1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Analysis/CFGStmtMap.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/SourceLocation.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/FoldingSet.h"
31 #include "llvm/ADT/ImmutableMap.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include <algorithm>
36 #include <vector>
37 
38 using namespace clang;
39 using namespace thread_safety;
40 
41 // Key method definition
42 ThreadSafetyHandler::~ThreadSafetyHandler() {}
43 
44 namespace {
45 
46 /// \brief A MutexID object uniquely identifies a particular mutex, and
47 /// is built from an Expr* (i.e. calling a lock function).
48 ///
49 /// Thread-safety analysis works by comparing lock expressions.  Within the
50 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
51 /// a particular mutex object at run-time.  Subsequent occurrences of the same
52 /// expression (where "same" means syntactic equality) will refer to the same
53 /// run-time object if three conditions hold:
54 /// (1) Local variables in the expression, such as "x" have not changed.
55 /// (2) Values on the heap that affect the expression have not changed.
56 /// (3) The expression involves only pure function calls.
57 ///
58 /// The current implementation assumes, but does not verify, that multiple uses
59 /// of the same lock expression satisfies these criteria.
60 ///
61 /// Clang introduces an additional wrinkle, which is that it is difficult to
62 /// derive canonical expressions, or compare expressions directly for equality.
63 /// Thus, we identify a mutex not by an Expr, but by the set of named
64 /// declarations that are referenced by the Expr.  In other words,
65 /// x->foo->bar.mu will be a four element vector with the Decls for
66 /// mu, bar, and foo, and x.  The vector will uniquely identify the expression
67 /// for all practical purposes.
68 ///
69 /// Note we will need to perform substitution on "this" and function parameter
70 /// names when constructing a lock expression.
71 ///
72 /// For example:
73 /// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
74 /// void myFunc(C *X) { ... X->lock() ... }
75 /// The original expression for the mutex acquired by myFunc is "this->Mu", but
76 /// "X" is substituted for "this" so we get X->Mu();
77 ///
78 /// For another example:
79 /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
80 /// MyList *MyL;
81 /// foo(MyL);  // requires lock MyL->Mu to be held
82 class MutexID {
83   SmallVector<NamedDecl*, 2> DeclSeq;
84 
85   /// Build a Decl sequence representing the lock from the given expression.
86   /// Recursive function that terminates on DeclRefExpr.
87   /// Note: this function merely creates a MutexID; it does not check to
88   /// ensure that the original expression is a valid mutex expression.
89   void buildMutexID(Expr *Exp, Expr *Parent, int NumArgs,
90                     const NamedDecl **FunArgDecls, Expr **FunArgs) {
91     if (!Exp) {
92       DeclSeq.clear();
93       return;
94     }
95 
96     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
97       if (FunArgDecls) {
98         // Substitute call arguments for references to function parameters
99         for (int i = 0; i < NumArgs; ++i) {
100           if (DRE->getDecl() == FunArgDecls[i]) {
101             buildMutexID(FunArgs[i], 0, 0, 0, 0);
102             return;
103           }
104         }
105       }
106       NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
107       DeclSeq.push_back(ND);
108     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
109       NamedDecl *ND = ME->getMemberDecl();
110       DeclSeq.push_back(ND);
111       buildMutexID(ME->getBase(), Parent, NumArgs, FunArgDecls, FunArgs);
112     } else if (isa<CXXThisExpr>(Exp)) {
113       if (Parent)
114         buildMutexID(Parent, 0, 0, 0, 0);
115       else
116         return;  // mutexID is still valid in this case
117     } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
118       buildMutexID(UOE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
119     else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
120       buildMutexID(CE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
121     else
122       DeclSeq.clear(); // Mark as invalid lock expression.
123   }
124 
125   /// \brief Construct a MutexID from an expression.
126   /// \param MutexExp The original mutex expression within an attribute
127   /// \param DeclExp An expression involving the Decl on which the attribute
128   ///        occurs.
129   /// \param D  The declaration to which the lock/unlock attribute is attached.
130   void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
131     Expr *Parent = 0;
132     unsigned NumArgs = 0;
133     Expr **FunArgs = 0;
134     SmallVector<const NamedDecl*, 8> FunArgDecls;
135 
136     // If we are processing a raw attribute expression, with no substitutions.
137     if (DeclExp == 0) {
138       buildMutexID(MutexExp, 0, 0, 0, 0);
139       return;
140     }
141 
142     // Examine DeclExp to find Parent and FunArgs, which are used to substitute
143     // for formal parameters when we call buildMutexID later.
144     if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
145       Parent = ME->getBase();
146     } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
147       Parent = CE->getImplicitObjectArgument();
148       NumArgs = CE->getNumArgs();
149       FunArgs = CE->getArgs();
150     } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
151       NumArgs = CE->getNumArgs();
152       FunArgs = CE->getArgs();
153     } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
154       Parent = 0;  // FIXME -- get the parent from DeclStmt
155       NumArgs = CE->getNumArgs();
156       FunArgs = CE->getArgs();
157     } else if (D && isa<CXXDestructorDecl>(D)) {
158       // There's no such thing as a "destructor call" in the AST.
159       Parent = DeclExp;
160     }
161 
162     // If the attribute has no arguments, then assume the argument is "this".
163     if (MutexExp == 0) {
164       buildMutexID(Parent, 0, 0, 0, 0);
165       return;
166     }
167 
168     // FIXME: handle default arguments
169     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
170       for (unsigned i = 0, ni = FD->getNumParams(); i < ni && i < NumArgs; ++i) {
171         FunArgDecls.push_back(FD->getParamDecl(i));
172       }
173     }
174     buildMutexID(MutexExp, Parent, NumArgs, &FunArgDecls.front(), FunArgs);
175   }
176 
177 public:
178   explicit MutexID(clang::Decl::EmptyShell e) {
179     DeclSeq.clear();
180   }
181 
182   /// \param MutexExp The original mutex expression within an attribute
183   /// \param DeclExp An expression involving the Decl on which the attribute
184   ///        occurs.
185   /// \param D  The declaration to which the lock/unlock attribute is attached.
186   /// Caller must check isValid() after construction.
187   MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
188     buildMutexIDFromExp(MutexExp, DeclExp, D);
189   }
190 
191   /// Return true if this is a valid decl sequence.
192   /// Caller must call this by hand after construction to handle errors.
193   bool isValid() const {
194     return !DeclSeq.empty();
195   }
196 
197   /// Issue a warning about an invalid lock expression
198   static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
199                               Expr *DeclExp, const NamedDecl* D) {
200     SourceLocation Loc;
201     if (DeclExp)
202       Loc = DeclExp->getExprLoc();
203 
204     // FIXME: add a note about the attribute location in MutexExp or D
205     if (Loc.isValid())
206       Handler.handleInvalidLockExp(Loc);
207   }
208 
209   bool operator==(const MutexID &other) const {
210     return DeclSeq == other.DeclSeq;
211   }
212 
213   bool operator!=(const MutexID &other) const {
214     return !(*this == other);
215   }
216 
217   // SmallVector overloads Operator< to do lexicographic ordering. Note that
218   // we use pointer equality (and <) to compare NamedDecls. This means the order
219   // of MutexIDs in a lockset is nondeterministic. In order to output
220   // diagnostics in a deterministic ordering, we must order all diagnostics to
221   // output by SourceLocation when iterating through this lockset.
222   bool operator<(const MutexID &other) const {
223     return DeclSeq < other.DeclSeq;
224   }
225 
226   /// \brief Returns the name of the first Decl in the list for a given MutexID;
227   /// e.g. the lock expression foo.bar() has name "bar".
228   /// The caret will point unambiguously to the lock expression, so using this
229   /// name in diagnostics is a way to get simple, and consistent, mutex names.
230   /// We do not want to output the entire expression text for security reasons.
231   StringRef getName() const {
232     assert(isValid());
233     return DeclSeq.front()->getName();
234   }
235 
236   void Profile(llvm::FoldingSetNodeID &ID) const {
237     for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
238          E = DeclSeq.end(); I != E; ++I) {
239       ID.AddPointer(*I);
240     }
241   }
242 };
243 
244 
245 /// \brief This is a helper class that stores info about the most recent
246 /// accquire of a Lock.
247 ///
248 /// The main body of the analysis maps MutexIDs to LockDatas.
249 struct LockData {
250   SourceLocation AcquireLoc;
251 
252   /// \brief LKind stores whether a lock is held shared or exclusively.
253   /// Note that this analysis does not currently support either re-entrant
254   /// locking or lock "upgrading" and "downgrading" between exclusive and
255   /// shared.
256   ///
257   /// FIXME: add support for re-entrant locking and lock up/downgrading
258   LockKind LKind;
259   MutexID UnderlyingMutex;  // for ScopedLockable objects
260 
261   LockData(SourceLocation AcquireLoc, LockKind LKind)
262     : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
263   {}
264 
265   LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
266     : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
267 
268   bool operator==(const LockData &other) const {
269     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
270   }
271 
272   bool operator!=(const LockData &other) const {
273     return !(*this == other);
274   }
275 
276   void Profile(llvm::FoldingSetNodeID &ID) const {
277     ID.AddInteger(AcquireLoc.getRawEncoding());
278     ID.AddInteger(LKind);
279   }
280 };
281 
282 
283 /// A Lockset maps each MutexID (defined above) to information about how it has
284 /// been locked.
285 typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
286 
287 /// \brief We use this class to visit different types of expressions in
288 /// CFGBlocks, and build up the lockset.
289 /// An expression may cause us to add or remove locks from the lockset, or else
290 /// output error messages related to missing locks.
291 /// FIXME: In future, we may be able to not inherit from a visitor.
292 class BuildLockset : public StmtVisitor<BuildLockset> {
293   friend class ThreadSafetyAnalyzer;
294 
295   ThreadSafetyHandler &Handler;
296   Lockset LSet;
297   Lockset::Factory &LocksetFactory;
298 
299   // Helper functions
300   void addLock(const MutexID &Mutex, const LockData &LDat);
301   void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
302 
303   template <class AttrType>
304   void addLocksToSet(LockKind LK, AttrType *Attr,
305                      Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
306   void removeLocksFromSet(UnlockFunctionAttr *Attr,
307                           Expr *Exp, NamedDecl* FunDecl);
308 
309   const ValueDecl *getValueDecl(Expr *Exp);
310   void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
311                            Expr *MutexExp, ProtectedOperationKind POK);
312   void checkAccess(Expr *Exp, AccessKind AK);
313   void checkDereference(Expr *Exp, AccessKind AK);
314   void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
315 
316   /// \brief Returns true if the lockset contains a lock, regardless of whether
317   /// the lock is held exclusively or shared.
318   bool locksetContains(const MutexID &Lock) const {
319     return LSet.lookup(Lock);
320   }
321 
322   /// \brief Returns true if the lockset contains a lock with the passed in
323   /// locktype.
324   bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
325     const LockData *LockHeld = LSet.lookup(Lock);
326     return (LockHeld && KindRequested == LockHeld->LKind);
327   }
328 
329   /// \brief Returns true if the lockset contains a lock with at least the
330   /// passed in locktype. So for example, if we pass in LK_Shared, this function
331   /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
332   /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
333   bool locksetContainsAtLeast(const MutexID &Lock,
334                               LockKind KindRequested) const {
335     switch (KindRequested) {
336       case LK_Shared:
337         return locksetContains(Lock);
338       case LK_Exclusive:
339         return locksetContains(Lock, KindRequested);
340     }
341     llvm_unreachable("Unknown LockKind");
342   }
343 
344 public:
345   BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
346     : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
347       LocksetFactory(F) {}
348 
349   Lockset getLockset() {
350     return LSet;
351   }
352 
353   void VisitUnaryOperator(UnaryOperator *UO);
354   void VisitBinaryOperator(BinaryOperator *BO);
355   void VisitCastExpr(CastExpr *CE);
356   void VisitCallExpr(CallExpr *Exp);
357   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
358   void VisitDeclStmt(DeclStmt *S);
359 };
360 
361 /// \brief Add a new lock to the lockset, warning if the lock is already there.
362 /// \param Mutex -- the Mutex expression for the lock
363 /// \param LDat  -- the LockData for the lock
364 void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
365   // FIXME: deal with acquired before/after annotations.
366   // FIXME: Don't always warn when we have support for reentrant locks.
367   if (locksetContains(Mutex))
368     Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
369   else
370     LSet = LocksetFactory.add(LSet, Mutex, LDat);
371 }
372 
373 /// \brief Remove a lock from the lockset, warning if the lock is not there.
374 /// \param LockExp The lock expression corresponding to the lock to be removed
375 /// \param UnlockLoc The source location of the unlock (only used in error msg)
376 void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
377   const LockData *LDat = LSet.lookup(Mutex);
378   if (!LDat)
379     Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
380   else {
381     // For scoped-lockable vars, remove the mutex associated with this var.
382     if (LDat->UnderlyingMutex.isValid())
383       removeLock(LDat->UnderlyingMutex, UnlockLoc);
384     LSet = LocksetFactory.remove(LSet, Mutex);
385   }
386 }
387 
388 /// \brief This function, parameterized by an attribute type, is used to add a
389 /// set of locks specified as attribute arguments to the lockset.
390 template <typename AttrType>
391 void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
392                                  Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
393   typedef typename AttrType::args_iterator iterator_type;
394 
395   SourceLocation ExpLocation = Exp->getExprLoc();
396 
397   // Figure out if we're calling the constructor of scoped lockable class
398   bool isScopedVar = false;
399   if (VD) {
400     if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
401       CXXRecordDecl* PD = CD->getParent();
402       if (PD && PD->getAttr<ScopedLockableAttr>())
403         isScopedVar = true;
404     }
405   }
406 
407   if (Attr->args_size() == 0) {
408     // The mutex held is the "this" object.
409     MutexID Mutex(0, Exp, FunDecl);
410     if (!Mutex.isValid())
411       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
412     else
413       addLock(Mutex, LockData(ExpLocation, LK));
414     return;
415   }
416 
417   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
418     MutexID Mutex(*I, Exp, FunDecl);
419     if (!Mutex.isValid())
420       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
421     else {
422       addLock(Mutex, LockData(ExpLocation, LK));
423       if (isScopedVar) {
424         // For scoped lockable vars, map this var to its underlying mutex.
425         DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
426         MutexID SMutex(&DRE, 0, 0);
427         addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
428       }
429     }
430   }
431 }
432 
433 /// \brief This function removes a set of locks specified as attribute
434 /// arguments from the lockset.
435 void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
436                                       Expr *Exp, NamedDecl* FunDecl) {
437   SourceLocation ExpLocation;
438   if (Exp) ExpLocation = Exp->getExprLoc();
439 
440   if (Attr->args_size() == 0) {
441     // The mutex held is the "this" object.
442     MutexID Mu(0, Exp, FunDecl);
443     if (!Mu.isValid())
444       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
445     else
446       removeLock(Mu, ExpLocation);
447     return;
448   }
449 
450   for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
451        E = Attr->args_end(); I != E; ++I) {
452     MutexID Mutex(*I, Exp, FunDecl);
453     if (!Mutex.isValid())
454       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
455     else
456       removeLock(Mutex, ExpLocation);
457   }
458 }
459 
460 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
461 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
462   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
463     return DR->getDecl();
464 
465   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
466     return ME->getMemberDecl();
467 
468   return 0;
469 }
470 
471 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
472 /// of at least the passed in AccessKind.
473 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
474                                       AccessKind AK, Expr *MutexExp,
475                                       ProtectedOperationKind POK) {
476   LockKind LK = getLockKindFromAccessKind(AK);
477 
478   MutexID Mutex(MutexExp, Exp, D);
479   if (!Mutex.isValid())
480     MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
481   else if (!locksetContainsAtLeast(Mutex, LK))
482     Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
483 }
484 
485 /// \brief This method identifies variable dereferences and checks pt_guarded_by
486 /// and pt_guarded_var annotations. Note that we only check these annotations
487 /// at the time a pointer is dereferenced.
488 /// FIXME: We need to check for other types of pointer dereferences
489 /// (e.g. [], ->) and deal with them here.
490 /// \param Exp An expression that has been read or written.
491 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
492   UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
493   if (!UO || UO->getOpcode() != clang::UO_Deref)
494     return;
495   Exp = UO->getSubExpr()->IgnoreParenCasts();
496 
497   const ValueDecl *D = getValueDecl(Exp);
498   if(!D || !D->hasAttrs())
499     return;
500 
501   if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
502     Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
503 
504   const AttrVec &ArgAttrs = D->getAttrs();
505   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
506     if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
507       warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
508 }
509 
510 /// \brief Checks guarded_by and guarded_var attributes.
511 /// Whenever we identify an access (read or write) of a DeclRefExpr or
512 /// MemberExpr, we need to check whether there are any guarded_by or
513 /// guarded_var attributes, and make sure we hold the appropriate mutexes.
514 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
515   const ValueDecl *D = getValueDecl(Exp);
516   if(!D || !D->hasAttrs())
517     return;
518 
519   if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
520     Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
521 
522   const AttrVec &ArgAttrs = D->getAttrs();
523   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
524     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
525       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
526 }
527 
528 /// \brief Process a function call, method call, constructor call,
529 /// or destructor call.  This involves looking at the attributes on the
530 /// corresponding function/method/constructor/destructor, issuing warnings,
531 /// and updating the locksets accordingly.
532 ///
533 /// FIXME: For classes annotated with one of the guarded annotations, we need
534 /// to treat const method calls as reads and non-const method calls as writes,
535 /// and check that the appropriate locks are held. Non-const method calls with
536 /// the same signature as const method calls can be also treated as reads.
537 ///
538 /// FIXME: We need to also visit CallExprs to catch/check global functions.
539 ///
540 /// FIXME: Do not flag an error for member variables accessed in constructors/
541 /// destructors
542 void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
543   AttrVec &ArgAttrs = D->getAttrs();
544   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
545     Attr *Attr = ArgAttrs[i];
546     switch (Attr->getKind()) {
547       // When we encounter an exclusive lock function, we need to add the lock
548       // to our lockset with kind exclusive.
549       case attr::ExclusiveLockFunction: {
550         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
551         addLocksToSet(LK_Exclusive, A, Exp, D, VD);
552         break;
553       }
554 
555       // When we encounter a shared lock function, we need to add the lock
556       // to our lockset with kind shared.
557       case attr::SharedLockFunction: {
558         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
559         addLocksToSet(LK_Shared, A, Exp, D, VD);
560         break;
561       }
562 
563       // When we encounter an unlock function, we need to remove unlocked
564       // mutexes from the lockset, and flag a warning if they are not there.
565       case attr::UnlockFunction: {
566         UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
567         removeLocksFromSet(UFAttr, Exp, D);
568         break;
569       }
570 
571       case attr::ExclusiveLocksRequired: {
572         ExclusiveLocksRequiredAttr *ELRAttr =
573             cast<ExclusiveLocksRequiredAttr>(Attr);
574 
575         for (ExclusiveLocksRequiredAttr::args_iterator
576              I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
577           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
578         break;
579       }
580 
581       case attr::SharedLocksRequired: {
582         SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
583 
584         for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
585              E = SLRAttr->args_end(); I != E; ++I)
586           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
587         break;
588       }
589 
590       case attr::LocksExcluded: {
591         LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
592         for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
593             E = LEAttr->args_end(); I != E; ++I) {
594           MutexID Mutex(*I, Exp, D);
595           if (!Mutex.isValid())
596             MutexID::warnInvalidLock(Handler, *I, Exp, D);
597           else if (locksetContains(Mutex))
598             Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
599                                           Exp->getExprLoc());
600         }
601         break;
602       }
603 
604       // Ignore other (non thread-safety) attributes
605       default:
606         break;
607     }
608   }
609 }
610 
611 /// \brief For unary operations which read and write a variable, we need to
612 /// check whether we hold any required mutexes. Reads are checked in
613 /// VisitCastExpr.
614 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
615   switch (UO->getOpcode()) {
616     case clang::UO_PostDec:
617     case clang::UO_PostInc:
618     case clang::UO_PreDec:
619     case clang::UO_PreInc: {
620       Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
621       checkAccess(SubExp, AK_Written);
622       checkDereference(SubExp, AK_Written);
623       break;
624     }
625     default:
626       break;
627   }
628 }
629 
630 /// For binary operations which assign to a variable (writes), we need to check
631 /// whether we hold any required mutexes.
632 /// FIXME: Deal with non-primitive types.
633 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
634   if (!BO->isAssignmentOp())
635     return;
636   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
637   checkAccess(LHSExp, AK_Written);
638   checkDereference(LHSExp, AK_Written);
639 }
640 
641 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
642 /// need to ensure we hold any required mutexes.
643 /// FIXME: Deal with non-primitive types.
644 void BuildLockset::VisitCastExpr(CastExpr *CE) {
645   if (CE->getCastKind() != CK_LValueToRValue)
646     return;
647   Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
648   checkAccess(SubExp, AK_Read);
649   checkDereference(SubExp, AK_Read);
650 }
651 
652 
653 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
654   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
655   if(!D || !D->hasAttrs())
656     return;
657   handleCall(Exp, D);
658 }
659 
660 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
661   // FIXME -- only handles constructors in DeclStmt below.
662 }
663 
664 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
665   DeclGroupRef DGrp = S->getDeclGroup();
666   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
667     Decl *D = *I;
668     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
669       Expr *E = VD->getInit();
670       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
671         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
672         if (!CtorD || !CtorD->hasAttrs())
673           return;
674         handleCall(CE, CtorD, VD);
675       }
676     }
677   }
678 }
679 
680 
681 /// \brief Class which implements the core thread safety analysis routines.
682 class ThreadSafetyAnalyzer {
683   ThreadSafetyHandler &Handler;
684   Lockset::Factory    LocksetFactory;
685 
686 public:
687   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
688 
689   Lockset intersectAndWarn(const Lockset LSet1, const Lockset LSet2,
690                            LockErrorKind LEK);
691 
692   Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
693                   LockKind LK, SourceLocation Loc);
694 
695   void runAnalysis(AnalysisDeclContext &AC);
696 };
697 
698 /// \brief Compute the intersection of two locksets and issue warnings for any
699 /// locks in the symmetric difference.
700 ///
701 /// This function is used at a merge point in the CFG when comparing the lockset
702 /// of each branch being merged. For example, given the following sequence:
703 /// A; if () then B; else C; D; we need to check that the lockset after B and C
704 /// are the same. In the event of a difference, we use the intersection of these
705 /// two locksets at the start of D.
706 Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset LSet1,
707                                                const Lockset LSet2,
708                                                LockErrorKind LEK) {
709   Lockset Intersection = LSet1;
710   for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
711     const MutexID &LSet2Mutex = I.getKey();
712     const LockData &LSet2LockData = I.getData();
713     if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
714       if (LD->LKind != LSet2LockData.LKind) {
715         Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
716                                          LSet2LockData.AcquireLoc,
717                                          LD->AcquireLoc);
718         if (LD->LKind != LK_Exclusive)
719           Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
720                                             LSet2LockData);
721       }
722     } else {
723       Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
724                                         LSet2LockData.AcquireLoc, LEK);
725     }
726   }
727 
728   for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
729     if (!LSet2.contains(I.getKey())) {
730       const MutexID &Mutex = I.getKey();
731       const LockData &MissingLock = I.getData();
732       Handler.handleMutexHeldEndOfScope(Mutex.getName(),
733                                         MissingLock.AcquireLoc, LEK);
734       Intersection = LocksetFactory.remove(Intersection, Mutex);
735     }
736   }
737   return Intersection;
738 }
739 
740 Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
741                                       const NamedDecl *D,
742                                       LockKind LK, SourceLocation Loc) {
743   MutexID Mutex(MutexExp, 0, D);
744   if (!Mutex.isValid()) {
745     MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
746     return LSet;
747   }
748   LockData NewLock(Loc, LK);
749   return LocksetFactory.add(LSet, Mutex, NewLock);
750 }
751 
752 /// \brief Check a function's CFG for thread-safety violations.
753 ///
754 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
755 /// at the end of each block, and issue warnings for thread safety violations.
756 /// Each block in the CFG is traversed exactly once.
757 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
758   CFG *CFGraph = AC.getCFG();
759   if (!CFGraph) return;
760   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
761 
762   if (!D)
763     return;  // Ignore anonymous functions for now.
764   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
765     return;
766 
767   // FIXME: Switch to SmallVector? Otherwise improve performance impact?
768   std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
769                                      LocksetFactory.getEmptyMap());
770   std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
771                                     LocksetFactory.getEmptyMap());
772 
773   // We need to explore the CFG via a "topological" ordering.
774   // That way, we will be guaranteed to have information about required
775   // predecessor locksets when exploring a new block.
776   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
777   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
778 
779   // Add locks from exclusive_locks_required and shared_locks_required
780   // to initial lockset.
781   if (!SortedGraph->empty() && D->hasAttrs()) {
782     const CFGBlock *FirstBlock = *SortedGraph->begin();
783     Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
784     const AttrVec &ArgAttrs = D->getAttrs();
785     for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
786       Attr *Attr = ArgAttrs[i];
787       SourceLocation AttrLoc = Attr->getLocation();
788       if (SharedLocksRequiredAttr *SLRAttr
789             = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
790         for (SharedLocksRequiredAttr::args_iterator
791             SLRIter = SLRAttr->args_begin(),
792             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
793           InitialLockset = addLock(InitialLockset,
794                                    *SLRIter, D, LK_Shared,
795                                    AttrLoc);
796       } else if (ExclusiveLocksRequiredAttr *ELRAttr
797                    = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
798         for (ExclusiveLocksRequiredAttr::args_iterator
799             ELRIter = ELRAttr->args_begin(),
800             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
801           InitialLockset = addLock(InitialLockset,
802                                    *ELRIter, D, LK_Exclusive,
803                                    AttrLoc);
804       }
805     }
806   }
807 
808   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
809        E = SortedGraph->end(); I!= E; ++I) {
810     const CFGBlock *CurrBlock = *I;
811     int CurrBlockID = CurrBlock->getBlockID();
812 
813     VisitedBlocks.insert(CurrBlock);
814 
815     // Use the default initial lockset in case there are no predecessors.
816     Lockset &Entryset = EntryLocksets[CurrBlockID];
817     Lockset &Exitset = ExitLocksets[CurrBlockID];
818 
819     // Iterate through the predecessor blocks and warn if the lockset for all
820     // predecessors is not the same. We take the entry lockset of the current
821     // block to be the intersection of all previous locksets.
822     // FIXME: By keeping the intersection, we may output more errors in future
823     // for a lock which is not in the intersection, but was in the union. We
824     // may want to also keep the union in future. As an example, let's say
825     // the intersection contains Mutex L, and the union contains L and M.
826     // Later we unlock M. At this point, we would output an error because we
827     // never locked M; although the real error is probably that we forgot to
828     // lock M on all code paths. Conversely, let's say that later we lock M.
829     // In this case, we should compare against the intersection instead of the
830     // union because the real error is probably that we forgot to unlock M on
831     // all code paths.
832     bool LocksetInitialized = false;
833     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
834          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
835 
836       // if *PI -> CurrBlock is a back edge
837       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
838         continue;
839 
840       int PrevBlockID = (*PI)->getBlockID();
841       if (!LocksetInitialized) {
842         Entryset = ExitLocksets[PrevBlockID];
843         LocksetInitialized = true;
844       } else {
845         Entryset = intersectAndWarn(Entryset, ExitLocksets[PrevBlockID],
846                                     LEK_LockedSomePredecessors);
847       }
848     }
849 
850     BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
851     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
852          BE = CurrBlock->end(); BI != BE; ++BI) {
853       switch (BI->getKind()) {
854         case CFGElement::Statement: {
855           const CFGStmt *CS = cast<CFGStmt>(&*BI);
856           LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
857           break;
858         }
859         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
860         case CFGElement::AutomaticObjectDtor: {
861           const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
862           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
863             AD->getDestructorDecl(AC.getASTContext()));
864           if (!DD->hasAttrs())
865             break;
866 
867           // Create a dummy expression,
868           VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
869           DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
870                           AD->getTriggerStmt()->getLocEnd());
871           LocksetBuilder.handleCall(&DRE, DD);
872           break;
873         }
874         default:
875           break;
876       }
877     }
878     Exitset = LocksetBuilder.getLockset();
879 
880     // For every back edge from CurrBlock (the end of the loop) to another block
881     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
882     // the one held at the beginning of FirstLoopBlock. We can look up the
883     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
884     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
885          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
886 
887       // if CurrBlock -> *SI is *not* a back edge
888       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
889         continue;
890 
891       CFGBlock *FirstLoopBlock = *SI;
892       Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
893       Lockset LoopEnd = ExitLocksets[CurrBlockID];
894       intersectAndWarn(LoopEnd, PreLoop, LEK_LockedSomeLoopIterations);
895     }
896   }
897 
898   Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
899   Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
900 
901   // FIXME: Should we call this function for all blocks which exit the function?
902   intersectAndWarn(InitialLockset, FinalLockset, LEK_LockedAtEndOfFunction);
903 }
904 
905 } // end anonymous namespace
906 
907 
908 namespace clang {
909 namespace thread_safety {
910 
911 /// \brief Check a function's CFG for thread-safety violations.
912 ///
913 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
914 /// at the end of each block, and issue warnings for thread safety violations.
915 /// Each block in the CFG is traversed exactly once.
916 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
917                              ThreadSafetyHandler &Handler) {
918   ThreadSafetyAnalyzer Analyzer(Handler);
919   Analyzer.runAnalysis(AC);
920 }
921 
922 /// \brief Helper function that returns a LockKind required for the given level
923 /// of access.
924 LockKind getLockKindFromAccessKind(AccessKind AK) {
925   switch (AK) {
926     case AK_Read :
927       return LK_Shared;
928     case AK_Written :
929       return LK_Exclusive;
930   }
931   llvm_unreachable("Unknown AccessKind");
932 }
933 
934 }} // end namespace clang::thread_safety
935