1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 23 #include "clang/Analysis/AnalysisContext.h" 24 #include "clang/Analysis/CFG.h" 25 #include "clang/Basic/OperatorKinds.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/StringRef.h" 31 #include <algorithm> 32 #include <climits> 33 #include <vector> 34 using namespace clang; 35 using namespace threadSafety; 36 37 // From ThreadSafetyUtil.h 38 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) { 39 switch (CE->getStmtClass()) { 40 case Stmt::IntegerLiteralClass: 41 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 42 case Stmt::StringLiteralClass: { 43 std::string ret("\""); 44 ret += cast<StringLiteral>(CE)->getString(); 45 ret += "\""; 46 return ret; 47 } 48 case Stmt::CharacterLiteralClass: 49 case Stmt::CXXNullPtrLiteralExprClass: 50 case Stmt::GNUNullExprClass: 51 case Stmt::CXXBoolLiteralExprClass: 52 case Stmt::FloatingLiteralClass: 53 case Stmt::ImaginaryLiteralClass: 54 case Stmt::ObjCStringLiteralClass: 55 default: 56 return "#lit"; 57 } 58 } 59 60 // Return true if E is a variable that points to an incomplete Phi node. 61 static bool isIncompletePhi(const til::SExpr *E) { 62 if (const auto *Ph = dyn_cast<til::Phi>(E)) 63 return Ph->status() == til::Phi::PH_Incomplete; 64 return false; 65 } 66 67 typedef SExprBuilder::CallingContext CallingContext; 68 69 70 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 71 auto It = SMap.find(S); 72 if (It != SMap.end()) 73 return It->second; 74 return nullptr; 75 } 76 77 78 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 79 Walker.walk(*this); 80 return Scfg; 81 } 82 83 static bool isCalleeArrow(const Expr *E) { 84 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 85 return ME ? ME->isArrow() : false; 86 } 87 88 89 /// \brief Translate a clang expression in an attribute to a til::SExpr. 90 /// Constructs the context from D, DeclExp, and SelfDecl. 91 /// 92 /// \param AttrExp The expression to translate. 93 /// \param D The declaration to which the attribute is attached. 94 /// \param DeclExp An expression involving the Decl to which the attribute 95 /// is attached. E.g. the call to a function. 96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 97 const NamedDecl *D, 98 const Expr *DeclExp, 99 VarDecl *SelfDecl) { 100 // If we are processing a raw attribute expression, with no substitutions. 101 if (!DeclExp) 102 return translateAttrExpr(AttrExp, nullptr); 103 104 CallingContext Ctx(nullptr, D); 105 106 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 107 // for formal parameters when we call buildMutexID later. 108 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 109 Ctx.SelfArg = ME->getBase(); 110 Ctx.SelfArrow = ME->isArrow(); 111 } else if (const CXXMemberCallExpr *CE = 112 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 113 Ctx.SelfArg = CE->getImplicitObjectArgument(); 114 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 115 Ctx.NumArgs = CE->getNumArgs(); 116 Ctx.FunArgs = CE->getArgs(); 117 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 118 Ctx.NumArgs = CE->getNumArgs(); 119 Ctx.FunArgs = CE->getArgs(); 120 } else if (const CXXConstructExpr *CE = 121 dyn_cast<CXXConstructExpr>(DeclExp)) { 122 Ctx.SelfArg = nullptr; // Will be set below 123 Ctx.NumArgs = CE->getNumArgs(); 124 Ctx.FunArgs = CE->getArgs(); 125 } else if (D && isa<CXXDestructorDecl>(D)) { 126 // There's no such thing as a "destructor call" in the AST. 127 Ctx.SelfArg = DeclExp; 128 } 129 130 // Hack to handle constructors, where self cannot be recovered from 131 // the expression. 132 if (SelfDecl && !Ctx.SelfArg) { 133 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 134 SelfDecl->getLocation()); 135 Ctx.SelfArg = &SelfDRE; 136 137 // If the attribute has no arguments, then assume the argument is "this". 138 if (!AttrExp) 139 return translateAttrExpr(Ctx.SelfArg, nullptr); 140 else // For most attributes. 141 return translateAttrExpr(AttrExp, &Ctx); 142 } 143 144 // If the attribute has no arguments, then assume the argument is "this". 145 if (!AttrExp) 146 return translateAttrExpr(Ctx.SelfArg, nullptr); 147 else // For most attributes. 148 return translateAttrExpr(AttrExp, &Ctx); 149 } 150 151 152 /// \brief Translate a clang expression in an attribute to a til::SExpr. 153 // This assumes a CallingContext has already been created. 154 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 155 CallingContext *Ctx) { 156 if (!AttrExp) 157 return CapabilityExpr(nullptr, false); 158 159 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 160 if (SLit->getString() == StringRef("*")) 161 // The "*" expr is a universal lock, which essentially turns off 162 // checks until it is removed from the lockset. 163 return CapabilityExpr(new (Arena) til::Wildcard(), false); 164 else 165 // Ignore other string literals for now. 166 return CapabilityExpr(nullptr, false); 167 } 168 169 bool Neg = false; 170 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 171 if (OE->getOperator() == OO_Exclaim) { 172 Neg = true; 173 AttrExp = OE->getArg(0); 174 } 175 } 176 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 177 if (UO->getOpcode() == UO_LNot) { 178 Neg = true; 179 AttrExp = UO->getSubExpr(); 180 } 181 } 182 183 til::SExpr *E = translate(AttrExp, Ctx); 184 185 // Trap mutex expressions like nullptr, or 0. 186 // Any literal value is nonsense. 187 if (!E || isa<til::Literal>(E)) 188 return CapabilityExpr(nullptr, false); 189 190 // Hack to deal with smart pointers -- strip off top-level pointer casts. 191 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { 192 if (CE->castOpcode() == til::CAST_objToPtr) 193 return CapabilityExpr(CE->expr(), Neg); 194 } 195 return CapabilityExpr(E, Neg); 196 } 197 198 199 200 // Translate a clang statement or expression to a TIL expression. 201 // Also performs substitution of variables; Ctx provides the context. 202 // Dispatches on the type of S. 203 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 204 if (!S) 205 return nullptr; 206 207 // Check if S has already been translated and cached. 208 // This handles the lookup of SSA names for DeclRefExprs here. 209 if (til::SExpr *E = lookupStmt(S)) 210 return E; 211 212 switch (S->getStmtClass()) { 213 case Stmt::DeclRefExprClass: 214 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 215 case Stmt::CXXThisExprClass: 216 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 217 case Stmt::MemberExprClass: 218 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 219 case Stmt::CallExprClass: 220 return translateCallExpr(cast<CallExpr>(S), Ctx); 221 case Stmt::CXXMemberCallExprClass: 222 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 223 case Stmt::CXXOperatorCallExprClass: 224 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 225 case Stmt::UnaryOperatorClass: 226 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 227 case Stmt::BinaryOperatorClass: 228 case Stmt::CompoundAssignOperatorClass: 229 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 230 231 case Stmt::ArraySubscriptExprClass: 232 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 233 case Stmt::ConditionalOperatorClass: 234 return translateAbstractConditionalOperator( 235 cast<ConditionalOperator>(S), Ctx); 236 case Stmt::BinaryConditionalOperatorClass: 237 return translateAbstractConditionalOperator( 238 cast<BinaryConditionalOperator>(S), Ctx); 239 240 // We treat these as no-ops 241 case Stmt::ParenExprClass: 242 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 243 case Stmt::ExprWithCleanupsClass: 244 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 245 case Stmt::CXXBindTemporaryExprClass: 246 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 247 248 // Collect all literals 249 case Stmt::CharacterLiteralClass: 250 case Stmt::CXXNullPtrLiteralExprClass: 251 case Stmt::GNUNullExprClass: 252 case Stmt::CXXBoolLiteralExprClass: 253 case Stmt::FloatingLiteralClass: 254 case Stmt::ImaginaryLiteralClass: 255 case Stmt::IntegerLiteralClass: 256 case Stmt::StringLiteralClass: 257 case Stmt::ObjCStringLiteralClass: 258 return new (Arena) til::Literal(cast<Expr>(S)); 259 260 case Stmt::DeclStmtClass: 261 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 262 default: 263 break; 264 } 265 if (const CastExpr *CE = dyn_cast<CastExpr>(S)) 266 return translateCastExpr(CE, Ctx); 267 268 return new (Arena) til::Undefined(S); 269 } 270 271 272 273 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 274 CallingContext *Ctx) { 275 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 276 277 // Function parameters require substitution and/or renaming. 278 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 279 const FunctionDecl *FD = 280 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 281 unsigned I = PV->getFunctionScopeIndex(); 282 283 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 284 // Substitute call arguments for references to function parameters 285 assert(I < Ctx->NumArgs); 286 return translate(Ctx->FunArgs[I], Ctx->Prev); 287 } 288 // Map the param back to the param of the original function declaration 289 // for consistent comparisons. 290 VD = FD->getParamDecl(I); 291 } 292 293 // For non-local variables, treat it as a reference to a named object. 294 return new (Arena) til::LiteralPtr(VD); 295 } 296 297 298 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 299 CallingContext *Ctx) { 300 // Substitute for 'this' 301 if (Ctx && Ctx->SelfArg) 302 return translate(Ctx->SelfArg, Ctx->Prev); 303 assert(SelfVar && "We have no variable for 'this'!"); 304 return SelfVar; 305 } 306 307 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 308 if (auto *V = dyn_cast<til::Variable>(E)) 309 return V->clangDecl(); 310 if (auto *Ph = dyn_cast<til::Phi>(E)) 311 return Ph->clangDecl(); 312 if (auto *P = dyn_cast<til::Project>(E)) 313 return P->clangDecl(); 314 if (auto *L = dyn_cast<til::LiteralPtr>(E)) 315 return L->clangDecl(); 316 return 0; 317 } 318 319 static bool hasCppPointerType(const til::SExpr *E) { 320 auto *VD = getValueDeclFromSExpr(E); 321 if (VD && VD->getType()->isPointerType()) 322 return true; 323 if (auto *C = dyn_cast<til::Cast>(E)) 324 return C->castOpcode() == til::CAST_objToPtr; 325 326 return false; 327 } 328 329 // Grab the very first declaration of virtual method D 330 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { 331 while (true) { 332 D = D->getCanonicalDecl(); 333 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), 334 E = D->end_overridden_methods(); 335 if (I == E) 336 return D; // Method does not override anything 337 D = *I; // FIXME: this does not work with multiple inheritance. 338 } 339 return nullptr; 340 } 341 342 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 343 CallingContext *Ctx) { 344 til::SExpr *BE = translate(ME->getBase(), Ctx); 345 til::SExpr *E = new (Arena) til::SApply(BE); 346 347 const ValueDecl *D = 348 cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 349 if (auto *VD = dyn_cast<CXXMethodDecl>(D)) 350 D = getFirstVirtualDecl(VD); 351 352 til::Project *P = new (Arena) til::Project(E, D); 353 if (hasCppPointerType(BE)) 354 P->setArrow(true); 355 return P; 356 } 357 358 359 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 360 CallingContext *Ctx, 361 const Expr *SelfE) { 362 if (CapabilityExprMode) { 363 // Handle LOCK_RETURNED 364 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 365 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 366 CallingContext LRCallCtx(Ctx); 367 LRCallCtx.AttrDecl = CE->getDirectCallee(); 368 LRCallCtx.SelfArg = SelfE; 369 LRCallCtx.NumArgs = CE->getNumArgs(); 370 LRCallCtx.FunArgs = CE->getArgs(); 371 return const_cast<til::SExpr*>( 372 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 373 } 374 } 375 376 til::SExpr *E = translate(CE->getCallee(), Ctx); 377 for (const auto *Arg : CE->arguments()) { 378 til::SExpr *A = translate(Arg, Ctx); 379 E = new (Arena) til::Apply(E, A); 380 } 381 return new (Arena) til::Call(E, CE); 382 } 383 384 385 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 386 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 387 if (CapabilityExprMode) { 388 // Ignore calls to get() on smart pointers. 389 if (ME->getMethodDecl()->getNameAsString() == "get" && 390 ME->getNumArgs() == 0) { 391 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 392 return new (Arena) til::Cast(til::CAST_objToPtr, E); 393 // return E; 394 } 395 } 396 return translateCallExpr(cast<CallExpr>(ME), Ctx, 397 ME->getImplicitObjectArgument()); 398 } 399 400 401 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 402 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 403 if (CapabilityExprMode) { 404 // Ignore operator * and operator -> on smart pointers. 405 OverloadedOperatorKind k = OCE->getOperator(); 406 if (k == OO_Star || k == OO_Arrow) { 407 auto *E = translate(OCE->getArg(0), Ctx); 408 return new (Arena) til::Cast(til::CAST_objToPtr, E); 409 // return E; 410 } 411 } 412 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 413 } 414 415 416 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 417 CallingContext *Ctx) { 418 switch (UO->getOpcode()) { 419 case UO_PostInc: 420 case UO_PostDec: 421 case UO_PreInc: 422 case UO_PreDec: 423 return new (Arena) til::Undefined(UO); 424 425 case UO_AddrOf: { 426 if (CapabilityExprMode) { 427 // interpret &Graph::mu_ as an existential. 428 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 429 if (DRE->getDecl()->isCXXInstanceMember()) { 430 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 431 // We interpret this syntax specially, as a wildcard. 432 auto *W = new (Arena) til::Wildcard(); 433 return new (Arena) til::Project(W, DRE->getDecl()); 434 } 435 } 436 } 437 // otherwise, & is a no-op 438 return translate(UO->getSubExpr(), Ctx); 439 } 440 441 // We treat these as no-ops 442 case UO_Deref: 443 case UO_Plus: 444 return translate(UO->getSubExpr(), Ctx); 445 446 case UO_Minus: 447 return new (Arena) 448 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 449 case UO_Not: 450 return new (Arena) 451 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 452 case UO_LNot: 453 return new (Arena) 454 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 455 456 // Currently unsupported 457 case UO_Real: 458 case UO_Imag: 459 case UO_Extension: 460 return new (Arena) til::Undefined(UO); 461 } 462 return new (Arena) til::Undefined(UO); 463 } 464 465 466 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 467 const BinaryOperator *BO, 468 CallingContext *Ctx, bool Reverse) { 469 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 470 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 471 if (Reverse) 472 return new (Arena) til::BinaryOp(Op, E1, E0); 473 else 474 return new (Arena) til::BinaryOp(Op, E0, E1); 475 } 476 477 478 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 479 const BinaryOperator *BO, 480 CallingContext *Ctx, 481 bool Assign) { 482 const Expr *LHS = BO->getLHS(); 483 const Expr *RHS = BO->getRHS(); 484 til::SExpr *E0 = translate(LHS, Ctx); 485 til::SExpr *E1 = translate(RHS, Ctx); 486 487 const ValueDecl *VD = nullptr; 488 til::SExpr *CV = nullptr; 489 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { 490 VD = DRE->getDecl(); 491 CV = lookupVarDecl(VD); 492 } 493 494 if (!Assign) { 495 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 496 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 497 E1 = addStatement(E1, nullptr, VD); 498 } 499 if (VD && CV) 500 return updateVarDecl(VD, E1); 501 return new (Arena) til::Store(E0, E1); 502 } 503 504 505 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 506 CallingContext *Ctx) { 507 switch (BO->getOpcode()) { 508 case BO_PtrMemD: 509 case BO_PtrMemI: 510 return new (Arena) til::Undefined(BO); 511 512 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 513 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 514 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 515 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 516 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 517 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 518 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 519 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 520 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 521 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 522 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 523 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 524 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 525 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 526 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 527 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 528 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 529 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 530 531 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 532 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 533 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 534 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 535 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 536 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 537 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 538 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 539 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 540 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 541 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 542 543 case BO_Comma: 544 // The clang CFG should have already processed both sides. 545 return translate(BO->getRHS(), Ctx); 546 } 547 return new (Arena) til::Undefined(BO); 548 } 549 550 551 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 552 CallingContext *Ctx) { 553 clang::CastKind K = CE->getCastKind(); 554 switch (K) { 555 case CK_LValueToRValue: { 556 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 557 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 558 if (E0) 559 return E0; 560 } 561 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 562 return E0; 563 // FIXME!! -- get Load working properly 564 // return new (Arena) til::Load(E0); 565 } 566 case CK_NoOp: 567 case CK_DerivedToBase: 568 case CK_UncheckedDerivedToBase: 569 case CK_ArrayToPointerDecay: 570 case CK_FunctionToPointerDecay: { 571 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 572 return E0; 573 } 574 default: { 575 // FIXME: handle different kinds of casts. 576 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 577 if (CapabilityExprMode) 578 return E0; 579 return new (Arena) til::Cast(til::CAST_none, E0); 580 } 581 } 582 } 583 584 585 til::SExpr * 586 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 587 CallingContext *Ctx) { 588 til::SExpr *E0 = translate(E->getBase(), Ctx); 589 til::SExpr *E1 = translate(E->getIdx(), Ctx); 590 return new (Arena) til::ArrayIndex(E0, E1); 591 } 592 593 594 til::SExpr * 595 SExprBuilder::translateAbstractConditionalOperator( 596 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 597 auto *C = translate(CO->getCond(), Ctx); 598 auto *T = translate(CO->getTrueExpr(), Ctx); 599 auto *E = translate(CO->getFalseExpr(), Ctx); 600 return new (Arena) til::IfThenElse(C, T, E); 601 } 602 603 604 til::SExpr * 605 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 606 DeclGroupRef DGrp = S->getDeclGroup(); 607 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 608 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 609 Expr *E = VD->getInit(); 610 til::SExpr* SE = translate(E, Ctx); 611 612 // Add local variables with trivial type to the variable map 613 QualType T = VD->getType(); 614 if (T.isTrivialType(VD->getASTContext())) { 615 return addVarDecl(VD, SE); 616 } 617 else { 618 // TODO: add alloca 619 } 620 } 621 } 622 return nullptr; 623 } 624 625 626 627 // If (E) is non-trivial, then add it to the current basic block, and 628 // update the statement map so that S refers to E. Returns a new variable 629 // that refers to E. 630 // If E is trivial returns E. 631 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 632 const ValueDecl *VD) { 633 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 634 return E; 635 if (VD) 636 E = new (Arena) til::Variable(E, VD); 637 CurrentInstructions.push_back(E); 638 if (S) 639 insertStmt(S, E); 640 return E; 641 } 642 643 644 // Returns the current value of VD, if known, and nullptr otherwise. 645 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 646 auto It = LVarIdxMap.find(VD); 647 if (It != LVarIdxMap.end()) { 648 assert(CurrentLVarMap[It->second].first == VD); 649 return CurrentLVarMap[It->second].second; 650 } 651 return nullptr; 652 } 653 654 655 // if E is a til::Variable, update its clangDecl. 656 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 657 if (!E) 658 return; 659 if (til::Variable *V = dyn_cast<til::Variable>(E)) { 660 if (!V->clangDecl()) 661 V->setClangDecl(VD); 662 } 663 } 664 665 // Adds a new variable declaration. 666 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 667 maybeUpdateVD(E, VD); 668 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 669 CurrentLVarMap.makeWritable(); 670 CurrentLVarMap.push_back(std::make_pair(VD, E)); 671 return E; 672 } 673 674 675 // Updates a current variable declaration. (E.g. by assignment) 676 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 677 maybeUpdateVD(E, VD); 678 auto It = LVarIdxMap.find(VD); 679 if (It == LVarIdxMap.end()) { 680 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 681 til::SExpr *St = new (Arena) til::Store(Ptr, E); 682 return St; 683 } 684 CurrentLVarMap.makeWritable(); 685 CurrentLVarMap.elem(It->second).second = E; 686 return E; 687 } 688 689 690 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 691 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 692 // If E == null, this is a backedge and will be set later. 693 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 694 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 695 assert(ArgIndex > 0 && ArgIndex < NPreds); 696 697 til::SExpr *CurrE = CurrentLVarMap[i].second; 698 if (CurrE->block() == CurrentBB) { 699 // We already have a Phi node in the current block, 700 // so just add the new variable to the Phi node. 701 til::Phi *Ph = dyn_cast<til::Phi>(CurrE); 702 assert(Ph && "Expecting Phi node."); 703 if (E) 704 Ph->values()[ArgIndex] = E; 705 return; 706 } 707 708 // Make a new phi node: phi(..., E) 709 // All phi args up to the current index are set to the current value. 710 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 711 Ph->values().setValues(NPreds, nullptr); 712 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 713 Ph->values()[PIdx] = CurrE; 714 if (E) 715 Ph->values()[ArgIndex] = E; 716 Ph->setClangDecl(CurrentLVarMap[i].first); 717 // If E is from a back-edge, or either E or CurrE are incomplete, then 718 // mark this node as incomplete; we may need to remove it later. 719 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { 720 Ph->setStatus(til::Phi::PH_Incomplete); 721 } 722 723 // Add Phi node to current block, and update CurrentLVarMap[i] 724 CurrentArguments.push_back(Ph); 725 if (Ph->status() == til::Phi::PH_Incomplete) 726 IncompleteArgs.push_back(Ph); 727 728 CurrentLVarMap.makeWritable(); 729 CurrentLVarMap.elem(i).second = Ph; 730 } 731 732 733 // Merge values from Map into the current variable map. 734 // This will construct Phi nodes in the current basic block as necessary. 735 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 736 assert(CurrentBlockInfo && "Not processing a block!"); 737 738 if (!CurrentLVarMap.valid()) { 739 // Steal Map, using copy-on-write. 740 CurrentLVarMap = std::move(Map); 741 return; 742 } 743 if (CurrentLVarMap.sameAs(Map)) 744 return; // Easy merge: maps from different predecessors are unchanged. 745 746 unsigned NPreds = CurrentBB->numPredecessors(); 747 unsigned ESz = CurrentLVarMap.size(); 748 unsigned MSz = Map.size(); 749 unsigned Sz = std::min(ESz, MSz); 750 751 for (unsigned i=0; i<Sz; ++i) { 752 if (CurrentLVarMap[i].first != Map[i].first) { 753 // We've reached the end of variables in common. 754 CurrentLVarMap.makeWritable(); 755 CurrentLVarMap.downsize(i); 756 break; 757 } 758 if (CurrentLVarMap[i].second != Map[i].second) 759 makePhiNodeVar(i, NPreds, Map[i].second); 760 } 761 if (ESz > MSz) { 762 CurrentLVarMap.makeWritable(); 763 CurrentLVarMap.downsize(Map.size()); 764 } 765 } 766 767 768 // Merge a back edge into the current variable map. 769 // This will create phi nodes for all variables in the variable map. 770 void SExprBuilder::mergeEntryMapBackEdge() { 771 // We don't have definitions for variables on the backedge, because we 772 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 773 // we conservatively create Phi nodes for all variables. Unnecessary Phi 774 // nodes will be marked as incomplete, and stripped out at the end. 775 // 776 // An Phi node is unnecessary if it only refers to itself and one other 777 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 778 779 assert(CurrentBlockInfo && "Not processing a block!"); 780 781 if (CurrentBlockInfo->HasBackEdges) 782 return; 783 CurrentBlockInfo->HasBackEdges = true; 784 785 CurrentLVarMap.makeWritable(); 786 unsigned Sz = CurrentLVarMap.size(); 787 unsigned NPreds = CurrentBB->numPredecessors(); 788 789 for (unsigned i=0; i < Sz; ++i) { 790 makePhiNodeVar(i, NPreds, nullptr); 791 } 792 } 793 794 795 // Update the phi nodes that were initially created for a back edge 796 // once the variable definitions have been computed. 797 // I.e., merge the current variable map into the phi nodes for Blk. 798 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 799 til::BasicBlock *BB = lookupBlock(Blk); 800 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 801 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 802 803 for (til::SExpr *PE : BB->arguments()) { 804 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); 805 assert(Ph && "Expecting Phi Node."); 806 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 807 808 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 809 assert(E && "Couldn't find local variable for Phi node."); 810 Ph->values()[ArgIndex] = E; 811 } 812 } 813 814 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 815 const CFGBlock *First) { 816 // Perform initial setup operations. 817 unsigned NBlocks = Cfg->getNumBlockIDs(); 818 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 819 820 // allocate all basic blocks immediately, to handle forward references. 821 BBInfo.resize(NBlocks); 822 BlockMap.resize(NBlocks, nullptr); 823 // create map from clang blockID to til::BasicBlocks 824 for (auto *B : *Cfg) { 825 auto *BB = new (Arena) til::BasicBlock(Arena); 826 BB->reserveInstructions(B->size()); 827 BlockMap[B->getBlockID()] = BB; 828 } 829 830 CurrentBB = lookupBlock(&Cfg->getEntry()); 831 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 832 : cast<FunctionDecl>(D)->parameters(); 833 for (auto *Pm : Parms) { 834 QualType T = Pm->getType(); 835 if (!T.isTrivialType(Pm->getASTContext())) 836 continue; 837 838 // Add parameters to local variable map. 839 // FIXME: right now we emulate params with loads; that should be fixed. 840 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 841 til::SExpr *Ld = new (Arena) til::Load(Lp); 842 til::SExpr *V = addStatement(Ld, nullptr, Pm); 843 addVarDecl(Pm, V); 844 } 845 } 846 847 848 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 849 // Intialize TIL basic block and add it to the CFG. 850 CurrentBB = lookupBlock(B); 851 CurrentBB->reservePredecessors(B->pred_size()); 852 Scfg->add(CurrentBB); 853 854 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 855 856 // CurrentLVarMap is moved to ExitMap on block exit. 857 // FIXME: the entry block will hold function parameters. 858 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 859 } 860 861 862 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 863 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 864 865 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 866 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 867 assert(PredInfo->UnprocessedSuccessors > 0); 868 869 if (--PredInfo->UnprocessedSuccessors == 0) 870 mergeEntryMap(std::move(PredInfo->ExitMap)); 871 else 872 mergeEntryMap(PredInfo->ExitMap.clone()); 873 874 ++CurrentBlockInfo->ProcessedPredecessors; 875 } 876 877 878 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 879 mergeEntryMapBackEdge(); 880 } 881 882 883 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 884 // The merge*() methods have created arguments. 885 // Push those arguments onto the basic block. 886 CurrentBB->arguments().reserve( 887 static_cast<unsigned>(CurrentArguments.size()), Arena); 888 for (auto *A : CurrentArguments) 889 CurrentBB->addArgument(A); 890 } 891 892 893 void SExprBuilder::handleStatement(const Stmt *S) { 894 til::SExpr *E = translate(S, nullptr); 895 addStatement(E, S); 896 } 897 898 899 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 900 const CXXDestructorDecl *DD) { 901 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 902 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 903 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 904 til::SExpr *E = new (Arena) til::Call(Ap); 905 addStatement(E, nullptr); 906 } 907 908 909 910 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 911 CurrentBB->instructions().reserve( 912 static_cast<unsigned>(CurrentInstructions.size()), Arena); 913 for (auto *V : CurrentInstructions) 914 CurrentBB->addInstruction(V); 915 916 // Create an appropriate terminator 917 unsigned N = B->succ_size(); 918 auto It = B->succ_begin(); 919 if (N == 1) { 920 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 921 // TODO: set index 922 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 923 auto *Tm = new (Arena) til::Goto(BB, Idx); 924 CurrentBB->setTerminator(Tm); 925 } 926 else if (N == 2) { 927 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 928 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 929 ++It; 930 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 931 // FIXME: make sure these arent' critical edges. 932 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 933 CurrentBB->setTerminator(Tm); 934 } 935 } 936 937 938 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 939 ++CurrentBlockInfo->UnprocessedSuccessors; 940 } 941 942 943 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 944 mergePhiNodesBackEdge(Succ); 945 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 946 } 947 948 949 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 950 CurrentArguments.clear(); 951 CurrentInstructions.clear(); 952 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 953 CurrentBB = nullptr; 954 CurrentBlockInfo = nullptr; 955 } 956 957 958 void SExprBuilder::exitCFG(const CFGBlock *Last) { 959 for (auto *Ph : IncompleteArgs) { 960 if (Ph->status() == til::Phi::PH_Incomplete) 961 simplifyIncompleteArg(Ph); 962 } 963 964 CurrentArguments.clear(); 965 CurrentInstructions.clear(); 966 IncompleteArgs.clear(); 967 } 968 969 970 /* 971 void printSCFG(CFGWalker &Walker) { 972 llvm::BumpPtrAllocator Bpa; 973 til::MemRegionRef Arena(&Bpa); 974 SExprBuilder SxBuilder(Arena); 975 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 976 TILPrinter::print(Scfg, llvm::errs()); 977 } 978 */ 979