1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 23 #include "clang/Analysis/AnalysisContext.h" 24 #include "clang/Analysis/CFG.h" 25 #include "clang/Basic/OperatorKinds.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/StringRef.h" 31 32 #include <algorithm> 33 #include <climits> 34 #include <vector> 35 36 37 namespace clang { 38 namespace threadSafety { 39 40 // From ThreadSafetyUtil.h 41 std::string getSourceLiteralString(const clang::Expr *CE) { 42 switch (CE->getStmtClass()) { 43 case Stmt::IntegerLiteralClass: 44 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 45 case Stmt::StringLiteralClass: { 46 std::string ret("\""); 47 ret += cast<StringLiteral>(CE)->getString(); 48 ret += "\""; 49 return ret; 50 } 51 case Stmt::CharacterLiteralClass: 52 case Stmt::CXXNullPtrLiteralExprClass: 53 case Stmt::GNUNullExprClass: 54 case Stmt::CXXBoolLiteralExprClass: 55 case Stmt::FloatingLiteralClass: 56 case Stmt::ImaginaryLiteralClass: 57 case Stmt::ObjCStringLiteralClass: 58 default: 59 return "#lit"; 60 } 61 } 62 63 namespace til { 64 65 // Return true if E is a variable that points to an incomplete Phi node. 66 static bool isIncompleteVar(const SExpr *E) { 67 if (const auto *V = dyn_cast<Variable>(E)) { 68 if (const auto *Ph = dyn_cast<Phi>(V->definition())) 69 return Ph->status() == Phi::PH_Incomplete; 70 } 71 return false; 72 } 73 74 } // end namespace til 75 76 77 typedef SExprBuilder::CallingContext CallingContext; 78 79 80 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 81 auto It = SMap.find(S); 82 if (It != SMap.end()) 83 return It->second; 84 return nullptr; 85 } 86 87 88 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 89 Walker.walk(*this); 90 return Scfg; 91 } 92 93 94 95 inline bool isCalleeArrow(const Expr *E) { 96 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 97 return ME ? ME->isArrow() : false; 98 } 99 100 101 /// \brief Translate a clang expression in an attribute to a til::SExpr. 102 /// Constructs the context from D, DeclExp, and SelfDecl. 103 /// 104 /// \param AttrExp The expression to translate. 105 /// \param D The declaration to which the attribute is attached. 106 /// \param DeclExp An expression involving the Decl to which the attribute 107 /// is attached. E.g. the call to a function. 108 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 109 const NamedDecl *D, 110 const Expr *DeclExp, 111 VarDecl *SelfDecl) { 112 // If we are processing a raw attribute expression, with no substitutions. 113 if (!DeclExp) 114 return translateAttrExpr(AttrExp, nullptr); 115 116 CallingContext Ctx(nullptr, D); 117 118 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 119 // for formal parameters when we call buildMutexID later. 120 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 121 Ctx.SelfArg = ME->getBase(); 122 Ctx.SelfArrow = ME->isArrow(); 123 } else if (const CXXMemberCallExpr *CE = 124 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 125 Ctx.SelfArg = CE->getImplicitObjectArgument(); 126 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 127 Ctx.NumArgs = CE->getNumArgs(); 128 Ctx.FunArgs = CE->getArgs(); 129 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 130 Ctx.NumArgs = CE->getNumArgs(); 131 Ctx.FunArgs = CE->getArgs(); 132 } else if (const CXXConstructExpr *CE = 133 dyn_cast<CXXConstructExpr>(DeclExp)) { 134 Ctx.SelfArg = nullptr; // Will be set below 135 Ctx.NumArgs = CE->getNumArgs(); 136 Ctx.FunArgs = CE->getArgs(); 137 } else if (D && isa<CXXDestructorDecl>(D)) { 138 // There's no such thing as a "destructor call" in the AST. 139 Ctx.SelfArg = DeclExp; 140 } 141 142 // Hack to handle constructors, where self cannot be recovered from 143 // the expression. 144 if (SelfDecl && !Ctx.SelfArg) { 145 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 146 SelfDecl->getLocation()); 147 Ctx.SelfArg = &SelfDRE; 148 149 // If the attribute has no arguments, then assume the argument is "this". 150 if (!AttrExp) 151 return translateAttrExpr(Ctx.SelfArg, nullptr); 152 else // For most attributes. 153 return translateAttrExpr(AttrExp, &Ctx); 154 } 155 156 // If the attribute has no arguments, then assume the argument is "this". 157 if (!AttrExp) 158 return translateAttrExpr(Ctx.SelfArg, nullptr); 159 else // For most attributes. 160 return translateAttrExpr(AttrExp, &Ctx); 161 } 162 163 164 /// \brief Translate a clang expression in an attribute to a til::SExpr. 165 // This assumes a CallingContext has already been created. 166 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 167 CallingContext *Ctx) { 168 if (!AttrExp) 169 return CapabilityExpr(nullptr, false); 170 171 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 172 if (SLit->getString() == StringRef("*")) 173 // The "*" expr is a universal lock, which essentially turns off 174 // checks until it is removed from the lockset. 175 return CapabilityExpr(new (Arena) til::Wildcard(), false); 176 else 177 // Ignore other string literals for now. 178 return CapabilityExpr(nullptr, false); 179 } 180 181 bool Neg = false; 182 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 183 if (OE->getOperator() == OO_Exclaim) { 184 Neg = true; 185 AttrExp = OE->getArg(0); 186 } 187 } 188 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 189 if (UO->getOpcode() == UO_LNot) { 190 Neg = true; 191 AttrExp = UO->getSubExpr(); 192 } 193 } 194 195 til::SExpr *E = translate(AttrExp, Ctx); 196 197 // Trap mutex expressions like nullptr, or 0. 198 // Any literal value is nonsense. 199 if (!E || isa<til::Literal>(E)) 200 return CapabilityExpr(nullptr, false); 201 202 // Hack to deal with smart pointers -- strip off top-level pointer casts. 203 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { 204 if (CE->castOpcode() == til::CAST_objToPtr) 205 return CapabilityExpr(CE->expr(), Neg); 206 } 207 return CapabilityExpr(E, Neg); 208 } 209 210 211 212 // Translate a clang statement or expression to a TIL expression. 213 // Also performs substitution of variables; Ctx provides the context. 214 // Dispatches on the type of S. 215 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 216 if (!S) 217 return nullptr; 218 219 // Check if S has already been translated and cached. 220 // This handles the lookup of SSA names for DeclRefExprs here. 221 if (til::SExpr *E = lookupStmt(S)) 222 return E; 223 224 switch (S->getStmtClass()) { 225 case Stmt::DeclRefExprClass: 226 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 227 case Stmt::CXXThisExprClass: 228 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 229 case Stmt::MemberExprClass: 230 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 231 case Stmt::CallExprClass: 232 return translateCallExpr(cast<CallExpr>(S), Ctx); 233 case Stmt::CXXMemberCallExprClass: 234 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 235 case Stmt::CXXOperatorCallExprClass: 236 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 237 case Stmt::UnaryOperatorClass: 238 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 239 case Stmt::BinaryOperatorClass: 240 case Stmt::CompoundAssignOperatorClass: 241 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 242 243 case Stmt::ArraySubscriptExprClass: 244 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 245 case Stmt::ConditionalOperatorClass: 246 return translateAbstractConditionalOperator( 247 cast<ConditionalOperator>(S), Ctx); 248 case Stmt::BinaryConditionalOperatorClass: 249 return translateAbstractConditionalOperator( 250 cast<BinaryConditionalOperator>(S), Ctx); 251 252 // We treat these as no-ops 253 case Stmt::ParenExprClass: 254 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 255 case Stmt::ExprWithCleanupsClass: 256 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 257 case Stmt::CXXBindTemporaryExprClass: 258 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 259 260 // Collect all literals 261 case Stmt::CharacterLiteralClass: 262 case Stmt::CXXNullPtrLiteralExprClass: 263 case Stmt::GNUNullExprClass: 264 case Stmt::CXXBoolLiteralExprClass: 265 case Stmt::FloatingLiteralClass: 266 case Stmt::ImaginaryLiteralClass: 267 case Stmt::IntegerLiteralClass: 268 case Stmt::StringLiteralClass: 269 case Stmt::ObjCStringLiteralClass: 270 return new (Arena) til::Literal(cast<Expr>(S)); 271 272 case Stmt::DeclStmtClass: 273 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 274 default: 275 break; 276 } 277 if (const CastExpr *CE = dyn_cast<CastExpr>(S)) 278 return translateCastExpr(CE, Ctx); 279 280 return new (Arena) til::Undefined(S); 281 } 282 283 284 285 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 286 CallingContext *Ctx) { 287 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 288 289 // Function parameters require substitution and/or renaming. 290 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 291 const FunctionDecl *FD = 292 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 293 unsigned I = PV->getFunctionScopeIndex(); 294 295 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 296 // Substitute call arguments for references to function parameters 297 assert(I < Ctx->NumArgs); 298 return translate(Ctx->FunArgs[I], Ctx->Prev); 299 } 300 // Map the param back to the param of the original function declaration 301 // for consistent comparisons. 302 VD = FD->getParamDecl(I); 303 } 304 305 // For non-local variables, treat it as a referenced to a named object. 306 return new (Arena) til::LiteralPtr(VD); 307 } 308 309 310 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 311 CallingContext *Ctx) { 312 // Substitute for 'this' 313 if (Ctx && Ctx->SelfArg) 314 return translate(Ctx->SelfArg, Ctx->Prev); 315 assert(SelfVar && "We have no variable for 'this'!"); 316 return SelfVar; 317 } 318 319 320 const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 321 if (auto *V = dyn_cast<til::Variable>(E)) 322 return V->clangDecl(); 323 if (auto *P = dyn_cast<til::Project>(E)) 324 return P->clangDecl(); 325 if (auto *L = dyn_cast<til::LiteralPtr>(E)) 326 return L->clangDecl(); 327 return 0; 328 } 329 330 bool hasCppPointerType(const til::SExpr *E) { 331 auto *VD = getValueDeclFromSExpr(E); 332 if (VD && VD->getType()->isPointerType()) 333 return true; 334 if (auto *C = dyn_cast<til::Cast>(E)) 335 return C->castOpcode() == til::CAST_objToPtr; 336 337 return false; 338 } 339 340 341 // Grab the very first declaration of virtual method D 342 const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) { 343 while (true) { 344 D = D->getCanonicalDecl(); 345 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), 346 E = D->end_overridden_methods(); 347 if (I == E) 348 return D; // Method does not override anything 349 D = *I; // FIXME: this does not work with multiple inheritance. 350 } 351 return nullptr; 352 } 353 354 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 355 CallingContext *Ctx) { 356 til::SExpr *BE = translate(ME->getBase(), Ctx); 357 til::SExpr *E = new (Arena) til::SApply(BE); 358 359 const ValueDecl *D = ME->getMemberDecl(); 360 if (auto *VD = dyn_cast<CXXMethodDecl>(D)) 361 D = getFirstVirtualDecl(VD); 362 363 til::Project *P = new (Arena) til::Project(E, D); 364 if (hasCppPointerType(BE)) 365 P->setArrow(true); 366 return P; 367 } 368 369 370 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 371 CallingContext *Ctx, 372 const Expr *SelfE) { 373 if (CapabilityExprMode) { 374 // Handle LOCK_RETURNED 375 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 376 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 377 CallingContext LRCallCtx(Ctx); 378 LRCallCtx.AttrDecl = CE->getDirectCallee(); 379 LRCallCtx.SelfArg = SelfE; 380 LRCallCtx.NumArgs = CE->getNumArgs(); 381 LRCallCtx.FunArgs = CE->getArgs(); 382 return const_cast<til::SExpr*>( 383 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 384 } 385 } 386 387 til::SExpr *E = translate(CE->getCallee(), Ctx); 388 for (const auto *Arg : CE->arguments()) { 389 til::SExpr *A = translate(Arg, Ctx); 390 E = new (Arena) til::Apply(E, A); 391 } 392 return new (Arena) til::Call(E, CE); 393 } 394 395 396 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 397 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 398 if (CapabilityExprMode) { 399 // Ignore calls to get() on smart pointers. 400 if (ME->getMethodDecl()->getNameAsString() == "get" && 401 ME->getNumArgs() == 0) { 402 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 403 return new (Arena) til::Cast(til::CAST_objToPtr, E); 404 // return E; 405 } 406 } 407 return translateCallExpr(cast<CallExpr>(ME), Ctx, 408 ME->getImplicitObjectArgument()); 409 } 410 411 412 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 413 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 414 if (CapabilityExprMode) { 415 // Ignore operator * and operator -> on smart pointers. 416 OverloadedOperatorKind k = OCE->getOperator(); 417 if (k == OO_Star || k == OO_Arrow) { 418 auto *E = translate(OCE->getArg(0), Ctx); 419 return new (Arena) til::Cast(til::CAST_objToPtr, E); 420 // return E; 421 } 422 } 423 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 424 } 425 426 427 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 428 CallingContext *Ctx) { 429 switch (UO->getOpcode()) { 430 case UO_PostInc: 431 case UO_PostDec: 432 case UO_PreInc: 433 case UO_PreDec: 434 return new (Arena) til::Undefined(UO); 435 436 case UO_AddrOf: { 437 if (CapabilityExprMode) { 438 // interpret &Graph::mu_ as an existential. 439 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 440 if (DRE->getDecl()->isCXXInstanceMember()) { 441 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 442 // We interpret this syntax specially, as a wildcard. 443 auto *W = new (Arena) til::Wildcard(); 444 return new (Arena) til::Project(W, DRE->getDecl()); 445 } 446 } 447 } 448 // otherwise, & is a no-op 449 return translate(UO->getSubExpr(), Ctx); 450 } 451 452 // We treat these as no-ops 453 case UO_Deref: 454 case UO_Plus: 455 return translate(UO->getSubExpr(), Ctx); 456 457 case UO_Minus: 458 return new (Arena) 459 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 460 case UO_Not: 461 return new (Arena) 462 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 463 case UO_LNot: 464 return new (Arena) 465 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 466 467 // Currently unsupported 468 case UO_Real: 469 case UO_Imag: 470 case UO_Extension: 471 return new (Arena) til::Undefined(UO); 472 } 473 return new (Arena) til::Undefined(UO); 474 } 475 476 477 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 478 const BinaryOperator *BO, 479 CallingContext *Ctx, bool Reverse) { 480 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 481 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 482 if (Reverse) 483 return new (Arena) til::BinaryOp(Op, E1, E0); 484 else 485 return new (Arena) til::BinaryOp(Op, E0, E1); 486 } 487 488 489 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 490 const BinaryOperator *BO, 491 CallingContext *Ctx, 492 bool Assign) { 493 const Expr *LHS = BO->getLHS(); 494 const Expr *RHS = BO->getRHS(); 495 til::SExpr *E0 = translate(LHS, Ctx); 496 til::SExpr *E1 = translate(RHS, Ctx); 497 498 const ValueDecl *VD = nullptr; 499 til::SExpr *CV = nullptr; 500 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { 501 VD = DRE->getDecl(); 502 CV = lookupVarDecl(VD); 503 } 504 505 if (!Assign) { 506 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 507 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 508 E1 = addStatement(E1, nullptr, VD); 509 } 510 if (VD && CV) 511 return updateVarDecl(VD, E1); 512 return new (Arena) til::Store(E0, E1); 513 } 514 515 516 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 517 CallingContext *Ctx) { 518 switch (BO->getOpcode()) { 519 case BO_PtrMemD: 520 case BO_PtrMemI: 521 return new (Arena) til::Undefined(BO); 522 523 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 524 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 525 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 526 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 527 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 528 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 529 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 530 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 531 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 532 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 533 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 534 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 535 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 536 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 537 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 538 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 539 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 540 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 541 542 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 543 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 544 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 545 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 546 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 547 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 548 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 549 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 550 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 551 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 552 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 553 554 case BO_Comma: 555 // The clang CFG should have already processed both sides. 556 return translate(BO->getRHS(), Ctx); 557 } 558 return new (Arena) til::Undefined(BO); 559 } 560 561 562 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 563 CallingContext *Ctx) { 564 clang::CastKind K = CE->getCastKind(); 565 switch (K) { 566 case CK_LValueToRValue: { 567 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 568 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 569 if (E0) 570 return E0; 571 } 572 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 573 return E0; 574 // FIXME!! -- get Load working properly 575 // return new (Arena) til::Load(E0); 576 } 577 case CK_NoOp: 578 case CK_DerivedToBase: 579 case CK_UncheckedDerivedToBase: 580 case CK_ArrayToPointerDecay: 581 case CK_FunctionToPointerDecay: { 582 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 583 return E0; 584 } 585 default: { 586 // FIXME: handle different kinds of casts. 587 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 588 if (CapabilityExprMode) 589 return E0; 590 return new (Arena) til::Cast(til::CAST_none, E0); 591 } 592 } 593 } 594 595 596 til::SExpr * 597 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 598 CallingContext *Ctx) { 599 til::SExpr *E0 = translate(E->getBase(), Ctx); 600 til::SExpr *E1 = translate(E->getIdx(), Ctx); 601 return new (Arena) til::ArrayIndex(E0, E1); 602 } 603 604 605 til::SExpr * 606 SExprBuilder::translateAbstractConditionalOperator( 607 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 608 auto *C = translate(CO->getCond(), Ctx); 609 auto *T = translate(CO->getTrueExpr(), Ctx); 610 auto *E = translate(CO->getFalseExpr(), Ctx); 611 return new (Arena) til::IfThenElse(C, T, E); 612 } 613 614 615 til::SExpr * 616 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 617 DeclGroupRef DGrp = S->getDeclGroup(); 618 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 619 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 620 Expr *E = VD->getInit(); 621 til::SExpr* SE = translate(E, Ctx); 622 623 // Add local variables with trivial type to the variable map 624 QualType T = VD->getType(); 625 if (T.isTrivialType(VD->getASTContext())) { 626 return addVarDecl(VD, SE); 627 } 628 else { 629 // TODO: add alloca 630 } 631 } 632 } 633 return nullptr; 634 } 635 636 637 638 // If (E) is non-trivial, then add it to the current basic block, and 639 // update the statement map so that S refers to E. Returns a new variable 640 // that refers to E. 641 // If E is trivial returns E. 642 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 643 const ValueDecl *VD) { 644 if (!E || !CurrentBB || til::ThreadSafetyTIL::isTrivial(E)) 645 return E; 646 647 til::Variable *V = new (Arena) til::Variable(E, VD); 648 CurrentInstructions.push_back(V); 649 if (S) 650 insertStmt(S, V); 651 return V; 652 } 653 654 655 // Returns the current value of VD, if known, and nullptr otherwise. 656 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 657 auto It = LVarIdxMap.find(VD); 658 if (It != LVarIdxMap.end()) { 659 assert(CurrentLVarMap[It->second].first == VD); 660 return CurrentLVarMap[It->second].second; 661 } 662 return nullptr; 663 } 664 665 666 // if E is a til::Variable, update its clangDecl. 667 inline void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 668 if (!E) 669 return; 670 if (til::Variable *V = dyn_cast<til::Variable>(E)) { 671 if (!V->clangDecl()) 672 V->setClangDecl(VD); 673 } 674 } 675 676 // Adds a new variable declaration. 677 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 678 maybeUpdateVD(E, VD); 679 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 680 CurrentLVarMap.makeWritable(); 681 CurrentLVarMap.push_back(std::make_pair(VD, E)); 682 return E; 683 } 684 685 686 // Updates a current variable declaration. (E.g. by assignment) 687 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 688 maybeUpdateVD(E, VD); 689 auto It = LVarIdxMap.find(VD); 690 if (It == LVarIdxMap.end()) { 691 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 692 til::SExpr *St = new (Arena) til::Store(Ptr, E); 693 return St; 694 } 695 CurrentLVarMap.makeWritable(); 696 CurrentLVarMap.elem(It->second).second = E; 697 return E; 698 } 699 700 701 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 702 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 703 // If E == null, this is a backedge and will be set later. 704 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 705 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 706 assert(ArgIndex > 0 && ArgIndex < NPreds); 707 708 til::Variable *V = dyn_cast<til::Variable>(CurrentLVarMap[i].second); 709 if (V && V->getBlockID() == CurrentBB->blockID()) { 710 // We already have a Phi node in the current block, 711 // so just add the new variable to the Phi node. 712 til::Phi *Ph = dyn_cast<til::Phi>(V->definition()); 713 assert(Ph && "Expecting Phi node."); 714 if (E) 715 Ph->values()[ArgIndex] = E; 716 return; 717 } 718 719 // Make a new phi node: phi(..., E) 720 // All phi args up to the current index are set to the current value. 721 til::SExpr *CurrE = CurrentLVarMap[i].second; 722 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 723 Ph->values().setValues(NPreds, nullptr); 724 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 725 Ph->values()[PIdx] = CurrE; 726 if (E) 727 Ph->values()[ArgIndex] = E; 728 // If E is from a back-edge, or either E or CurrE are incomplete, then 729 // mark this node as incomplete; we may need to remove it later. 730 if (!E || isIncompleteVar(E) || isIncompleteVar(CurrE)) { 731 Ph->setStatus(til::Phi::PH_Incomplete); 732 } 733 734 // Add Phi node to current block, and update CurrentLVarMap[i] 735 auto *Var = new (Arena) til::Variable(Ph, CurrentLVarMap[i].first); 736 CurrentArguments.push_back(Var); 737 if (Ph->status() == til::Phi::PH_Incomplete) 738 IncompleteArgs.push_back(Var); 739 740 CurrentLVarMap.makeWritable(); 741 CurrentLVarMap.elem(i).second = Var; 742 } 743 744 745 // Merge values from Map into the current variable map. 746 // This will construct Phi nodes in the current basic block as necessary. 747 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 748 assert(CurrentBlockInfo && "Not processing a block!"); 749 750 if (!CurrentLVarMap.valid()) { 751 // Steal Map, using copy-on-write. 752 CurrentLVarMap = std::move(Map); 753 return; 754 } 755 if (CurrentLVarMap.sameAs(Map)) 756 return; // Easy merge: maps from different predecessors are unchanged. 757 758 unsigned NPreds = CurrentBB->numPredecessors(); 759 unsigned ESz = CurrentLVarMap.size(); 760 unsigned MSz = Map.size(); 761 unsigned Sz = std::min(ESz, MSz); 762 763 for (unsigned i=0; i<Sz; ++i) { 764 if (CurrentLVarMap[i].first != Map[i].first) { 765 // We've reached the end of variables in common. 766 CurrentLVarMap.makeWritable(); 767 CurrentLVarMap.downsize(i); 768 break; 769 } 770 if (CurrentLVarMap[i].second != Map[i].second) 771 makePhiNodeVar(i, NPreds, Map[i].second); 772 } 773 if (ESz > MSz) { 774 CurrentLVarMap.makeWritable(); 775 CurrentLVarMap.downsize(Map.size()); 776 } 777 } 778 779 780 // Merge a back edge into the current variable map. 781 // This will create phi nodes for all variables in the variable map. 782 void SExprBuilder::mergeEntryMapBackEdge() { 783 // We don't have definitions for variables on the backedge, because we 784 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 785 // we conservatively create Phi nodes for all variables. Unnecessary Phi 786 // nodes will be marked as incomplete, and stripped out at the end. 787 // 788 // An Phi node is unnecessary if it only refers to itself and one other 789 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 790 791 assert(CurrentBlockInfo && "Not processing a block!"); 792 793 if (CurrentBlockInfo->HasBackEdges) 794 return; 795 CurrentBlockInfo->HasBackEdges = true; 796 797 CurrentLVarMap.makeWritable(); 798 unsigned Sz = CurrentLVarMap.size(); 799 unsigned NPreds = CurrentBB->numPredecessors(); 800 801 for (unsigned i=0; i < Sz; ++i) { 802 makePhiNodeVar(i, NPreds, nullptr); 803 } 804 } 805 806 807 // Update the phi nodes that were initially created for a back edge 808 // once the variable definitions have been computed. 809 // I.e., merge the current variable map into the phi nodes for Blk. 810 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 811 til::BasicBlock *BB = lookupBlock(Blk); 812 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 813 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 814 815 for (til::Variable *V : BB->arguments()) { 816 til::Phi *Ph = dyn_cast_or_null<til::Phi>(V->definition()); 817 assert(Ph && "Expecting Phi Node."); 818 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 819 assert(V->clangDecl() && "No local variable for Phi node."); 820 821 til::SExpr *E = lookupVarDecl(V->clangDecl()); 822 assert(E && "Couldn't find local variable for Phi node."); 823 824 Ph->values()[ArgIndex] = E; 825 } 826 } 827 828 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 829 const CFGBlock *First) { 830 // Perform initial setup operations. 831 unsigned NBlocks = Cfg->getNumBlockIDs(); 832 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 833 834 // allocate all basic blocks immediately, to handle forward references. 835 BBInfo.resize(NBlocks); 836 BlockMap.resize(NBlocks, nullptr); 837 // create map from clang blockID to til::BasicBlocks 838 for (auto *B : *Cfg) { 839 auto *BB = new (Arena) til::BasicBlock(Arena); 840 BB->reserveInstructions(B->size()); 841 BlockMap[B->getBlockID()] = BB; 842 } 843 844 CurrentBB = lookupBlock(&Cfg->getEntry()); 845 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 846 : cast<FunctionDecl>(D)->parameters(); 847 for (auto *Pm : Parms) { 848 QualType T = Pm->getType(); 849 if (!T.isTrivialType(Pm->getASTContext())) 850 continue; 851 852 // Add parameters to local variable map. 853 // FIXME: right now we emulate params with loads; that should be fixed. 854 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 855 til::SExpr *Ld = new (Arena) til::Load(Lp); 856 til::SExpr *V = addStatement(Ld, nullptr, Pm); 857 addVarDecl(Pm, V); 858 } 859 } 860 861 862 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 863 // Intialize TIL basic block and add it to the CFG. 864 CurrentBB = lookupBlock(B); 865 CurrentBB->reservePredecessors(B->pred_size()); 866 Scfg->add(CurrentBB); 867 868 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 869 870 // CurrentLVarMap is moved to ExitMap on block exit. 871 // FIXME: the entry block will hold function parameters. 872 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 873 } 874 875 876 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 877 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 878 879 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 880 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 881 assert(PredInfo->UnprocessedSuccessors > 0); 882 883 if (--PredInfo->UnprocessedSuccessors == 0) 884 mergeEntryMap(std::move(PredInfo->ExitMap)); 885 else 886 mergeEntryMap(PredInfo->ExitMap.clone()); 887 888 ++CurrentBlockInfo->ProcessedPredecessors; 889 } 890 891 892 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 893 mergeEntryMapBackEdge(); 894 } 895 896 897 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 898 // The merge*() methods have created arguments. 899 // Push those arguments onto the basic block. 900 CurrentBB->arguments().reserve( 901 static_cast<unsigned>(CurrentArguments.size()), Arena); 902 for (auto *V : CurrentArguments) 903 CurrentBB->addArgument(V); 904 } 905 906 907 void SExprBuilder::handleStatement(const Stmt *S) { 908 til::SExpr *E = translate(S, nullptr); 909 addStatement(E, S); 910 } 911 912 913 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 914 const CXXDestructorDecl *DD) { 915 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 916 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 917 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 918 til::SExpr *E = new (Arena) til::Call(Ap); 919 addStatement(E, nullptr); 920 } 921 922 923 924 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 925 CurrentBB->instructions().reserve( 926 static_cast<unsigned>(CurrentInstructions.size()), Arena); 927 for (auto *V : CurrentInstructions) 928 CurrentBB->addInstruction(V); 929 930 // Create an appropriate terminator 931 unsigned N = B->succ_size(); 932 auto It = B->succ_begin(); 933 if (N == 1) { 934 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 935 // TODO: set index 936 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 937 til::SExpr *Tm = new (Arena) til::Goto(BB, Idx); 938 CurrentBB->setTerminator(Tm); 939 } 940 else if (N == 2) { 941 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 942 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 943 ++It; 944 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 945 unsigned Idx1 = BB1 ? BB1->findPredecessorIndex(CurrentBB) : 0; 946 unsigned Idx2 = BB2 ? BB2->findPredecessorIndex(CurrentBB) : 0; 947 til::SExpr *Tm = new (Arena) til::Branch(C, BB1, BB2, Idx1, Idx2); 948 CurrentBB->setTerminator(Tm); 949 } 950 } 951 952 953 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 954 ++CurrentBlockInfo->UnprocessedSuccessors; 955 } 956 957 958 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 959 mergePhiNodesBackEdge(Succ); 960 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 961 } 962 963 964 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 965 CurrentArguments.clear(); 966 CurrentInstructions.clear(); 967 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 968 CurrentBB = nullptr; 969 CurrentBlockInfo = nullptr; 970 } 971 972 973 void SExprBuilder::exitCFG(const CFGBlock *Last) { 974 for (auto *V : IncompleteArgs) { 975 til::Phi *Ph = dyn_cast<til::Phi>(V->definition()); 976 if (Ph && Ph->status() == til::Phi::PH_Incomplete) 977 simplifyIncompleteArg(V, Ph); 978 } 979 980 CurrentArguments.clear(); 981 CurrentInstructions.clear(); 982 IncompleteArgs.clear(); 983 } 984 985 986 /* 987 void printSCFG(CFGWalker &Walker) { 988 llvm::BumpPtrAllocator Bpa; 989 til::MemRegionRef Arena(&Bpa); 990 SExprBuilder SxBuilder(Arena); 991 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 992 TILPrinter::print(Scfg, llvm::errs()); 993 } 994 */ 995 996 997 } // end namespace threadSafety 998 999 } // end namespace clang 1000