1 //===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
21 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
22 #include "clang/Analysis/AnalysisContext.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Basic/OperatorKinds.h"
25 #include "clang/Basic/SourceLocation.h"
26 #include "llvm/ADT/StringRef.h"
27 #include <algorithm>
28 
29 using namespace clang;
30 using namespace threadSafety;
31 
32 // From ThreadSafetyUtil.h
33 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) {
34   switch (CE->getStmtClass()) {
35     case Stmt::IntegerLiteralClass:
36       return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
37     case Stmt::StringLiteralClass: {
38       std::string ret("\"");
39       ret += cast<StringLiteral>(CE)->getString();
40       ret += "\"";
41       return ret;
42     }
43     case Stmt::CharacterLiteralClass:
44     case Stmt::CXXNullPtrLiteralExprClass:
45     case Stmt::GNUNullExprClass:
46     case Stmt::CXXBoolLiteralExprClass:
47     case Stmt::FloatingLiteralClass:
48     case Stmt::ImaginaryLiteralClass:
49     case Stmt::ObjCStringLiteralClass:
50     default:
51       return "#lit";
52   }
53 }
54 
55 // Return true if E is a variable that points to an incomplete Phi node.
56 static bool isIncompletePhi(const til::SExpr *E) {
57   if (const auto *Ph = dyn_cast<til::Phi>(E))
58     return Ph->status() == til::Phi::PH_Incomplete;
59   return false;
60 }
61 
62 typedef SExprBuilder::CallingContext CallingContext;
63 
64 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
65   auto It = SMap.find(S);
66   if (It != SMap.end())
67     return It->second;
68   return nullptr;
69 }
70 
71 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
72   Walker.walk(*this);
73   return Scfg;
74 }
75 
76 static bool isCalleeArrow(const Expr *E) {
77   const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
78   return ME ? ME->isArrow() : false;
79 }
80 
81 /// \brief Translate a clang expression in an attribute to a til::SExpr.
82 /// Constructs the context from D, DeclExp, and SelfDecl.
83 ///
84 /// \param AttrExp The expression to translate.
85 /// \param D       The declaration to which the attribute is attached.
86 /// \param DeclExp An expression involving the Decl to which the attribute
87 ///                is attached.  E.g. the call to a function.
88 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
89                                                const NamedDecl *D,
90                                                const Expr *DeclExp,
91                                                VarDecl *SelfDecl) {
92   // If we are processing a raw attribute expression, with no substitutions.
93   if (!DeclExp)
94     return translateAttrExpr(AttrExp, nullptr);
95 
96   CallingContext Ctx(nullptr, D);
97 
98   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
99   // for formal parameters when we call buildMutexID later.
100   if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
101     Ctx.SelfArg   = ME->getBase();
102     Ctx.SelfArrow = ME->isArrow();
103   } else if (const CXXMemberCallExpr *CE =
104              dyn_cast<CXXMemberCallExpr>(DeclExp)) {
105     Ctx.SelfArg   = CE->getImplicitObjectArgument();
106     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
107     Ctx.NumArgs   = CE->getNumArgs();
108     Ctx.FunArgs   = CE->getArgs();
109   } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
110     Ctx.NumArgs = CE->getNumArgs();
111     Ctx.FunArgs = CE->getArgs();
112   } else if (const CXXConstructExpr *CE =
113              dyn_cast<CXXConstructExpr>(DeclExp)) {
114     Ctx.SelfArg = nullptr;  // Will be set below
115     Ctx.NumArgs = CE->getNumArgs();
116     Ctx.FunArgs = CE->getArgs();
117   } else if (D && isa<CXXDestructorDecl>(D)) {
118     // There's no such thing as a "destructor call" in the AST.
119     Ctx.SelfArg = DeclExp;
120   }
121 
122   // Hack to handle constructors, where self cannot be recovered from
123   // the expression.
124   if (SelfDecl && !Ctx.SelfArg) {
125     DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
126                         SelfDecl->getLocation());
127     Ctx.SelfArg = &SelfDRE;
128 
129     // If the attribute has no arguments, then assume the argument is "this".
130     if (!AttrExp)
131       return translateAttrExpr(Ctx.SelfArg, nullptr);
132     else  // For most attributes.
133       return translateAttrExpr(AttrExp, &Ctx);
134   }
135 
136   // If the attribute has no arguments, then assume the argument is "this".
137   if (!AttrExp)
138     return translateAttrExpr(Ctx.SelfArg, nullptr);
139   else  // For most attributes.
140     return translateAttrExpr(AttrExp, &Ctx);
141 }
142 
143 /// \brief Translate a clang expression in an attribute to a til::SExpr.
144 // This assumes a CallingContext has already been created.
145 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
146                                                CallingContext *Ctx) {
147   if (!AttrExp)
148     return CapabilityExpr(nullptr, false);
149 
150   if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
151     if (SLit->getString() == StringRef("*"))
152       // The "*" expr is a universal lock, which essentially turns off
153       // checks until it is removed from the lockset.
154       return CapabilityExpr(new (Arena) til::Wildcard(), false);
155     else
156       // Ignore other string literals for now.
157       return CapabilityExpr(nullptr, false);
158   }
159 
160   bool Neg = false;
161   if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
162     if (OE->getOperator() == OO_Exclaim) {
163       Neg = true;
164       AttrExp = OE->getArg(0);
165     }
166   }
167   else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
168     if (UO->getOpcode() == UO_LNot) {
169       Neg = true;
170       AttrExp = UO->getSubExpr();
171     }
172   }
173 
174   til::SExpr *E = translate(AttrExp, Ctx);
175 
176   // Trap mutex expressions like nullptr, or 0.
177   // Any literal value is nonsense.
178   if (!E || isa<til::Literal>(E))
179     return CapabilityExpr(nullptr, false);
180 
181   // Hack to deal with smart pointers -- strip off top-level pointer casts.
182   if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
183     if (CE->castOpcode() == til::CAST_objToPtr)
184       return CapabilityExpr(CE->expr(), Neg);
185   }
186   return CapabilityExpr(E, Neg);
187 }
188 
189 // Translate a clang statement or expression to a TIL expression.
190 // Also performs substitution of variables; Ctx provides the context.
191 // Dispatches on the type of S.
192 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
193   if (!S)
194     return nullptr;
195 
196   // Check if S has already been translated and cached.
197   // This handles the lookup of SSA names for DeclRefExprs here.
198   if (til::SExpr *E = lookupStmt(S))
199     return E;
200 
201   switch (S->getStmtClass()) {
202   case Stmt::DeclRefExprClass:
203     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
204   case Stmt::CXXThisExprClass:
205     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
206   case Stmt::MemberExprClass:
207     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
208   case Stmt::CallExprClass:
209     return translateCallExpr(cast<CallExpr>(S), Ctx);
210   case Stmt::CXXMemberCallExprClass:
211     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
212   case Stmt::CXXOperatorCallExprClass:
213     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
214   case Stmt::UnaryOperatorClass:
215     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
216   case Stmt::BinaryOperatorClass:
217   case Stmt::CompoundAssignOperatorClass:
218     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
219 
220   case Stmt::ArraySubscriptExprClass:
221     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
222   case Stmt::ConditionalOperatorClass:
223     return translateAbstractConditionalOperator(
224              cast<ConditionalOperator>(S), Ctx);
225   case Stmt::BinaryConditionalOperatorClass:
226     return translateAbstractConditionalOperator(
227              cast<BinaryConditionalOperator>(S), Ctx);
228 
229   // We treat these as no-ops
230   case Stmt::ParenExprClass:
231     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
232   case Stmt::ExprWithCleanupsClass:
233     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
234   case Stmt::CXXBindTemporaryExprClass:
235     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
236 
237   // Collect all literals
238   case Stmt::CharacterLiteralClass:
239   case Stmt::CXXNullPtrLiteralExprClass:
240   case Stmt::GNUNullExprClass:
241   case Stmt::CXXBoolLiteralExprClass:
242   case Stmt::FloatingLiteralClass:
243   case Stmt::ImaginaryLiteralClass:
244   case Stmt::IntegerLiteralClass:
245   case Stmt::StringLiteralClass:
246   case Stmt::ObjCStringLiteralClass:
247     return new (Arena) til::Literal(cast<Expr>(S));
248 
249   case Stmt::DeclStmtClass:
250     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
251   default:
252     break;
253   }
254   if (const CastExpr *CE = dyn_cast<CastExpr>(S))
255     return translateCastExpr(CE, Ctx);
256 
257   return new (Arena) til::Undefined(S);
258 }
259 
260 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
261                                                CallingContext *Ctx) {
262   const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
263 
264   // Function parameters require substitution and/or renaming.
265   if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
266     const FunctionDecl *FD =
267         cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
268     unsigned I = PV->getFunctionScopeIndex();
269 
270     if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
271       // Substitute call arguments for references to function parameters
272       assert(I < Ctx->NumArgs);
273       return translate(Ctx->FunArgs[I], Ctx->Prev);
274     }
275     // Map the param back to the param of the original function declaration
276     // for consistent comparisons.
277     VD = FD->getParamDecl(I);
278   }
279 
280   // For non-local variables, treat it as a reference to a named object.
281   return new (Arena) til::LiteralPtr(VD);
282 }
283 
284 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
285                                                CallingContext *Ctx) {
286   // Substitute for 'this'
287   if (Ctx && Ctx->SelfArg)
288     return translate(Ctx->SelfArg, Ctx->Prev);
289   assert(SelfVar && "We have no variable for 'this'!");
290   return SelfVar;
291 }
292 
293 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
294   if (auto *V = dyn_cast<til::Variable>(E))
295     return V->clangDecl();
296   if (auto *Ph = dyn_cast<til::Phi>(E))
297     return Ph->clangDecl();
298   if (auto *P = dyn_cast<til::Project>(E))
299     return P->clangDecl();
300   if (auto *L = dyn_cast<til::LiteralPtr>(E))
301     return L->clangDecl();
302   return nullptr;
303 }
304 
305 static bool hasCppPointerType(const til::SExpr *E) {
306   auto *VD = getValueDeclFromSExpr(E);
307   if (VD && VD->getType()->isPointerType())
308     return true;
309   if (auto *C = dyn_cast<til::Cast>(E))
310     return C->castOpcode() == til::CAST_objToPtr;
311 
312   return false;
313 }
314 
315 // Grab the very first declaration of virtual method D
316 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
317   while (true) {
318     D = D->getCanonicalDecl();
319     CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
320                                    E = D->end_overridden_methods();
321     if (I == E)
322       return D;  // Method does not override anything
323     D = *I;      // FIXME: this does not work with multiple inheritance.
324   }
325   return nullptr;
326 }
327 
328 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
329                                               CallingContext *Ctx) {
330   til::SExpr *BE = translate(ME->getBase(), Ctx);
331   til::SExpr *E  = new (Arena) til::SApply(BE);
332 
333   const ValueDecl *D =
334       cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
335   if (auto *VD = dyn_cast<CXXMethodDecl>(D))
336     D = getFirstVirtualDecl(VD);
337 
338   til::Project *P = new (Arena) til::Project(E, D);
339   if (hasCppPointerType(BE))
340     P->setArrow(true);
341   return P;
342 }
343 
344 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
345                                             CallingContext *Ctx,
346                                             const Expr *SelfE) {
347   if (CapabilityExprMode) {
348     // Handle LOCK_RETURNED
349     const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
350     if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
351       CallingContext LRCallCtx(Ctx);
352       LRCallCtx.AttrDecl = CE->getDirectCallee();
353       LRCallCtx.SelfArg  = SelfE;
354       LRCallCtx.NumArgs  = CE->getNumArgs();
355       LRCallCtx.FunArgs  = CE->getArgs();
356       return const_cast<til::SExpr*>(
357           translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
358     }
359   }
360 
361   til::SExpr *E = translate(CE->getCallee(), Ctx);
362   for (const auto *Arg : CE->arguments()) {
363     til::SExpr *A = translate(Arg, Ctx);
364     E = new (Arena) til::Apply(E, A);
365   }
366   return new (Arena) til::Call(E, CE);
367 }
368 
369 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
370     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
371   if (CapabilityExprMode) {
372     // Ignore calls to get() on smart pointers.
373     if (ME->getMethodDecl()->getNameAsString() == "get" &&
374         ME->getNumArgs() == 0) {
375       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
376       return new (Arena) til::Cast(til::CAST_objToPtr, E);
377       // return E;
378     }
379   }
380   return translateCallExpr(cast<CallExpr>(ME), Ctx,
381                            ME->getImplicitObjectArgument());
382 }
383 
384 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
385     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
386   if (CapabilityExprMode) {
387     // Ignore operator * and operator -> on smart pointers.
388     OverloadedOperatorKind k = OCE->getOperator();
389     if (k == OO_Star || k == OO_Arrow) {
390       auto *E = translate(OCE->getArg(0), Ctx);
391       return new (Arena) til::Cast(til::CAST_objToPtr, E);
392       // return E;
393     }
394   }
395   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
396 }
397 
398 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
399                                                  CallingContext *Ctx) {
400   switch (UO->getOpcode()) {
401   case UO_PostInc:
402   case UO_PostDec:
403   case UO_PreInc:
404   case UO_PreDec:
405     return new (Arena) til::Undefined(UO);
406 
407   case UO_AddrOf: {
408     if (CapabilityExprMode) {
409       // interpret &Graph::mu_ as an existential.
410       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
411         if (DRE->getDecl()->isCXXInstanceMember()) {
412           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
413           // We interpret this syntax specially, as a wildcard.
414           auto *W = new (Arena) til::Wildcard();
415           return new (Arena) til::Project(W, DRE->getDecl());
416         }
417       }
418     }
419     // otherwise, & is a no-op
420     return translate(UO->getSubExpr(), Ctx);
421   }
422 
423   // We treat these as no-ops
424   case UO_Deref:
425   case UO_Plus:
426     return translate(UO->getSubExpr(), Ctx);
427 
428   case UO_Minus:
429     return new (Arena)
430       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
431   case UO_Not:
432     return new (Arena)
433       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
434   case UO_LNot:
435     return new (Arena)
436       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
437 
438   // Currently unsupported
439   case UO_Real:
440   case UO_Imag:
441   case UO_Extension:
442   case UO_Coawait:
443     return new (Arena) til::Undefined(UO);
444   }
445   return new (Arena) til::Undefined(UO);
446 }
447 
448 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
449                                          const BinaryOperator *BO,
450                                          CallingContext *Ctx, bool Reverse) {
451    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
452    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
453    if (Reverse)
454      return new (Arena) til::BinaryOp(Op, E1, E0);
455    else
456      return new (Arena) til::BinaryOp(Op, E0, E1);
457 }
458 
459 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
460                                              const BinaryOperator *BO,
461                                              CallingContext *Ctx,
462                                              bool Assign) {
463   const Expr *LHS = BO->getLHS();
464   const Expr *RHS = BO->getRHS();
465   til::SExpr *E0 = translate(LHS, Ctx);
466   til::SExpr *E1 = translate(RHS, Ctx);
467 
468   const ValueDecl *VD = nullptr;
469   til::SExpr *CV = nullptr;
470   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
471     VD = DRE->getDecl();
472     CV = lookupVarDecl(VD);
473   }
474 
475   if (!Assign) {
476     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
477     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
478     E1 = addStatement(E1, nullptr, VD);
479   }
480   if (VD && CV)
481     return updateVarDecl(VD, E1);
482   return new (Arena) til::Store(E0, E1);
483 }
484 
485 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
486                                                   CallingContext *Ctx) {
487   switch (BO->getOpcode()) {
488   case BO_PtrMemD:
489   case BO_PtrMemI:
490     return new (Arena) til::Undefined(BO);
491 
492   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
493   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
494   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
495   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
496   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
497   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
498   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
499   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
500   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
501   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
502   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
503   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
504   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
505   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
506   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
507   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
508   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
509   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
510 
511   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
512   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
513   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
514   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
515   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
516   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
517   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
518   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
519   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
520   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
521   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
522 
523   case BO_Comma:
524     // The clang CFG should have already processed both sides.
525     return translate(BO->getRHS(), Ctx);
526   }
527   return new (Arena) til::Undefined(BO);
528 }
529 
530 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
531                                             CallingContext *Ctx) {
532   clang::CastKind K = CE->getCastKind();
533   switch (K) {
534   case CK_LValueToRValue: {
535     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
536       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
537       if (E0)
538         return E0;
539     }
540     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
541     return E0;
542     // FIXME!! -- get Load working properly
543     // return new (Arena) til::Load(E0);
544   }
545   case CK_NoOp:
546   case CK_DerivedToBase:
547   case CK_UncheckedDerivedToBase:
548   case CK_ArrayToPointerDecay:
549   case CK_FunctionToPointerDecay: {
550     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
551     return E0;
552   }
553   default: {
554     // FIXME: handle different kinds of casts.
555     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
556     if (CapabilityExprMode)
557       return E0;
558     return new (Arena) til::Cast(til::CAST_none, E0);
559   }
560   }
561 }
562 
563 til::SExpr *
564 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
565                                           CallingContext *Ctx) {
566   til::SExpr *E0 = translate(E->getBase(), Ctx);
567   til::SExpr *E1 = translate(E->getIdx(), Ctx);
568   return new (Arena) til::ArrayIndex(E0, E1);
569 }
570 
571 til::SExpr *
572 SExprBuilder::translateAbstractConditionalOperator(
573     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
574   auto *C = translate(CO->getCond(), Ctx);
575   auto *T = translate(CO->getTrueExpr(), Ctx);
576   auto *E = translate(CO->getFalseExpr(), Ctx);
577   return new (Arena) til::IfThenElse(C, T, E);
578 }
579 
580 til::SExpr *
581 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
582   DeclGroupRef DGrp = S->getDeclGroup();
583   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
584     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
585       Expr *E = VD->getInit();
586       til::SExpr* SE = translate(E, Ctx);
587 
588       // Add local variables with trivial type to the variable map
589       QualType T = VD->getType();
590       if (T.isTrivialType(VD->getASTContext())) {
591         return addVarDecl(VD, SE);
592       }
593       else {
594         // TODO: add alloca
595       }
596     }
597   }
598   return nullptr;
599 }
600 
601 // If (E) is non-trivial, then add it to the current basic block, and
602 // update the statement map so that S refers to E.  Returns a new variable
603 // that refers to E.
604 // If E is trivial returns E.
605 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
606                                        const ValueDecl *VD) {
607   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
608     return E;
609   if (VD)
610     E = new (Arena) til::Variable(E, VD);
611   CurrentInstructions.push_back(E);
612   if (S)
613     insertStmt(S, E);
614   return E;
615 }
616 
617 // Returns the current value of VD, if known, and nullptr otherwise.
618 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
619   auto It = LVarIdxMap.find(VD);
620   if (It != LVarIdxMap.end()) {
621     assert(CurrentLVarMap[It->second].first == VD);
622     return CurrentLVarMap[It->second].second;
623   }
624   return nullptr;
625 }
626 
627 // if E is a til::Variable, update its clangDecl.
628 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
629   if (!E)
630     return;
631   if (til::Variable *V = dyn_cast<til::Variable>(E)) {
632     if (!V->clangDecl())
633       V->setClangDecl(VD);
634   }
635 }
636 
637 // Adds a new variable declaration.
638 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
639   maybeUpdateVD(E, VD);
640   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
641   CurrentLVarMap.makeWritable();
642   CurrentLVarMap.push_back(std::make_pair(VD, E));
643   return E;
644 }
645 
646 // Updates a current variable declaration.  (E.g. by assignment)
647 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
648   maybeUpdateVD(E, VD);
649   auto It = LVarIdxMap.find(VD);
650   if (It == LVarIdxMap.end()) {
651     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
652     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
653     return St;
654   }
655   CurrentLVarMap.makeWritable();
656   CurrentLVarMap.elem(It->second).second = E;
657   return E;
658 }
659 
660 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
661 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
662 // If E == null, this is a backedge and will be set later.
663 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
664   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
665   assert(ArgIndex > 0 && ArgIndex < NPreds);
666 
667   til::SExpr *CurrE = CurrentLVarMap[i].second;
668   if (CurrE->block() == CurrentBB) {
669     // We already have a Phi node in the current block,
670     // so just add the new variable to the Phi node.
671     til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
672     assert(Ph && "Expecting Phi node.");
673     if (E)
674       Ph->values()[ArgIndex] = E;
675     return;
676   }
677 
678   // Make a new phi node: phi(..., E)
679   // All phi args up to the current index are set to the current value.
680   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
681   Ph->values().setValues(NPreds, nullptr);
682   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
683     Ph->values()[PIdx] = CurrE;
684   if (E)
685     Ph->values()[ArgIndex] = E;
686   Ph->setClangDecl(CurrentLVarMap[i].first);
687   // If E is from a back-edge, or either E or CurrE are incomplete, then
688   // mark this node as incomplete; we may need to remove it later.
689   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
690     Ph->setStatus(til::Phi::PH_Incomplete);
691   }
692 
693   // Add Phi node to current block, and update CurrentLVarMap[i]
694   CurrentArguments.push_back(Ph);
695   if (Ph->status() == til::Phi::PH_Incomplete)
696     IncompleteArgs.push_back(Ph);
697 
698   CurrentLVarMap.makeWritable();
699   CurrentLVarMap.elem(i).second = Ph;
700 }
701 
702 // Merge values from Map into the current variable map.
703 // This will construct Phi nodes in the current basic block as necessary.
704 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
705   assert(CurrentBlockInfo && "Not processing a block!");
706 
707   if (!CurrentLVarMap.valid()) {
708     // Steal Map, using copy-on-write.
709     CurrentLVarMap = std::move(Map);
710     return;
711   }
712   if (CurrentLVarMap.sameAs(Map))
713     return;  // Easy merge: maps from different predecessors are unchanged.
714 
715   unsigned NPreds = CurrentBB->numPredecessors();
716   unsigned ESz = CurrentLVarMap.size();
717   unsigned MSz = Map.size();
718   unsigned Sz  = std::min(ESz, MSz);
719 
720   for (unsigned i=0; i<Sz; ++i) {
721     if (CurrentLVarMap[i].first != Map[i].first) {
722       // We've reached the end of variables in common.
723       CurrentLVarMap.makeWritable();
724       CurrentLVarMap.downsize(i);
725       break;
726     }
727     if (CurrentLVarMap[i].second != Map[i].second)
728       makePhiNodeVar(i, NPreds, Map[i].second);
729   }
730   if (ESz > MSz) {
731     CurrentLVarMap.makeWritable();
732     CurrentLVarMap.downsize(Map.size());
733   }
734 }
735 
736 // Merge a back edge into the current variable map.
737 // This will create phi nodes for all variables in the variable map.
738 void SExprBuilder::mergeEntryMapBackEdge() {
739   // We don't have definitions for variables on the backedge, because we
740   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
741   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
742   // nodes will be marked as incomplete, and stripped out at the end.
743   //
744   // An Phi node is unnecessary if it only refers to itself and one other
745   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
746 
747   assert(CurrentBlockInfo && "Not processing a block!");
748 
749   if (CurrentBlockInfo->HasBackEdges)
750     return;
751   CurrentBlockInfo->HasBackEdges = true;
752 
753   CurrentLVarMap.makeWritable();
754   unsigned Sz = CurrentLVarMap.size();
755   unsigned NPreds = CurrentBB->numPredecessors();
756 
757   for (unsigned i=0; i < Sz; ++i) {
758     makePhiNodeVar(i, NPreds, nullptr);
759   }
760 }
761 
762 // Update the phi nodes that were initially created for a back edge
763 // once the variable definitions have been computed.
764 // I.e., merge the current variable map into the phi nodes for Blk.
765 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
766   til::BasicBlock *BB = lookupBlock(Blk);
767   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
768   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
769 
770   for (til::SExpr *PE : BB->arguments()) {
771     til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
772     assert(Ph && "Expecting Phi Node.");
773     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
774 
775     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
776     assert(E && "Couldn't find local variable for Phi node.");
777     Ph->values()[ArgIndex] = E;
778   }
779 }
780 
781 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
782                             const CFGBlock *First) {
783   // Perform initial setup operations.
784   unsigned NBlocks = Cfg->getNumBlockIDs();
785   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
786 
787   // allocate all basic blocks immediately, to handle forward references.
788   BBInfo.resize(NBlocks);
789   BlockMap.resize(NBlocks, nullptr);
790   // create map from clang blockID to til::BasicBlocks
791   for (auto *B : *Cfg) {
792     auto *BB = new (Arena) til::BasicBlock(Arena);
793     BB->reserveInstructions(B->size());
794     BlockMap[B->getBlockID()] = BB;
795   }
796 
797   CurrentBB = lookupBlock(&Cfg->getEntry());
798   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
799                                       : cast<FunctionDecl>(D)->parameters();
800   for (auto *Pm : Parms) {
801     QualType T = Pm->getType();
802     if (!T.isTrivialType(Pm->getASTContext()))
803       continue;
804 
805     // Add parameters to local variable map.
806     // FIXME: right now we emulate params with loads; that should be fixed.
807     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
808     til::SExpr *Ld = new (Arena) til::Load(Lp);
809     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
810     addVarDecl(Pm, V);
811   }
812 }
813 
814 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
815   // Intialize TIL basic block and add it to the CFG.
816   CurrentBB = lookupBlock(B);
817   CurrentBB->reservePredecessors(B->pred_size());
818   Scfg->add(CurrentBB);
819 
820   CurrentBlockInfo = &BBInfo[B->getBlockID()];
821 
822   // CurrentLVarMap is moved to ExitMap on block exit.
823   // FIXME: the entry block will hold function parameters.
824   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
825 }
826 
827 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
828   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
829 
830   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
831   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
832   assert(PredInfo->UnprocessedSuccessors > 0);
833 
834   if (--PredInfo->UnprocessedSuccessors == 0)
835     mergeEntryMap(std::move(PredInfo->ExitMap));
836   else
837     mergeEntryMap(PredInfo->ExitMap.clone());
838 
839   ++CurrentBlockInfo->ProcessedPredecessors;
840 }
841 
842 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
843   mergeEntryMapBackEdge();
844 }
845 
846 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
847   // The merge*() methods have created arguments.
848   // Push those arguments onto the basic block.
849   CurrentBB->arguments().reserve(
850     static_cast<unsigned>(CurrentArguments.size()), Arena);
851   for (auto *A : CurrentArguments)
852     CurrentBB->addArgument(A);
853 }
854 
855 void SExprBuilder::handleStatement(const Stmt *S) {
856   til::SExpr *E = translate(S, nullptr);
857   addStatement(E, S);
858 }
859 
860 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
861                                         const CXXDestructorDecl *DD) {
862   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
863   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
864   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
865   til::SExpr *E = new (Arena) til::Call(Ap);
866   addStatement(E, nullptr);
867 }
868 
869 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
870   CurrentBB->instructions().reserve(
871     static_cast<unsigned>(CurrentInstructions.size()), Arena);
872   for (auto *V : CurrentInstructions)
873     CurrentBB->addInstruction(V);
874 
875   // Create an appropriate terminator
876   unsigned N = B->succ_size();
877   auto It = B->succ_begin();
878   if (N == 1) {
879     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
880     // TODO: set index
881     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
882     auto *Tm = new (Arena) til::Goto(BB, Idx);
883     CurrentBB->setTerminator(Tm);
884   }
885   else if (N == 2) {
886     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
887     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
888     ++It;
889     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
890     // FIXME: make sure these arent' critical edges.
891     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
892     CurrentBB->setTerminator(Tm);
893   }
894 }
895 
896 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
897   ++CurrentBlockInfo->UnprocessedSuccessors;
898 }
899 
900 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
901   mergePhiNodesBackEdge(Succ);
902   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
903 }
904 
905 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
906   CurrentArguments.clear();
907   CurrentInstructions.clear();
908   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
909   CurrentBB = nullptr;
910   CurrentBlockInfo = nullptr;
911 }
912 
913 void SExprBuilder::exitCFG(const CFGBlock *Last) {
914   for (auto *Ph : IncompleteArgs) {
915     if (Ph->status() == til::Phi::PH_Incomplete)
916       simplifyIncompleteArg(Ph);
917   }
918 
919   CurrentArguments.clear();
920   CurrentInstructions.clear();
921   IncompleteArgs.clear();
922 }
923 
924 /*
925 void printSCFG(CFGWalker &Walker) {
926   llvm::BumpPtrAllocator Bpa;
927   til::MemRegionRef Arena(&Bpa);
928   SExprBuilder SxBuilder(Arena);
929   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
930   TILPrinter::print(Scfg, llvm::errs());
931 }
932 */
933