1 //===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the interfaces declared in ThreadSafetyCommon.h 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 21 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 22 #include "clang/Analysis/AnalysisContext.h" 23 #include "clang/Analysis/CFG.h" 24 #include "clang/Basic/OperatorKinds.h" 25 #include "clang/Basic/SourceLocation.h" 26 #include "llvm/ADT/StringRef.h" 27 #include <algorithm> 28 29 using namespace clang; 30 using namespace threadSafety; 31 32 // From ThreadSafetyUtil.h 33 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) { 34 switch (CE->getStmtClass()) { 35 case Stmt::IntegerLiteralClass: 36 return cast<IntegerLiteral>(CE)->getValue().toString(10, true); 37 case Stmt::StringLiteralClass: { 38 std::string ret("\""); 39 ret += cast<StringLiteral>(CE)->getString(); 40 ret += "\""; 41 return ret; 42 } 43 case Stmt::CharacterLiteralClass: 44 case Stmt::CXXNullPtrLiteralExprClass: 45 case Stmt::GNUNullExprClass: 46 case Stmt::CXXBoolLiteralExprClass: 47 case Stmt::FloatingLiteralClass: 48 case Stmt::ImaginaryLiteralClass: 49 case Stmt::ObjCStringLiteralClass: 50 default: 51 return "#lit"; 52 } 53 } 54 55 // Return true if E is a variable that points to an incomplete Phi node. 56 static bool isIncompletePhi(const til::SExpr *E) { 57 if (const auto *Ph = dyn_cast<til::Phi>(E)) 58 return Ph->status() == til::Phi::PH_Incomplete; 59 return false; 60 } 61 62 typedef SExprBuilder::CallingContext CallingContext; 63 64 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { 65 auto It = SMap.find(S); 66 if (It != SMap.end()) 67 return It->second; 68 return nullptr; 69 } 70 71 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { 72 Walker.walk(*this); 73 return Scfg; 74 } 75 76 static bool isCalleeArrow(const Expr *E) { 77 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); 78 return ME ? ME->isArrow() : false; 79 } 80 81 /// \brief Translate a clang expression in an attribute to a til::SExpr. 82 /// Constructs the context from D, DeclExp, and SelfDecl. 83 /// 84 /// \param AttrExp The expression to translate. 85 /// \param D The declaration to which the attribute is attached. 86 /// \param DeclExp An expression involving the Decl to which the attribute 87 /// is attached. E.g. the call to a function. 88 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 89 const NamedDecl *D, 90 const Expr *DeclExp, 91 VarDecl *SelfDecl) { 92 // If we are processing a raw attribute expression, with no substitutions. 93 if (!DeclExp) 94 return translateAttrExpr(AttrExp, nullptr); 95 96 CallingContext Ctx(nullptr, D); 97 98 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 99 // for formal parameters when we call buildMutexID later. 100 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 101 Ctx.SelfArg = ME->getBase(); 102 Ctx.SelfArrow = ME->isArrow(); 103 } else if (const CXXMemberCallExpr *CE = 104 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 105 Ctx.SelfArg = CE->getImplicitObjectArgument(); 106 Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); 107 Ctx.NumArgs = CE->getNumArgs(); 108 Ctx.FunArgs = CE->getArgs(); 109 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 110 Ctx.NumArgs = CE->getNumArgs(); 111 Ctx.FunArgs = CE->getArgs(); 112 } else if (const CXXConstructExpr *CE = 113 dyn_cast<CXXConstructExpr>(DeclExp)) { 114 Ctx.SelfArg = nullptr; // Will be set below 115 Ctx.NumArgs = CE->getNumArgs(); 116 Ctx.FunArgs = CE->getArgs(); 117 } else if (D && isa<CXXDestructorDecl>(D)) { 118 // There's no such thing as a "destructor call" in the AST. 119 Ctx.SelfArg = DeclExp; 120 } 121 122 // Hack to handle constructors, where self cannot be recovered from 123 // the expression. 124 if (SelfDecl && !Ctx.SelfArg) { 125 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 126 SelfDecl->getLocation()); 127 Ctx.SelfArg = &SelfDRE; 128 129 // If the attribute has no arguments, then assume the argument is "this". 130 if (!AttrExp) 131 return translateAttrExpr(Ctx.SelfArg, nullptr); 132 else // For most attributes. 133 return translateAttrExpr(AttrExp, &Ctx); 134 } 135 136 // If the attribute has no arguments, then assume the argument is "this". 137 if (!AttrExp) 138 return translateAttrExpr(Ctx.SelfArg, nullptr); 139 else // For most attributes. 140 return translateAttrExpr(AttrExp, &Ctx); 141 } 142 143 /// \brief Translate a clang expression in an attribute to a til::SExpr. 144 // This assumes a CallingContext has already been created. 145 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, 146 CallingContext *Ctx) { 147 if (!AttrExp) 148 return CapabilityExpr(nullptr, false); 149 150 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { 151 if (SLit->getString() == StringRef("*")) 152 // The "*" expr is a universal lock, which essentially turns off 153 // checks until it is removed from the lockset. 154 return CapabilityExpr(new (Arena) til::Wildcard(), false); 155 else 156 // Ignore other string literals for now. 157 return CapabilityExpr(nullptr, false); 158 } 159 160 bool Neg = false; 161 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { 162 if (OE->getOperator() == OO_Exclaim) { 163 Neg = true; 164 AttrExp = OE->getArg(0); 165 } 166 } 167 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { 168 if (UO->getOpcode() == UO_LNot) { 169 Neg = true; 170 AttrExp = UO->getSubExpr(); 171 } 172 } 173 174 til::SExpr *E = translate(AttrExp, Ctx); 175 176 // Trap mutex expressions like nullptr, or 0. 177 // Any literal value is nonsense. 178 if (!E || isa<til::Literal>(E)) 179 return CapabilityExpr(nullptr, false); 180 181 // Hack to deal with smart pointers -- strip off top-level pointer casts. 182 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { 183 if (CE->castOpcode() == til::CAST_objToPtr) 184 return CapabilityExpr(CE->expr(), Neg); 185 } 186 return CapabilityExpr(E, Neg); 187 } 188 189 // Translate a clang statement or expression to a TIL expression. 190 // Also performs substitution of variables; Ctx provides the context. 191 // Dispatches on the type of S. 192 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { 193 if (!S) 194 return nullptr; 195 196 // Check if S has already been translated and cached. 197 // This handles the lookup of SSA names for DeclRefExprs here. 198 if (til::SExpr *E = lookupStmt(S)) 199 return E; 200 201 switch (S->getStmtClass()) { 202 case Stmt::DeclRefExprClass: 203 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); 204 case Stmt::CXXThisExprClass: 205 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); 206 case Stmt::MemberExprClass: 207 return translateMemberExpr(cast<MemberExpr>(S), Ctx); 208 case Stmt::CallExprClass: 209 return translateCallExpr(cast<CallExpr>(S), Ctx); 210 case Stmt::CXXMemberCallExprClass: 211 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); 212 case Stmt::CXXOperatorCallExprClass: 213 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); 214 case Stmt::UnaryOperatorClass: 215 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); 216 case Stmt::BinaryOperatorClass: 217 case Stmt::CompoundAssignOperatorClass: 218 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); 219 220 case Stmt::ArraySubscriptExprClass: 221 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); 222 case Stmt::ConditionalOperatorClass: 223 return translateAbstractConditionalOperator( 224 cast<ConditionalOperator>(S), Ctx); 225 case Stmt::BinaryConditionalOperatorClass: 226 return translateAbstractConditionalOperator( 227 cast<BinaryConditionalOperator>(S), Ctx); 228 229 // We treat these as no-ops 230 case Stmt::ParenExprClass: 231 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); 232 case Stmt::ExprWithCleanupsClass: 233 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); 234 case Stmt::CXXBindTemporaryExprClass: 235 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); 236 237 // Collect all literals 238 case Stmt::CharacterLiteralClass: 239 case Stmt::CXXNullPtrLiteralExprClass: 240 case Stmt::GNUNullExprClass: 241 case Stmt::CXXBoolLiteralExprClass: 242 case Stmt::FloatingLiteralClass: 243 case Stmt::ImaginaryLiteralClass: 244 case Stmt::IntegerLiteralClass: 245 case Stmt::StringLiteralClass: 246 case Stmt::ObjCStringLiteralClass: 247 return new (Arena) til::Literal(cast<Expr>(S)); 248 249 case Stmt::DeclStmtClass: 250 return translateDeclStmt(cast<DeclStmt>(S), Ctx); 251 default: 252 break; 253 } 254 if (const CastExpr *CE = dyn_cast<CastExpr>(S)) 255 return translateCastExpr(CE, Ctx); 256 257 return new (Arena) til::Undefined(S); 258 } 259 260 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, 261 CallingContext *Ctx) { 262 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 263 264 // Function parameters require substitution and/or renaming. 265 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { 266 const FunctionDecl *FD = 267 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 268 unsigned I = PV->getFunctionScopeIndex(); 269 270 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { 271 // Substitute call arguments for references to function parameters 272 assert(I < Ctx->NumArgs); 273 return translate(Ctx->FunArgs[I], Ctx->Prev); 274 } 275 // Map the param back to the param of the original function declaration 276 // for consistent comparisons. 277 VD = FD->getParamDecl(I); 278 } 279 280 // For non-local variables, treat it as a reference to a named object. 281 return new (Arena) til::LiteralPtr(VD); 282 } 283 284 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, 285 CallingContext *Ctx) { 286 // Substitute for 'this' 287 if (Ctx && Ctx->SelfArg) 288 return translate(Ctx->SelfArg, Ctx->Prev); 289 assert(SelfVar && "We have no variable for 'this'!"); 290 return SelfVar; 291 } 292 293 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { 294 if (auto *V = dyn_cast<til::Variable>(E)) 295 return V->clangDecl(); 296 if (auto *Ph = dyn_cast<til::Phi>(E)) 297 return Ph->clangDecl(); 298 if (auto *P = dyn_cast<til::Project>(E)) 299 return P->clangDecl(); 300 if (auto *L = dyn_cast<til::LiteralPtr>(E)) 301 return L->clangDecl(); 302 return nullptr; 303 } 304 305 static bool hasCppPointerType(const til::SExpr *E) { 306 auto *VD = getValueDeclFromSExpr(E); 307 if (VD && VD->getType()->isPointerType()) 308 return true; 309 if (auto *C = dyn_cast<til::Cast>(E)) 310 return C->castOpcode() == til::CAST_objToPtr; 311 312 return false; 313 } 314 315 // Grab the very first declaration of virtual method D 316 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { 317 while (true) { 318 D = D->getCanonicalDecl(); 319 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), 320 E = D->end_overridden_methods(); 321 if (I == E) 322 return D; // Method does not override anything 323 D = *I; // FIXME: this does not work with multiple inheritance. 324 } 325 return nullptr; 326 } 327 328 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, 329 CallingContext *Ctx) { 330 til::SExpr *BE = translate(ME->getBase(), Ctx); 331 til::SExpr *E = new (Arena) til::SApply(BE); 332 333 const ValueDecl *D = 334 cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 335 if (auto *VD = dyn_cast<CXXMethodDecl>(D)) 336 D = getFirstVirtualDecl(VD); 337 338 til::Project *P = new (Arena) til::Project(E, D); 339 if (hasCppPointerType(BE)) 340 P->setArrow(true); 341 return P; 342 } 343 344 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, 345 CallingContext *Ctx, 346 const Expr *SelfE) { 347 if (CapabilityExprMode) { 348 // Handle LOCK_RETURNED 349 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); 350 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 351 CallingContext LRCallCtx(Ctx); 352 LRCallCtx.AttrDecl = CE->getDirectCallee(); 353 LRCallCtx.SelfArg = SelfE; 354 LRCallCtx.NumArgs = CE->getNumArgs(); 355 LRCallCtx.FunArgs = CE->getArgs(); 356 return const_cast<til::SExpr*>( 357 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); 358 } 359 } 360 361 til::SExpr *E = translate(CE->getCallee(), Ctx); 362 for (const auto *Arg : CE->arguments()) { 363 til::SExpr *A = translate(Arg, Ctx); 364 E = new (Arena) til::Apply(E, A); 365 } 366 return new (Arena) til::Call(E, CE); 367 } 368 369 til::SExpr *SExprBuilder::translateCXXMemberCallExpr( 370 const CXXMemberCallExpr *ME, CallingContext *Ctx) { 371 if (CapabilityExprMode) { 372 // Ignore calls to get() on smart pointers. 373 if (ME->getMethodDecl()->getNameAsString() == "get" && 374 ME->getNumArgs() == 0) { 375 auto *E = translate(ME->getImplicitObjectArgument(), Ctx); 376 return new (Arena) til::Cast(til::CAST_objToPtr, E); 377 // return E; 378 } 379 } 380 return translateCallExpr(cast<CallExpr>(ME), Ctx, 381 ME->getImplicitObjectArgument()); 382 } 383 384 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( 385 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { 386 if (CapabilityExprMode) { 387 // Ignore operator * and operator -> on smart pointers. 388 OverloadedOperatorKind k = OCE->getOperator(); 389 if (k == OO_Star || k == OO_Arrow) { 390 auto *E = translate(OCE->getArg(0), Ctx); 391 return new (Arena) til::Cast(til::CAST_objToPtr, E); 392 // return E; 393 } 394 } 395 return translateCallExpr(cast<CallExpr>(OCE), Ctx); 396 } 397 398 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, 399 CallingContext *Ctx) { 400 switch (UO->getOpcode()) { 401 case UO_PostInc: 402 case UO_PostDec: 403 case UO_PreInc: 404 case UO_PreDec: 405 return new (Arena) til::Undefined(UO); 406 407 case UO_AddrOf: { 408 if (CapabilityExprMode) { 409 // interpret &Graph::mu_ as an existential. 410 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { 411 if (DRE->getDecl()->isCXXInstanceMember()) { 412 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 413 // We interpret this syntax specially, as a wildcard. 414 auto *W = new (Arena) til::Wildcard(); 415 return new (Arena) til::Project(W, DRE->getDecl()); 416 } 417 } 418 } 419 // otherwise, & is a no-op 420 return translate(UO->getSubExpr(), Ctx); 421 } 422 423 // We treat these as no-ops 424 case UO_Deref: 425 case UO_Plus: 426 return translate(UO->getSubExpr(), Ctx); 427 428 case UO_Minus: 429 return new (Arena) 430 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); 431 case UO_Not: 432 return new (Arena) 433 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); 434 case UO_LNot: 435 return new (Arena) 436 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); 437 438 // Currently unsupported 439 case UO_Real: 440 case UO_Imag: 441 case UO_Extension: 442 case UO_Coawait: 443 return new (Arena) til::Undefined(UO); 444 } 445 return new (Arena) til::Undefined(UO); 446 } 447 448 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, 449 const BinaryOperator *BO, 450 CallingContext *Ctx, bool Reverse) { 451 til::SExpr *E0 = translate(BO->getLHS(), Ctx); 452 til::SExpr *E1 = translate(BO->getRHS(), Ctx); 453 if (Reverse) 454 return new (Arena) til::BinaryOp(Op, E1, E0); 455 else 456 return new (Arena) til::BinaryOp(Op, E0, E1); 457 } 458 459 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, 460 const BinaryOperator *BO, 461 CallingContext *Ctx, 462 bool Assign) { 463 const Expr *LHS = BO->getLHS(); 464 const Expr *RHS = BO->getRHS(); 465 til::SExpr *E0 = translate(LHS, Ctx); 466 til::SExpr *E1 = translate(RHS, Ctx); 467 468 const ValueDecl *VD = nullptr; 469 til::SExpr *CV = nullptr; 470 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { 471 VD = DRE->getDecl(); 472 CV = lookupVarDecl(VD); 473 } 474 475 if (!Assign) { 476 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); 477 E1 = new (Arena) til::BinaryOp(Op, Arg, E1); 478 E1 = addStatement(E1, nullptr, VD); 479 } 480 if (VD && CV) 481 return updateVarDecl(VD, E1); 482 return new (Arena) til::Store(E0, E1); 483 } 484 485 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, 486 CallingContext *Ctx) { 487 switch (BO->getOpcode()) { 488 case BO_PtrMemD: 489 case BO_PtrMemI: 490 return new (Arena) til::Undefined(BO); 491 492 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); 493 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); 494 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); 495 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); 496 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); 497 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); 498 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); 499 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); 500 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); 501 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); 502 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); 503 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); 504 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); 505 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); 506 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); 507 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); 508 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); 509 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); 510 511 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); 512 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); 513 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); 514 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); 515 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); 516 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); 517 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); 518 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); 519 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); 520 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); 521 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); 522 523 case BO_Comma: 524 // The clang CFG should have already processed both sides. 525 return translate(BO->getRHS(), Ctx); 526 } 527 return new (Arena) til::Undefined(BO); 528 } 529 530 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, 531 CallingContext *Ctx) { 532 clang::CastKind K = CE->getCastKind(); 533 switch (K) { 534 case CK_LValueToRValue: { 535 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 536 til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); 537 if (E0) 538 return E0; 539 } 540 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 541 return E0; 542 // FIXME!! -- get Load working properly 543 // return new (Arena) til::Load(E0); 544 } 545 case CK_NoOp: 546 case CK_DerivedToBase: 547 case CK_UncheckedDerivedToBase: 548 case CK_ArrayToPointerDecay: 549 case CK_FunctionToPointerDecay: { 550 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 551 return E0; 552 } 553 default: { 554 // FIXME: handle different kinds of casts. 555 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); 556 if (CapabilityExprMode) 557 return E0; 558 return new (Arena) til::Cast(til::CAST_none, E0); 559 } 560 } 561 } 562 563 til::SExpr * 564 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, 565 CallingContext *Ctx) { 566 til::SExpr *E0 = translate(E->getBase(), Ctx); 567 til::SExpr *E1 = translate(E->getIdx(), Ctx); 568 return new (Arena) til::ArrayIndex(E0, E1); 569 } 570 571 til::SExpr * 572 SExprBuilder::translateAbstractConditionalOperator( 573 const AbstractConditionalOperator *CO, CallingContext *Ctx) { 574 auto *C = translate(CO->getCond(), Ctx); 575 auto *T = translate(CO->getTrueExpr(), Ctx); 576 auto *E = translate(CO->getFalseExpr(), Ctx); 577 return new (Arena) til::IfThenElse(C, T, E); 578 } 579 580 til::SExpr * 581 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { 582 DeclGroupRef DGrp = S->getDeclGroup(); 583 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 584 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 585 Expr *E = VD->getInit(); 586 til::SExpr* SE = translate(E, Ctx); 587 588 // Add local variables with trivial type to the variable map 589 QualType T = VD->getType(); 590 if (T.isTrivialType(VD->getASTContext())) { 591 return addVarDecl(VD, SE); 592 } 593 else { 594 // TODO: add alloca 595 } 596 } 597 } 598 return nullptr; 599 } 600 601 // If (E) is non-trivial, then add it to the current basic block, and 602 // update the statement map so that S refers to E. Returns a new variable 603 // that refers to E. 604 // If E is trivial returns E. 605 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, 606 const ValueDecl *VD) { 607 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) 608 return E; 609 if (VD) 610 E = new (Arena) til::Variable(E, VD); 611 CurrentInstructions.push_back(E); 612 if (S) 613 insertStmt(S, E); 614 return E; 615 } 616 617 // Returns the current value of VD, if known, and nullptr otherwise. 618 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { 619 auto It = LVarIdxMap.find(VD); 620 if (It != LVarIdxMap.end()) { 621 assert(CurrentLVarMap[It->second].first == VD); 622 return CurrentLVarMap[It->second].second; 623 } 624 return nullptr; 625 } 626 627 // if E is a til::Variable, update its clangDecl. 628 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { 629 if (!E) 630 return; 631 if (til::Variable *V = dyn_cast<til::Variable>(E)) { 632 if (!V->clangDecl()) 633 V->setClangDecl(VD); 634 } 635 } 636 637 // Adds a new variable declaration. 638 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { 639 maybeUpdateVD(E, VD); 640 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); 641 CurrentLVarMap.makeWritable(); 642 CurrentLVarMap.push_back(std::make_pair(VD, E)); 643 return E; 644 } 645 646 // Updates a current variable declaration. (E.g. by assignment) 647 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { 648 maybeUpdateVD(E, VD); 649 auto It = LVarIdxMap.find(VD); 650 if (It == LVarIdxMap.end()) { 651 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); 652 til::SExpr *St = new (Arena) til::Store(Ptr, E); 653 return St; 654 } 655 CurrentLVarMap.makeWritable(); 656 CurrentLVarMap.elem(It->second).second = E; 657 return E; 658 } 659 660 // Make a Phi node in the current block for the i^th variable in CurrentVarMap. 661 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. 662 // If E == null, this is a backedge and will be set later. 663 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { 664 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; 665 assert(ArgIndex > 0 && ArgIndex < NPreds); 666 667 til::SExpr *CurrE = CurrentLVarMap[i].second; 668 if (CurrE->block() == CurrentBB) { 669 // We already have a Phi node in the current block, 670 // so just add the new variable to the Phi node. 671 til::Phi *Ph = dyn_cast<til::Phi>(CurrE); 672 assert(Ph && "Expecting Phi node."); 673 if (E) 674 Ph->values()[ArgIndex] = E; 675 return; 676 } 677 678 // Make a new phi node: phi(..., E) 679 // All phi args up to the current index are set to the current value. 680 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); 681 Ph->values().setValues(NPreds, nullptr); 682 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) 683 Ph->values()[PIdx] = CurrE; 684 if (E) 685 Ph->values()[ArgIndex] = E; 686 Ph->setClangDecl(CurrentLVarMap[i].first); 687 // If E is from a back-edge, or either E or CurrE are incomplete, then 688 // mark this node as incomplete; we may need to remove it later. 689 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { 690 Ph->setStatus(til::Phi::PH_Incomplete); 691 } 692 693 // Add Phi node to current block, and update CurrentLVarMap[i] 694 CurrentArguments.push_back(Ph); 695 if (Ph->status() == til::Phi::PH_Incomplete) 696 IncompleteArgs.push_back(Ph); 697 698 CurrentLVarMap.makeWritable(); 699 CurrentLVarMap.elem(i).second = Ph; 700 } 701 702 // Merge values from Map into the current variable map. 703 // This will construct Phi nodes in the current basic block as necessary. 704 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { 705 assert(CurrentBlockInfo && "Not processing a block!"); 706 707 if (!CurrentLVarMap.valid()) { 708 // Steal Map, using copy-on-write. 709 CurrentLVarMap = std::move(Map); 710 return; 711 } 712 if (CurrentLVarMap.sameAs(Map)) 713 return; // Easy merge: maps from different predecessors are unchanged. 714 715 unsigned NPreds = CurrentBB->numPredecessors(); 716 unsigned ESz = CurrentLVarMap.size(); 717 unsigned MSz = Map.size(); 718 unsigned Sz = std::min(ESz, MSz); 719 720 for (unsigned i=0; i<Sz; ++i) { 721 if (CurrentLVarMap[i].first != Map[i].first) { 722 // We've reached the end of variables in common. 723 CurrentLVarMap.makeWritable(); 724 CurrentLVarMap.downsize(i); 725 break; 726 } 727 if (CurrentLVarMap[i].second != Map[i].second) 728 makePhiNodeVar(i, NPreds, Map[i].second); 729 } 730 if (ESz > MSz) { 731 CurrentLVarMap.makeWritable(); 732 CurrentLVarMap.downsize(Map.size()); 733 } 734 } 735 736 // Merge a back edge into the current variable map. 737 // This will create phi nodes for all variables in the variable map. 738 void SExprBuilder::mergeEntryMapBackEdge() { 739 // We don't have definitions for variables on the backedge, because we 740 // haven't gotten that far in the CFG. Thus, when encountering a back edge, 741 // we conservatively create Phi nodes for all variables. Unnecessary Phi 742 // nodes will be marked as incomplete, and stripped out at the end. 743 // 744 // An Phi node is unnecessary if it only refers to itself and one other 745 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. 746 747 assert(CurrentBlockInfo && "Not processing a block!"); 748 749 if (CurrentBlockInfo->HasBackEdges) 750 return; 751 CurrentBlockInfo->HasBackEdges = true; 752 753 CurrentLVarMap.makeWritable(); 754 unsigned Sz = CurrentLVarMap.size(); 755 unsigned NPreds = CurrentBB->numPredecessors(); 756 757 for (unsigned i=0; i < Sz; ++i) { 758 makePhiNodeVar(i, NPreds, nullptr); 759 } 760 } 761 762 // Update the phi nodes that were initially created for a back edge 763 // once the variable definitions have been computed. 764 // I.e., merge the current variable map into the phi nodes for Blk. 765 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { 766 til::BasicBlock *BB = lookupBlock(Blk); 767 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; 768 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); 769 770 for (til::SExpr *PE : BB->arguments()) { 771 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); 772 assert(Ph && "Expecting Phi Node."); 773 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); 774 775 til::SExpr *E = lookupVarDecl(Ph->clangDecl()); 776 assert(E && "Couldn't find local variable for Phi node."); 777 Ph->values()[ArgIndex] = E; 778 } 779 } 780 781 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, 782 const CFGBlock *First) { 783 // Perform initial setup operations. 784 unsigned NBlocks = Cfg->getNumBlockIDs(); 785 Scfg = new (Arena) til::SCFG(Arena, NBlocks); 786 787 // allocate all basic blocks immediately, to handle forward references. 788 BBInfo.resize(NBlocks); 789 BlockMap.resize(NBlocks, nullptr); 790 // create map from clang blockID to til::BasicBlocks 791 for (auto *B : *Cfg) { 792 auto *BB = new (Arena) til::BasicBlock(Arena); 793 BB->reserveInstructions(B->size()); 794 BlockMap[B->getBlockID()] = BB; 795 } 796 797 CurrentBB = lookupBlock(&Cfg->getEntry()); 798 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() 799 : cast<FunctionDecl>(D)->parameters(); 800 for (auto *Pm : Parms) { 801 QualType T = Pm->getType(); 802 if (!T.isTrivialType(Pm->getASTContext())) 803 continue; 804 805 // Add parameters to local variable map. 806 // FIXME: right now we emulate params with loads; that should be fixed. 807 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); 808 til::SExpr *Ld = new (Arena) til::Load(Lp); 809 til::SExpr *V = addStatement(Ld, nullptr, Pm); 810 addVarDecl(Pm, V); 811 } 812 } 813 814 void SExprBuilder::enterCFGBlock(const CFGBlock *B) { 815 // Intialize TIL basic block and add it to the CFG. 816 CurrentBB = lookupBlock(B); 817 CurrentBB->reservePredecessors(B->pred_size()); 818 Scfg->add(CurrentBB); 819 820 CurrentBlockInfo = &BBInfo[B->getBlockID()]; 821 822 // CurrentLVarMap is moved to ExitMap on block exit. 823 // FIXME: the entry block will hold function parameters. 824 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); 825 } 826 827 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { 828 // Compute CurrentLVarMap on entry from ExitMaps of predecessors 829 830 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); 831 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; 832 assert(PredInfo->UnprocessedSuccessors > 0); 833 834 if (--PredInfo->UnprocessedSuccessors == 0) 835 mergeEntryMap(std::move(PredInfo->ExitMap)); 836 else 837 mergeEntryMap(PredInfo->ExitMap.clone()); 838 839 ++CurrentBlockInfo->ProcessedPredecessors; 840 } 841 842 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { 843 mergeEntryMapBackEdge(); 844 } 845 846 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { 847 // The merge*() methods have created arguments. 848 // Push those arguments onto the basic block. 849 CurrentBB->arguments().reserve( 850 static_cast<unsigned>(CurrentArguments.size()), Arena); 851 for (auto *A : CurrentArguments) 852 CurrentBB->addArgument(A); 853 } 854 855 void SExprBuilder::handleStatement(const Stmt *S) { 856 til::SExpr *E = translate(S, nullptr); 857 addStatement(E, S); 858 } 859 860 void SExprBuilder::handleDestructorCall(const VarDecl *VD, 861 const CXXDestructorDecl *DD) { 862 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); 863 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); 864 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); 865 til::SExpr *E = new (Arena) til::Call(Ap); 866 addStatement(E, nullptr); 867 } 868 869 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { 870 CurrentBB->instructions().reserve( 871 static_cast<unsigned>(CurrentInstructions.size()), Arena); 872 for (auto *V : CurrentInstructions) 873 CurrentBB->addInstruction(V); 874 875 // Create an appropriate terminator 876 unsigned N = B->succ_size(); 877 auto It = B->succ_begin(); 878 if (N == 1) { 879 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; 880 // TODO: set index 881 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; 882 auto *Tm = new (Arena) til::Goto(BB, Idx); 883 CurrentBB->setTerminator(Tm); 884 } 885 else if (N == 2) { 886 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); 887 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; 888 ++It; 889 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; 890 // FIXME: make sure these arent' critical edges. 891 auto *Tm = new (Arena) til::Branch(C, BB1, BB2); 892 CurrentBB->setTerminator(Tm); 893 } 894 } 895 896 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { 897 ++CurrentBlockInfo->UnprocessedSuccessors; 898 } 899 900 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { 901 mergePhiNodesBackEdge(Succ); 902 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; 903 } 904 905 void SExprBuilder::exitCFGBlock(const CFGBlock *B) { 906 CurrentArguments.clear(); 907 CurrentInstructions.clear(); 908 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); 909 CurrentBB = nullptr; 910 CurrentBlockInfo = nullptr; 911 } 912 913 void SExprBuilder::exitCFG(const CFGBlock *Last) { 914 for (auto *Ph : IncompleteArgs) { 915 if (Ph->status() == til::Phi::PH_Incomplete) 916 simplifyIncompleteArg(Ph); 917 } 918 919 CurrentArguments.clear(); 920 CurrentInstructions.clear(); 921 IncompleteArgs.clear(); 922 } 923 924 /* 925 void printSCFG(CFGWalker &Walker) { 926 llvm::BumpPtrAllocator Bpa; 927 til::MemRegionRef Arena(&Bpa); 928 SExprBuilder SxBuilder(Arena); 929 til::SCFG *Scfg = SxBuilder.buildCFG(Walker); 930 TILPrinter::print(Scfg, llvm::errs()); 931 } 932 */ 933