1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclGroup.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/OperationKinds.h" 23 #include "clang/AST/Stmt.h" 24 #include "clang/AST/Type.h" 25 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Basic/LLVM.h" 28 #include "clang/Basic/OperatorKinds.h" 29 #include "clang/Basic/Specifiers.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Support/Casting.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <string> 35 #include <utility> 36 37 using namespace clang; 38 using namespace threadSafety; 39 40 // From ThreadSafetyUtil.h 41 std::string threadSafety::getSourceLiteralString(const Expr *CE) { 42 switch (CE->getStmtClass()) { 43 case Stmt::IntegerLiteralClass: 44 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 45 case Stmt::StringLiteralClass: { 46 std::string ret("\""); 47 ret += cast<StringLiteral>(CE)->getString(); 48 ret += "\""; 49 return ret; 50 } 51 case Stmt::CharacterLiteralClass: 52 case Stmt::CXXNullPtrLiteralExprClass: 53 case Stmt::GNUNullExprClass: 54 case Stmt::CXXBoolLiteralExprClass: 55 case Stmt::FloatingLiteralClass: 56 case Stmt::ImaginaryLiteralClass: 57 case Stmt::ObjCStringLiteralClass: 58 default: 59 return "#lit"; 60 } 61 } 62 63 // Return true if E is a variable that points to an incomplete Phi node. 64 static bool isIncompletePhi(const til::SExpr *E) { 65 if (const auto *Ph = dyn_cast<til::Phi>(E)) 66 return Ph->status() == til::Phi::PH_Incomplete; 67 return false; 68 } 69 70 using CallingContext = SExprBuilder::CallingContext; 71 72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 73 auto It = SMap.find(S); 74 if (It != SMap.end()) 75 return It->second; 76 return nullptr; 77 } 78 79 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 80 Walker.walk(*this); 81 return Scfg; 82 } 83 84 static bool isCalleeArrow(const Expr *E) { 85 const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 86 return ME ? ME->isArrow() : false; 87 } 88 89 /// Translate a clang expression in an attribute to a til::SExpr. 90 /// Constructs the context from D, DeclExp, and SelfDecl. 91 /// 92 /// \param AttrExp The expression to translate. 93 /// \param D The declaration to which the attribute is attached. 94 /// \param DeclExp An expression involving the Decl to which the attribute 95 /// is attached. E.g. the call to a function. 96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 97 const NamedDecl *D, 98 const Expr *DeclExp, 99 VarDecl *SelfDecl) { 100 // If we are processing a raw attribute expression, with no substitutions. 101 if (!DeclExp) 102 return translateAttrExpr(AttrExp, nullptr); 103 104 CallingContext Ctx(nullptr, D); 105 106 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 107 // for formal parameters when we call buildMutexID later. 108 if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) { 109 Ctx.SelfArg = ME->getBase(); 110 Ctx.SelfArrow = ME->isArrow(); 111 } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { 112 Ctx.SelfArg = CE->getImplicitObjectArgument(); 113 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 114 Ctx.NumArgs = CE->getNumArgs(); 115 Ctx.FunArgs = CE->getArgs(); 116 } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) { 117 Ctx.NumArgs = CE->getNumArgs(); 118 Ctx.FunArgs = CE->getArgs(); 119 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { 120 Ctx.SelfArg = nullptr; // Will be set below 121 Ctx.NumArgs = CE->getNumArgs(); 122 Ctx.FunArgs = CE->getArgs(); 123 } else if (D && isa<CXXDestructorDecl>(D)) { 124 // There's no such thing as a "destructor call" in the AST. 125 Ctx.SelfArg = DeclExp; 126 } 127 128 // Hack to handle constructors, where self cannot be recovered from 129 // the expression. 130 if (SelfDecl && !Ctx.SelfArg) { 131 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 132 SelfDecl->getLocation()); 133 Ctx.SelfArg = &SelfDRE; 134 135 // If the attribute has no arguments, then assume the argument is "this". 136 if (!AttrExp) 137 return translateAttrExpr(Ctx.SelfArg, nullptr); 138 else // For most attributes. 139 return translateAttrExpr(AttrExp, &Ctx); 140 } 141 142 // If the attribute has no arguments, then assume the argument is "this". 143 if (!AttrExp) 144 return translateAttrExpr(Ctx.SelfArg, nullptr); 145 else // For most attributes. 146 return translateAttrExpr(AttrExp, &Ctx); 147 } 148 149 /// Translate a clang expression in an attribute to a til::SExpr. 150 // This assumes a CallingContext has already been created. 151 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 152 CallingContext *Ctx) { 153 if (!AttrExp) 154 return CapabilityExpr(nullptr, false); 155 156 if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 157 if (SLit->getString() == StringRef("*")) 158 // The "*" expr is a universal lock, which essentially turns off 159 // checks until it is removed from the lockset. 160 return CapabilityExpr(new (Arena) til::Wildcard(), false); 161 else 162 // Ignore other string literals for now. 163 return CapabilityExpr(nullptr, false); 164 } 165 166 bool Neg = false; 167 if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 168 if (OE->getOperator() == OO_Exclaim) { 169 Neg = true; 170 AttrExp = OE->getArg(0); 171 } 172 } 173 else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 174 if (UO->getOpcode() == UO_LNot) { 175 Neg = true; 176 AttrExp = UO->getSubExpr(); 177 } 178 } 179 180 til::SExpr *E = translate(AttrExp, Ctx); 181 182 // Trap mutex expressions like nullptr, or 0. 183 // Any literal value is nonsense. 184 if (!E || isa<til::Literal>(E)) 185 return CapabilityExpr(nullptr, false); 186 187 // Hack to deal with smart pointers -- strip off top-level pointer casts. 188 if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) { 189 if (CE->castOpcode() == til::CAST_objToPtr) 190 return CapabilityExpr(CE->expr(), Neg); 191 } 192 return CapabilityExpr(E, Neg); 193 } 194 195 // Translate a clang statement or expression to a TIL expression. 196 // Also performs substitution of variables; Ctx provides the context. 197 // Dispatches on the type of S. 198 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 199 if (!S) 200 return nullptr; 201 202 // Check if S has already been translated and cached. 203 // This handles the lookup of SSA names for DeclRefExprs here. 204 if (til::SExpr *E = lookupStmt(S)) 205 return E; 206 207 switch (S->getStmtClass()) { 208 case Stmt::DeclRefExprClass: 209 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 210 case Stmt::CXXThisExprClass: 211 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 212 case Stmt::MemberExprClass: 213 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 214 case Stmt::ObjCIvarRefExprClass: 215 return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx); 216 case Stmt::CallExprClass: 217 return translateCallExpr(cast<CallExpr>(S), Ctx); 218 case Stmt::CXXMemberCallExprClass: 219 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 220 case Stmt::CXXOperatorCallExprClass: 221 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 222 case Stmt::UnaryOperatorClass: 223 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 224 case Stmt::BinaryOperatorClass: 225 case Stmt::CompoundAssignOperatorClass: 226 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 227 228 case Stmt::ArraySubscriptExprClass: 229 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 230 case Stmt::ConditionalOperatorClass: 231 return translateAbstractConditionalOperator( 232 cast<ConditionalOperator>(S), Ctx); 233 case Stmt::BinaryConditionalOperatorClass: 234 return translateAbstractConditionalOperator( 235 cast<BinaryConditionalOperator>(S), Ctx); 236 237 // We treat these as no-ops 238 case Stmt::ParenExprClass: 239 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 240 case Stmt::ExprWithCleanupsClass: 241 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 242 case Stmt::CXXBindTemporaryExprClass: 243 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 244 case Stmt::MaterializeTemporaryExprClass: 245 return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(), 246 Ctx); 247 248 // Collect all literals 249 case Stmt::CharacterLiteralClass: 250 case Stmt::CXXNullPtrLiteralExprClass: 251 case Stmt::GNUNullExprClass: 252 case Stmt::CXXBoolLiteralExprClass: 253 case Stmt::FloatingLiteralClass: 254 case Stmt::ImaginaryLiteralClass: 255 case Stmt::IntegerLiteralClass: 256 case Stmt::StringLiteralClass: 257 case Stmt::ObjCStringLiteralClass: 258 return new (Arena) til::Literal(cast<Expr>(S)); 259 260 case Stmt::DeclStmtClass: 261 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 262 default: 263 break; 264 } 265 if (const auto *CE = dyn_cast<CastExpr>(S)) 266 return translateCastExpr(CE, Ctx); 267 268 return new (Arena) til::Undefined(S); 269 } 270 271 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 272 CallingContext *Ctx) { 273 const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 274 275 // Function parameters require substitution and/or renaming. 276 if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 277 const auto *FD = 278 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 279 unsigned I = PV->getFunctionScopeIndex(); 280 281 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 282 // Substitute call arguments for references to function parameters 283 assert(I < Ctx->NumArgs); 284 return translate(Ctx->FunArgs[I], Ctx->Prev); 285 } 286 // Map the param back to the param of the original function declaration 287 // for consistent comparisons. 288 VD = FD->getParamDecl(I); 289 } 290 291 // For non-local variables, treat it as a reference to a named object. 292 return new (Arena) til::LiteralPtr(VD); 293 } 294 295 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 296 CallingContext *Ctx) { 297 // Substitute for 'this' 298 if (Ctx && Ctx->SelfArg) 299 return translate(Ctx->SelfArg, Ctx->Prev); 300 assert(SelfVar && "We have no variable for 'this'!"); 301 return SelfVar; 302 } 303 304 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 305 if (const auto *V = dyn_cast<til::Variable>(E)) 306 return V->clangDecl(); 307 if (const auto *Ph = dyn_cast<til::Phi>(E)) 308 return Ph->clangDecl(); 309 if (const auto *P = dyn_cast<til::Project>(E)) 310 return P->clangDecl(); 311 if (const auto *L = dyn_cast<til::LiteralPtr>(E)) 312 return L->clangDecl(); 313 return nullptr; 314 } 315 316 static bool hasAnyPointerType(const til::SExpr *E) { 317 auto *VD = getValueDeclFromSExpr(E); 318 if (VD && VD->getType()->isAnyPointerType()) 319 return true; 320 if (const auto *C = dyn_cast<til::Cast>(E)) 321 return C->castOpcode() == til::CAST_objToPtr; 322 323 return false; 324 } 325 326 // Grab the very first declaration of virtual method D 327 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { 328 while (true) { 329 D = D->getCanonicalDecl(); 330 auto OverriddenMethods = D->overridden_methods(); 331 if (OverriddenMethods.begin() == OverriddenMethods.end()) 332 return D; // Method does not override anything 333 // FIXME: this does not work with multiple inheritance. 334 D = *OverriddenMethods.begin(); 335 } 336 return nullptr; 337 } 338 339 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 340 CallingContext *Ctx) { 341 til::SExpr *BE = translate(ME->getBase(), Ctx); 342 til::SExpr *E = new (Arena) til::SApply(BE); 343 344 const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 345 if (const auto *VD = dyn_cast<CXXMethodDecl>(D)) 346 D = getFirstVirtualDecl(VD); 347 348 til::Project *P = new (Arena) til::Project(E, D); 349 if (hasAnyPointerType(BE)) 350 P->setArrow(true); 351 return P; 352 } 353 354 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE, 355 CallingContext *Ctx) { 356 til::SExpr *BE = translate(IVRE->getBase(), Ctx); 357 til::SExpr *E = new (Arena) til::SApply(BE); 358 359 const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl()); 360 361 til::Project *P = new (Arena) til::Project(E, D); 362 if (hasAnyPointerType(BE)) 363 P->setArrow(true); 364 return P; 365 } 366 367 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 368 CallingContext *Ctx, 369 const Expr *SelfE) { 370 if (CapabilityExprMode) { 371 // Handle LOCK_RETURNED 372 if (const FunctionDecl *FD = CE->getDirectCallee()) { 373 FD = FD->getMostRecentDecl(); 374 if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) { 375 CallingContext LRCallCtx(Ctx); 376 LRCallCtx.AttrDecl = CE->getDirectCallee(); 377 LRCallCtx.SelfArg = SelfE; 378 LRCallCtx.NumArgs = CE->getNumArgs(); 379 LRCallCtx.FunArgs = CE->getArgs(); 380 return const_cast<til::SExpr *>( 381 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 382 } 383 } 384 } 385 386 til::SExpr *E = translate(CE->getCallee(), Ctx); 387 for (const auto *Arg : CE->arguments()) { 388 til::SExpr *A = translate(Arg, Ctx); 389 E = new (Arena) til::Apply(E, A); 390 } 391 return new (Arena) til::Call(E, CE); 392 } 393 394 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 395 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 396 if (CapabilityExprMode) { 397 // Ignore calls to get() on smart pointers. 398 if (ME->getMethodDecl()->getNameAsString() == "get" && 399 ME->getNumArgs() == 0) { 400 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 401 return new (Arena) til::Cast(til::CAST_objToPtr, E); 402 // return E; 403 } 404 } 405 return translateCallExpr(cast<CallExpr>(ME), Ctx, 406 ME->getImplicitObjectArgument()); 407 } 408 409 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 410 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 411 if (CapabilityExprMode) { 412 // Ignore operator * and operator -> on smart pointers. 413 OverloadedOperatorKind k = OCE->getOperator(); 414 if (k == OO_Star || k == OO_Arrow) { 415 auto *E = translate(OCE->getArg(0), Ctx); 416 return new (Arena) til::Cast(til::CAST_objToPtr, E); 417 // return E; 418 } 419 } 420 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 421 } 422 423 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 424 CallingContext *Ctx) { 425 switch (UO->getOpcode()) { 426 case UO_PostInc: 427 case UO_PostDec: 428 case UO_PreInc: 429 case UO_PreDec: 430 return new (Arena) til::Undefined(UO); 431 432 case UO_AddrOf: 433 if (CapabilityExprMode) { 434 // interpret &Graph::mu_ as an existential. 435 if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 436 if (DRE->getDecl()->isCXXInstanceMember()) { 437 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 438 // We interpret this syntax specially, as a wildcard. 439 auto *W = new (Arena) til::Wildcard(); 440 return new (Arena) til::Project(W, DRE->getDecl()); 441 } 442 } 443 } 444 // otherwise, & is a no-op 445 return translate(UO->getSubExpr(), Ctx); 446 447 // We treat these as no-ops 448 case UO_Deref: 449 case UO_Plus: 450 return translate(UO->getSubExpr(), Ctx); 451 452 case UO_Minus: 453 return new (Arena) 454 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 455 case UO_Not: 456 return new (Arena) 457 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 458 case UO_LNot: 459 return new (Arena) 460 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 461 462 // Currently unsupported 463 case UO_Real: 464 case UO_Imag: 465 case UO_Extension: 466 case UO_Coawait: 467 return new (Arena) til::Undefined(UO); 468 } 469 return new (Arena) til::Undefined(UO); 470 } 471 472 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 473 const BinaryOperator *BO, 474 CallingContext *Ctx, bool Reverse) { 475 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 476 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 477 if (Reverse) 478 return new (Arena) til::BinaryOp(Op, E1, E0); 479 else 480 return new (Arena) til::BinaryOp(Op, E0, E1); 481 } 482 483 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 484 const BinaryOperator *BO, 485 CallingContext *Ctx, 486 bool Assign) { 487 const Expr *LHS = BO->getLHS(); 488 const Expr *RHS = BO->getRHS(); 489 til::SExpr *E0 = translate(LHS, Ctx); 490 til::SExpr *E1 = translate(RHS, Ctx); 491 492 const ValueDecl *VD = nullptr; 493 til::SExpr *CV = nullptr; 494 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) { 495 VD = DRE->getDecl(); 496 CV = lookupVarDecl(VD); 497 } 498 499 if (!Assign) { 500 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 501 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 502 E1 = addStatement(E1, nullptr, VD); 503 } 504 if (VD && CV) 505 return updateVarDecl(VD, E1); 506 return new (Arena) til::Store(E0, E1); 507 } 508 509 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 510 CallingContext *Ctx) { 511 switch (BO->getOpcode()) { 512 case BO_PtrMemD: 513 case BO_PtrMemI: 514 return new (Arena) til::Undefined(BO); 515 516 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 517 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 518 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 519 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 520 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 521 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 522 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 523 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 524 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 525 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 526 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 527 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 528 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 529 case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx); 530 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 531 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 532 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 533 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 534 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 535 536 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 537 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 538 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 539 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 540 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 541 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 542 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 543 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 544 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 545 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 546 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 547 548 case BO_Comma: 549 // The clang CFG should have already processed both sides. 550 return translate(BO->getRHS(), Ctx); 551 } 552 return new (Arena) til::Undefined(BO); 553 } 554 555 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 556 CallingContext *Ctx) { 557 CastKind K = CE->getCastKind(); 558 switch (K) { 559 case CK_LValueToRValue: { 560 if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 561 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 562 if (E0) 563 return E0; 564 } 565 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 566 return E0; 567 // FIXME!! -- get Load working properly 568 // return new (Arena) til::Load(E0); 569 } 570 case CK_NoOp: 571 case CK_DerivedToBase: 572 case CK_UncheckedDerivedToBase: 573 case CK_ArrayToPointerDecay: 574 case CK_FunctionToPointerDecay: { 575 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 576 return E0; 577 } 578 default: { 579 // FIXME: handle different kinds of casts. 580 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 581 if (CapabilityExprMode) 582 return E0; 583 return new (Arena) til::Cast(til::CAST_none, E0); 584 } 585 } 586 } 587 588 til::SExpr * 589 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 590 CallingContext *Ctx) { 591 til::SExpr *E0 = translate(E->getBase(), Ctx); 592 til::SExpr *E1 = translate(E->getIdx(), Ctx); 593 return new (Arena) til::ArrayIndex(E0, E1); 594 } 595 596 til::SExpr * 597 SExprBuilder::translateAbstractConditionalOperator( 598 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 599 auto *C = translate(CO->getCond(), Ctx); 600 auto *T = translate(CO->getTrueExpr(), Ctx); 601 auto *E = translate(CO->getFalseExpr(), Ctx); 602 return new (Arena) til::IfThenElse(C, T, E); 603 } 604 605 til::SExpr * 606 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 607 DeclGroupRef DGrp = S->getDeclGroup(); 608 for (auto I : DGrp) { 609 if (auto *VD = dyn_cast_or_null<VarDecl>(I)) { 610 Expr *E = VD->getInit(); 611 til::SExpr* SE = translate(E, Ctx); 612 613 // Add local variables with trivial type to the variable map 614 QualType T = VD->getType(); 615 if (T.isTrivialType(VD->getASTContext())) 616 return addVarDecl(VD, SE); 617 else { 618 // TODO: add alloca 619 } 620 } 621 } 622 return nullptr; 623 } 624 625 // If (E) is non-trivial, then add it to the current basic block, and 626 // update the statement map so that S refers to E. Returns a new variable 627 // that refers to E. 628 // If E is trivial returns E. 629 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 630 const ValueDecl *VD) { 631 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 632 return E; 633 if (VD) 634 E = new (Arena) til::Variable(E, VD); 635 CurrentInstructions.push_back(E); 636 if (S) 637 insertStmt(S, E); 638 return E; 639 } 640 641 // Returns the current value of VD, if known, and nullptr otherwise. 642 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 643 auto It = LVarIdxMap.find(VD); 644 if (It != LVarIdxMap.end()) { 645 assert(CurrentLVarMap[It->second].first == VD); 646 return CurrentLVarMap[It->second].second; 647 } 648 return nullptr; 649 } 650 651 // if E is a til::Variable, update its clangDecl. 652 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 653 if (!E) 654 return; 655 if (auto *V = dyn_cast<til::Variable>(E)) { 656 if (!V->clangDecl()) 657 V->setClangDecl(VD); 658 } 659 } 660 661 // Adds a new variable declaration. 662 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 663 maybeUpdateVD(E, VD); 664 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 665 CurrentLVarMap.makeWritable(); 666 CurrentLVarMap.push_back(std::make_pair(VD, E)); 667 return E; 668 } 669 670 // Updates a current variable declaration. (E.g. by assignment) 671 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 672 maybeUpdateVD(E, VD); 673 auto It = LVarIdxMap.find(VD); 674 if (It == LVarIdxMap.end()) { 675 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 676 til::SExpr *St = new (Arena) til::Store(Ptr, E); 677 return St; 678 } 679 CurrentLVarMap.makeWritable(); 680 CurrentLVarMap.elem(It->second).second = E; 681 return E; 682 } 683 684 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 685 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 686 // If E == null, this is a backedge and will be set later. 687 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 688 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 689 assert(ArgIndex > 0 && ArgIndex < NPreds); 690 691 til::SExpr *CurrE = CurrentLVarMap[i].second; 692 if (CurrE->block() == CurrentBB) { 693 // We already have a Phi node in the current block, 694 // so just add the new variable to the Phi node. 695 auto *Ph = dyn_cast<til::Phi>(CurrE); 696 assert(Ph && "Expecting Phi node."); 697 if (E) 698 Ph->values()[ArgIndex] = E; 699 return; 700 } 701 702 // Make a new phi node: phi(..., E) 703 // All phi args up to the current index are set to the current value. 704 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 705 Ph->values().setValues(NPreds, nullptr); 706 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 707 Ph->values()[PIdx] = CurrE; 708 if (E) 709 Ph->values()[ArgIndex] = E; 710 Ph->setClangDecl(CurrentLVarMap[i].first); 711 // If E is from a back-edge, or either E or CurrE are incomplete, then 712 // mark this node as incomplete; we may need to remove it later. 713 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) 714 Ph->setStatus(til::Phi::PH_Incomplete); 715 716 // Add Phi node to current block, and update CurrentLVarMap[i] 717 CurrentArguments.push_back(Ph); 718 if (Ph->status() == til::Phi::PH_Incomplete) 719 IncompleteArgs.push_back(Ph); 720 721 CurrentLVarMap.makeWritable(); 722 CurrentLVarMap.elem(i).second = Ph; 723 } 724 725 // Merge values from Map into the current variable map. 726 // This will construct Phi nodes in the current basic block as necessary. 727 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 728 assert(CurrentBlockInfo && "Not processing a block!"); 729 730 if (!CurrentLVarMap.valid()) { 731 // Steal Map, using copy-on-write. 732 CurrentLVarMap = std::move(Map); 733 return; 734 } 735 if (CurrentLVarMap.sameAs(Map)) 736 return; // Easy merge: maps from different predecessors are unchanged. 737 738 unsigned NPreds = CurrentBB->numPredecessors(); 739 unsigned ESz = CurrentLVarMap.size(); 740 unsigned MSz = Map.size(); 741 unsigned Sz = std::min(ESz, MSz); 742 743 for (unsigned i = 0; i < Sz; ++i) { 744 if (CurrentLVarMap[i].first != Map[i].first) { 745 // We've reached the end of variables in common. 746 CurrentLVarMap.makeWritable(); 747 CurrentLVarMap.downsize(i); 748 break; 749 } 750 if (CurrentLVarMap[i].second != Map[i].second) 751 makePhiNodeVar(i, NPreds, Map[i].second); 752 } 753 if (ESz > MSz) { 754 CurrentLVarMap.makeWritable(); 755 CurrentLVarMap.downsize(Map.size()); 756 } 757 } 758 759 // Merge a back edge into the current variable map. 760 // This will create phi nodes for all variables in the variable map. 761 void SExprBuilder::mergeEntryMapBackEdge() { 762 // We don't have definitions for variables on the backedge, because we 763 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 764 // we conservatively create Phi nodes for all variables. Unnecessary Phi 765 // nodes will be marked as incomplete, and stripped out at the end. 766 // 767 // An Phi node is unnecessary if it only refers to itself and one other 768 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 769 770 assert(CurrentBlockInfo && "Not processing a block!"); 771 772 if (CurrentBlockInfo->HasBackEdges) 773 return; 774 CurrentBlockInfo->HasBackEdges = true; 775 776 CurrentLVarMap.makeWritable(); 777 unsigned Sz = CurrentLVarMap.size(); 778 unsigned NPreds = CurrentBB->numPredecessors(); 779 780 for (unsigned i = 0; i < Sz; ++i) 781 makePhiNodeVar(i, NPreds, nullptr); 782 } 783 784 // Update the phi nodes that were initially created for a back edge 785 // once the variable definitions have been computed. 786 // I.e., merge the current variable map into the phi nodes for Blk. 787 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 788 til::BasicBlock *BB = lookupBlock(Blk); 789 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 790 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 791 792 for (til::SExpr *PE : BB->arguments()) { 793 auto *Ph = dyn_cast_or_null<til::Phi>(PE); 794 assert(Ph && "Expecting Phi Node."); 795 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 796 797 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 798 assert(E && "Couldn't find local variable for Phi node."); 799 Ph->values()[ArgIndex] = E; 800 } 801 } 802 803 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 804 const CFGBlock *First) { 805 // Perform initial setup operations. 806 unsigned NBlocks = Cfg->getNumBlockIDs(); 807 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 808 809 // allocate all basic blocks immediately, to handle forward references. 810 BBInfo.resize(NBlocks); 811 BlockMap.resize(NBlocks, nullptr); 812 // create map from clang blockID to til::BasicBlocks 813 for (auto *B : *Cfg) { 814 auto *BB = new (Arena) til::BasicBlock(Arena); 815 BB->reserveInstructions(B->size()); 816 BlockMap[B->getBlockID()] = BB; 817 } 818 819 CurrentBB = lookupBlock(&Cfg->getEntry()); 820 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 821 : cast<FunctionDecl>(D)->parameters(); 822 for (auto *Pm : Parms) { 823 QualType T = Pm->getType(); 824 if (!T.isTrivialType(Pm->getASTContext())) 825 continue; 826 827 // Add parameters to local variable map. 828 // FIXME: right now we emulate params with loads; that should be fixed. 829 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 830 til::SExpr *Ld = new (Arena) til::Load(Lp); 831 til::SExpr *V = addStatement(Ld, nullptr, Pm); 832 addVarDecl(Pm, V); 833 } 834 } 835 836 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 837 // Initialize TIL basic block and add it to the CFG. 838 CurrentBB = lookupBlock(B); 839 CurrentBB->reservePredecessors(B->pred_size()); 840 Scfg->add(CurrentBB); 841 842 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 843 844 // CurrentLVarMap is moved to ExitMap on block exit. 845 // FIXME: the entry block will hold function parameters. 846 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 847 } 848 849 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 850 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 851 852 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 853 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 854 assert(PredInfo->UnprocessedSuccessors > 0); 855 856 if (--PredInfo->UnprocessedSuccessors == 0) 857 mergeEntryMap(std::move(PredInfo->ExitMap)); 858 else 859 mergeEntryMap(PredInfo->ExitMap.clone()); 860 861 ++CurrentBlockInfo->ProcessedPredecessors; 862 } 863 864 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 865 mergeEntryMapBackEdge(); 866 } 867 868 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 869 // The merge*() methods have created arguments. 870 // Push those arguments onto the basic block. 871 CurrentBB->arguments().reserve( 872 static_cast<unsigned>(CurrentArguments.size()), Arena); 873 for (auto *A : CurrentArguments) 874 CurrentBB->addArgument(A); 875 } 876 877 void SExprBuilder::handleStatement(const Stmt *S) { 878 til::SExpr *E = translate(S, nullptr); 879 addStatement(E, S); 880 } 881 882 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 883 const CXXDestructorDecl *DD) { 884 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 885 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 886 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 887 til::SExpr *E = new (Arena) til::Call(Ap); 888 addStatement(E, nullptr); 889 } 890 891 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 892 CurrentBB->instructions().reserve( 893 static_cast<unsigned>(CurrentInstructions.size()), Arena); 894 for (auto *V : CurrentInstructions) 895 CurrentBB->addInstruction(V); 896 897 // Create an appropriate terminator 898 unsigned N = B->succ_size(); 899 auto It = B->succ_begin(); 900 if (N == 1) { 901 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 902 // TODO: set index 903 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 904 auto *Tm = new (Arena) til::Goto(BB, Idx); 905 CurrentBB->setTerminator(Tm); 906 } 907 else if (N == 2) { 908 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 909 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 910 ++It; 911 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 912 // FIXME: make sure these aren't critical edges. 913 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 914 CurrentBB->setTerminator(Tm); 915 } 916 } 917 918 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 919 ++CurrentBlockInfo->UnprocessedSuccessors; 920 } 921 922 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 923 mergePhiNodesBackEdge(Succ); 924 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 925 } 926 927 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 928 CurrentArguments.clear(); 929 CurrentInstructions.clear(); 930 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 931 CurrentBB = nullptr; 932 CurrentBlockInfo = nullptr; 933 } 934 935 void SExprBuilder::exitCFG(const CFGBlock *Last) { 936 for (auto *Ph : IncompleteArgs) { 937 if (Ph->status() == til::Phi::PH_Incomplete) 938 simplifyIncompleteArg(Ph); 939 } 940 941 CurrentArguments.clear(); 942 CurrentInstructions.clear(); 943 IncompleteArgs.clear(); 944 } 945 946 /* 947 namespace { 948 949 class TILPrinter : 950 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 951 952 } // namespace 953 954 namespace clang { 955 namespace threadSafety { 956 957 void printSCFG(CFGWalker &Walker) { 958 llvm::BumpPtrAllocator Bpa; 959 til::MemRegionRef Arena(&Bpa); 960 SExprBuilder SxBuilder(Arena); 961 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 962 TILPrinter::print(Scfg, llvm::errs()); 963 } 964 965 } // namespace threadSafety 966 } // namespace clang 967 */ 968