1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/Analysis/AnalysisContext.h"
20 #include "clang/Analysis/CFG.h"
21 #include "clang/Analysis/CFGStmtMap.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/FoldingSet.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include <algorithm>
35 #include <vector>
36 
37 using namespace clang;
38 using namespace thread_safety;
39 
40 // Key method definition
41 ThreadSafetyHandler::~ThreadSafetyHandler() {}
42 
43 // Helper functions
44 static Expr *getParent(Expr *Exp) {
45   if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
46     return ME->getBase();
47   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
48     return CE->getImplicitObjectArgument();
49   return 0;
50 }
51 
52 namespace {
53 /// \brief Implements a set of CFGBlocks using a BitVector.
54 ///
55 /// This class contains a minimal interface, primarily dictated by the SetType
56 /// template parameter of the llvm::po_iterator template, as used with external
57 /// storage. We also use this set to keep track of which CFGBlocks we visit
58 /// during the analysis.
59 class CFGBlockSet {
60   llvm::BitVector VisitedBlockIDs;
61 
62 public:
63   // po_iterator requires this iterator, but the only interface needed is the
64   // value_type typedef.
65   struct iterator {
66     typedef const CFGBlock *value_type;
67   };
68 
69   CFGBlockSet() {}
70   CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
71 
72   /// \brief Set the bit associated with a particular CFGBlock.
73   /// This is the important method for the SetType template parameter.
74   bool insert(const CFGBlock *Block) {
75     // Note that insert() is called by po_iterator, which doesn't check to make
76     // sure that Block is non-null.  Moreover, the CFGBlock iterator will
77     // occasionally hand out null pointers for pruned edges, so we catch those
78     // here.
79     if (Block == 0)
80       return false;  // if an edge is trivially false.
81     if (VisitedBlockIDs.test(Block->getBlockID()))
82       return false;
83     VisitedBlockIDs.set(Block->getBlockID());
84     return true;
85   }
86 
87   /// \brief Check if the bit for a CFGBlock has been already set.
88   /// This method is for tracking visited blocks in the main threadsafety loop.
89   /// Block must not be null.
90   bool alreadySet(const CFGBlock *Block) {
91     return VisitedBlockIDs.test(Block->getBlockID());
92   }
93 };
94 
95 /// \brief We create a helper class which we use to iterate through CFGBlocks in
96 /// the topological order.
97 class TopologicallySortedCFG {
98   typedef llvm::po_iterator<const CFG*, CFGBlockSet, true>  po_iterator;
99 
100   std::vector<const CFGBlock*> Blocks;
101 
102 public:
103   typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
104 
105   TopologicallySortedCFG(const CFG *CFGraph) {
106     Blocks.reserve(CFGraph->getNumBlockIDs());
107     CFGBlockSet BSet(CFGraph);
108 
109     for (po_iterator I = po_iterator::begin(CFGraph, BSet),
110          E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
111       Blocks.push_back(*I);
112     }
113   }
114 
115   iterator begin() {
116     return Blocks.rbegin();
117   }
118 
119   iterator end() {
120     return Blocks.rend();
121   }
122 
123   bool empty() {
124     return begin() == end();
125   }
126 };
127 
128 /// \brief A MutexID object uniquely identifies a particular mutex, and
129 /// is built from an Expr* (i.e. calling a lock function).
130 ///
131 /// Thread-safety analysis works by comparing lock expressions.  Within the
132 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
133 /// a particular mutex object at run-time.  Subsequent occurrences of the same
134 /// expression (where "same" means syntactic equality) will refer to the same
135 /// run-time object if three conditions hold:
136 /// (1) Local variables in the expression, such as "x" have not changed.
137 /// (2) Values on the heap that affect the expression have not changed.
138 /// (3) The expression involves only pure function calls.
139 /// The current implementation assumes, but does not verify, that multiple uses
140 /// of the same lock expression satisfies these criteria.
141 ///
142 /// Clang introduces an additional wrinkle, which is that it is difficult to
143 /// derive canonical expressions, or compare expressions directly for equality.
144 /// Thus, we identify a mutex not by an Expr, but by the set of named
145 /// declarations that are referenced by the Expr.  In other words,
146 /// x->foo->bar.mu will be a four element vector with the Decls for
147 /// mu, bar, and foo, and x.  The vector will uniquely identify the expression
148 /// for all practical purposes.
149 ///
150 /// Note we will need to perform substitution on "this" and function parameter
151 /// names when constructing a lock expression.
152 ///
153 /// For example:
154 /// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
155 /// void myFunc(C *X) { ... X->lock() ... }
156 /// The original expression for the mutex acquired by myFunc is "this->Mu", but
157 /// "X" is substituted for "this" so we get X->Mu();
158 ///
159 /// For another example:
160 /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
161 /// MyList *MyL;
162 /// foo(MyL);  // requires lock MyL->Mu to be held
163 class MutexID {
164   SmallVector<NamedDecl*, 2> DeclSeq;
165 
166   /// Build a Decl sequence representing the lock from the given expression.
167   /// Recursive function that bottoms out when the final DeclRefExpr is reached.
168   void buildMutexID(Expr *Exp, Expr *Parent) {
169     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
170       NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
171       DeclSeq.push_back(ND);
172     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
173       NamedDecl *ND = ME->getMemberDecl();
174       DeclSeq.push_back(ND);
175       buildMutexID(ME->getBase(), Parent);
176     } else if (isa<CXXThisExpr>(Exp)) {
177       if (Parent)
178         buildMutexID(Parent, 0);
179       else
180         return; // mutexID is still valid in this case
181     } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
182       buildMutexID(CE->getSubExpr(), Parent);
183     else
184       DeclSeq.clear(); // invalid lock expression
185   }
186 
187 public:
188   MutexID(Expr *LExpr, Expr *ParentExpr) {
189     buildMutexID(LExpr, ParentExpr);
190   }
191 
192   /// If we encounter part of a lock expression we cannot parse
193   bool isValid() const {
194     return !DeclSeq.empty();
195   }
196 
197   bool operator==(const MutexID &other) const {
198     return DeclSeq == other.DeclSeq;
199   }
200 
201   bool operator!=(const MutexID &other) const {
202     return !(*this == other);
203   }
204 
205   // SmallVector overloads Operator< to do lexicographic ordering. Note that
206   // we use pointer equality (and <) to compare NamedDecls. This means the order
207   // of MutexIDs in a lockset is nondeterministic. In order to output
208   // diagnostics in a deterministic ordering, we must order all diagnostics to
209   // output by SourceLocation when iterating through this lockset.
210   bool operator<(const MutexID &other) const {
211     return DeclSeq < other.DeclSeq;
212   }
213 
214   /// \brief Returns the name of the first Decl in the list for a given MutexID;
215   /// e.g. the lock expression foo.bar() has name "bar".
216   /// The caret will point unambiguously to the lock expression, so using this
217   /// name in diagnostics is a way to get simple, and consistent, mutex names.
218   /// We do not want to output the entire expression text for security reasons.
219   StringRef getName() const {
220     assert(isValid());
221     return DeclSeq.front()->getName();
222   }
223 
224   void Profile(llvm::FoldingSetNodeID &ID) const {
225     for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
226          E = DeclSeq.end(); I != E; ++I) {
227       ID.AddPointer(*I);
228     }
229   }
230 };
231 
232 /// \brief This is a helper class that stores info about the most recent
233 /// accquire of a Lock.
234 ///
235 /// The main body of the analysis maps MutexIDs to LockDatas.
236 struct LockData {
237   SourceLocation AcquireLoc;
238 
239   /// \brief LKind stores whether a lock is held shared or exclusively.
240   /// Note that this analysis does not currently support either re-entrant
241   /// locking or lock "upgrading" and "downgrading" between exclusive and
242   /// shared.
243   ///
244   /// FIXME: add support for re-entrant locking and lock up/downgrading
245   LockKind LKind;
246 
247   LockData(SourceLocation AcquireLoc, LockKind LKind)
248     : AcquireLoc(AcquireLoc), LKind(LKind) {}
249 
250   bool operator==(const LockData &other) const {
251     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
252   }
253 
254   bool operator!=(const LockData &other) const {
255     return !(*this == other);
256   }
257 
258   void Profile(llvm::FoldingSetNodeID &ID) const {
259       ID.AddInteger(AcquireLoc.getRawEncoding());
260       ID.AddInteger(LKind);
261     }
262 };
263 
264 /// A Lockset maps each MutexID (defined above) to information about how it has
265 /// been locked.
266 typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
267 
268 /// \brief We use this class to visit different types of expressions in
269 /// CFGBlocks, and build up the lockset.
270 /// An expression may cause us to add or remove locks from the lockset, or else
271 /// output error messages related to missing locks.
272 /// FIXME: In future, we may be able to not inherit from a visitor.
273 class BuildLockset : public StmtVisitor<BuildLockset> {
274   ThreadSafetyHandler &Handler;
275   Lockset LSet;
276   Lockset::Factory &LocksetFactory;
277 
278   // Helper functions
279   void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
280   void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
281                LockKind LK);
282   const ValueDecl *getValueDecl(Expr *Exp);
283   void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
284                            Expr *MutexExp, ProtectedOperationKind POK);
285   void checkAccess(Expr *Exp, AccessKind AK);
286   void checkDereference(Expr *Exp, AccessKind AK);
287 
288   template <class AttrType>
289   void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
290 
291   /// \brief Returns true if the lockset contains a lock, regardless of whether
292   /// the lock is held exclusively or shared.
293   bool locksetContains(MutexID Lock) const {
294     return LSet.lookup(Lock);
295   }
296 
297   /// \brief Returns true if the lockset contains a lock with the passed in
298   /// locktype.
299   bool locksetContains(MutexID Lock, LockKind KindRequested) const {
300     const LockData *LockHeld = LSet.lookup(Lock);
301     return (LockHeld && KindRequested == LockHeld->LKind);
302   }
303 
304   /// \brief Returns true if the lockset contains a lock with at least the
305   /// passed in locktype. So for example, if we pass in LK_Shared, this function
306   /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
307   /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
308   bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
309     switch (KindRequested) {
310       case LK_Shared:
311         return locksetContains(Lock);
312       case LK_Exclusive:
313         return locksetContains(Lock, KindRequested);
314     }
315     llvm_unreachable("Unknown LockKind");
316   }
317 
318 public:
319   BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
320     : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
321       LocksetFactory(F) {}
322 
323   Lockset getLockset() {
324     return LSet;
325   }
326 
327   void VisitUnaryOperator(UnaryOperator *UO);
328   void VisitBinaryOperator(BinaryOperator *BO);
329   void VisitCastExpr(CastExpr *CE);
330   void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
331 };
332 
333 /// \brief Add a new lock to the lockset, warning if the lock is already there.
334 /// \param LockLoc The source location of the acquire
335 /// \param LockExp The lock expression corresponding to the lock to be added
336 void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
337                            LockKind LK) {
338   // FIXME: deal with acquired before/after annotations
339   MutexID Mutex(LockExp, Parent);
340   if (!Mutex.isValid()) {
341     Handler.handleInvalidLockExp(LockExp->getExprLoc());
342     return;
343   }
344 
345   LockData NewLock(LockLoc, LK);
346 
347   // FIXME: Don't always warn when we have support for reentrant locks.
348   if (locksetContains(Mutex))
349     Handler.handleDoubleLock(Mutex.getName(), LockLoc);
350   LSet = LocksetFactory.add(LSet, Mutex, NewLock);
351 }
352 
353 /// \brief Remove a lock from the lockset, warning if the lock is not there.
354 /// \param LockExp The lock expression corresponding to the lock to be removed
355 /// \param UnlockLoc The source location of the unlock (only used in error msg)
356 void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
357                               Expr *Parent) {
358   MutexID Mutex(LockExp, Parent);
359   if (!Mutex.isValid()) {
360     Handler.handleInvalidLockExp(LockExp->getExprLoc());
361     return;
362   }
363 
364   Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
365   if(NewLSet == LSet)
366     Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
367 
368   LSet = NewLSet;
369 }
370 
371 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
372 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
373   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
374     return DR->getDecl();
375 
376   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
377     return ME->getMemberDecl();
378 
379   return 0;
380 }
381 
382 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
383 /// of at least the passed in AccessType.
384 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
385                                       AccessKind AK, Expr *MutexExp,
386                                       ProtectedOperationKind POK) {
387   LockKind LK = getLockKindFromAccessKind(AK);
388   Expr *Parent = getParent(Exp);
389   MutexID Mutex(MutexExp, Parent);
390   if (!Mutex.isValid())
391     Handler.handleInvalidLockExp(MutexExp->getExprLoc());
392   else if (!locksetContainsAtLeast(Mutex, LK))
393     Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
394 }
395 
396 
397 /// \brief This method identifies variable dereferences and checks pt_guarded_by
398 /// and pt_guarded_var annotations. Note that we only check these annotations
399 /// at the time a pointer is dereferenced.
400 /// FIXME: We need to check for other types of pointer dereferences
401 /// (e.g. [], ->) and deal with them here.
402 /// \param Exp An expression that has been read or written.
403 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
404   UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
405   if (!UO || UO->getOpcode() != clang::UO_Deref)
406     return;
407   Exp = UO->getSubExpr()->IgnoreParenCasts();
408 
409   const ValueDecl *D = getValueDecl(Exp);
410   if(!D || !D->hasAttrs())
411     return;
412 
413   if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
414     Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
415 
416   const AttrVec &ArgAttrs = D->getAttrs();
417   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
418     if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
419       warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
420 }
421 
422 /// \brief Checks guarded_by and guarded_var attributes.
423 /// Whenever we identify an access (read or write) of a DeclRefExpr or
424 /// MemberExpr, we need to check whether there are any guarded_by or
425 /// guarded_var attributes, and make sure we hold the appropriate mutexes.
426 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
427   const ValueDecl *D = getValueDecl(Exp);
428   if(!D || !D->hasAttrs())
429     return;
430 
431   if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
432     Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
433 
434   const AttrVec &ArgAttrs = D->getAttrs();
435   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
436     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
437       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
438 }
439 
440 /// \brief For unary operations which read and write a variable, we need to
441 /// check whether we hold any required mutexes. Reads are checked in
442 /// VisitCastExpr.
443 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
444   switch (UO->getOpcode()) {
445     case clang::UO_PostDec:
446     case clang::UO_PostInc:
447     case clang::UO_PreDec:
448     case clang::UO_PreInc: {
449       Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
450       checkAccess(SubExp, AK_Written);
451       checkDereference(SubExp, AK_Written);
452       break;
453     }
454     default:
455       break;
456   }
457 }
458 
459 /// For binary operations which assign to a variable (writes), we need to check
460 /// whether we hold any required mutexes.
461 /// FIXME: Deal with non-primitive types.
462 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
463   if (!BO->isAssignmentOp())
464     return;
465   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
466   checkAccess(LHSExp, AK_Written);
467   checkDereference(LHSExp, AK_Written);
468 }
469 
470 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
471 /// need to ensure we hold any required mutexes.
472 /// FIXME: Deal with non-primitive types.
473 void BuildLockset::VisitCastExpr(CastExpr *CE) {
474   if (CE->getCastKind() != CK_LValueToRValue)
475     return;
476   Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
477   checkAccess(SubExp, AK_Read);
478   checkDereference(SubExp, AK_Read);
479 }
480 
481 /// \brief This function, parameterized by an attribute type, is used to add a
482 /// set of locks specified as attribute arguments to the lockset.
483 template <typename AttrType>
484 void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
485                                  CXXMemberCallExpr *Exp) {
486   typedef typename AttrType::args_iterator iterator_type;
487   SourceLocation ExpLocation = Exp->getExprLoc();
488   Expr *Parent = Exp->getImplicitObjectArgument();
489   AttrType *SpecificAttr = cast<AttrType>(Attr);
490 
491   if (SpecificAttr->args_size() == 0) {
492     // The mutex held is the "this" object.
493     addLock(ExpLocation, Parent, 0, LK);
494     return;
495   }
496 
497   for (iterator_type I = SpecificAttr->args_begin(),
498        E = SpecificAttr->args_end(); I != E; ++I)
499     addLock(ExpLocation, *I, Parent, LK);
500 }
501 
502 /// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
503 /// the method that is being called and add, remove or check locks in the
504 /// lockset accordingly.
505 ///
506 /// FIXME: For classes annotated with one of the guarded annotations, we need
507 /// to treat const method calls as reads and non-const method calls as writes,
508 /// and check that the appropriate locks are held. Non-const method calls with
509 /// the same signature as const method calls can be also treated as reads.
510 ///
511 /// FIXME: We need to also visit CallExprs to catch/check global functions.
512 void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
513   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
514 
515   SourceLocation ExpLocation = Exp->getExprLoc();
516   Expr *Parent = Exp->getImplicitObjectArgument();
517 
518   if(!D || !D->hasAttrs())
519     return;
520 
521   AttrVec &ArgAttrs = D->getAttrs();
522   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
523     Attr *Attr = ArgAttrs[i];
524     switch (Attr->getKind()) {
525       // When we encounter an exclusive lock function, we need to add the lock
526       // to our lockset with kind exclusive.
527       case attr::ExclusiveLockFunction:
528         addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
529         break;
530 
531       // When we encounter a shared lock function, we need to add the lock
532       // to our lockset with kind shared.
533       case attr::SharedLockFunction:
534         addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
535         break;
536 
537       // When we encounter an unlock function, we need to remove unlocked
538       // mutexes from the lockset, and flag a warning if they are not there.
539       case attr::UnlockFunction: {
540         UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
541 
542         if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
543           removeLock(ExpLocation, Parent, 0);
544           break;
545         }
546 
547         for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
548              E = UFAttr->args_end(); I != E; ++I)
549           removeLock(ExpLocation, *I, Parent);
550         break;
551       }
552 
553       case attr::ExclusiveLocksRequired: {
554         // FIXME: Also use this attribute to add required locks to the initial
555         // lockset when processing a CFG for a function annotated with this
556         // attribute.
557         ExclusiveLocksRequiredAttr *ELRAttr =
558             cast<ExclusiveLocksRequiredAttr>(Attr);
559 
560         for (ExclusiveLocksRequiredAttr::args_iterator
561              I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
562           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
563         break;
564       }
565 
566       case attr::SharedLocksRequired: {
567         // FIXME: Also use this attribute to add required locks to the initial
568         // lockset when processing a CFG for a function annotated with this
569         // attribute.
570         SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
571 
572         for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
573              E = SLRAttr->args_end(); I != E; ++I)
574           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
575         break;
576       }
577 
578       case attr::LocksExcluded: {
579         LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
580         for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
581             E = LEAttr->args_end(); I != E; ++I) {
582           MutexID Mutex(*I, Parent);
583           if (!Mutex.isValid())
584             Handler.handleInvalidLockExp((*I)->getExprLoc());
585           else if (locksetContains(Mutex))
586             Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
587                                           ExpLocation);
588         }
589         break;
590       }
591 
592       case attr::LockReturned:
593         // FIXME: Deal with this attribute.
594         break;
595 
596       // Ignore other (non thread-safety) attributes
597       default:
598         break;
599     }
600   }
601 }
602 
603 } // end anonymous namespace
604 
605 /// \brief Compute the intersection of two locksets and issue warnings for any
606 /// locks in the symmetric difference.
607 ///
608 /// This function is used at a merge point in the CFG when comparing the lockset
609 /// of each branch being merged. For example, given the following sequence:
610 /// A; if () then B; else C; D; we need to check that the lockset after B and C
611 /// are the same. In the event of a difference, we use the intersection of these
612 /// two locksets at the start of D.
613 static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
614                                 const Lockset LSet1, const Lockset LSet2,
615                                 Lockset::Factory &Fact, LockErrorKind LEK) {
616   Lockset Intersection = LSet1;
617   for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
618     const MutexID &LSet2Mutex = I.getKey();
619     const LockData &LSet2LockData = I.getData();
620     if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
621       if (LD->LKind != LSet2LockData.LKind) {
622         Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
623                                          LSet2LockData.AcquireLoc,
624                                          LD->AcquireLoc);
625         if (LD->LKind != LK_Exclusive)
626           Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
627       }
628     } else {
629       Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
630                                         LSet2LockData.AcquireLoc, LEK);
631     }
632   }
633 
634   for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
635     if (!LSet2.contains(I.getKey())) {
636       const MutexID &Mutex = I.getKey();
637       const LockData &MissingLock = I.getData();
638       Handler.handleMutexHeldEndOfScope(Mutex.getName(),
639                                         MissingLock.AcquireLoc, LEK);
640       Intersection = Fact.remove(Intersection, Mutex);
641     }
642   }
643   return Intersection;
644 }
645 
646 /// \brief Returns the location of the first Stmt in a Block.
647 static SourceLocation getFirstStmtLocation(const CFGBlock *Block) {
648   SourceLocation Loc;
649   for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
650        BI != BE; ++BI) {
651     if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
652       Loc = CfgStmt->getStmt()->getLocStart();
653       if (Loc.isValid()) return Loc;
654     }
655   }
656   if (const Stmt *S = Block->getTerminator().getStmt()) {
657     Loc = S->getLocStart();
658     if (Loc.isValid()) return Loc;
659   }
660   return Loc;
661 }
662 
663 static Lockset addLock(ThreadSafetyHandler &Handler,
664                        Lockset::Factory &LocksetFactory,
665                        Lockset &LSet, Expr *LockExp, LockKind LK,
666                        SourceLocation Loc) {
667   MutexID Mutex(LockExp, 0);
668   if (!Mutex.isValid()) {
669     Handler.handleInvalidLockExp(LockExp->getExprLoc());
670     return LSet;
671   }
672   LockData NewLock(Loc, LK);
673   return LocksetFactory.add(LSet, Mutex, NewLock);
674 }
675 
676 namespace clang {
677 namespace thread_safety {
678 /// \brief Check a function's CFG for thread-safety violations.
679 ///
680 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
681 /// at the end of each block, and issue warnings for thread safety violations.
682 /// Each block in the CFG is traversed exactly once.
683 void runThreadSafetyAnalysis(AnalysisContext &AC,
684                              ThreadSafetyHandler &Handler) {
685   CFG *CFGraph = AC.getCFG();
686   if (!CFGraph) return;
687   const Decl *D = AC.getDecl();
688   if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
689 
690   Lockset::Factory LocksetFactory;
691 
692   // FIXME: Swith to SmallVector? Otherwise improve performance impact?
693   std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
694                                      LocksetFactory.getEmptyMap());
695   std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
696                                     LocksetFactory.getEmptyMap());
697 
698   // We need to explore the CFG via a "topological" ordering.
699   // That way, we will be guaranteed to have information about required
700   // predecessor locksets when exploring a new block.
701   TopologicallySortedCFG SortedGraph(CFGraph);
702   CFGBlockSet VisitedBlocks(CFGraph);
703 
704   if (!SortedGraph.empty() && D->hasAttrs()) {
705     const CFGBlock *FirstBlock = *SortedGraph.begin();
706     Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
707     const AttrVec &ArgAttrs = D->getAttrs();
708     for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
709       Attr *Attr = ArgAttrs[i];
710       if (SharedLocksRequiredAttr *SLRAttr
711             = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
712         for (SharedLocksRequiredAttr::args_iterator
713             SLRIter = SLRAttr->args_begin(),
714             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
715           InitialLockset = addLock(Handler, LocksetFactory, InitialLockset,
716                                    *SLRIter, LK_Shared,
717                                    getFirstStmtLocation(FirstBlock));
718       } else if (ExclusiveLocksRequiredAttr *ELRAttr
719                    = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
720         for (ExclusiveLocksRequiredAttr::args_iterator
721             ELRIter = ELRAttr->args_begin(),
722             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
723           InitialLockset = addLock(Handler, LocksetFactory, InitialLockset,
724                                    *ELRIter, LK_Exclusive,
725                                    getFirstStmtLocation(FirstBlock));
726       }
727     }
728   }
729 
730   for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
731        E = SortedGraph.end(); I!= E; ++I) {
732     const CFGBlock *CurrBlock = *I;
733     int CurrBlockID = CurrBlock->getBlockID();
734 
735     VisitedBlocks.insert(CurrBlock);
736 
737     // Use the default initial lockset in case there are no predecessors.
738     Lockset &Entryset = EntryLocksets[CurrBlockID];
739     Lockset &Exitset = ExitLocksets[CurrBlockID];
740 
741     // Iterate through the predecessor blocks and warn if the lockset for all
742     // predecessors is not the same. We take the entry lockset of the current
743     // block to be the intersection of all previous locksets.
744     // FIXME: By keeping the intersection, we may output more errors in future
745     // for a lock which is not in the intersection, but was in the union. We
746     // may want to also keep the union in future. As an example, let's say
747     // the intersection contains Mutex L, and the union contains L and M.
748     // Later we unlock M. At this point, we would output an error because we
749     // never locked M; although the real error is probably that we forgot to
750     // lock M on all code paths. Conversely, let's say that later we lock M.
751     // In this case, we should compare against the intersection instead of the
752     // union because the real error is probably that we forgot to unlock M on
753     // all code paths.
754     bool LocksetInitialized = false;
755     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
756          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
757 
758       // if *PI -> CurrBlock is a back edge
759       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
760         continue;
761 
762       int PrevBlockID = (*PI)->getBlockID();
763       if (!LocksetInitialized) {
764         Entryset = ExitLocksets[PrevBlockID];
765         LocksetInitialized = true;
766       } else {
767         Entryset = intersectAndWarn(Handler, Entryset,
768                                     ExitLocksets[PrevBlockID], LocksetFactory,
769                                     LEK_LockedSomePredecessors);
770       }
771     }
772 
773     BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
774     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
775          BE = CurrBlock->end(); BI != BE; ++BI) {
776       if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
777         LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
778     }
779     Exitset = LocksetBuilder.getLockset();
780 
781     // For every back edge from CurrBlock (the end of the loop) to another block
782     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
783     // the one held at the beginning of FirstLoopBlock. We can look up the
784     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
785     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
786          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
787 
788       // if CurrBlock -> *SI is *not* a back edge
789       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
790         continue;
791 
792       CFGBlock *FirstLoopBlock = *SI;
793       Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
794       Lockset LoopEnd = ExitLocksets[CurrBlockID];
795       intersectAndWarn(Handler, LoopEnd, PreLoop, LocksetFactory,
796                        LEK_LockedSomeLoopIterations);
797     }
798   }
799 
800   Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
801   Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
802   intersectAndWarn(Handler, InitialLockset, FinalLockset, LocksetFactory,
803                    LEK_LockedAtEndOfFunction);
804 }
805 
806 /// \brief Helper function that returns a LockKind required for the given level
807 /// of access.
808 LockKind getLockKindFromAccessKind(AccessKind AK) {
809   switch (AK) {
810     case AK_Read :
811       return LK_Shared;
812     case AK_Written :
813       return LK_Exclusive;
814   }
815   llvm_unreachable("Unknown AccessKind");
816 }
817 }} // end namespace clang::thread_safety
818