1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 14 // for more information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/Analysis/Analyses/ThreadSafety.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 25 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 26 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" 27 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 28 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 29 #include "clang/Analysis/AnalysisDeclContext.h" 30 #include "clang/Analysis/CFG.h" 31 #include "clang/Analysis/CFGStmtMap.h" 32 #include "clang/Basic/OperatorKinds.h" 33 #include "clang/Basic/SourceLocation.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "llvm/ADT/ImmutableMap.h" 36 #include "llvm/ADT/PostOrderIterator.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <ostream> 42 #include <sstream> 43 #include <utility> 44 #include <vector> 45 using namespace clang; 46 using namespace threadSafety; 47 48 // Key method definition 49 ThreadSafetyHandler::~ThreadSafetyHandler() {} 50 51 namespace { 52 class TILPrinter : 53 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 54 55 56 /// Issue a warning about an invalid lock expression 57 static void warnInvalidLock(ThreadSafetyHandler &Handler, 58 const Expr *MutexExp, const NamedDecl *D, 59 const Expr *DeclExp, StringRef Kind) { 60 SourceLocation Loc; 61 if (DeclExp) 62 Loc = DeclExp->getExprLoc(); 63 64 // FIXME: add a note about the attribute location in MutexExp or D 65 if (Loc.isValid()) 66 Handler.handleInvalidLockExp(Kind, Loc); 67 } 68 69 /// \brief A set of CapabilityInfo objects, which are compiled from the 70 /// requires attributes on a function. 71 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 72 public: 73 /// \brief Push M onto list, but discard duplicates. 74 void push_back_nodup(const CapabilityExpr &CapE) { 75 iterator It = std::find_if(begin(), end(), 76 [=](const CapabilityExpr &CapE2) { 77 return CapE.equals(CapE2); 78 }); 79 if (It == end()) 80 push_back(CapE); 81 } 82 }; 83 84 class FactManager; 85 class FactSet; 86 87 /// \brief This is a helper class that stores a fact that is known at a 88 /// particular point in program execution. Currently, a fact is a capability, 89 /// along with additional information, such as where it was acquired, whether 90 /// it is exclusive or shared, etc. 91 /// 92 /// FIXME: this analysis does not currently support either re-entrant 93 /// locking or lock "upgrading" and "downgrading" between exclusive and 94 /// shared. 95 class FactEntry : public CapabilityExpr { 96 private: 97 LockKind LKind; ///< exclusive or shared 98 SourceLocation AcquireLoc; ///< where it was acquired. 99 bool Asserted; ///< true if the lock was asserted 100 bool Declared; ///< true if the lock was declared 101 102 public: 103 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 104 bool Asrt, bool Declrd = false) 105 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), 106 Declared(Declrd) {} 107 108 virtual ~FactEntry() {} 109 110 LockKind kind() const { return LKind; } 111 SourceLocation loc() const { return AcquireLoc; } 112 bool asserted() const { return Asserted; } 113 bool declared() const { return Declared; } 114 115 void setDeclared(bool D) { Declared = D; } 116 117 virtual void 118 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 119 SourceLocation JoinLoc, LockErrorKind LEK, 120 ThreadSafetyHandler &Handler) const = 0; 121 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 122 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 123 bool FullyRemove, ThreadSafetyHandler &Handler, 124 StringRef DiagKind) const = 0; 125 126 // Return true if LKind >= LK, where exclusive > shared 127 bool isAtLeast(LockKind LK) { 128 return (LKind == LK_Exclusive) || (LK == LK_Shared); 129 } 130 }; 131 132 133 typedef unsigned short FactID; 134 135 /// \brief FactManager manages the memory for all facts that are created during 136 /// the analysis of a single routine. 137 class FactManager { 138 private: 139 std::vector<std::unique_ptr<FactEntry>> Facts; 140 141 public: 142 FactID newFact(std::unique_ptr<FactEntry> Entry) { 143 Facts.push_back(std::move(Entry)); 144 return static_cast<unsigned short>(Facts.size() - 1); 145 } 146 147 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 148 FactEntry &operator[](FactID F) { return *Facts[F]; } 149 }; 150 151 152 /// \brief A FactSet is the set of facts that are known to be true at a 153 /// particular program point. FactSets must be small, because they are 154 /// frequently copied, and are thus implemented as a set of indices into a 155 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 156 /// locks, so we can get away with doing a linear search for lookup. Note 157 /// that a hashtable or map is inappropriate in this case, because lookups 158 /// may involve partial pattern matches, rather than exact matches. 159 class FactSet { 160 private: 161 typedef SmallVector<FactID, 4> FactVec; 162 163 FactVec FactIDs; 164 165 public: 166 typedef FactVec::iterator iterator; 167 typedef FactVec::const_iterator const_iterator; 168 169 iterator begin() { return FactIDs.begin(); } 170 const_iterator begin() const { return FactIDs.begin(); } 171 172 iterator end() { return FactIDs.end(); } 173 const_iterator end() const { return FactIDs.end(); } 174 175 bool isEmpty() const { return FactIDs.size() == 0; } 176 177 // Return true if the set contains only negative facts 178 bool isEmpty(FactManager &FactMan) const { 179 for (FactID FID : *this) { 180 if (!FactMan[FID].negative()) 181 return false; 182 } 183 return true; 184 } 185 186 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 187 188 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 189 FactID F = FM.newFact(std::move(Entry)); 190 FactIDs.push_back(F); 191 return F; 192 } 193 194 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 195 unsigned n = FactIDs.size(); 196 if (n == 0) 197 return false; 198 199 for (unsigned i = 0; i < n-1; ++i) { 200 if (FM[FactIDs[i]].matches(CapE)) { 201 FactIDs[i] = FactIDs[n-1]; 202 FactIDs.pop_back(); 203 return true; 204 } 205 } 206 if (FM[FactIDs[n-1]].matches(CapE)) { 207 FactIDs.pop_back(); 208 return true; 209 } 210 return false; 211 } 212 213 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 214 return std::find_if(begin(), end(), [&](FactID ID) { 215 return FM[ID].matches(CapE); 216 }); 217 } 218 219 FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 220 auto I = std::find_if(begin(), end(), [&](FactID ID) { 221 return FM[ID].matches(CapE); 222 }); 223 return I != end() ? &FM[*I] : nullptr; 224 } 225 226 FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { 227 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 228 return FM[ID].matchesUniv(CapE); 229 }); 230 return I != end() ? &FM[*I] : nullptr; 231 } 232 233 FactEntry *findPartialMatch(FactManager &FM, 234 const CapabilityExpr &CapE) const { 235 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 236 return FM[ID].partiallyMatches(CapE); 237 }); 238 return I != end() ? &FM[*I] : nullptr; 239 } 240 241 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 242 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 243 return FM[ID].valueDecl() == Vd; 244 }); 245 return I != end(); 246 } 247 }; 248 249 class ThreadSafetyAnalyzer; 250 } // namespace 251 252 namespace clang { 253 namespace threadSafety { 254 class BeforeSet { 255 private: 256 typedef SmallVector<const ValueDecl*, 4> BeforeVect; 257 258 struct BeforeInfo { 259 BeforeInfo() : Visited(0) {} 260 BeforeInfo(BeforeInfo &&) = default; 261 262 BeforeVect Vect; 263 int Visited; 264 }; 265 266 typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>> 267 BeforeMap; 268 typedef llvm::DenseMap<const ValueDecl*, bool> CycleMap; 269 270 public: 271 BeforeSet() { } 272 273 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 274 ThreadSafetyAnalyzer& Analyzer); 275 276 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 277 ThreadSafetyAnalyzer &Analyzer); 278 279 void checkBeforeAfter(const ValueDecl* Vd, 280 const FactSet& FSet, 281 ThreadSafetyAnalyzer& Analyzer, 282 SourceLocation Loc, StringRef CapKind); 283 284 private: 285 BeforeMap BMap; 286 CycleMap CycMap; 287 }; 288 } // end namespace threadSafety 289 } // end namespace clang 290 291 namespace { 292 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; 293 class LocalVariableMap; 294 295 /// A side (entry or exit) of a CFG node. 296 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 297 298 /// CFGBlockInfo is a struct which contains all the information that is 299 /// maintained for each block in the CFG. See LocalVariableMap for more 300 /// information about the contexts. 301 struct CFGBlockInfo { 302 FactSet EntrySet; // Lockset held at entry to block 303 FactSet ExitSet; // Lockset held at exit from block 304 LocalVarContext EntryContext; // Context held at entry to block 305 LocalVarContext ExitContext; // Context held at exit from block 306 SourceLocation EntryLoc; // Location of first statement in block 307 SourceLocation ExitLoc; // Location of last statement in block. 308 unsigned EntryIndex; // Used to replay contexts later 309 bool Reachable; // Is this block reachable? 310 311 const FactSet &getSet(CFGBlockSide Side) const { 312 return Side == CBS_Entry ? EntrySet : ExitSet; 313 } 314 SourceLocation getLocation(CFGBlockSide Side) const { 315 return Side == CBS_Entry ? EntryLoc : ExitLoc; 316 } 317 318 private: 319 CFGBlockInfo(LocalVarContext EmptyCtx) 320 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) 321 { } 322 323 public: 324 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 325 }; 326 327 328 329 // A LocalVariableMap maintains a map from local variables to their currently 330 // valid definitions. It provides SSA-like functionality when traversing the 331 // CFG. Like SSA, each definition or assignment to a variable is assigned a 332 // unique name (an integer), which acts as the SSA name for that definition. 333 // The total set of names is shared among all CFG basic blocks. 334 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 335 // with their SSA-names. Instead, we compute a Context for each point in the 336 // code, which maps local variables to the appropriate SSA-name. This map 337 // changes with each assignment. 338 // 339 // The map is computed in a single pass over the CFG. Subsequent analyses can 340 // then query the map to find the appropriate Context for a statement, and use 341 // that Context to look up the definitions of variables. 342 class LocalVariableMap { 343 public: 344 typedef LocalVarContext Context; 345 346 /// A VarDefinition consists of an expression, representing the value of the 347 /// variable, along with the context in which that expression should be 348 /// interpreted. A reference VarDefinition does not itself contain this 349 /// information, but instead contains a pointer to a previous VarDefinition. 350 struct VarDefinition { 351 public: 352 friend class LocalVariableMap; 353 354 const NamedDecl *Dec; // The original declaration for this variable. 355 const Expr *Exp; // The expression for this variable, OR 356 unsigned Ref; // Reference to another VarDefinition 357 Context Ctx; // The map with which Exp should be interpreted. 358 359 bool isReference() { return !Exp; } 360 361 private: 362 // Create ordinary variable definition 363 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 364 : Dec(D), Exp(E), Ref(0), Ctx(C) 365 { } 366 367 // Create reference to previous definition 368 VarDefinition(const NamedDecl *D, unsigned R, Context C) 369 : Dec(D), Exp(nullptr), Ref(R), Ctx(C) 370 { } 371 }; 372 373 private: 374 Context::Factory ContextFactory; 375 std::vector<VarDefinition> VarDefinitions; 376 std::vector<unsigned> CtxIndices; 377 std::vector<std::pair<Stmt*, Context> > SavedContexts; 378 379 public: 380 LocalVariableMap() { 381 // index 0 is a placeholder for undefined variables (aka phi-nodes). 382 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 383 } 384 385 /// Look up a definition, within the given context. 386 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 387 const unsigned *i = Ctx.lookup(D); 388 if (!i) 389 return nullptr; 390 assert(*i < VarDefinitions.size()); 391 return &VarDefinitions[*i]; 392 } 393 394 /// Look up the definition for D within the given context. Returns 395 /// NULL if the expression is not statically known. If successful, also 396 /// modifies Ctx to hold the context of the return Expr. 397 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 398 const unsigned *P = Ctx.lookup(D); 399 if (!P) 400 return nullptr; 401 402 unsigned i = *P; 403 while (i > 0) { 404 if (VarDefinitions[i].Exp) { 405 Ctx = VarDefinitions[i].Ctx; 406 return VarDefinitions[i].Exp; 407 } 408 i = VarDefinitions[i].Ref; 409 } 410 return nullptr; 411 } 412 413 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 414 415 /// Return the next context after processing S. This function is used by 416 /// clients of the class to get the appropriate context when traversing the 417 /// CFG. It must be called for every assignment or DeclStmt. 418 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 419 if (SavedContexts[CtxIndex+1].first == S) { 420 CtxIndex++; 421 Context Result = SavedContexts[CtxIndex].second; 422 return Result; 423 } 424 return C; 425 } 426 427 void dumpVarDefinitionName(unsigned i) { 428 if (i == 0) { 429 llvm::errs() << "Undefined"; 430 return; 431 } 432 const NamedDecl *Dec = VarDefinitions[i].Dec; 433 if (!Dec) { 434 llvm::errs() << "<<NULL>>"; 435 return; 436 } 437 Dec->printName(llvm::errs()); 438 llvm::errs() << "." << i << " " << ((const void*) Dec); 439 } 440 441 /// Dumps an ASCII representation of the variable map to llvm::errs() 442 void dump() { 443 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 444 const Expr *Exp = VarDefinitions[i].Exp; 445 unsigned Ref = VarDefinitions[i].Ref; 446 447 dumpVarDefinitionName(i); 448 llvm::errs() << " = "; 449 if (Exp) Exp->dump(); 450 else { 451 dumpVarDefinitionName(Ref); 452 llvm::errs() << "\n"; 453 } 454 } 455 } 456 457 /// Dumps an ASCII representation of a Context to llvm::errs() 458 void dumpContext(Context C) { 459 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 460 const NamedDecl *D = I.getKey(); 461 D->printName(llvm::errs()); 462 const unsigned *i = C.lookup(D); 463 llvm::errs() << " -> "; 464 dumpVarDefinitionName(*i); 465 llvm::errs() << "\n"; 466 } 467 } 468 469 /// Builds the variable map. 470 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 471 std::vector<CFGBlockInfo> &BlockInfo); 472 473 protected: 474 // Get the current context index 475 unsigned getContextIndex() { return SavedContexts.size()-1; } 476 477 // Save the current context for later replay 478 void saveContext(Stmt *S, Context C) { 479 SavedContexts.push_back(std::make_pair(S,C)); 480 } 481 482 // Adds a new definition to the given context, and returns a new context. 483 // This method should be called when declaring a new variable. 484 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 485 assert(!Ctx.contains(D)); 486 unsigned newID = VarDefinitions.size(); 487 Context NewCtx = ContextFactory.add(Ctx, D, newID); 488 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 489 return NewCtx; 490 } 491 492 // Add a new reference to an existing definition. 493 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 494 unsigned newID = VarDefinitions.size(); 495 Context NewCtx = ContextFactory.add(Ctx, D, newID); 496 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 497 return NewCtx; 498 } 499 500 // Updates a definition only if that definition is already in the map. 501 // This method should be called when assigning to an existing variable. 502 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 503 if (Ctx.contains(D)) { 504 unsigned newID = VarDefinitions.size(); 505 Context NewCtx = ContextFactory.remove(Ctx, D); 506 NewCtx = ContextFactory.add(NewCtx, D, newID); 507 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 508 return NewCtx; 509 } 510 return Ctx; 511 } 512 513 // Removes a definition from the context, but keeps the variable name 514 // as a valid variable. The index 0 is a placeholder for cleared definitions. 515 Context clearDefinition(const NamedDecl *D, Context Ctx) { 516 Context NewCtx = Ctx; 517 if (NewCtx.contains(D)) { 518 NewCtx = ContextFactory.remove(NewCtx, D); 519 NewCtx = ContextFactory.add(NewCtx, D, 0); 520 } 521 return NewCtx; 522 } 523 524 // Remove a definition entirely frmo the context. 525 Context removeDefinition(const NamedDecl *D, Context Ctx) { 526 Context NewCtx = Ctx; 527 if (NewCtx.contains(D)) { 528 NewCtx = ContextFactory.remove(NewCtx, D); 529 } 530 return NewCtx; 531 } 532 533 Context intersectContexts(Context C1, Context C2); 534 Context createReferenceContext(Context C); 535 void intersectBackEdge(Context C1, Context C2); 536 537 friend class VarMapBuilder; 538 }; 539 540 541 // This has to be defined after LocalVariableMap. 542 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 543 return CFGBlockInfo(M.getEmptyContext()); 544 } 545 546 547 /// Visitor which builds a LocalVariableMap 548 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 549 public: 550 LocalVariableMap* VMap; 551 LocalVariableMap::Context Ctx; 552 553 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 554 : VMap(VM), Ctx(C) {} 555 556 void VisitDeclStmt(DeclStmt *S); 557 void VisitBinaryOperator(BinaryOperator *BO); 558 }; 559 560 561 // Add new local variables to the variable map 562 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 563 bool modifiedCtx = false; 564 DeclGroupRef DGrp = S->getDeclGroup(); 565 for (const auto *D : DGrp) { 566 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 567 const Expr *E = VD->getInit(); 568 569 // Add local variables with trivial type to the variable map 570 QualType T = VD->getType(); 571 if (T.isTrivialType(VD->getASTContext())) { 572 Ctx = VMap->addDefinition(VD, E, Ctx); 573 modifiedCtx = true; 574 } 575 } 576 } 577 if (modifiedCtx) 578 VMap->saveContext(S, Ctx); 579 } 580 581 // Update local variable definitions in variable map 582 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 583 if (!BO->isAssignmentOp()) 584 return; 585 586 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 587 588 // Update the variable map and current context. 589 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 590 ValueDecl *VDec = DRE->getDecl(); 591 if (Ctx.lookup(VDec)) { 592 if (BO->getOpcode() == BO_Assign) 593 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 594 else 595 // FIXME -- handle compound assignment operators 596 Ctx = VMap->clearDefinition(VDec, Ctx); 597 VMap->saveContext(BO, Ctx); 598 } 599 } 600 } 601 602 603 // Computes the intersection of two contexts. The intersection is the 604 // set of variables which have the same definition in both contexts; 605 // variables with different definitions are discarded. 606 LocalVariableMap::Context 607 LocalVariableMap::intersectContexts(Context C1, Context C2) { 608 Context Result = C1; 609 for (const auto &P : C1) { 610 const NamedDecl *Dec = P.first; 611 const unsigned *i2 = C2.lookup(Dec); 612 if (!i2) // variable doesn't exist on second path 613 Result = removeDefinition(Dec, Result); 614 else if (*i2 != P.second) // variable exists, but has different definition 615 Result = clearDefinition(Dec, Result); 616 } 617 return Result; 618 } 619 620 // For every variable in C, create a new variable that refers to the 621 // definition in C. Return a new context that contains these new variables. 622 // (We use this for a naive implementation of SSA on loop back-edges.) 623 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 624 Context Result = getEmptyContext(); 625 for (const auto &P : C) 626 Result = addReference(P.first, P.second, Result); 627 return Result; 628 } 629 630 // This routine also takes the intersection of C1 and C2, but it does so by 631 // altering the VarDefinitions. C1 must be the result of an earlier call to 632 // createReferenceContext. 633 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 634 for (const auto &P : C1) { 635 unsigned i1 = P.second; 636 VarDefinition *VDef = &VarDefinitions[i1]; 637 assert(VDef->isReference()); 638 639 const unsigned *i2 = C2.lookup(P.first); 640 if (!i2 || (*i2 != i1)) 641 VDef->Ref = 0; // Mark this variable as undefined 642 } 643 } 644 645 646 // Traverse the CFG in topological order, so all predecessors of a block 647 // (excluding back-edges) are visited before the block itself. At 648 // each point in the code, we calculate a Context, which holds the set of 649 // variable definitions which are visible at that point in execution. 650 // Visible variables are mapped to their definitions using an array that 651 // contains all definitions. 652 // 653 // At join points in the CFG, the set is computed as the intersection of 654 // the incoming sets along each edge, E.g. 655 // 656 // { Context | VarDefinitions } 657 // int x = 0; { x -> x1 | x1 = 0 } 658 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 659 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 660 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 661 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 662 // 663 // This is essentially a simpler and more naive version of the standard SSA 664 // algorithm. Those definitions that remain in the intersection are from blocks 665 // that strictly dominate the current block. We do not bother to insert proper 666 // phi nodes, because they are not used in our analysis; instead, wherever 667 // a phi node would be required, we simply remove that definition from the 668 // context (E.g. x above). 669 // 670 // The initial traversal does not capture back-edges, so those need to be 671 // handled on a separate pass. Whenever the first pass encounters an 672 // incoming back edge, it duplicates the context, creating new definitions 673 // that refer back to the originals. (These correspond to places where SSA 674 // might have to insert a phi node.) On the second pass, these definitions are 675 // set to NULL if the variable has changed on the back-edge (i.e. a phi 676 // node was actually required.) E.g. 677 // 678 // { Context | VarDefinitions } 679 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 680 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 681 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 682 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 683 // 684 void LocalVariableMap::traverseCFG(CFG *CFGraph, 685 const PostOrderCFGView *SortedGraph, 686 std::vector<CFGBlockInfo> &BlockInfo) { 687 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 688 689 CtxIndices.resize(CFGraph->getNumBlockIDs()); 690 691 for (const auto *CurrBlock : *SortedGraph) { 692 int CurrBlockID = CurrBlock->getBlockID(); 693 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 694 695 VisitedBlocks.insert(CurrBlock); 696 697 // Calculate the entry context for the current block 698 bool HasBackEdges = false; 699 bool CtxInit = true; 700 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 701 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 702 // if *PI -> CurrBlock is a back edge, so skip it 703 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 704 HasBackEdges = true; 705 continue; 706 } 707 708 int PrevBlockID = (*PI)->getBlockID(); 709 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 710 711 if (CtxInit) { 712 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 713 CtxInit = false; 714 } 715 else { 716 CurrBlockInfo->EntryContext = 717 intersectContexts(CurrBlockInfo->EntryContext, 718 PrevBlockInfo->ExitContext); 719 } 720 } 721 722 // Duplicate the context if we have back-edges, so we can call 723 // intersectBackEdges later. 724 if (HasBackEdges) 725 CurrBlockInfo->EntryContext = 726 createReferenceContext(CurrBlockInfo->EntryContext); 727 728 // Create a starting context index for the current block 729 saveContext(nullptr, CurrBlockInfo->EntryContext); 730 CurrBlockInfo->EntryIndex = getContextIndex(); 731 732 // Visit all the statements in the basic block. 733 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 734 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 735 BE = CurrBlock->end(); BI != BE; ++BI) { 736 switch (BI->getKind()) { 737 case CFGElement::Statement: { 738 CFGStmt CS = BI->castAs<CFGStmt>(); 739 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 740 break; 741 } 742 default: 743 break; 744 } 745 } 746 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 747 748 // Mark variables on back edges as "unknown" if they've been changed. 749 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 750 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 751 // if CurrBlock -> *SI is *not* a back edge 752 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 753 continue; 754 755 CFGBlock *FirstLoopBlock = *SI; 756 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 757 Context LoopEnd = CurrBlockInfo->ExitContext; 758 intersectBackEdge(LoopBegin, LoopEnd); 759 } 760 } 761 762 // Put an extra entry at the end of the indexed context array 763 unsigned exitID = CFGraph->getExit().getBlockID(); 764 saveContext(nullptr, BlockInfo[exitID].ExitContext); 765 } 766 767 /// Find the appropriate source locations to use when producing diagnostics for 768 /// each block in the CFG. 769 static void findBlockLocations(CFG *CFGraph, 770 const PostOrderCFGView *SortedGraph, 771 std::vector<CFGBlockInfo> &BlockInfo) { 772 for (const auto *CurrBlock : *SortedGraph) { 773 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 774 775 // Find the source location of the last statement in the block, if the 776 // block is not empty. 777 if (const Stmt *S = CurrBlock->getTerminator()) { 778 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 779 } else { 780 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 781 BE = CurrBlock->rend(); BI != BE; ++BI) { 782 // FIXME: Handle other CFGElement kinds. 783 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 784 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 785 break; 786 } 787 } 788 } 789 790 if (CurrBlockInfo->ExitLoc.isValid()) { 791 // This block contains at least one statement. Find the source location 792 // of the first statement in the block. 793 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 794 BE = CurrBlock->end(); BI != BE; ++BI) { 795 // FIXME: Handle other CFGElement kinds. 796 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 797 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 798 break; 799 } 800 } 801 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 802 CurrBlock != &CFGraph->getExit()) { 803 // The block is empty, and has a single predecessor. Use its exit 804 // location. 805 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 806 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 807 } 808 } 809 } 810 811 class LockableFactEntry : public FactEntry { 812 private: 813 bool Managed; ///< managed by ScopedLockable object 814 815 public: 816 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 817 bool Mng = false, bool Asrt = false) 818 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 819 820 void 821 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 822 SourceLocation JoinLoc, LockErrorKind LEK, 823 ThreadSafetyHandler &Handler) const override { 824 if (!Managed && !asserted() && !negative() && !isUniversal()) { 825 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 826 LEK); 827 } 828 } 829 830 void handleUnlock(FactSet &FSet, FactManager &FactMan, 831 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 832 bool FullyRemove, ThreadSafetyHandler &Handler, 833 StringRef DiagKind) const override { 834 FSet.removeLock(FactMan, Cp); 835 if (!Cp.negative()) { 836 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 837 !Cp, LK_Exclusive, UnlockLoc)); 838 } 839 } 840 }; 841 842 class ScopedLockableFactEntry : public FactEntry { 843 private: 844 SmallVector<const til::SExpr *, 4> UnderlyingMutexes; 845 846 public: 847 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, 848 const CapExprSet &Excl, const CapExprSet &Shrd) 849 : FactEntry(CE, LK_Exclusive, Loc, false) { 850 for (const auto &M : Excl) 851 UnderlyingMutexes.push_back(M.sexpr()); 852 for (const auto &M : Shrd) 853 UnderlyingMutexes.push_back(M.sexpr()); 854 } 855 856 void 857 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 858 SourceLocation JoinLoc, LockErrorKind LEK, 859 ThreadSafetyHandler &Handler) const override { 860 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 861 if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { 862 // If this scoped lock manages another mutex, and if the underlying 863 // mutex is still held, then warn about the underlying mutex. 864 Handler.handleMutexHeldEndOfScope( 865 "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); 866 } 867 } 868 } 869 870 void handleUnlock(FactSet &FSet, FactManager &FactMan, 871 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 872 bool FullyRemove, ThreadSafetyHandler &Handler, 873 StringRef DiagKind) const override { 874 assert(!Cp.negative() && "Managing object cannot be negative."); 875 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 876 CapabilityExpr UnderCp(UnderlyingMutex, false); 877 auto UnderEntry = llvm::make_unique<LockableFactEntry>( 878 !UnderCp, LK_Exclusive, UnlockLoc); 879 880 if (FullyRemove) { 881 // We're destroying the managing object. 882 // Remove the underlying mutex if it exists; but don't warn. 883 if (FSet.findLock(FactMan, UnderCp)) { 884 FSet.removeLock(FactMan, UnderCp); 885 FSet.addLock(FactMan, std::move(UnderEntry)); 886 } 887 } else { 888 // We're releasing the underlying mutex, but not destroying the 889 // managing object. Warn on dual release. 890 if (!FSet.findLock(FactMan, UnderCp)) { 891 Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), 892 UnlockLoc); 893 } 894 FSet.removeLock(FactMan, UnderCp); 895 FSet.addLock(FactMan, std::move(UnderEntry)); 896 } 897 } 898 if (FullyRemove) 899 FSet.removeLock(FactMan, Cp); 900 } 901 }; 902 903 /// \brief Class which implements the core thread safety analysis routines. 904 class ThreadSafetyAnalyzer { 905 friend class BuildLockset; 906 friend class threadSafety::BeforeSet; 907 908 llvm::BumpPtrAllocator Bpa; 909 threadSafety::til::MemRegionRef Arena; 910 threadSafety::SExprBuilder SxBuilder; 911 912 ThreadSafetyHandler &Handler; 913 const CXXMethodDecl *CurrentMethod; 914 LocalVariableMap LocalVarMap; 915 FactManager FactMan; 916 std::vector<CFGBlockInfo> BlockInfo; 917 918 BeforeSet* GlobalBeforeSet; 919 920 public: 921 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 922 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 923 924 bool inCurrentScope(const CapabilityExpr &CapE); 925 926 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 927 StringRef DiagKind, bool ReqAttr = false); 928 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 929 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 930 StringRef DiagKind); 931 932 template <typename AttrType> 933 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 934 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 935 936 template <class AttrType> 937 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 938 const NamedDecl *D, 939 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 940 Expr *BrE, bool Neg); 941 942 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 943 bool &Negate); 944 945 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 946 const CFGBlock* PredBlock, 947 const CFGBlock *CurrBlock); 948 949 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 950 SourceLocation JoinLoc, 951 LockErrorKind LEK1, LockErrorKind LEK2, 952 bool Modify=true); 953 954 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 955 SourceLocation JoinLoc, LockErrorKind LEK1, 956 bool Modify=true) { 957 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 958 } 959 960 void runAnalysis(AnalysisDeclContext &AC); 961 }; 962 } // namespace 963 964 /// Process acquired_before and acquired_after attributes on Vd. 965 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 966 ThreadSafetyAnalyzer& Analyzer) { 967 // Create a new entry for Vd. 968 BeforeInfo *Info = nullptr; 969 { 970 // Keep InfoPtr in its own scope in case BMap is modified later and the 971 // reference becomes invalid. 972 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 973 if (!InfoPtr) 974 InfoPtr.reset(new BeforeInfo()); 975 Info = InfoPtr.get(); 976 } 977 978 for (Attr* At : Vd->attrs()) { 979 switch (At->getKind()) { 980 case attr::AcquiredBefore: { 981 auto *A = cast<AcquiredBeforeAttr>(At); 982 983 // Read exprs from the attribute, and add them to BeforeVect. 984 for (const auto *Arg : A->args()) { 985 CapabilityExpr Cp = 986 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 987 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 988 Info->Vect.push_back(Cpvd); 989 auto It = BMap.find(Cpvd); 990 if (It == BMap.end()) 991 insertAttrExprs(Cpvd, Analyzer); 992 } 993 } 994 break; 995 } 996 case attr::AcquiredAfter: { 997 auto *A = cast<AcquiredAfterAttr>(At); 998 999 // Read exprs from the attribute, and add them to BeforeVect. 1000 for (const auto *Arg : A->args()) { 1001 CapabilityExpr Cp = 1002 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1003 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1004 // Get entry for mutex listed in attribute 1005 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1006 ArgInfo->Vect.push_back(Vd); 1007 } 1008 } 1009 break; 1010 } 1011 default: 1012 break; 1013 } 1014 } 1015 1016 return Info; 1017 } 1018 1019 BeforeSet::BeforeInfo * 1020 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1021 ThreadSafetyAnalyzer &Analyzer) { 1022 auto It = BMap.find(Vd); 1023 BeforeInfo *Info = nullptr; 1024 if (It == BMap.end()) 1025 Info = insertAttrExprs(Vd, Analyzer); 1026 else 1027 Info = It->second.get(); 1028 assert(Info && "BMap contained nullptr?"); 1029 return Info; 1030 } 1031 1032 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1033 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1034 const FactSet& FSet, 1035 ThreadSafetyAnalyzer& Analyzer, 1036 SourceLocation Loc, StringRef CapKind) { 1037 SmallVector<BeforeInfo*, 8> InfoVect; 1038 1039 // Do a depth-first traversal of Vd. 1040 // Return true if there are cycles. 1041 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1042 if (!Vd) 1043 return false; 1044 1045 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1046 1047 if (Info->Visited == 1) 1048 return true; 1049 1050 if (Info->Visited == 2) 1051 return false; 1052 1053 if (Info->Vect.empty()) 1054 return false; 1055 1056 InfoVect.push_back(Info); 1057 Info->Visited = 1; 1058 for (auto *Vdb : Info->Vect) { 1059 // Exclude mutexes in our immediate before set. 1060 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1061 StringRef L1 = StartVd->getName(); 1062 StringRef L2 = Vdb->getName(); 1063 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1064 } 1065 // Transitively search other before sets, and warn on cycles. 1066 if (traverse(Vdb)) { 1067 if (CycMap.find(Vd) == CycMap.end()) { 1068 CycMap.insert(std::make_pair(Vd, true)); 1069 StringRef L1 = Vd->getName(); 1070 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1071 } 1072 } 1073 } 1074 Info->Visited = 2; 1075 return false; 1076 }; 1077 1078 traverse(StartVd); 1079 1080 for (auto* Info : InfoVect) 1081 Info->Visited = 0; 1082 } 1083 1084 1085 1086 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. 1087 static const ValueDecl *getValueDecl(const Expr *Exp) { 1088 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1089 return getValueDecl(CE->getSubExpr()); 1090 1091 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1092 return DR->getDecl(); 1093 1094 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1095 return ME->getMemberDecl(); 1096 1097 return nullptr; 1098 } 1099 1100 namespace { 1101 template <typename Ty> 1102 class has_arg_iterator_range { 1103 typedef char yes[1]; 1104 typedef char no[2]; 1105 1106 template <typename Inner> 1107 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1108 1109 template <typename> 1110 static no& test(...); 1111 1112 public: 1113 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1114 }; 1115 } // namespace 1116 1117 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 1118 return A->getName(); 1119 } 1120 1121 static StringRef ClassifyDiagnostic(QualType VDT) { 1122 // We need to look at the declaration of the type of the value to determine 1123 // which it is. The type should either be a record or a typedef, or a pointer 1124 // or reference thereof. 1125 if (const auto *RT = VDT->getAs<RecordType>()) { 1126 if (const auto *RD = RT->getDecl()) 1127 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 1128 return ClassifyDiagnostic(CA); 1129 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 1130 if (const auto *TD = TT->getDecl()) 1131 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 1132 return ClassifyDiagnostic(CA); 1133 } else if (VDT->isPointerType() || VDT->isReferenceType()) 1134 return ClassifyDiagnostic(VDT->getPointeeType()); 1135 1136 return "mutex"; 1137 } 1138 1139 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 1140 assert(VD && "No ValueDecl passed"); 1141 1142 // The ValueDecl is the declaration of a mutex or role (hopefully). 1143 return ClassifyDiagnostic(VD->getType()); 1144 } 1145 1146 template <typename AttrTy> 1147 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 1148 StringRef>::type 1149 ClassifyDiagnostic(const AttrTy *A) { 1150 if (const ValueDecl *VD = getValueDecl(A->getArg())) 1151 return ClassifyDiagnostic(VD); 1152 return "mutex"; 1153 } 1154 1155 template <typename AttrTy> 1156 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 1157 StringRef>::type 1158 ClassifyDiagnostic(const AttrTy *A) { 1159 for (const auto *Arg : A->args()) { 1160 if (const ValueDecl *VD = getValueDecl(Arg)) 1161 return ClassifyDiagnostic(VD); 1162 } 1163 return "mutex"; 1164 } 1165 1166 1167 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1168 if (!CurrentMethod) 1169 return false; 1170 if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 1171 auto *VD = P->clangDecl(); 1172 if (VD) 1173 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1174 } 1175 return false; 1176 } 1177 1178 1179 /// \brief Add a new lock to the lockset, warning if the lock is already there. 1180 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1181 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1182 std::unique_ptr<FactEntry> Entry, 1183 StringRef DiagKind, bool ReqAttr) { 1184 if (Entry->shouldIgnore()) 1185 return; 1186 1187 if (!ReqAttr && !Entry->negative()) { 1188 // look for the negative capability, and remove it from the fact set. 1189 CapabilityExpr NegC = !*Entry; 1190 FactEntry *Nen = FSet.findLock(FactMan, NegC); 1191 if (Nen) { 1192 FSet.removeLock(FactMan, NegC); 1193 } 1194 else { 1195 if (inCurrentScope(*Entry) && !Entry->asserted()) 1196 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1197 NegC.toString(), Entry->loc()); 1198 } 1199 } 1200 1201 // Check before/after constraints 1202 if (Handler.issueBetaWarnings() && 1203 !Entry->asserted() && !Entry->declared()) { 1204 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1205 Entry->loc(), DiagKind); 1206 } 1207 1208 // FIXME: Don't always warn when we have support for reentrant locks. 1209 if (FSet.findLock(FactMan, *Entry)) { 1210 if (!Entry->asserted()) 1211 Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); 1212 } else { 1213 FSet.addLock(FactMan, std::move(Entry)); 1214 } 1215 } 1216 1217 1218 /// \brief Remove a lock from the lockset, warning if the lock is not there. 1219 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1220 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1221 SourceLocation UnlockLoc, 1222 bool FullyRemove, LockKind ReceivedKind, 1223 StringRef DiagKind) { 1224 if (Cp.shouldIgnore()) 1225 return; 1226 1227 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1228 if (!LDat) { 1229 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 1230 return; 1231 } 1232 1233 // Generic lock removal doesn't care about lock kind mismatches, but 1234 // otherwise diagnose when the lock kinds are mismatched. 1235 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1236 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), 1237 LDat->kind(), ReceivedKind, UnlockLoc); 1238 } 1239 1240 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1241 DiagKind); 1242 } 1243 1244 1245 /// \brief Extract the list of mutexIDs from the attribute on an expression, 1246 /// and push them onto Mtxs, discarding any duplicates. 1247 template <typename AttrType> 1248 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1249 Expr *Exp, const NamedDecl *D, 1250 VarDecl *SelfDecl) { 1251 if (Attr->args_size() == 0) { 1252 // The mutex held is the "this" object. 1253 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1254 if (Cp.isInvalid()) { 1255 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1256 return; 1257 } 1258 //else 1259 if (!Cp.shouldIgnore()) 1260 Mtxs.push_back_nodup(Cp); 1261 return; 1262 } 1263 1264 for (const auto *Arg : Attr->args()) { 1265 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1266 if (Cp.isInvalid()) { 1267 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1268 continue; 1269 } 1270 //else 1271 if (!Cp.shouldIgnore()) 1272 Mtxs.push_back_nodup(Cp); 1273 } 1274 } 1275 1276 1277 /// \brief Extract the list of mutexIDs from a trylock attribute. If the 1278 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1279 /// any duplicates. 1280 template <class AttrType> 1281 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1282 Expr *Exp, const NamedDecl *D, 1283 const CFGBlock *PredBlock, 1284 const CFGBlock *CurrBlock, 1285 Expr *BrE, bool Neg) { 1286 // Find out which branch has the lock 1287 bool branch = false; 1288 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1289 branch = BLE->getValue(); 1290 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1291 branch = ILE->getValue().getBoolValue(); 1292 1293 int branchnum = branch ? 0 : 1; 1294 if (Neg) 1295 branchnum = !branchnum; 1296 1297 // If we've taken the trylock branch, then add the lock 1298 int i = 0; 1299 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1300 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1301 if (*SI == CurrBlock && i == branchnum) 1302 getMutexIDs(Mtxs, Attr, Exp, D); 1303 } 1304 } 1305 1306 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1307 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1308 TCond = false; 1309 return true; 1310 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1311 TCond = BLE->getValue(); 1312 return true; 1313 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { 1314 TCond = ILE->getValue().getBoolValue(); 1315 return true; 1316 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { 1317 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1318 } 1319 return false; 1320 } 1321 1322 1323 // If Cond can be traced back to a function call, return the call expression. 1324 // The negate variable should be called with false, and will be set to true 1325 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1326 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1327 LocalVarContext C, 1328 bool &Negate) { 1329 if (!Cond) 1330 return nullptr; 1331 1332 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 1333 return CallExp; 1334 } 1335 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { 1336 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1337 } 1338 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 1339 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1340 } 1341 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { 1342 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 1343 } 1344 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1345 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1346 return getTrylockCallExpr(E, C, Negate); 1347 } 1348 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 1349 if (UOP->getOpcode() == UO_LNot) { 1350 Negate = !Negate; 1351 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1352 } 1353 return nullptr; 1354 } 1355 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { 1356 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1357 if (BOP->getOpcode() == BO_NE) 1358 Negate = !Negate; 1359 1360 bool TCond = false; 1361 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1362 if (!TCond) Negate = !Negate; 1363 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1364 } 1365 TCond = false; 1366 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1367 if (!TCond) Negate = !Negate; 1368 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1369 } 1370 return nullptr; 1371 } 1372 if (BOP->getOpcode() == BO_LAnd) { 1373 // LHS must have been evaluated in a different block. 1374 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1375 } 1376 if (BOP->getOpcode() == BO_LOr) { 1377 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1378 } 1379 return nullptr; 1380 } 1381 return nullptr; 1382 } 1383 1384 1385 /// \brief Find the lockset that holds on the edge between PredBlock 1386 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1387 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1388 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1389 const FactSet &ExitSet, 1390 const CFGBlock *PredBlock, 1391 const CFGBlock *CurrBlock) { 1392 Result = ExitSet; 1393 1394 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1395 if (!Cond) 1396 return; 1397 1398 bool Negate = false; 1399 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1400 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1401 StringRef CapDiagKind = "mutex"; 1402 1403 CallExpr *Exp = 1404 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 1405 if (!Exp) 1406 return; 1407 1408 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1409 if(!FunDecl || !FunDecl->hasAttrs()) 1410 return; 1411 1412 CapExprSet ExclusiveLocksToAdd; 1413 CapExprSet SharedLocksToAdd; 1414 1415 // If the condition is a call to a Trylock function, then grab the attributes 1416 for (auto *Attr : FunDecl->attrs()) { 1417 switch (Attr->getKind()) { 1418 case attr::ExclusiveTrylockFunction: { 1419 ExclusiveTrylockFunctionAttr *A = 1420 cast<ExclusiveTrylockFunctionAttr>(Attr); 1421 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1422 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1423 CapDiagKind = ClassifyDiagnostic(A); 1424 break; 1425 } 1426 case attr::SharedTrylockFunction: { 1427 SharedTrylockFunctionAttr *A = 1428 cast<SharedTrylockFunctionAttr>(Attr); 1429 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1430 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1431 CapDiagKind = ClassifyDiagnostic(A); 1432 break; 1433 } 1434 default: 1435 break; 1436 } 1437 } 1438 1439 // Add and remove locks. 1440 SourceLocation Loc = Exp->getExprLoc(); 1441 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1442 addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1443 LK_Exclusive, Loc), 1444 CapDiagKind); 1445 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1446 addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, 1447 LK_Shared, Loc), 1448 CapDiagKind); 1449 } 1450 1451 namespace { 1452 /// \brief We use this class to visit different types of expressions in 1453 /// CFGBlocks, and build up the lockset. 1454 /// An expression may cause us to add or remove locks from the lockset, or else 1455 /// output error messages related to missing locks. 1456 /// FIXME: In future, we may be able to not inherit from a visitor. 1457 class BuildLockset : public StmtVisitor<BuildLockset> { 1458 friend class ThreadSafetyAnalyzer; 1459 1460 ThreadSafetyAnalyzer *Analyzer; 1461 FactSet FSet; 1462 LocalVariableMap::Context LVarCtx; 1463 unsigned CtxIndex; 1464 1465 // helper functions 1466 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1467 Expr *MutexExp, ProtectedOperationKind POK, 1468 StringRef DiagKind, SourceLocation Loc); 1469 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1470 StringRef DiagKind); 1471 1472 void checkAccess(const Expr *Exp, AccessKind AK, 1473 ProtectedOperationKind POK = POK_VarAccess); 1474 void checkPtAccess(const Expr *Exp, AccessKind AK, 1475 ProtectedOperationKind POK = POK_VarAccess); 1476 1477 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1478 1479 public: 1480 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1481 : StmtVisitor<BuildLockset>(), 1482 Analyzer(Anlzr), 1483 FSet(Info.EntrySet), 1484 LVarCtx(Info.EntryContext), 1485 CtxIndex(Info.EntryIndex) 1486 {} 1487 1488 void VisitUnaryOperator(UnaryOperator *UO); 1489 void VisitBinaryOperator(BinaryOperator *BO); 1490 void VisitCastExpr(CastExpr *CE); 1491 void VisitCallExpr(CallExpr *Exp); 1492 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 1493 void VisitDeclStmt(DeclStmt *S); 1494 }; 1495 } // namespace 1496 1497 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 1498 /// of at least the passed in AccessKind. 1499 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1500 AccessKind AK, Expr *MutexExp, 1501 ProtectedOperationKind POK, 1502 StringRef DiagKind, SourceLocation Loc) { 1503 LockKind LK = getLockKindFromAccessKind(AK); 1504 1505 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1506 if (Cp.isInvalid()) { 1507 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1508 return; 1509 } else if (Cp.shouldIgnore()) { 1510 return; 1511 } 1512 1513 if (Cp.negative()) { 1514 // Negative capabilities act like locks excluded 1515 FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1516 if (LDat) { 1517 Analyzer->Handler.handleFunExcludesLock( 1518 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1519 return; 1520 } 1521 1522 // If this does not refer to a negative capability in the same class, 1523 // then stop here. 1524 if (!Analyzer->inCurrentScope(Cp)) 1525 return; 1526 1527 // Otherwise the negative requirement must be propagated to the caller. 1528 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1529 if (!LDat) { 1530 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 1531 LK_Shared, Loc); 1532 } 1533 return; 1534 } 1535 1536 FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1537 bool NoError = true; 1538 if (!LDat) { 1539 // No exact match found. Look for a partial match. 1540 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1541 if (LDat) { 1542 // Warn that there's no precise match. 1543 std::string PartMatchStr = LDat->toString(); 1544 StringRef PartMatchName(PartMatchStr); 1545 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1546 LK, Loc, &PartMatchName); 1547 } else { 1548 // Warn that there's no match at all. 1549 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1550 LK, Loc); 1551 } 1552 NoError = false; 1553 } 1554 // Make sure the mutex we found is the right kind. 1555 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1556 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1557 LK, Loc); 1558 } 1559 } 1560 1561 /// \brief Warn if the LSet contains the given lock. 1562 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1563 Expr *MutexExp, StringRef DiagKind) { 1564 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1565 if (Cp.isInvalid()) { 1566 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1567 return; 1568 } else if (Cp.shouldIgnore()) { 1569 return; 1570 } 1571 1572 FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); 1573 if (LDat) { 1574 Analyzer->Handler.handleFunExcludesLock( 1575 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1576 } 1577 } 1578 1579 /// \brief Checks guarded_by and pt_guarded_by attributes. 1580 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1581 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1582 /// Similarly, we check if the access is to an expression that dereferences 1583 /// a pointer marked with pt_guarded_by. 1584 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1585 ProtectedOperationKind POK) { 1586 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1587 1588 SourceLocation Loc = Exp->getExprLoc(); 1589 1590 // Local variables of reference type cannot be re-assigned; 1591 // map them to their initializer. 1592 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1593 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1594 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1595 if (const auto *E = VD->getInit()) { 1596 Exp = E; 1597 continue; 1598 } 1599 } 1600 break; 1601 } 1602 1603 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { 1604 // For dereferences 1605 if (UO->getOpcode() == clang::UO_Deref) 1606 checkPtAccess(UO->getSubExpr(), AK, POK); 1607 return; 1608 } 1609 1610 if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1611 checkPtAccess(AE->getLHS(), AK, POK); 1612 return; 1613 } 1614 1615 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 1616 if (ME->isArrow()) 1617 checkPtAccess(ME->getBase(), AK, POK); 1618 else 1619 checkAccess(ME->getBase(), AK, POK); 1620 } 1621 1622 const ValueDecl *D = getValueDecl(Exp); 1623 if (!D || !D->hasAttrs()) 1624 return; 1625 1626 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1627 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1628 } 1629 1630 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1631 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1632 ClassifyDiagnostic(I), Loc); 1633 } 1634 1635 1636 /// \brief Checks pt_guarded_by and pt_guarded_var attributes. 1637 /// POK is the same operationKind that was passed to checkAccess. 1638 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1639 ProtectedOperationKind POK) { 1640 while (true) { 1641 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 1642 Exp = PE->getSubExpr(); 1643 continue; 1644 } 1645 if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 1646 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1647 // If it's an actual array, and not a pointer, then it's elements 1648 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1649 checkAccess(CE->getSubExpr(), AK, POK); 1650 return; 1651 } 1652 Exp = CE->getSubExpr(); 1653 continue; 1654 } 1655 break; 1656 } 1657 1658 // Pass by reference warnings are under a different flag. 1659 ProtectedOperationKind PtPOK = POK_VarDereference; 1660 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1661 1662 const ValueDecl *D = getValueDecl(Exp); 1663 if (!D || !D->hasAttrs()) 1664 return; 1665 1666 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1667 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1668 Exp->getExprLoc()); 1669 1670 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1671 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1672 ClassifyDiagnostic(I), Exp->getExprLoc()); 1673 } 1674 1675 /// \brief Process a function call, method call, constructor call, 1676 /// or destructor call. This involves looking at the attributes on the 1677 /// corresponding function/method/constructor/destructor, issuing warnings, 1678 /// and updating the locksets accordingly. 1679 /// 1680 /// FIXME: For classes annotated with one of the guarded annotations, we need 1681 /// to treat const method calls as reads and non-const method calls as writes, 1682 /// and check that the appropriate locks are held. Non-const method calls with 1683 /// the same signature as const method calls can be also treated as reads. 1684 /// 1685 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 1686 SourceLocation Loc = Exp->getExprLoc(); 1687 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1688 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1689 CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; 1690 StringRef CapDiagKind = "mutex"; 1691 1692 // Figure out if we're constructing an object of scoped lockable class 1693 bool isScopedVar = false; 1694 if (VD) { 1695 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1696 const CXXRecordDecl* PD = CD->getParent(); 1697 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1698 isScopedVar = true; 1699 } 1700 } 1701 1702 for(Attr *Atconst : D->attrs()) { 1703 Attr* At = const_cast<Attr*>(Atconst); 1704 switch (At->getKind()) { 1705 // When we encounter a lock function, we need to add the lock to our 1706 // lockset. 1707 case attr::AcquireCapability: { 1708 auto *A = cast<AcquireCapabilityAttr>(At); 1709 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1710 : ExclusiveLocksToAdd, 1711 A, Exp, D, VD); 1712 1713 CapDiagKind = ClassifyDiagnostic(A); 1714 break; 1715 } 1716 1717 // An assert will add a lock to the lockset, but will not generate 1718 // a warning if it is already there, and will not generate a warning 1719 // if it is not removed. 1720 case attr::AssertExclusiveLock: { 1721 AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); 1722 1723 CapExprSet AssertLocks; 1724 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1725 for (const auto &AssertLock : AssertLocks) 1726 Analyzer->addLock(FSet, 1727 llvm::make_unique<LockableFactEntry>( 1728 AssertLock, LK_Exclusive, Loc, false, true), 1729 ClassifyDiagnostic(A)); 1730 break; 1731 } 1732 case attr::AssertSharedLock: { 1733 AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); 1734 1735 CapExprSet AssertLocks; 1736 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1737 for (const auto &AssertLock : AssertLocks) 1738 Analyzer->addLock(FSet, 1739 llvm::make_unique<LockableFactEntry>( 1740 AssertLock, LK_Shared, Loc, false, true), 1741 ClassifyDiagnostic(A)); 1742 break; 1743 } 1744 1745 case attr::AssertCapability: { 1746 AssertCapabilityAttr *A = cast<AssertCapabilityAttr>(At); 1747 CapExprSet AssertLocks; 1748 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1749 for (const auto &AssertLock : AssertLocks) 1750 Analyzer->addLock(FSet, 1751 llvm::make_unique<LockableFactEntry>( 1752 AssertLock, 1753 A->isShared() ? LK_Shared : LK_Exclusive, Loc, 1754 false, true), 1755 ClassifyDiagnostic(A)); 1756 break; 1757 } 1758 1759 // When we encounter an unlock function, we need to remove unlocked 1760 // mutexes from the lockset, and flag a warning if they are not there. 1761 case attr::ReleaseCapability: { 1762 auto *A = cast<ReleaseCapabilityAttr>(At); 1763 if (A->isGeneric()) 1764 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1765 else if (A->isShared()) 1766 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1767 else 1768 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1769 1770 CapDiagKind = ClassifyDiagnostic(A); 1771 break; 1772 } 1773 1774 case attr::RequiresCapability: { 1775 RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); 1776 for (auto *Arg : A->args()) { 1777 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1778 POK_FunctionCall, ClassifyDiagnostic(A), 1779 Exp->getExprLoc()); 1780 // use for adopting a lock 1781 if (isScopedVar) { 1782 Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs 1783 : ScopedExclusiveReqs, 1784 A, Exp, D, VD); 1785 } 1786 } 1787 break; 1788 } 1789 1790 case attr::LocksExcluded: { 1791 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); 1792 for (auto *Arg : A->args()) 1793 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1794 break; 1795 } 1796 1797 // Ignore attributes unrelated to thread-safety 1798 default: 1799 break; 1800 } 1801 } 1802 1803 // Add locks. 1804 for (const auto &M : ExclusiveLocksToAdd) 1805 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1806 M, LK_Exclusive, Loc, isScopedVar), 1807 CapDiagKind); 1808 for (const auto &M : SharedLocksToAdd) 1809 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1810 M, LK_Shared, Loc, isScopedVar), 1811 CapDiagKind); 1812 1813 if (isScopedVar) { 1814 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1815 SourceLocation MLoc = VD->getLocation(); 1816 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 1817 // FIXME: does this store a pointer to DRE? 1818 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1819 1820 std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(), 1821 std::back_inserter(ExclusiveLocksToAdd)); 1822 std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(), 1823 std::back_inserter(SharedLocksToAdd)); 1824 Analyzer->addLock(FSet, 1825 llvm::make_unique<ScopedLockableFactEntry>( 1826 Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), 1827 CapDiagKind); 1828 } 1829 1830 // Remove locks. 1831 // FIXME -- should only fully remove if the attribute refers to 'this'. 1832 bool Dtor = isa<CXXDestructorDecl>(D); 1833 for (const auto &M : ExclusiveLocksToRemove) 1834 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1835 for (const auto &M : SharedLocksToRemove) 1836 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1837 for (const auto &M : GenericLocksToRemove) 1838 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1839 } 1840 1841 1842 /// \brief For unary operations which read and write a variable, we need to 1843 /// check whether we hold any required mutexes. Reads are checked in 1844 /// VisitCastExpr. 1845 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 1846 switch (UO->getOpcode()) { 1847 case clang::UO_PostDec: 1848 case clang::UO_PostInc: 1849 case clang::UO_PreDec: 1850 case clang::UO_PreInc: { 1851 checkAccess(UO->getSubExpr(), AK_Written); 1852 break; 1853 } 1854 default: 1855 break; 1856 } 1857 } 1858 1859 /// For binary operations which assign to a variable (writes), we need to check 1860 /// whether we hold any required mutexes. 1861 /// FIXME: Deal with non-primitive types. 1862 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 1863 if (!BO->isAssignmentOp()) 1864 return; 1865 1866 // adjust the context 1867 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1868 1869 checkAccess(BO->getLHS(), AK_Written); 1870 } 1871 1872 1873 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1874 /// need to ensure we hold any required mutexes. 1875 /// FIXME: Deal with non-primitive types. 1876 void BuildLockset::VisitCastExpr(CastExpr *CE) { 1877 if (CE->getCastKind() != CK_LValueToRValue) 1878 return; 1879 checkAccess(CE->getSubExpr(), AK_Read); 1880 } 1881 1882 1883 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 1884 bool ExamineArgs = true; 1885 bool OperatorFun = false; 1886 1887 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 1888 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); 1889 // ME can be null when calling a method pointer 1890 CXXMethodDecl *MD = CE->getMethodDecl(); 1891 1892 if (ME && MD) { 1893 if (ME->isArrow()) { 1894 if (MD->isConst()) { 1895 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1896 } else { // FIXME -- should be AK_Written 1897 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1898 } 1899 } else { 1900 if (MD->isConst()) 1901 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1902 else // FIXME -- should be AK_Written 1903 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1904 } 1905 } 1906 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 1907 OperatorFun = true; 1908 1909 auto OEop = OE->getOperator(); 1910 switch (OEop) { 1911 case OO_Equal: { 1912 ExamineArgs = false; 1913 const Expr *Target = OE->getArg(0); 1914 const Expr *Source = OE->getArg(1); 1915 checkAccess(Target, AK_Written); 1916 checkAccess(Source, AK_Read); 1917 break; 1918 } 1919 case OO_Star: 1920 case OO_Arrow: 1921 case OO_Subscript: { 1922 const Expr *Obj = OE->getArg(0); 1923 checkAccess(Obj, AK_Read); 1924 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 1925 // Grrr. operator* can be multiplication... 1926 checkPtAccess(Obj, AK_Read); 1927 } 1928 break; 1929 } 1930 default: { 1931 // TODO: get rid of this, and rely on pass-by-ref instead. 1932 const Expr *Obj = OE->getArg(0); 1933 checkAccess(Obj, AK_Read); 1934 break; 1935 } 1936 } 1937 } 1938 1939 if (ExamineArgs) { 1940 if (FunctionDecl *FD = Exp->getDirectCallee()) { 1941 1942 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1943 // only turns off checking within the body of a function, but we also 1944 // use it to turn off checking in arguments to the function. This 1945 // could result in some false negatives, but the alternative is to 1946 // create yet another attribute. 1947 // 1948 if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) { 1949 unsigned Fn = FD->getNumParams(); 1950 unsigned Cn = Exp->getNumArgs(); 1951 unsigned Skip = 0; 1952 1953 unsigned i = 0; 1954 if (OperatorFun) { 1955 if (isa<CXXMethodDecl>(FD)) { 1956 // First arg in operator call is implicit self argument, 1957 // and doesn't appear in the FunctionDecl. 1958 Skip = 1; 1959 Cn--; 1960 } else { 1961 // Ignore the first argument of operators; it's been checked above. 1962 i = 1; 1963 } 1964 } 1965 // Ignore default arguments 1966 unsigned n = (Fn < Cn) ? Fn : Cn; 1967 1968 for (; i < n; ++i) { 1969 ParmVarDecl* Pvd = FD->getParamDecl(i); 1970 Expr* Arg = Exp->getArg(i+Skip); 1971 QualType Qt = Pvd->getType(); 1972 if (Qt->isReferenceType()) 1973 checkAccess(Arg, AK_Read, POK_PassByRef); 1974 } 1975 } 1976 } 1977 } 1978 1979 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1980 if(!D || !D->hasAttrs()) 1981 return; 1982 handleCall(Exp, D); 1983 } 1984 1985 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 1986 const CXXConstructorDecl *D = Exp->getConstructor(); 1987 if (D && D->isCopyConstructor()) { 1988 const Expr* Source = Exp->getArg(0); 1989 checkAccess(Source, AK_Read); 1990 } 1991 // FIXME -- only handles constructors in DeclStmt below. 1992 } 1993 1994 static CXXConstructorDecl * 1995 findConstructorForByValueReturn(const CXXRecordDecl *RD) { 1996 // Prefer a move constructor over a copy constructor. If there's more than 1997 // one copy constructor or more than one move constructor, we arbitrarily 1998 // pick the first declared such constructor rather than trying to guess which 1999 // one is more appropriate. 2000 CXXConstructorDecl *CopyCtor = nullptr; 2001 for (CXXConstructorDecl *Ctor : RD->ctors()) { 2002 if (Ctor->isDeleted()) 2003 continue; 2004 if (Ctor->isMoveConstructor()) 2005 return Ctor; 2006 if (!CopyCtor && Ctor->isCopyConstructor()) 2007 CopyCtor = Ctor; 2008 } 2009 return CopyCtor; 2010 } 2011 2012 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, 2013 SourceLocation Loc) { 2014 ASTContext &Ctx = CD->getASTContext(); 2015 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, 2016 CD, true, Args, false, false, false, false, 2017 CXXConstructExpr::CK_Complete, 2018 SourceRange(Loc, Loc)); 2019 } 2020 2021 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 2022 // adjust the context 2023 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2024 2025 for (auto *D : S->getDeclGroup()) { 2026 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 2027 Expr *E = VD->getInit(); 2028 if (!E) 2029 continue; 2030 E = E->IgnoreParens(); 2031 2032 // handle constructors that involve temporaries 2033 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2034 E = EWC->getSubExpr(); 2035 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2036 E = BTE->getSubExpr(); 2037 2038 if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) { 2039 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 2040 if (!CtorD || !CtorD->hasAttrs()) 2041 continue; 2042 handleCall(E, CtorD, VD); 2043 } else if (isa<CallExpr>(E) && E->isRValue()) { 2044 // If the object is initialized by a function call that returns a 2045 // scoped lockable by value, use the attributes on the copy or move 2046 // constructor to figure out what effect that should have on the 2047 // lockset. 2048 // FIXME: Is this really the best way to handle this situation? 2049 auto *RD = E->getType()->getAsCXXRecordDecl(); 2050 if (!RD || !RD->hasAttr<ScopedLockableAttr>()) 2051 continue; 2052 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); 2053 if (!CtorD || !CtorD->hasAttrs()) 2054 continue; 2055 handleCall(buildFakeCtorCall(CtorD, {E}, E->getLocStart()), CtorD, VD); 2056 } 2057 } 2058 } 2059 } 2060 2061 2062 2063 /// \brief Compute the intersection of two locksets and issue warnings for any 2064 /// locks in the symmetric difference. 2065 /// 2066 /// This function is used at a merge point in the CFG when comparing the lockset 2067 /// of each branch being merged. For example, given the following sequence: 2068 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2069 /// are the same. In the event of a difference, we use the intersection of these 2070 /// two locksets at the start of D. 2071 /// 2072 /// \param FSet1 The first lockset. 2073 /// \param FSet2 The second lockset. 2074 /// \param JoinLoc The location of the join point for error reporting 2075 /// \param LEK1 The error message to report if a mutex is missing from LSet1 2076 /// \param LEK2 The error message to report if a mutex is missing from Lset2 2077 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 2078 const FactSet &FSet2, 2079 SourceLocation JoinLoc, 2080 LockErrorKind LEK1, 2081 LockErrorKind LEK2, 2082 bool Modify) { 2083 FactSet FSet1Orig = FSet1; 2084 2085 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 2086 for (const auto &Fact : FSet2) { 2087 const FactEntry *LDat1 = nullptr; 2088 const FactEntry *LDat2 = &FactMan[Fact]; 2089 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 2090 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 2091 2092 if (LDat1) { 2093 if (LDat1->kind() != LDat2->kind()) { 2094 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 2095 LDat2->loc(), LDat1->loc()); 2096 if (Modify && LDat1->kind() != LK_Exclusive) { 2097 // Take the exclusive lock, which is the one in FSet2. 2098 *Iter1 = Fact; 2099 } 2100 } 2101 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 2102 // The non-asserted lock in FSet2 is the one we want to track. 2103 *Iter1 = Fact; 2104 } 2105 } else { 2106 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 2107 Handler); 2108 } 2109 } 2110 2111 // Find locks in FSet1 that are not in FSet2, and remove them. 2112 for (const auto &Fact : FSet1Orig) { 2113 const FactEntry *LDat1 = &FactMan[Fact]; 2114 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 2115 2116 if (!LDat2) { 2117 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 2118 Handler); 2119 if (Modify) 2120 FSet1.removeLock(FactMan, *LDat1); 2121 } 2122 } 2123 } 2124 2125 2126 // Return true if block B never continues to its successors. 2127 static bool neverReturns(const CFGBlock *B) { 2128 if (B->hasNoReturnElement()) 2129 return true; 2130 if (B->empty()) 2131 return false; 2132 2133 CFGElement Last = B->back(); 2134 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2135 if (isa<CXXThrowExpr>(S->getStmt())) 2136 return true; 2137 } 2138 return false; 2139 } 2140 2141 2142 /// \brief Check a function's CFG for thread-safety violations. 2143 /// 2144 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2145 /// at the end of each block, and issue warnings for thread safety violations. 2146 /// Each block in the CFG is traversed exactly once. 2147 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2148 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2149 // For now, we just use the walker to set things up. 2150 threadSafety::CFGWalker walker; 2151 if (!walker.init(AC)) 2152 return; 2153 2154 // AC.dumpCFG(true); 2155 // threadSafety::printSCFG(walker); 2156 2157 CFG *CFGraph = walker.getGraph(); 2158 const NamedDecl *D = walker.getDecl(); 2159 const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); 2160 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2161 2162 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2163 return; 2164 2165 // FIXME: Do something a bit more intelligent inside constructor and 2166 // destructor code. Constructors and destructors must assume unique access 2167 // to 'this', so checks on member variable access is disabled, but we should 2168 // still enable checks on other objects. 2169 if (isa<CXXConstructorDecl>(D)) 2170 return; // Don't check inside constructors. 2171 if (isa<CXXDestructorDecl>(D)) 2172 return; // Don't check inside destructors. 2173 2174 Handler.enterFunction(CurrentFunction); 2175 2176 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2177 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2178 2179 // We need to explore the CFG via a "topological" ordering. 2180 // That way, we will be guaranteed to have information about required 2181 // predecessor locksets when exploring a new block. 2182 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2183 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2184 2185 // Mark entry block as reachable 2186 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2187 2188 // Compute SSA names for local variables 2189 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2190 2191 // Fill in source locations for all CFGBlocks. 2192 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2193 2194 CapExprSet ExclusiveLocksAcquired; 2195 CapExprSet SharedLocksAcquired; 2196 CapExprSet LocksReleased; 2197 2198 // Add locks from exclusive_locks_required and shared_locks_required 2199 // to initial lockset. Also turn off checking for lock and unlock functions. 2200 // FIXME: is there a more intelligent way to check lock/unlock functions? 2201 if (!SortedGraph->empty() && D->hasAttrs()) { 2202 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2203 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2204 2205 CapExprSet ExclusiveLocksToAdd; 2206 CapExprSet SharedLocksToAdd; 2207 StringRef CapDiagKind = "mutex"; 2208 2209 SourceLocation Loc = D->getLocation(); 2210 for (const auto *Attr : D->attrs()) { 2211 Loc = Attr->getLocation(); 2212 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2213 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2214 nullptr, D); 2215 CapDiagKind = ClassifyDiagnostic(A); 2216 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2217 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2218 // We must ignore such methods. 2219 if (A->args_size() == 0) 2220 return; 2221 // FIXME -- deal with exclusive vs. shared unlock functions? 2222 getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); 2223 getMutexIDs(LocksReleased, A, nullptr, D); 2224 CapDiagKind = ClassifyDiagnostic(A); 2225 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2226 if (A->args_size() == 0) 2227 return; 2228 getMutexIDs(A->isShared() ? SharedLocksAcquired 2229 : ExclusiveLocksAcquired, 2230 A, nullptr, D); 2231 CapDiagKind = ClassifyDiagnostic(A); 2232 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2233 // Don't try to check trylock functions for now 2234 return; 2235 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2236 // Don't try to check trylock functions for now 2237 return; 2238 } 2239 } 2240 2241 // FIXME -- Loc can be wrong here. 2242 for (const auto &Mu : ExclusiveLocksToAdd) { 2243 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); 2244 Entry->setDeclared(true); 2245 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2246 } 2247 for (const auto &Mu : SharedLocksToAdd) { 2248 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); 2249 Entry->setDeclared(true); 2250 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2251 } 2252 } 2253 2254 for (const auto *CurrBlock : *SortedGraph) { 2255 int CurrBlockID = CurrBlock->getBlockID(); 2256 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2257 2258 // Use the default initial lockset in case there are no predecessors. 2259 VisitedBlocks.insert(CurrBlock); 2260 2261 // Iterate through the predecessor blocks and warn if the lockset for all 2262 // predecessors is not the same. We take the entry lockset of the current 2263 // block to be the intersection of all previous locksets. 2264 // FIXME: By keeping the intersection, we may output more errors in future 2265 // for a lock which is not in the intersection, but was in the union. We 2266 // may want to also keep the union in future. As an example, let's say 2267 // the intersection contains Mutex L, and the union contains L and M. 2268 // Later we unlock M. At this point, we would output an error because we 2269 // never locked M; although the real error is probably that we forgot to 2270 // lock M on all code paths. Conversely, let's say that later we lock M. 2271 // In this case, we should compare against the intersection instead of the 2272 // union because the real error is probably that we forgot to unlock M on 2273 // all code paths. 2274 bool LocksetInitialized = false; 2275 SmallVector<CFGBlock *, 8> SpecialBlocks; 2276 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2277 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2278 2279 // if *PI -> CurrBlock is a back edge 2280 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2281 continue; 2282 2283 int PrevBlockID = (*PI)->getBlockID(); 2284 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2285 2286 // Ignore edges from blocks that can't return. 2287 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2288 continue; 2289 2290 // Okay, we can reach this block from the entry. 2291 CurrBlockInfo->Reachable = true; 2292 2293 // If the previous block ended in a 'continue' or 'break' statement, then 2294 // a difference in locksets is probably due to a bug in that block, rather 2295 // than in some other predecessor. In that case, keep the other 2296 // predecessor's lockset. 2297 if (const Stmt *Terminator = (*PI)->getTerminator()) { 2298 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2299 SpecialBlocks.push_back(*PI); 2300 continue; 2301 } 2302 } 2303 2304 FactSet PrevLockset; 2305 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2306 2307 if (!LocksetInitialized) { 2308 CurrBlockInfo->EntrySet = PrevLockset; 2309 LocksetInitialized = true; 2310 } else { 2311 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2312 CurrBlockInfo->EntryLoc, 2313 LEK_LockedSomePredecessors); 2314 } 2315 } 2316 2317 // Skip rest of block if it's not reachable. 2318 if (!CurrBlockInfo->Reachable) 2319 continue; 2320 2321 // Process continue and break blocks. Assume that the lockset for the 2322 // resulting block is unaffected by any discrepancies in them. 2323 for (const auto *PrevBlock : SpecialBlocks) { 2324 int PrevBlockID = PrevBlock->getBlockID(); 2325 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2326 2327 if (!LocksetInitialized) { 2328 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2329 LocksetInitialized = true; 2330 } else { 2331 // Determine whether this edge is a loop terminator for diagnostic 2332 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2333 // it might also be part of a switch. Also, a subsequent destructor 2334 // might add to the lockset, in which case the real issue might be a 2335 // double lock on the other path. 2336 const Stmt *Terminator = PrevBlock->getTerminator(); 2337 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2338 2339 FactSet PrevLockset; 2340 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2341 PrevBlock, CurrBlock); 2342 2343 // Do not update EntrySet. 2344 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2345 PrevBlockInfo->ExitLoc, 2346 IsLoop ? LEK_LockedSomeLoopIterations 2347 : LEK_LockedSomePredecessors, 2348 false); 2349 } 2350 } 2351 2352 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2353 2354 // Visit all the statements in the basic block. 2355 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 2356 BE = CurrBlock->end(); BI != BE; ++BI) { 2357 switch (BI->getKind()) { 2358 case CFGElement::Statement: { 2359 CFGStmt CS = BI->castAs<CFGStmt>(); 2360 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 2361 break; 2362 } 2363 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2364 case CFGElement::AutomaticObjectDtor: { 2365 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); 2366 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( 2367 AD.getDestructorDecl(AC.getASTContext())); 2368 if (!DD->hasAttrs()) 2369 break; 2370 2371 // Create a dummy expression, 2372 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); 2373 DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(), 2374 VK_LValue, AD.getTriggerStmt()->getLocEnd()); 2375 LocksetBuilder.handleCall(&DRE, DD); 2376 break; 2377 } 2378 default: 2379 break; 2380 } 2381 } 2382 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2383 2384 // For every back edge from CurrBlock (the end of the loop) to another block 2385 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2386 // the one held at the beginning of FirstLoopBlock. We can look up the 2387 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2388 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2389 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2390 2391 // if CurrBlock -> *SI is *not* a back edge 2392 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2393 continue; 2394 2395 CFGBlock *FirstLoopBlock = *SI; 2396 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2397 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2398 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2399 PreLoop->EntryLoc, 2400 LEK_LockedSomeLoopIterations, 2401 false); 2402 } 2403 } 2404 2405 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2406 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2407 2408 // Skip the final check if the exit block is unreachable. 2409 if (!Final->Reachable) 2410 return; 2411 2412 // By default, we expect all locks held on entry to be held on exit. 2413 FactSet ExpectedExitSet = Initial->EntrySet; 2414 2415 // Adjust the expected exit set by adding or removing locks, as declared 2416 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2417 // issue the appropriate warning. 2418 // FIXME: the location here is not quite right. 2419 for (const auto &Lock : ExclusiveLocksAcquired) 2420 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2421 Lock, LK_Exclusive, D->getLocation())); 2422 for (const auto &Lock : SharedLocksAcquired) 2423 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2424 Lock, LK_Shared, D->getLocation())); 2425 for (const auto &Lock : LocksReleased) 2426 ExpectedExitSet.removeLock(FactMan, Lock); 2427 2428 // FIXME: Should we call this function for all blocks which exit the function? 2429 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2430 Final->ExitLoc, 2431 LEK_LockedAtEndOfFunction, 2432 LEK_NotLockedAtEndOfFunction, 2433 false); 2434 2435 Handler.leaveFunction(CurrentFunction); 2436 } 2437 2438 2439 /// \brief Check a function's CFG for thread-safety violations. 2440 /// 2441 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2442 /// at the end of each block, and issue warnings for thread safety violations. 2443 /// Each block in the CFG is traversed exactly once. 2444 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2445 ThreadSafetyHandler &Handler, 2446 BeforeSet **BSet) { 2447 if (!*BSet) 2448 *BSet = new BeforeSet; 2449 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2450 Analyzer.runAnalysis(AC); 2451 } 2452 2453 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2454 2455 /// \brief Helper function that returns a LockKind required for the given level 2456 /// of access. 2457 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2458 switch (AK) { 2459 case AK_Read : 2460 return LK_Shared; 2461 case AK_Written : 2462 return LK_Exclusive; 2463 } 2464 llvm_unreachable("Unknown AccessKind"); 2465 } 2466