1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclGroup.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/OperationKinds.h" 23 #include "clang/AST/Stmt.h" 24 #include "clang/AST/Type.h" 25 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Basic/LLVM.h" 28 #include "clang/Basic/OperatorKinds.h" 29 #include "clang/Basic/Specifiers.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Support/Casting.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <string> 35 #include <utility> 36 37 using namespace clang; 38 using namespace threadSafety; 39 40 // From ThreadSafetyUtil.h 41 std::string threadSafety::getSourceLiteralString(const Expr *CE) { 42 switch (CE->getStmtClass()) { 43 case Stmt::IntegerLiteralClass: 44 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 45 case Stmt::StringLiteralClass: { 46 std::string ret("\""); 47 ret += cast<StringLiteral>(CE)->getString(); 48 ret += "\""; 49 return ret; 50 } 51 case Stmt::CharacterLiteralClass: 52 case Stmt::CXXNullPtrLiteralExprClass: 53 case Stmt::GNUNullExprClass: 54 case Stmt::CXXBoolLiteralExprClass: 55 case Stmt::FloatingLiteralClass: 56 case Stmt::ImaginaryLiteralClass: 57 case Stmt::ObjCStringLiteralClass: 58 default: 59 return "#lit"; 60 } 61 } 62 63 // Return true if E is a variable that points to an incomplete Phi node. 64 static bool isIncompletePhi(const til::SExpr *E) { 65 if (const auto *Ph = dyn_cast<til::Phi>(E)) 66 return Ph->status() == til::Phi::PH_Incomplete; 67 return false; 68 } 69 70 using CallingContext = SExprBuilder::CallingContext; 71 72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 73 auto It = SMap.find(S); 74 if (It != SMap.end()) 75 return It->second; 76 return nullptr; 77 } 78 79 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 80 Walker.walk(*this); 81 return Scfg; 82 } 83 84 static bool isCalleeArrow(const Expr *E) { 85 const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 86 return ME ? ME->isArrow() : false; 87 } 88 89 /// Translate a clang expression in an attribute to a til::SExpr. 90 /// Constructs the context from D, DeclExp, and SelfDecl. 91 /// 92 /// \param AttrExp The expression to translate. 93 /// \param D The declaration to which the attribute is attached. 94 /// \param DeclExp An expression involving the Decl to which the attribute 95 /// is attached. E.g. the call to a function. 96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 97 const NamedDecl *D, 98 const Expr *DeclExp, 99 VarDecl *SelfDecl) { 100 // If we are processing a raw attribute expression, with no substitutions. 101 if (!DeclExp) 102 return translateAttrExpr(AttrExp, nullptr); 103 104 CallingContext Ctx(nullptr, D); 105 106 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 107 // for formal parameters when we call buildMutexID later. 108 if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) { 109 Ctx.SelfArg = ME->getBase(); 110 Ctx.SelfArrow = ME->isArrow(); 111 } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { 112 Ctx.SelfArg = CE->getImplicitObjectArgument(); 113 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 114 Ctx.NumArgs = CE->getNumArgs(); 115 Ctx.FunArgs = CE->getArgs(); 116 } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) { 117 Ctx.NumArgs = CE->getNumArgs(); 118 Ctx.FunArgs = CE->getArgs(); 119 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { 120 Ctx.SelfArg = nullptr; // Will be set below 121 Ctx.NumArgs = CE->getNumArgs(); 122 Ctx.FunArgs = CE->getArgs(); 123 } else if (D && isa<CXXDestructorDecl>(D)) { 124 // There's no such thing as a "destructor call" in the AST. 125 Ctx.SelfArg = DeclExp; 126 } 127 128 // Hack to handle constructors, where self cannot be recovered from 129 // the expression. 130 if (SelfDecl && !Ctx.SelfArg) { 131 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 132 SelfDecl->getLocation()); 133 Ctx.SelfArg = &SelfDRE; 134 135 // If the attribute has no arguments, then assume the argument is "this". 136 if (!AttrExp) 137 return translateAttrExpr(Ctx.SelfArg, nullptr); 138 else // For most attributes. 139 return translateAttrExpr(AttrExp, &Ctx); 140 } 141 142 // If the attribute has no arguments, then assume the argument is "this". 143 if (!AttrExp) 144 return translateAttrExpr(Ctx.SelfArg, nullptr); 145 else // For most attributes. 146 return translateAttrExpr(AttrExp, &Ctx); 147 } 148 149 /// Translate a clang expression in an attribute to a til::SExpr. 150 // This assumes a CallingContext has already been created. 151 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 152 CallingContext *Ctx) { 153 if (!AttrExp) 154 return CapabilityExpr(nullptr, false); 155 156 if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 157 if (SLit->getString() == StringRef("*")) 158 // The "*" expr is a universal lock, which essentially turns off 159 // checks until it is removed from the lockset. 160 return CapabilityExpr(new (Arena) til::Wildcard(), false); 161 else 162 // Ignore other string literals for now. 163 return CapabilityExpr(nullptr, false); 164 } 165 166 bool Neg = false; 167 if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 168 if (OE->getOperator() == OO_Exclaim) { 169 Neg = true; 170 AttrExp = OE->getArg(0); 171 } 172 } 173 else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 174 if (UO->getOpcode() == UO_LNot) { 175 Neg = true; 176 AttrExp = UO->getSubExpr(); 177 } 178 } 179 180 til::SExpr *E = translate(AttrExp, Ctx); 181 182 // Trap mutex expressions like nullptr, or 0. 183 // Any literal value is nonsense. 184 if (!E || isa<til::Literal>(E)) 185 return CapabilityExpr(nullptr, false); 186 187 // Hack to deal with smart pointers -- strip off top-level pointer casts. 188 if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) { 189 if (CE->castOpcode() == til::CAST_objToPtr) 190 return CapabilityExpr(CE->expr(), Neg); 191 } 192 return CapabilityExpr(E, Neg); 193 } 194 195 // Translate a clang statement or expression to a TIL expression. 196 // Also performs substitution of variables; Ctx provides the context. 197 // Dispatches on the type of S. 198 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 199 if (!S) 200 return nullptr; 201 202 // Check if S has already been translated and cached. 203 // This handles the lookup of SSA names for DeclRefExprs here. 204 if (til::SExpr *E = lookupStmt(S)) 205 return E; 206 207 switch (S->getStmtClass()) { 208 case Stmt::DeclRefExprClass: 209 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 210 case Stmt::CXXThisExprClass: 211 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 212 case Stmt::MemberExprClass: 213 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 214 case Stmt::CallExprClass: 215 return translateCallExpr(cast<CallExpr>(S), Ctx); 216 case Stmt::CXXMemberCallExprClass: 217 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 218 case Stmt::CXXOperatorCallExprClass: 219 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 220 case Stmt::UnaryOperatorClass: 221 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 222 case Stmt::BinaryOperatorClass: 223 case Stmt::CompoundAssignOperatorClass: 224 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 225 226 case Stmt::ArraySubscriptExprClass: 227 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 228 case Stmt::ConditionalOperatorClass: 229 return translateAbstractConditionalOperator( 230 cast<ConditionalOperator>(S), Ctx); 231 case Stmt::BinaryConditionalOperatorClass: 232 return translateAbstractConditionalOperator( 233 cast<BinaryConditionalOperator>(S), Ctx); 234 235 // We treat these as no-ops 236 case Stmt::ParenExprClass: 237 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 238 case Stmt::ExprWithCleanupsClass: 239 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 240 case Stmt::CXXBindTemporaryExprClass: 241 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 242 case Stmt::MaterializeTemporaryExprClass: 243 return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(), 244 Ctx); 245 246 // Collect all literals 247 case Stmt::CharacterLiteralClass: 248 case Stmt::CXXNullPtrLiteralExprClass: 249 case Stmt::GNUNullExprClass: 250 case Stmt::CXXBoolLiteralExprClass: 251 case Stmt::FloatingLiteralClass: 252 case Stmt::ImaginaryLiteralClass: 253 case Stmt::IntegerLiteralClass: 254 case Stmt::StringLiteralClass: 255 case Stmt::ObjCStringLiteralClass: 256 return new (Arena) til::Literal(cast<Expr>(S)); 257 258 case Stmt::DeclStmtClass: 259 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 260 default: 261 break; 262 } 263 if (const auto *CE = dyn_cast<CastExpr>(S)) 264 return translateCastExpr(CE, Ctx); 265 266 return new (Arena) til::Undefined(S); 267 } 268 269 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 270 CallingContext *Ctx) { 271 const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 272 273 // Function parameters require substitution and/or renaming. 274 if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 275 const auto *FD = 276 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 277 unsigned I = PV->getFunctionScopeIndex(); 278 279 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 280 // Substitute call arguments for references to function parameters 281 assert(I < Ctx->NumArgs); 282 return translate(Ctx->FunArgs[I], Ctx->Prev); 283 } 284 // Map the param back to the param of the original function declaration 285 // for consistent comparisons. 286 VD = FD->getParamDecl(I); 287 } 288 289 // For non-local variables, treat it as a reference to a named object. 290 return new (Arena) til::LiteralPtr(VD); 291 } 292 293 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 294 CallingContext *Ctx) { 295 // Substitute for 'this' 296 if (Ctx && Ctx->SelfArg) 297 return translate(Ctx->SelfArg, Ctx->Prev); 298 assert(SelfVar && "We have no variable for 'this'!"); 299 return SelfVar; 300 } 301 302 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 303 if (const auto *V = dyn_cast<til::Variable>(E)) 304 return V->clangDecl(); 305 if (const auto *Ph = dyn_cast<til::Phi>(E)) 306 return Ph->clangDecl(); 307 if (const auto *P = dyn_cast<til::Project>(E)) 308 return P->clangDecl(); 309 if (const auto *L = dyn_cast<til::LiteralPtr>(E)) 310 return L->clangDecl(); 311 return nullptr; 312 } 313 314 static bool hasCppPointerType(const til::SExpr *E) { 315 auto *VD = getValueDeclFromSExpr(E); 316 if (VD && VD->getType()->isPointerType()) 317 return true; 318 if (const auto *C = dyn_cast<til::Cast>(E)) 319 return C->castOpcode() == til::CAST_objToPtr; 320 321 return false; 322 } 323 324 // Grab the very first declaration of virtual method D 325 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { 326 while (true) { 327 D = D->getCanonicalDecl(); 328 auto OverriddenMethods = D->overridden_methods(); 329 if (OverriddenMethods.begin() == OverriddenMethods.end()) 330 return D; // Method does not override anything 331 // FIXME: this does not work with multiple inheritance. 332 D = *OverriddenMethods.begin(); 333 } 334 return nullptr; 335 } 336 337 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 338 CallingContext *Ctx) { 339 til::SExpr *BE = translate(ME->getBase(), Ctx); 340 til::SExpr *E = new (Arena) til::SApply(BE); 341 342 const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 343 if (const auto *VD = dyn_cast<CXXMethodDecl>(D)) 344 D = getFirstVirtualDecl(VD); 345 346 til::Project *P = new (Arena) til::Project(E, D); 347 if (hasCppPointerType(BE)) 348 P->setArrow(true); 349 return P; 350 } 351 352 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 353 CallingContext *Ctx, 354 const Expr *SelfE) { 355 if (CapabilityExprMode) { 356 // Handle LOCK_RETURNED 357 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 358 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 359 CallingContext LRCallCtx(Ctx); 360 LRCallCtx.AttrDecl = CE->getDirectCallee(); 361 LRCallCtx.SelfArg = SelfE; 362 LRCallCtx.NumArgs = CE->getNumArgs(); 363 LRCallCtx.FunArgs = CE->getArgs(); 364 return const_cast<til::SExpr *>( 365 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 366 } 367 } 368 369 til::SExpr *E = translate(CE->getCallee(), Ctx); 370 for (const auto *Arg : CE->arguments()) { 371 til::SExpr *A = translate(Arg, Ctx); 372 E = new (Arena) til::Apply(E, A); 373 } 374 return new (Arena) til::Call(E, CE); 375 } 376 377 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 378 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 379 if (CapabilityExprMode) { 380 // Ignore calls to get() on smart pointers. 381 if (ME->getMethodDecl()->getNameAsString() == "get" && 382 ME->getNumArgs() == 0) { 383 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 384 return new (Arena) til::Cast(til::CAST_objToPtr, E); 385 // return E; 386 } 387 } 388 return translateCallExpr(cast<CallExpr>(ME), Ctx, 389 ME->getImplicitObjectArgument()); 390 } 391 392 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 393 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 394 if (CapabilityExprMode) { 395 // Ignore operator * and operator -> on smart pointers. 396 OverloadedOperatorKind k = OCE->getOperator(); 397 if (k == OO_Star || k == OO_Arrow) { 398 auto *E = translate(OCE->getArg(0), Ctx); 399 return new (Arena) til::Cast(til::CAST_objToPtr, E); 400 // return E; 401 } 402 } 403 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 404 } 405 406 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 407 CallingContext *Ctx) { 408 switch (UO->getOpcode()) { 409 case UO_PostInc: 410 case UO_PostDec: 411 case UO_PreInc: 412 case UO_PreDec: 413 return new (Arena) til::Undefined(UO); 414 415 case UO_AddrOf: 416 if (CapabilityExprMode) { 417 // interpret &Graph::mu_ as an existential. 418 if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 419 if (DRE->getDecl()->isCXXInstanceMember()) { 420 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 421 // We interpret this syntax specially, as a wildcard. 422 auto *W = new (Arena) til::Wildcard(); 423 return new (Arena) til::Project(W, DRE->getDecl()); 424 } 425 } 426 } 427 // otherwise, & is a no-op 428 return translate(UO->getSubExpr(), Ctx); 429 430 // We treat these as no-ops 431 case UO_Deref: 432 case UO_Plus: 433 return translate(UO->getSubExpr(), Ctx); 434 435 case UO_Minus: 436 return new (Arena) 437 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 438 case UO_Not: 439 return new (Arena) 440 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 441 case UO_LNot: 442 return new (Arena) 443 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 444 445 // Currently unsupported 446 case UO_Real: 447 case UO_Imag: 448 case UO_Extension: 449 case UO_Coawait: 450 return new (Arena) til::Undefined(UO); 451 } 452 return new (Arena) til::Undefined(UO); 453 } 454 455 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 456 const BinaryOperator *BO, 457 CallingContext *Ctx, bool Reverse) { 458 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 459 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 460 if (Reverse) 461 return new (Arena) til::BinaryOp(Op, E1, E0); 462 else 463 return new (Arena) til::BinaryOp(Op, E0, E1); 464 } 465 466 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 467 const BinaryOperator *BO, 468 CallingContext *Ctx, 469 bool Assign) { 470 const Expr *LHS = BO->getLHS(); 471 const Expr *RHS = BO->getRHS(); 472 til::SExpr *E0 = translate(LHS, Ctx); 473 til::SExpr *E1 = translate(RHS, Ctx); 474 475 const ValueDecl *VD = nullptr; 476 til::SExpr *CV = nullptr; 477 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) { 478 VD = DRE->getDecl(); 479 CV = lookupVarDecl(VD); 480 } 481 482 if (!Assign) { 483 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 484 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 485 E1 = addStatement(E1, nullptr, VD); 486 } 487 if (VD && CV) 488 return updateVarDecl(VD, E1); 489 return new (Arena) til::Store(E0, E1); 490 } 491 492 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 493 CallingContext *Ctx) { 494 switch (BO->getOpcode()) { 495 case BO_PtrMemD: 496 case BO_PtrMemI: 497 return new (Arena) til::Undefined(BO); 498 499 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 500 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 501 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 502 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 503 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 504 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 505 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 506 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 507 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 508 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 509 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 510 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 511 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 512 case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx); 513 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 514 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 515 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 516 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 517 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 518 519 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 520 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 521 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 522 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 523 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 524 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 525 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 526 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 527 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 528 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 529 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 530 531 case BO_Comma: 532 // The clang CFG should have already processed both sides. 533 return translate(BO->getRHS(), Ctx); 534 } 535 return new (Arena) til::Undefined(BO); 536 } 537 538 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 539 CallingContext *Ctx) { 540 CastKind K = CE->getCastKind(); 541 switch (K) { 542 case CK_LValueToRValue: { 543 if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 544 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 545 if (E0) 546 return E0; 547 } 548 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 549 return E0; 550 // FIXME!! -- get Load working properly 551 // return new (Arena) til::Load(E0); 552 } 553 case CK_NoOp: 554 case CK_DerivedToBase: 555 case CK_UncheckedDerivedToBase: 556 case CK_ArrayToPointerDecay: 557 case CK_FunctionToPointerDecay: { 558 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 559 return E0; 560 } 561 default: { 562 // FIXME: handle different kinds of casts. 563 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 564 if (CapabilityExprMode) 565 return E0; 566 return new (Arena) til::Cast(til::CAST_none, E0); 567 } 568 } 569 } 570 571 til::SExpr * 572 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 573 CallingContext *Ctx) { 574 til::SExpr *E0 = translate(E->getBase(), Ctx); 575 til::SExpr *E1 = translate(E->getIdx(), Ctx); 576 return new (Arena) til::ArrayIndex(E0, E1); 577 } 578 579 til::SExpr * 580 SExprBuilder::translateAbstractConditionalOperator( 581 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 582 auto *C = translate(CO->getCond(), Ctx); 583 auto *T = translate(CO->getTrueExpr(), Ctx); 584 auto *E = translate(CO->getFalseExpr(), Ctx); 585 return new (Arena) til::IfThenElse(C, T, E); 586 } 587 588 til::SExpr * 589 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 590 DeclGroupRef DGrp = S->getDeclGroup(); 591 for (auto I : DGrp) { 592 if (auto *VD = dyn_cast_or_null<VarDecl>(I)) { 593 Expr *E = VD->getInit(); 594 til::SExpr* SE = translate(E, Ctx); 595 596 // Add local variables with trivial type to the variable map 597 QualType T = VD->getType(); 598 if (T.isTrivialType(VD->getASTContext())) 599 return addVarDecl(VD, SE); 600 else { 601 // TODO: add alloca 602 } 603 } 604 } 605 return nullptr; 606 } 607 608 // If (E) is non-trivial, then add it to the current basic block, and 609 // update the statement map so that S refers to E. Returns a new variable 610 // that refers to E. 611 // If E is trivial returns E. 612 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 613 const ValueDecl *VD) { 614 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 615 return E; 616 if (VD) 617 E = new (Arena) til::Variable(E, VD); 618 CurrentInstructions.push_back(E); 619 if (S) 620 insertStmt(S, E); 621 return E; 622 } 623 624 // Returns the current value of VD, if known, and nullptr otherwise. 625 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 626 auto It = LVarIdxMap.find(VD); 627 if (It != LVarIdxMap.end()) { 628 assert(CurrentLVarMap[It->second].first == VD); 629 return CurrentLVarMap[It->second].second; 630 } 631 return nullptr; 632 } 633 634 // if E is a til::Variable, update its clangDecl. 635 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 636 if (!E) 637 return; 638 if (auto *V = dyn_cast<til::Variable>(E)) { 639 if (!V->clangDecl()) 640 V->setClangDecl(VD); 641 } 642 } 643 644 // Adds a new variable declaration. 645 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 646 maybeUpdateVD(E, VD); 647 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 648 CurrentLVarMap.makeWritable(); 649 CurrentLVarMap.push_back(std::make_pair(VD, E)); 650 return E; 651 } 652 653 // Updates a current variable declaration. (E.g. by assignment) 654 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 655 maybeUpdateVD(E, VD); 656 auto It = LVarIdxMap.find(VD); 657 if (It == LVarIdxMap.end()) { 658 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 659 til::SExpr *St = new (Arena) til::Store(Ptr, E); 660 return St; 661 } 662 CurrentLVarMap.makeWritable(); 663 CurrentLVarMap.elem(It->second).second = E; 664 return E; 665 } 666 667 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 668 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 669 // If E == null, this is a backedge and will be set later. 670 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 671 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 672 assert(ArgIndex > 0 && ArgIndex < NPreds); 673 674 til::SExpr *CurrE = CurrentLVarMap[i].second; 675 if (CurrE->block() == CurrentBB) { 676 // We already have a Phi node in the current block, 677 // so just add the new variable to the Phi node. 678 auto *Ph = dyn_cast<til::Phi>(CurrE); 679 assert(Ph && "Expecting Phi node."); 680 if (E) 681 Ph->values()[ArgIndex] = E; 682 return; 683 } 684 685 // Make a new phi node: phi(..., E) 686 // All phi args up to the current index are set to the current value. 687 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 688 Ph->values().setValues(NPreds, nullptr); 689 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 690 Ph->values()[PIdx] = CurrE; 691 if (E) 692 Ph->values()[ArgIndex] = E; 693 Ph->setClangDecl(CurrentLVarMap[i].first); 694 // If E is from a back-edge, or either E or CurrE are incomplete, then 695 // mark this node as incomplete; we may need to remove it later. 696 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) 697 Ph->setStatus(til::Phi::PH_Incomplete); 698 699 // Add Phi node to current block, and update CurrentLVarMap[i] 700 CurrentArguments.push_back(Ph); 701 if (Ph->status() == til::Phi::PH_Incomplete) 702 IncompleteArgs.push_back(Ph); 703 704 CurrentLVarMap.makeWritable(); 705 CurrentLVarMap.elem(i).second = Ph; 706 } 707 708 // Merge values from Map into the current variable map. 709 // This will construct Phi nodes in the current basic block as necessary. 710 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 711 assert(CurrentBlockInfo && "Not processing a block!"); 712 713 if (!CurrentLVarMap.valid()) { 714 // Steal Map, using copy-on-write. 715 CurrentLVarMap = std::move(Map); 716 return; 717 } 718 if (CurrentLVarMap.sameAs(Map)) 719 return; // Easy merge: maps from different predecessors are unchanged. 720 721 unsigned NPreds = CurrentBB->numPredecessors(); 722 unsigned ESz = CurrentLVarMap.size(); 723 unsigned MSz = Map.size(); 724 unsigned Sz = std::min(ESz, MSz); 725 726 for (unsigned i = 0; i < Sz; ++i) { 727 if (CurrentLVarMap[i].first != Map[i].first) { 728 // We've reached the end of variables in common. 729 CurrentLVarMap.makeWritable(); 730 CurrentLVarMap.downsize(i); 731 break; 732 } 733 if (CurrentLVarMap[i].second != Map[i].second) 734 makePhiNodeVar(i, NPreds, Map[i].second); 735 } 736 if (ESz > MSz) { 737 CurrentLVarMap.makeWritable(); 738 CurrentLVarMap.downsize(Map.size()); 739 } 740 } 741 742 // Merge a back edge into the current variable map. 743 // This will create phi nodes for all variables in the variable map. 744 void SExprBuilder::mergeEntryMapBackEdge() { 745 // We don't have definitions for variables on the backedge, because we 746 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 747 // we conservatively create Phi nodes for all variables. Unnecessary Phi 748 // nodes will be marked as incomplete, and stripped out at the end. 749 // 750 // An Phi node is unnecessary if it only refers to itself and one other 751 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 752 753 assert(CurrentBlockInfo && "Not processing a block!"); 754 755 if (CurrentBlockInfo->HasBackEdges) 756 return; 757 CurrentBlockInfo->HasBackEdges = true; 758 759 CurrentLVarMap.makeWritable(); 760 unsigned Sz = CurrentLVarMap.size(); 761 unsigned NPreds = CurrentBB->numPredecessors(); 762 763 for (unsigned i = 0; i < Sz; ++i) 764 makePhiNodeVar(i, NPreds, nullptr); 765 } 766 767 // Update the phi nodes that were initially created for a back edge 768 // once the variable definitions have been computed. 769 // I.e., merge the current variable map into the phi nodes for Blk. 770 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 771 til::BasicBlock *BB = lookupBlock(Blk); 772 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 773 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 774 775 for (til::SExpr *PE : BB->arguments()) { 776 auto *Ph = dyn_cast_or_null<til::Phi>(PE); 777 assert(Ph && "Expecting Phi Node."); 778 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 779 780 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 781 assert(E && "Couldn't find local variable for Phi node."); 782 Ph->values()[ArgIndex] = E; 783 } 784 } 785 786 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 787 const CFGBlock *First) { 788 // Perform initial setup operations. 789 unsigned NBlocks = Cfg->getNumBlockIDs(); 790 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 791 792 // allocate all basic blocks immediately, to handle forward references. 793 BBInfo.resize(NBlocks); 794 BlockMap.resize(NBlocks, nullptr); 795 // create map from clang blockID to til::BasicBlocks 796 for (auto *B : *Cfg) { 797 auto *BB = new (Arena) til::BasicBlock(Arena); 798 BB->reserveInstructions(B->size()); 799 BlockMap[B->getBlockID()] = BB; 800 } 801 802 CurrentBB = lookupBlock(&Cfg->getEntry()); 803 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 804 : cast<FunctionDecl>(D)->parameters(); 805 for (auto *Pm : Parms) { 806 QualType T = Pm->getType(); 807 if (!T.isTrivialType(Pm->getASTContext())) 808 continue; 809 810 // Add parameters to local variable map. 811 // FIXME: right now we emulate params with loads; that should be fixed. 812 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 813 til::SExpr *Ld = new (Arena) til::Load(Lp); 814 til::SExpr *V = addStatement(Ld, nullptr, Pm); 815 addVarDecl(Pm, V); 816 } 817 } 818 819 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 820 // Initialize TIL basic block and add it to the CFG. 821 CurrentBB = lookupBlock(B); 822 CurrentBB->reservePredecessors(B->pred_size()); 823 Scfg->add(CurrentBB); 824 825 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 826 827 // CurrentLVarMap is moved to ExitMap on block exit. 828 // FIXME: the entry block will hold function parameters. 829 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 830 } 831 832 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 833 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 834 835 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 836 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 837 assert(PredInfo->UnprocessedSuccessors > 0); 838 839 if (--PredInfo->UnprocessedSuccessors == 0) 840 mergeEntryMap(std::move(PredInfo->ExitMap)); 841 else 842 mergeEntryMap(PredInfo->ExitMap.clone()); 843 844 ++CurrentBlockInfo->ProcessedPredecessors; 845 } 846 847 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 848 mergeEntryMapBackEdge(); 849 } 850 851 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 852 // The merge*() methods have created arguments. 853 // Push those arguments onto the basic block. 854 CurrentBB->arguments().reserve( 855 static_cast<unsigned>(CurrentArguments.size()), Arena); 856 for (auto *A : CurrentArguments) 857 CurrentBB->addArgument(A); 858 } 859 860 void SExprBuilder::handleStatement(const Stmt *S) { 861 til::SExpr *E = translate(S, nullptr); 862 addStatement(E, S); 863 } 864 865 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 866 const CXXDestructorDecl *DD) { 867 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 868 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 869 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 870 til::SExpr *E = new (Arena) til::Call(Ap); 871 addStatement(E, nullptr); 872 } 873 874 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 875 CurrentBB->instructions().reserve( 876 static_cast<unsigned>(CurrentInstructions.size()), Arena); 877 for (auto *V : CurrentInstructions) 878 CurrentBB->addInstruction(V); 879 880 // Create an appropriate terminator 881 unsigned N = B->succ_size(); 882 auto It = B->succ_begin(); 883 if (N == 1) { 884 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 885 // TODO: set index 886 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 887 auto *Tm = new (Arena) til::Goto(BB, Idx); 888 CurrentBB->setTerminator(Tm); 889 } 890 else if (N == 2) { 891 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 892 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 893 ++It; 894 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 895 // FIXME: make sure these aren't critical edges. 896 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 897 CurrentBB->setTerminator(Tm); 898 } 899 } 900 901 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 902 ++CurrentBlockInfo->UnprocessedSuccessors; 903 } 904 905 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 906 mergePhiNodesBackEdge(Succ); 907 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 908 } 909 910 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 911 CurrentArguments.clear(); 912 CurrentInstructions.clear(); 913 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 914 CurrentBB = nullptr; 915 CurrentBlockInfo = nullptr; 916 } 917 918 void SExprBuilder::exitCFG(const CFGBlock *Last) { 919 for (auto *Ph : IncompleteArgs) { 920 if (Ph->status() == til::Phi::PH_Incomplete) 921 simplifyIncompleteArg(Ph); 922 } 923 924 CurrentArguments.clear(); 925 CurrentInstructions.clear(); 926 IncompleteArgs.clear(); 927 } 928 929 /* 930 void printSCFG(CFGWalker &Walker) { 931 llvm::BumpPtrAllocator Bpa; 932 til::MemRegionRef Arena(&Bpa); 933 SExprBuilder SxBuilder(Arena); 934 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 935 TILPrinter::print(Scfg, llvm::errs()); 936 } 937 */ 938