1 //===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 21 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 22 #include "clang/Analysis/AnalysisDeclContext.h" 23 #include "clang/Analysis/CFG.h" 24 #include "clang/Basic/OperatorKinds.h" 25 #include "clang/Basic/SourceLocation.h" 26 #include "llvm/ADT/StringRef.h" 27 #include <algorithm> 28 29 using namespace clang; 30 using namespace threadSafety; 31 32 // From ThreadSafetyUtil.h 33 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) { 34 switch (CE->getStmtClass()) { 35 case Stmt::IntegerLiteralClass: 36 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 37 case Stmt::StringLiteralClass: { 38 std::string ret("\""); 39 ret += cast<StringLiteral>(CE)->getString(); 40 ret += "\""; 41 return ret; 42 } 43 case Stmt::CharacterLiteralClass: 44 case Stmt::CXXNullPtrLiteralExprClass: 45 case Stmt::GNUNullExprClass: 46 case Stmt::CXXBoolLiteralExprClass: 47 case Stmt::FloatingLiteralClass: 48 case Stmt::ImaginaryLiteralClass: 49 case Stmt::ObjCStringLiteralClass: 50 default: 51 return "#lit"; 52 } 53 } 54 55 // Return true if E is a variable that points to an incomplete Phi node. 56 static bool isIncompletePhi(const til::SExpr *E) { 57 if (const auto *Ph = dyn_cast<til::Phi>(E)) 58 return Ph->status() == til::Phi::PH_Incomplete; 59 return false; 60 } 61 62 typedef SExprBuilder::CallingContext CallingContext; 63 64 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 65 auto It = SMap.find(S); 66 if (It != SMap.end()) 67 return It->second; 68 return nullptr; 69 } 70 71 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 72 Walker.walk(*this); 73 return Scfg; 74 } 75 76 static bool isCalleeArrow(const Expr *E) { 77 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 78 return ME ? ME->isArrow() : false; 79 } 80 81 /// \brief Translate a clang expression in an attribute to a til::SExpr. 82 /// Constructs the context from D, DeclExp, and SelfDecl. 83 /// 84 /// \param AttrExp The expression to translate. 85 /// \param D The declaration to which the attribute is attached. 86 /// \param DeclExp An expression involving the Decl to which the attribute 87 /// is attached. E.g. the call to a function. 88 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 89 const NamedDecl *D, 90 const Expr *DeclExp, 91 VarDecl *SelfDecl) { 92 // If we are processing a raw attribute expression, with no substitutions. 93 if (!DeclExp) 94 return translateAttrExpr(AttrExp, nullptr); 95 96 CallingContext Ctx(nullptr, D); 97 98 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 99 // for formal parameters when we call buildMutexID later. 100 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 101 Ctx.SelfArg = ME->getBase(); 102 Ctx.SelfArrow = ME->isArrow(); 103 } else if (const CXXMemberCallExpr *CE = 104 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 105 Ctx.SelfArg = CE->getImplicitObjectArgument(); 106 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 107 Ctx.NumArgs = CE->getNumArgs(); 108 Ctx.FunArgs = CE->getArgs(); 109 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 110 Ctx.NumArgs = CE->getNumArgs(); 111 Ctx.FunArgs = CE->getArgs(); 112 } else if (const CXXConstructExpr *CE = 113 dyn_cast<CXXConstructExpr>(DeclExp)) { 114 Ctx.SelfArg = nullptr; // Will be set below 115 Ctx.NumArgs = CE->getNumArgs(); 116 Ctx.FunArgs = CE->getArgs(); 117 } else if (D && isa<CXXDestructorDecl>(D)) { 118 // There's no such thing as a "destructor call" in the AST. 119 Ctx.SelfArg = DeclExp; 120 } 121 122 // Hack to handle constructors, where self cannot be recovered from 123 // the expression. 124 if (SelfDecl && !Ctx.SelfArg) { 125 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 126 SelfDecl->getLocation()); 127 Ctx.SelfArg = &SelfDRE; 128 129 // If the attribute has no arguments, then assume the argument is "this". 130 if (!AttrExp) 131 return translateAttrExpr(Ctx.SelfArg, nullptr); 132 else // For most attributes. 133 return translateAttrExpr(AttrExp, &Ctx); 134 } 135 136 // If the attribute has no arguments, then assume the argument is "this". 137 if (!AttrExp) 138 return translateAttrExpr(Ctx.SelfArg, nullptr); 139 else // For most attributes. 140 return translateAttrExpr(AttrExp, &Ctx); 141 } 142 143 /// \brief Translate a clang expression in an attribute to a til::SExpr. 144 // This assumes a CallingContext has already been created. 145 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 146 CallingContext *Ctx) { 147 if (!AttrExp) 148 return CapabilityExpr(nullptr, false); 149 150 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 151 if (SLit->getString() == StringRef("*")) 152 // The "*" expr is a universal lock, which essentially turns off 153 // checks until it is removed from the lockset. 154 return CapabilityExpr(new (Arena) til::Wildcard(), false); 155 else 156 // Ignore other string literals for now. 157 return CapabilityExpr(nullptr, false); 158 } 159 160 bool Neg = false; 161 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 162 if (OE->getOperator() == OO_Exclaim) { 163 Neg = true; 164 AttrExp = OE->getArg(0); 165 } 166 } 167 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 168 if (UO->getOpcode() == UO_LNot) { 169 Neg = true; 170 AttrExp = UO->getSubExpr(); 171 } 172 } 173 174 til::SExpr *E = translate(AttrExp, Ctx); 175 176 // Trap mutex expressions like nullptr, or 0. 177 // Any literal value is nonsense. 178 if (!E || isa<til::Literal>(E)) 179 return CapabilityExpr(nullptr, false); 180 181 // Hack to deal with smart pointers -- strip off top-level pointer casts. 182 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { 183 if (CE->castOpcode() == til::CAST_objToPtr) 184 return CapabilityExpr(CE->expr(), Neg); 185 } 186 return CapabilityExpr(E, Neg); 187 } 188 189 // Translate a clang statement or expression to a TIL expression. 190 // Also performs substitution of variables; Ctx provides the context. 191 // Dispatches on the type of S. 192 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 193 if (!S) 194 return nullptr; 195 196 // Check if S has already been translated and cached. 197 // This handles the lookup of SSA names for DeclRefExprs here. 198 if (til::SExpr *E = lookupStmt(S)) 199 return E; 200 201 switch (S->getStmtClass()) { 202 case Stmt::DeclRefExprClass: 203 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 204 case Stmt::CXXThisExprClass: 205 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 206 case Stmt::MemberExprClass: 207 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 208 case Stmt::CallExprClass: 209 return translateCallExpr(cast<CallExpr>(S), Ctx); 210 case Stmt::CXXMemberCallExprClass: 211 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 212 case Stmt::CXXOperatorCallExprClass: 213 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 214 case Stmt::UnaryOperatorClass: 215 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 216 case Stmt::BinaryOperatorClass: 217 case Stmt::CompoundAssignOperatorClass: 218 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 219 220 case Stmt::ArraySubscriptExprClass: 221 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 222 case Stmt::ConditionalOperatorClass: 223 return translateAbstractConditionalOperator( 224 cast<ConditionalOperator>(S), Ctx); 225 case Stmt::BinaryConditionalOperatorClass: 226 return translateAbstractConditionalOperator( 227 cast<BinaryConditionalOperator>(S), Ctx); 228 229 // We treat these as no-ops 230 case Stmt::ParenExprClass: 231 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 232 case Stmt::ExprWithCleanupsClass: 233 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 234 case Stmt::CXXBindTemporaryExprClass: 235 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 236 case Stmt::MaterializeTemporaryExprClass: 237 return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(), 238 Ctx); 239 240 // Collect all literals 241 case Stmt::CharacterLiteralClass: 242 case Stmt::CXXNullPtrLiteralExprClass: 243 case Stmt::GNUNullExprClass: 244 case Stmt::CXXBoolLiteralExprClass: 245 case Stmt::FloatingLiteralClass: 246 case Stmt::ImaginaryLiteralClass: 247 case Stmt::IntegerLiteralClass: 248 case Stmt::StringLiteralClass: 249 case Stmt::ObjCStringLiteralClass: 250 return new (Arena) til::Literal(cast<Expr>(S)); 251 252 case Stmt::DeclStmtClass: 253 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 254 default: 255 break; 256 } 257 if (const CastExpr *CE = dyn_cast<CastExpr>(S)) 258 return translateCastExpr(CE, Ctx); 259 260 return new (Arena) til::Undefined(S); 261 } 262 263 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 264 CallingContext *Ctx) { 265 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 266 267 // Function parameters require substitution and/or renaming. 268 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 269 const FunctionDecl *FD = 270 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 271 unsigned I = PV->getFunctionScopeIndex(); 272 273 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 274 // Substitute call arguments for references to function parameters 275 assert(I < Ctx->NumArgs); 276 return translate(Ctx->FunArgs[I], Ctx->Prev); 277 } 278 // Map the param back to the param of the original function declaration 279 // for consistent comparisons. 280 VD = FD->getParamDecl(I); 281 } 282 283 // For non-local variables, treat it as a reference to a named object. 284 return new (Arena) til::LiteralPtr(VD); 285 } 286 287 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 288 CallingContext *Ctx) { 289 // Substitute for 'this' 290 if (Ctx && Ctx->SelfArg) 291 return translate(Ctx->SelfArg, Ctx->Prev); 292 assert(SelfVar && "We have no variable for 'this'!"); 293 return SelfVar; 294 } 295 296 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 297 if (auto *V = dyn_cast<til::Variable>(E)) 298 return V->clangDecl(); 299 if (auto *Ph = dyn_cast<til::Phi>(E)) 300 return Ph->clangDecl(); 301 if (auto *P = dyn_cast<til::Project>(E)) 302 return P->clangDecl(); 303 if (auto *L = dyn_cast<til::LiteralPtr>(E)) 304 return L->clangDecl(); 305 return nullptr; 306 } 307 308 static bool hasCppPointerType(const til::SExpr *E) { 309 auto *VD = getValueDeclFromSExpr(E); 310 if (VD && VD->getType()->isPointerType()) 311 return true; 312 if (auto *C = dyn_cast<til::Cast>(E)) 313 return C->castOpcode() == til::CAST_objToPtr; 314 315 return false; 316 } 317 318 // Grab the very first declaration of virtual method D 319 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { 320 while (true) { 321 D = D->getCanonicalDecl(); 322 auto OverriddenMethods = D->overridden_methods(); 323 if (OverriddenMethods.begin() == OverriddenMethods.end()) 324 return D; // Method does not override anything 325 // FIXME: this does not work with multiple inheritance. 326 D = *OverriddenMethods.begin(); 327 } 328 return nullptr; 329 } 330 331 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 332 CallingContext *Ctx) { 333 til::SExpr *BE = translate(ME->getBase(), Ctx); 334 til::SExpr *E = new (Arena) til::SApply(BE); 335 336 const ValueDecl *D = 337 cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 338 if (auto *VD = dyn_cast<CXXMethodDecl>(D)) 339 D = getFirstVirtualDecl(VD); 340 341 til::Project *P = new (Arena) til::Project(E, D); 342 if (hasCppPointerType(BE)) 343 P->setArrow(true); 344 return P; 345 } 346 347 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 348 CallingContext *Ctx, 349 const Expr *SelfE) { 350 if (CapabilityExprMode) { 351 // Handle LOCK_RETURNED 352 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 353 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 354 CallingContext LRCallCtx(Ctx); 355 LRCallCtx.AttrDecl = CE->getDirectCallee(); 356 LRCallCtx.SelfArg = SelfE; 357 LRCallCtx.NumArgs = CE->getNumArgs(); 358 LRCallCtx.FunArgs = CE->getArgs(); 359 return const_cast<til::SExpr*>( 360 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 361 } 362 } 363 364 til::SExpr *E = translate(CE->getCallee(), Ctx); 365 for (const auto *Arg : CE->arguments()) { 366 til::SExpr *A = translate(Arg, Ctx); 367 E = new (Arena) til::Apply(E, A); 368 } 369 return new (Arena) til::Call(E, CE); 370 } 371 372 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 373 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 374 if (CapabilityExprMode) { 375 // Ignore calls to get() on smart pointers. 376 if (ME->getMethodDecl()->getNameAsString() == "get" && 377 ME->getNumArgs() == 0) { 378 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 379 return new (Arena) til::Cast(til::CAST_objToPtr, E); 380 // return E; 381 } 382 } 383 return translateCallExpr(cast<CallExpr>(ME), Ctx, 384 ME->getImplicitObjectArgument()); 385 } 386 387 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 388 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 389 if (CapabilityExprMode) { 390 // Ignore operator * and operator -> on smart pointers. 391 OverloadedOperatorKind k = OCE->getOperator(); 392 if (k == OO_Star || k == OO_Arrow) { 393 auto *E = translate(OCE->getArg(0), Ctx); 394 return new (Arena) til::Cast(til::CAST_objToPtr, E); 395 // return E; 396 } 397 } 398 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 399 } 400 401 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 402 CallingContext *Ctx) { 403 switch (UO->getOpcode()) { 404 case UO_PostInc: 405 case UO_PostDec: 406 case UO_PreInc: 407 case UO_PreDec: 408 return new (Arena) til::Undefined(UO); 409 410 case UO_AddrOf: { 411 if (CapabilityExprMode) { 412 // interpret &Graph::mu_ as an existential. 413 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 414 if (DRE->getDecl()->isCXXInstanceMember()) { 415 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 416 // We interpret this syntax specially, as a wildcard. 417 auto *W = new (Arena) til::Wildcard(); 418 return new (Arena) til::Project(W, DRE->getDecl()); 419 } 420 } 421 } 422 // otherwise, & is a no-op 423 return translate(UO->getSubExpr(), Ctx); 424 } 425 426 // We treat these as no-ops 427 case UO_Deref: 428 case UO_Plus: 429 return translate(UO->getSubExpr(), Ctx); 430 431 case UO_Minus: 432 return new (Arena) 433 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 434 case UO_Not: 435 return new (Arena) 436 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 437 case UO_LNot: 438 return new (Arena) 439 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 440 441 // Currently unsupported 442 case UO_Real: 443 case UO_Imag: 444 case UO_Extension: 445 case UO_Coawait: 446 return new (Arena) til::Undefined(UO); 447 } 448 return new (Arena) til::Undefined(UO); 449 } 450 451 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 452 const BinaryOperator *BO, 453 CallingContext *Ctx, bool Reverse) { 454 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 455 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 456 if (Reverse) 457 return new (Arena) til::BinaryOp(Op, E1, E0); 458 else 459 return new (Arena) til::BinaryOp(Op, E0, E1); 460 } 461 462 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 463 const BinaryOperator *BO, 464 CallingContext *Ctx, 465 bool Assign) { 466 const Expr *LHS = BO->getLHS(); 467 const Expr *RHS = BO->getRHS(); 468 til::SExpr *E0 = translate(LHS, Ctx); 469 til::SExpr *E1 = translate(RHS, Ctx); 470 471 const ValueDecl *VD = nullptr; 472 til::SExpr *CV = nullptr; 473 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { 474 VD = DRE->getDecl(); 475 CV = lookupVarDecl(VD); 476 } 477 478 if (!Assign) { 479 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 480 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 481 E1 = addStatement(E1, nullptr, VD); 482 } 483 if (VD && CV) 484 return updateVarDecl(VD, E1); 485 return new (Arena) til::Store(E0, E1); 486 } 487 488 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 489 CallingContext *Ctx) { 490 switch (BO->getOpcode()) { 491 case BO_PtrMemD: 492 case BO_PtrMemI: 493 return new (Arena) til::Undefined(BO); 494 495 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 496 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 497 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 498 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 499 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 500 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 501 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 502 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 503 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 504 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 505 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 506 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 507 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 508 case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx); 509 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 510 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 511 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 512 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 513 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 514 515 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 516 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 517 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 518 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 519 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 520 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 521 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 522 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 523 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 524 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 525 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 526 527 case BO_Comma: 528 // The clang CFG should have already processed both sides. 529 return translate(BO->getRHS(), Ctx); 530 } 531 return new (Arena) til::Undefined(BO); 532 } 533 534 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 535 CallingContext *Ctx) { 536 clang::CastKind K = CE->getCastKind(); 537 switch (K) { 538 case CK_LValueToRValue: { 539 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 540 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 541 if (E0) 542 return E0; 543 } 544 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 545 return E0; 546 // FIXME!! -- get Load working properly 547 // return new (Arena) til::Load(E0); 548 } 549 case CK_NoOp: 550 case CK_DerivedToBase: 551 case CK_UncheckedDerivedToBase: 552 case CK_ArrayToPointerDecay: 553 case CK_FunctionToPointerDecay: { 554 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 555 return E0; 556 } 557 default: { 558 // FIXME: handle different kinds of casts. 559 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 560 if (CapabilityExprMode) 561 return E0; 562 return new (Arena) til::Cast(til::CAST_none, E0); 563 } 564 } 565 } 566 567 til::SExpr * 568 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 569 CallingContext *Ctx) { 570 til::SExpr *E0 = translate(E->getBase(), Ctx); 571 til::SExpr *E1 = translate(E->getIdx(), Ctx); 572 return new (Arena) til::ArrayIndex(E0, E1); 573 } 574 575 til::SExpr * 576 SExprBuilder::translateAbstractConditionalOperator( 577 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 578 auto *C = translate(CO->getCond(), Ctx); 579 auto *T = translate(CO->getTrueExpr(), Ctx); 580 auto *E = translate(CO->getFalseExpr(), Ctx); 581 return new (Arena) til::IfThenElse(C, T, E); 582 } 583 584 til::SExpr * 585 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 586 DeclGroupRef DGrp = S->getDeclGroup(); 587 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 588 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 589 Expr *E = VD->getInit(); 590 til::SExpr* SE = translate(E, Ctx); 591 592 // Add local variables with trivial type to the variable map 593 QualType T = VD->getType(); 594 if (T.isTrivialType(VD->getASTContext())) { 595 return addVarDecl(VD, SE); 596 } 597 else { 598 // TODO: add alloca 599 } 600 } 601 } 602 return nullptr; 603 } 604 605 // If (E) is non-trivial, then add it to the current basic block, and 606 // update the statement map so that S refers to E. Returns a new variable 607 // that refers to E. 608 // If E is trivial returns E. 609 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 610 const ValueDecl *VD) { 611 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 612 return E; 613 if (VD) 614 E = new (Arena) til::Variable(E, VD); 615 CurrentInstructions.push_back(E); 616 if (S) 617 insertStmt(S, E); 618 return E; 619 } 620 621 // Returns the current value of VD, if known, and nullptr otherwise. 622 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 623 auto It = LVarIdxMap.find(VD); 624 if (It != LVarIdxMap.end()) { 625 assert(CurrentLVarMap[It->second].first == VD); 626 return CurrentLVarMap[It->second].second; 627 } 628 return nullptr; 629 } 630 631 // if E is a til::Variable, update its clangDecl. 632 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 633 if (!E) 634 return; 635 if (til::Variable *V = dyn_cast<til::Variable>(E)) { 636 if (!V->clangDecl()) 637 V->setClangDecl(VD); 638 } 639 } 640 641 // Adds a new variable declaration. 642 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 643 maybeUpdateVD(E, VD); 644 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 645 CurrentLVarMap.makeWritable(); 646 CurrentLVarMap.push_back(std::make_pair(VD, E)); 647 return E; 648 } 649 650 // Updates a current variable declaration. (E.g. by assignment) 651 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 652 maybeUpdateVD(E, VD); 653 auto It = LVarIdxMap.find(VD); 654 if (It == LVarIdxMap.end()) { 655 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 656 til::SExpr *St = new (Arena) til::Store(Ptr, E); 657 return St; 658 } 659 CurrentLVarMap.makeWritable(); 660 CurrentLVarMap.elem(It->second).second = E; 661 return E; 662 } 663 664 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 665 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 666 // If E == null, this is a backedge and will be set later. 667 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 668 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 669 assert(ArgIndex > 0 && ArgIndex < NPreds); 670 671 til::SExpr *CurrE = CurrentLVarMap[i].second; 672 if (CurrE->block() == CurrentBB) { 673 // We already have a Phi node in the current block, 674 // so just add the new variable to the Phi node. 675 til::Phi *Ph = dyn_cast<til::Phi>(CurrE); 676 assert(Ph && "Expecting Phi node."); 677 if (E) 678 Ph->values()[ArgIndex] = E; 679 return; 680 } 681 682 // Make a new phi node: phi(..., E) 683 // All phi args up to the current index are set to the current value. 684 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 685 Ph->values().setValues(NPreds, nullptr); 686 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 687 Ph->values()[PIdx] = CurrE; 688 if (E) 689 Ph->values()[ArgIndex] = E; 690 Ph->setClangDecl(CurrentLVarMap[i].first); 691 // If E is from a back-edge, or either E or CurrE are incomplete, then 692 // mark this node as incomplete; we may need to remove it later. 693 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { 694 Ph->setStatus(til::Phi::PH_Incomplete); 695 } 696 697 // Add Phi node to current block, and update CurrentLVarMap[i] 698 CurrentArguments.push_back(Ph); 699 if (Ph->status() == til::Phi::PH_Incomplete) 700 IncompleteArgs.push_back(Ph); 701 702 CurrentLVarMap.makeWritable(); 703 CurrentLVarMap.elem(i).second = Ph; 704 } 705 706 // Merge values from Map into the current variable map. 707 // This will construct Phi nodes in the current basic block as necessary. 708 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 709 assert(CurrentBlockInfo && "Not processing a block!"); 710 711 if (!CurrentLVarMap.valid()) { 712 // Steal Map, using copy-on-write. 713 CurrentLVarMap = std::move(Map); 714 return; 715 } 716 if (CurrentLVarMap.sameAs(Map)) 717 return; // Easy merge: maps from different predecessors are unchanged. 718 719 unsigned NPreds = CurrentBB->numPredecessors(); 720 unsigned ESz = CurrentLVarMap.size(); 721 unsigned MSz = Map.size(); 722 unsigned Sz = std::min(ESz, MSz); 723 724 for (unsigned i=0; i<Sz; ++i) { 725 if (CurrentLVarMap[i].first != Map[i].first) { 726 // We've reached the end of variables in common. 727 CurrentLVarMap.makeWritable(); 728 CurrentLVarMap.downsize(i); 729 break; 730 } 731 if (CurrentLVarMap[i].second != Map[i].second) 732 makePhiNodeVar(i, NPreds, Map[i].second); 733 } 734 if (ESz > MSz) { 735 CurrentLVarMap.makeWritable(); 736 CurrentLVarMap.downsize(Map.size()); 737 } 738 } 739 740 // Merge a back edge into the current variable map. 741 // This will create phi nodes for all variables in the variable map. 742 void SExprBuilder::mergeEntryMapBackEdge() { 743 // We don't have definitions for variables on the backedge, because we 744 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 745 // we conservatively create Phi nodes for all variables. Unnecessary Phi 746 // nodes will be marked as incomplete, and stripped out at the end. 747 // 748 // An Phi node is unnecessary if it only refers to itself and one other 749 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 750 751 assert(CurrentBlockInfo && "Not processing a block!"); 752 753 if (CurrentBlockInfo->HasBackEdges) 754 return; 755 CurrentBlockInfo->HasBackEdges = true; 756 757 CurrentLVarMap.makeWritable(); 758 unsigned Sz = CurrentLVarMap.size(); 759 unsigned NPreds = CurrentBB->numPredecessors(); 760 761 for (unsigned i=0; i < Sz; ++i) { 762 makePhiNodeVar(i, NPreds, nullptr); 763 } 764 } 765 766 // Update the phi nodes that were initially created for a back edge 767 // once the variable definitions have been computed. 768 // I.e., merge the current variable map into the phi nodes for Blk. 769 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 770 til::BasicBlock *BB = lookupBlock(Blk); 771 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 772 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 773 774 for (til::SExpr *PE : BB->arguments()) { 775 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); 776 assert(Ph && "Expecting Phi Node."); 777 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 778 779 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 780 assert(E && "Couldn't find local variable for Phi node."); 781 Ph->values()[ArgIndex] = E; 782 } 783 } 784 785 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 786 const CFGBlock *First) { 787 // Perform initial setup operations. 788 unsigned NBlocks = Cfg->getNumBlockIDs(); 789 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 790 791 // allocate all basic blocks immediately, to handle forward references. 792 BBInfo.resize(NBlocks); 793 BlockMap.resize(NBlocks, nullptr); 794 // create map from clang blockID to til::BasicBlocks 795 for (auto *B : *Cfg) { 796 auto *BB = new (Arena) til::BasicBlock(Arena); 797 BB->reserveInstructions(B->size()); 798 BlockMap[B->getBlockID()] = BB; 799 } 800 801 CurrentBB = lookupBlock(&Cfg->getEntry()); 802 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 803 : cast<FunctionDecl>(D)->parameters(); 804 for (auto *Pm : Parms) { 805 QualType T = Pm->getType(); 806 if (!T.isTrivialType(Pm->getASTContext())) 807 continue; 808 809 // Add parameters to local variable map. 810 // FIXME: right now we emulate params with loads; that should be fixed. 811 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 812 til::SExpr *Ld = new (Arena) til::Load(Lp); 813 til::SExpr *V = addStatement(Ld, nullptr, Pm); 814 addVarDecl(Pm, V); 815 } 816 } 817 818 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 819 // Intialize TIL basic block and add it to the CFG. 820 CurrentBB = lookupBlock(B); 821 CurrentBB->reservePredecessors(B->pred_size()); 822 Scfg->add(CurrentBB); 823 824 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 825 826 // CurrentLVarMap is moved to ExitMap on block exit. 827 // FIXME: the entry block will hold function parameters. 828 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 829 } 830 831 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 832 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 833 834 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 835 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 836 assert(PredInfo->UnprocessedSuccessors > 0); 837 838 if (--PredInfo->UnprocessedSuccessors == 0) 839 mergeEntryMap(std::move(PredInfo->ExitMap)); 840 else 841 mergeEntryMap(PredInfo->ExitMap.clone()); 842 843 ++CurrentBlockInfo->ProcessedPredecessors; 844 } 845 846 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 847 mergeEntryMapBackEdge(); 848 } 849 850 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 851 // The merge*() methods have created arguments. 852 // Push those arguments onto the basic block. 853 CurrentBB->arguments().reserve( 854 static_cast<unsigned>(CurrentArguments.size()), Arena); 855 for (auto *A : CurrentArguments) 856 CurrentBB->addArgument(A); 857 } 858 859 void SExprBuilder::handleStatement(const Stmt *S) { 860 til::SExpr *E = translate(S, nullptr); 861 addStatement(E, S); 862 } 863 864 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 865 const CXXDestructorDecl *DD) { 866 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 867 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 868 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 869 til::SExpr *E = new (Arena) til::Call(Ap); 870 addStatement(E, nullptr); 871 } 872 873 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 874 CurrentBB->instructions().reserve( 875 static_cast<unsigned>(CurrentInstructions.size()), Arena); 876 for (auto *V : CurrentInstructions) 877 CurrentBB->addInstruction(V); 878 879 // Create an appropriate terminator 880 unsigned N = B->succ_size(); 881 auto It = B->succ_begin(); 882 if (N == 1) { 883 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 884 // TODO: set index 885 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 886 auto *Tm = new (Arena) til::Goto(BB, Idx); 887 CurrentBB->setTerminator(Tm); 888 } 889 else if (N == 2) { 890 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 891 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 892 ++It; 893 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 894 // FIXME: make sure these arent' critical edges. 895 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 896 CurrentBB->setTerminator(Tm); 897 } 898 } 899 900 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 901 ++CurrentBlockInfo->UnprocessedSuccessors; 902 } 903 904 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 905 mergePhiNodesBackEdge(Succ); 906 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 907 } 908 909 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 910 CurrentArguments.clear(); 911 CurrentInstructions.clear(); 912 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 913 CurrentBB = nullptr; 914 CurrentBlockInfo = nullptr; 915 } 916 917 void SExprBuilder::exitCFG(const CFGBlock *Last) { 918 for (auto *Ph : IncompleteArgs) { 919 if (Ph->status() == til::Phi::PH_Incomplete) 920 simplifyIncompleteArg(Ph); 921 } 922 923 CurrentArguments.clear(); 924 CurrentInstructions.clear(); 925 IncompleteArgs.clear(); 926 } 927 928 /* 929 void printSCFG(CFGWalker &Walker) { 930 llvm::BumpPtrAllocator Bpa; 931 til::MemRegionRef Arena(&Bpa); 932 SExprBuilder SxBuilder(Arena); 933 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 934 TILPrinter::print(Scfg, llvm::errs()); 935 } 936 */ 937