCFG(CFGWalker &Walker) { 983 llvm::BumpPtrAllocator Bpa; 984 til::MemRegionRef Arena(&Bpa); 985 SExprBuilder SxBuilder(Arena); 986 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 987 TILPrinter::print(Scfg, llvm::errs()); 988 } 989 */ 990 991 992 } // end namespace threadSafety 993 994 } // end namespace clang 995