1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Analysis/CFGStmtMap.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/SourceLocation.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/FoldingSet.h"
31 #include "llvm/ADT/ImmutableMap.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include <algorithm>
36 #include <vector>
37 
38 using namespace clang;
39 using namespace thread_safety;
40 
41 // Key method definition
42 ThreadSafetyHandler::~ThreadSafetyHandler() {}
43 
44 namespace {
45 
46 /// \brief A MutexID object uniquely identifies a particular mutex, and
47 /// is built from an Expr* (i.e. calling a lock function).
48 ///
49 /// Thread-safety analysis works by comparing lock expressions.  Within the
50 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
51 /// a particular mutex object at run-time.  Subsequent occurrences of the same
52 /// expression (where "same" means syntactic equality) will refer to the same
53 /// run-time object if three conditions hold:
54 /// (1) Local variables in the expression, such as "x" have not changed.
55 /// (2) Values on the heap that affect the expression have not changed.
56 /// (3) The expression involves only pure function calls.
57 ///
58 /// The current implementation assumes, but does not verify, that multiple uses
59 /// of the same lock expression satisfies these criteria.
60 ///
61 /// Clang introduces an additional wrinkle, which is that it is difficult to
62 /// derive canonical expressions, or compare expressions directly for equality.
63 /// Thus, we identify a mutex not by an Expr, but by the set of named
64 /// declarations that are referenced by the Expr.  In other words,
65 /// x->foo->bar.mu will be a four element vector with the Decls for
66 /// mu, bar, and foo, and x.  The vector will uniquely identify the expression
67 /// for all practical purposes.
68 ///
69 /// Note we will need to perform substitution on "this" and function parameter
70 /// names when constructing a lock expression.
71 ///
72 /// For example:
73 /// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
74 /// void myFunc(C *X) { ... X->lock() ... }
75 /// The original expression for the mutex acquired by myFunc is "this->Mu", but
76 /// "X" is substituted for "this" so we get X->Mu();
77 ///
78 /// For another example:
79 /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
80 /// MyList *MyL;
81 /// foo(MyL);  // requires lock MyL->Mu to be held
82 class MutexID {
83   SmallVector<NamedDecl*, 2> DeclSeq;
84 
85   /// Build a Decl sequence representing the lock from the given expression.
86   /// Recursive function that terminates on DeclRefExpr.
87   /// Note: this function merely creates a MutexID; it does not check to
88   /// ensure that the original expression is a valid mutex expression.
89   void buildMutexID(Expr *Exp, Expr *Parent, int NumArgs,
90                     const NamedDecl **FunArgDecls, Expr **FunArgs) {
91     if (!Exp) {
92       DeclSeq.clear();
93       return;
94     }
95 
96     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
97       if (FunArgDecls) {
98         // Substitute call arguments for references to function parameters
99         for (int i = 0; i < NumArgs; ++i) {
100           if (DRE->getDecl() == FunArgDecls[i]) {
101             buildMutexID(FunArgs[i], 0, 0, 0, 0);
102             return;
103           }
104         }
105       }
106       NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
107       DeclSeq.push_back(ND);
108     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
109       NamedDecl *ND = ME->getMemberDecl();
110       DeclSeq.push_back(ND);
111       buildMutexID(ME->getBase(), Parent, NumArgs, FunArgDecls, FunArgs);
112     } else if (isa<CXXThisExpr>(Exp)) {
113       if (Parent)
114         buildMutexID(Parent, 0, 0, 0, 0);
115       else
116         return;  // mutexID is still valid in this case
117     } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
118       buildMutexID(UOE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
119     else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
120       buildMutexID(CE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
121     else
122       DeclSeq.clear(); // Mark as invalid lock expression.
123   }
124 
125   /// \brief Construct a MutexID from an expression.
126   /// \param MutexExp The original mutex expression within an attribute
127   /// \param DeclExp An expression involving the Decl on which the attribute
128   ///        occurs.
129   /// \param D  The declaration to which the lock/unlock attribute is attached.
130   void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
131     Expr *Parent = 0;
132     unsigned NumArgs = 0;
133     Expr **FunArgs = 0;
134     SmallVector<const NamedDecl*, 8> FunArgDecls;
135 
136     // If we are processing a raw attribute expression, with no substitutions.
137     if (DeclExp == 0) {
138       buildMutexID(MutexExp, 0, 0, 0, 0);
139       return;
140     }
141 
142     // Examine DeclExp to find Parent and FunArgs, which are used to substitute
143     // for formal parameters when we call buildMutexID later.
144     if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
145       Parent = ME->getBase();
146     } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
147       Parent = CE->getImplicitObjectArgument();
148       NumArgs = CE->getNumArgs();
149       FunArgs = CE->getArgs();
150     } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
151       Parent = 0;  // FIXME -- get the parent from DeclStmt
152       NumArgs = CE->getNumArgs();
153       FunArgs = CE->getArgs();
154     } else if (D && isa<CXXDestructorDecl>(D)) {
155       // There's no such thing as a "destructor call" in the AST.
156       Parent = DeclExp;
157     }
158 
159     // If the attribute has no arguments, then assume the argument is "this".
160     if (MutexExp == 0) {
161       buildMutexID(Parent, 0, 0, 0, 0);
162       return;
163     }
164 
165     // FIXME: handle default arguments
166     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
167       for (unsigned i = 0, ni = FD->getNumParams(); i < ni && i < NumArgs; ++i) {
168         FunArgDecls.push_back(FD->getParamDecl(i));
169       }
170     }
171     buildMutexID(MutexExp, Parent, NumArgs, &FunArgDecls.front(), FunArgs);
172   }
173 
174 public:
175   /// \param MutexExp The original mutex expression within an attribute
176   /// \param DeclExp An expression involving the Decl on which the attribute
177   ///        occurs.
178   /// \param D  The declaration to which the lock/unlock attribute is attached.
179   /// Caller must check isValid() after construction.
180   MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
181     buildMutexIDFromExp(MutexExp, DeclExp, D);
182   }
183 
184   /// Return true if this is a valid decl sequence.
185   /// Caller must call this by hand after construction to handle errors.
186   bool isValid() const {
187     return !DeclSeq.empty();
188   }
189 
190   /// Issue a warning about an invalid lock expression
191   static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
192                               Expr *DeclExp, const NamedDecl* D) {
193     SourceLocation Loc;
194     if (DeclExp)
195       Loc = DeclExp->getExprLoc();
196 
197     // FIXME: add a note about the attribute location in MutexExp or D
198     if (Loc.isValid())
199       Handler.handleInvalidLockExp(Loc);
200   }
201 
202   bool operator==(const MutexID &other) const {
203     return DeclSeq == other.DeclSeq;
204   }
205 
206   bool operator!=(const MutexID &other) const {
207     return !(*this == other);
208   }
209 
210   // SmallVector overloads Operator< to do lexicographic ordering. Note that
211   // we use pointer equality (and <) to compare NamedDecls. This means the order
212   // of MutexIDs in a lockset is nondeterministic. In order to output
213   // diagnostics in a deterministic ordering, we must order all diagnostics to
214   // output by SourceLocation when iterating through this lockset.
215   bool operator<(const MutexID &other) const {
216     return DeclSeq < other.DeclSeq;
217   }
218 
219   /// \brief Returns the name of the first Decl in the list for a given MutexID;
220   /// e.g. the lock expression foo.bar() has name "bar".
221   /// The caret will point unambiguously to the lock expression, so using this
222   /// name in diagnostics is a way to get simple, and consistent, mutex names.
223   /// We do not want to output the entire expression text for security reasons.
224   StringRef getName() const {
225     assert(isValid());
226     return DeclSeq.front()->getName();
227   }
228 
229   void Profile(llvm::FoldingSetNodeID &ID) const {
230     for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
231          E = DeclSeq.end(); I != E; ++I) {
232       ID.AddPointer(*I);
233     }
234   }
235 };
236 
237 
238 /// \brief This is a helper class that stores info about the most recent
239 /// accquire of a Lock.
240 ///
241 /// The main body of the analysis maps MutexIDs to LockDatas.
242 struct LockData {
243   SourceLocation AcquireLoc;
244 
245   /// \brief LKind stores whether a lock is held shared or exclusively.
246   /// Note that this analysis does not currently support either re-entrant
247   /// locking or lock "upgrading" and "downgrading" between exclusive and
248   /// shared.
249   ///
250   /// FIXME: add support for re-entrant locking and lock up/downgrading
251   LockKind LKind;
252 
253   LockData(SourceLocation AcquireLoc, LockKind LKind)
254     : AcquireLoc(AcquireLoc), LKind(LKind) {}
255 
256   bool operator==(const LockData &other) const {
257     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
258   }
259 
260   bool operator!=(const LockData &other) const {
261     return !(*this == other);
262   }
263 
264   void Profile(llvm::FoldingSetNodeID &ID) const {
265     ID.AddInteger(AcquireLoc.getRawEncoding());
266     ID.AddInteger(LKind);
267   }
268 };
269 
270 
271 /// A Lockset maps each MutexID (defined above) to information about how it has
272 /// been locked.
273 typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
274 
275 /// \brief We use this class to visit different types of expressions in
276 /// CFGBlocks, and build up the lockset.
277 /// An expression may cause us to add or remove locks from the lockset, or else
278 /// output error messages related to missing locks.
279 /// FIXME: In future, we may be able to not inherit from a visitor.
280 class BuildLockset : public StmtVisitor<BuildLockset> {
281   friend class ThreadSafetyAnalyzer;
282 
283   ThreadSafetyHandler &Handler;
284   Lockset LSet;
285   Lockset::Factory &LocksetFactory;
286 
287   // Helper functions
288   void removeLock(SourceLocation UnlockLoc, MutexID &Mutex);
289   void addLock(SourceLocation LockLoc, MutexID &Mutex, LockKind LK);
290 
291   template <class AttrType>
292   void addLocksToSet(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *D);
293   void removeLocksFromSet(UnlockFunctionAttr *Attr,
294                           Expr *Exp, NamedDecl* FunDecl);
295 
296   const ValueDecl *getValueDecl(Expr *Exp);
297   void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
298                            Expr *MutexExp, ProtectedOperationKind POK);
299   void checkAccess(Expr *Exp, AccessKind AK);
300   void checkDereference(Expr *Exp, AccessKind AK);
301   void handleCall(Expr *Exp, NamedDecl *D);
302 
303   /// \brief Returns true if the lockset contains a lock, regardless of whether
304   /// the lock is held exclusively or shared.
305   bool locksetContains(const MutexID &Lock) const {
306     return LSet.lookup(Lock);
307   }
308 
309   /// \brief Returns true if the lockset contains a lock with the passed in
310   /// locktype.
311   bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
312     const LockData *LockHeld = LSet.lookup(Lock);
313     return (LockHeld && KindRequested == LockHeld->LKind);
314   }
315 
316   /// \brief Returns true if the lockset contains a lock with at least the
317   /// passed in locktype. So for example, if we pass in LK_Shared, this function
318   /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
319   /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
320   bool locksetContainsAtLeast(const MutexID &Lock,
321                               LockKind KindRequested) const {
322     switch (KindRequested) {
323       case LK_Shared:
324         return locksetContains(Lock);
325       case LK_Exclusive:
326         return locksetContains(Lock, KindRequested);
327     }
328     llvm_unreachable("Unknown LockKind");
329   }
330 
331 public:
332   BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
333     : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
334       LocksetFactory(F) {}
335 
336   Lockset getLockset() {
337     return LSet;
338   }
339 
340   void VisitUnaryOperator(UnaryOperator *UO);
341   void VisitBinaryOperator(BinaryOperator *BO);
342   void VisitCastExpr(CastExpr *CE);
343   void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
344   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
345 };
346 
347 /// \brief Add a new lock to the lockset, warning if the lock is already there.
348 /// \param LockLoc The source location of the acquire
349 /// \param LockExp The lock expression corresponding to the lock to be added
350 void BuildLockset::addLock(SourceLocation LockLoc, MutexID &Mutex,
351                            LockKind LK) {
352   // FIXME: deal with acquired before/after annotations. We can write a first
353   // pass that does the transitive lookup lazily, and refine afterwards.
354   LockData NewLock(LockLoc, LK);
355 
356   // FIXME: Don't always warn when we have support for reentrant locks.
357   if (locksetContains(Mutex))
358     Handler.handleDoubleLock(Mutex.getName(), LockLoc);
359   else
360     LSet = LocksetFactory.add(LSet, Mutex, NewLock);
361 }
362 
363 /// \brief Remove a lock from the lockset, warning if the lock is not there.
364 /// \param LockExp The lock expression corresponding to the lock to be removed
365 /// \param UnlockLoc The source location of the unlock (only used in error msg)
366 void BuildLockset::removeLock(SourceLocation UnlockLoc, MutexID &Mutex) {
367   Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
368   if(NewLSet == LSet)
369     Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
370   else
371     LSet = NewLSet;
372 }
373 
374 /// \brief This function, parameterized by an attribute type, is used to add a
375 /// set of locks specified as attribute arguments to the lockset.
376 template <typename AttrType>
377 void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
378                                  Expr *Exp, NamedDecl* FunDecl) {
379   typedef typename AttrType::args_iterator iterator_type;
380 
381   SourceLocation ExpLocation = Exp->getExprLoc();
382 
383   if (Attr->args_size() == 0) {
384     // The mutex held is the "this" object.
385     MutexID Mutex(0, Exp, FunDecl);
386     if (!Mutex.isValid())
387       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
388     else
389       addLock(ExpLocation, Mutex, LK);
390     return;
391   }
392 
393   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
394     MutexID Mutex(*I, Exp, FunDecl);
395     if (!Mutex.isValid())
396       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
397     else
398       addLock(ExpLocation, Mutex, LK);
399   }
400 }
401 
402 /// \brief This function removes a set of locks specified as attribute
403 /// arguments from the lockset.
404 void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
405                                       Expr *Exp, NamedDecl* FunDecl) {
406   SourceLocation ExpLocation;
407   if (Exp) ExpLocation = Exp->getExprLoc();
408 
409   if (Attr->args_size() == 0) {
410     // The mutex held is the "this" object.
411     MutexID Mu(0, Exp, FunDecl);
412     if (!Mu.isValid())
413       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
414     else
415       removeLock(ExpLocation, Mu);
416     return;
417   }
418 
419   for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
420        E = Attr->args_end(); I != E; ++I) {
421     MutexID Mutex(*I, Exp, FunDecl);
422     if (!Mutex.isValid())
423       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
424     else
425       removeLock(ExpLocation, Mutex);
426   }
427 }
428 
429 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
430 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
431   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
432     return DR->getDecl();
433 
434   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
435     return ME->getMemberDecl();
436 
437   return 0;
438 }
439 
440 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
441 /// of at least the passed in AccessKind.
442 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
443                                       AccessKind AK, Expr *MutexExp,
444                                       ProtectedOperationKind POK) {
445   LockKind LK = getLockKindFromAccessKind(AK);
446 
447   MutexID Mutex(MutexExp, Exp, D);
448   if (!Mutex.isValid())
449     MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
450   else if (!locksetContainsAtLeast(Mutex, LK))
451     Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
452 }
453 
454 /// \brief This method identifies variable dereferences and checks pt_guarded_by
455 /// and pt_guarded_var annotations. Note that we only check these annotations
456 /// at the time a pointer is dereferenced.
457 /// FIXME: We need to check for other types of pointer dereferences
458 /// (e.g. [], ->) and deal with them here.
459 /// \param Exp An expression that has been read or written.
460 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
461   UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
462   if (!UO || UO->getOpcode() != clang::UO_Deref)
463     return;
464   Exp = UO->getSubExpr()->IgnoreParenCasts();
465 
466   const ValueDecl *D = getValueDecl(Exp);
467   if(!D || !D->hasAttrs())
468     return;
469 
470   if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
471     Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
472 
473   const AttrVec &ArgAttrs = D->getAttrs();
474   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
475     if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
476       warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
477 }
478 
479 /// \brief Checks guarded_by and guarded_var attributes.
480 /// Whenever we identify an access (read or write) of a DeclRefExpr or
481 /// MemberExpr, we need to check whether there are any guarded_by or
482 /// guarded_var attributes, and make sure we hold the appropriate mutexes.
483 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
484   const ValueDecl *D = getValueDecl(Exp);
485   if(!D || !D->hasAttrs())
486     return;
487 
488   if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
489     Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
490 
491   const AttrVec &ArgAttrs = D->getAttrs();
492   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
493     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
494       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
495 }
496 
497 /// \brief Process a function call, method call, constructor call,
498 /// or destructor call.  This involves looking at the attributes on the
499 /// corresponding function/method/constructor/destructor, issuing warnings,
500 /// and updating the locksets accordingly.
501 ///
502 /// FIXME: For classes annotated with one of the guarded annotations, we need
503 /// to treat const method calls as reads and non-const method calls as writes,
504 /// and check that the appropriate locks are held. Non-const method calls with
505 /// the same signature as const method calls can be also treated as reads.
506 ///
507 /// FIXME: We need to also visit CallExprs to catch/check global functions.
508 ///
509 /// FIXME: Do not flag an error for member variables accessed in constructors/
510 /// destructors
511 void BuildLockset::handleCall(Expr *Exp, NamedDecl *D) {
512   AttrVec &ArgAttrs = D->getAttrs();
513   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
514     Attr *Attr = ArgAttrs[i];
515     switch (Attr->getKind()) {
516       // When we encounter an exclusive lock function, we need to add the lock
517       // to our lockset with kind exclusive.
518       case attr::ExclusiveLockFunction: {
519         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
520         addLocksToSet(LK_Exclusive, A, Exp, D);
521         break;
522       }
523 
524       // When we encounter a shared lock function, we need to add the lock
525       // to our lockset with kind shared.
526       case attr::SharedLockFunction: {
527         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
528         addLocksToSet(LK_Shared, A, Exp, D);
529         break;
530       }
531 
532       // When we encounter an unlock function, we need to remove unlocked
533       // mutexes from the lockset, and flag a warning if they are not there.
534       case attr::UnlockFunction: {
535         UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
536         removeLocksFromSet(UFAttr, Exp, D);
537         break;
538       }
539 
540       case attr::ExclusiveLocksRequired: {
541         ExclusiveLocksRequiredAttr *ELRAttr =
542             cast<ExclusiveLocksRequiredAttr>(Attr);
543 
544         for (ExclusiveLocksRequiredAttr::args_iterator
545              I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
546           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
547         break;
548       }
549 
550       case attr::SharedLocksRequired: {
551         SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
552 
553         for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
554              E = SLRAttr->args_end(); I != E; ++I)
555           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
556         break;
557       }
558 
559       case attr::LocksExcluded: {
560         LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
561         for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
562             E = LEAttr->args_end(); I != E; ++I) {
563           MutexID Mutex(*I, Exp, D);
564           if (!Mutex.isValid())
565             MutexID::warnInvalidLock(Handler, *I, Exp, D);
566           else if (locksetContains(Mutex))
567             Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
568                                           Exp->getExprLoc());
569         }
570         break;
571       }
572 
573       // Ignore other (non thread-safety) attributes
574       default:
575         break;
576     }
577   }
578 }
579 
580 /// \brief For unary operations which read and write a variable, we need to
581 /// check whether we hold any required mutexes. Reads are checked in
582 /// VisitCastExpr.
583 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
584   switch (UO->getOpcode()) {
585     case clang::UO_PostDec:
586     case clang::UO_PostInc:
587     case clang::UO_PreDec:
588     case clang::UO_PreInc: {
589       Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
590       checkAccess(SubExp, AK_Written);
591       checkDereference(SubExp, AK_Written);
592       break;
593     }
594     default:
595       break;
596   }
597 }
598 
599 /// For binary operations which assign to a variable (writes), we need to check
600 /// whether we hold any required mutexes.
601 /// FIXME: Deal with non-primitive types.
602 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
603   if (!BO->isAssignmentOp())
604     return;
605   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
606   checkAccess(LHSExp, AK_Written);
607   checkDereference(LHSExp, AK_Written);
608 }
609 
610 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
611 /// need to ensure we hold any required mutexes.
612 /// FIXME: Deal with non-primitive types.
613 void BuildLockset::VisitCastExpr(CastExpr *CE) {
614   if (CE->getCastKind() != CK_LValueToRValue)
615     return;
616   Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
617   checkAccess(SubExp, AK_Read);
618   checkDereference(SubExp, AK_Read);
619 }
620 
621 
622 void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
623   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
624   if(!D || !D->hasAttrs())
625     return;
626   handleCall(Exp, D);
627 }
628 
629 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
630   NamedDecl *D = cast<NamedDecl>(Exp->getConstructor());
631   if(!D || !D->hasAttrs())
632     return;
633   handleCall(Exp, D);
634 }
635 
636 
637 /// \brief Class which implements the core thread safety analysis routines.
638 class ThreadSafetyAnalyzer {
639   ThreadSafetyHandler &Handler;
640   Lockset::Factory    LocksetFactory;
641 
642 public:
643   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
644 
645   Lockset intersectAndWarn(const Lockset LSet1, const Lockset LSet2,
646                            LockErrorKind LEK);
647 
648   Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
649                   LockKind LK, SourceLocation Loc);
650 
651   void runAnalysis(AnalysisDeclContext &AC);
652 };
653 
654 /// \brief Compute the intersection of two locksets and issue warnings for any
655 /// locks in the symmetric difference.
656 ///
657 /// This function is used at a merge point in the CFG when comparing the lockset
658 /// of each branch being merged. For example, given the following sequence:
659 /// A; if () then B; else C; D; we need to check that the lockset after B and C
660 /// are the same. In the event of a difference, we use the intersection of these
661 /// two locksets at the start of D.
662 Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset LSet1,
663                                                const Lockset LSet2,
664                                                LockErrorKind LEK) {
665   Lockset Intersection = LSet1;
666   for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
667     const MutexID &LSet2Mutex = I.getKey();
668     const LockData &LSet2LockData = I.getData();
669     if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
670       if (LD->LKind != LSet2LockData.LKind) {
671         Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
672                                          LSet2LockData.AcquireLoc,
673                                          LD->AcquireLoc);
674         if (LD->LKind != LK_Exclusive)
675           Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
676                                             LSet2LockData);
677       }
678     } else {
679       Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
680                                         LSet2LockData.AcquireLoc, LEK);
681     }
682   }
683 
684   for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
685     if (!LSet2.contains(I.getKey())) {
686       const MutexID &Mutex = I.getKey();
687       const LockData &MissingLock = I.getData();
688       Handler.handleMutexHeldEndOfScope(Mutex.getName(),
689                                         MissingLock.AcquireLoc, LEK);
690       Intersection = LocksetFactory.remove(Intersection, Mutex);
691     }
692   }
693   return Intersection;
694 }
695 
696 Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
697                                       const NamedDecl *D,
698                                       LockKind LK, SourceLocation Loc) {
699   MutexID Mutex(MutexExp, 0, D);
700   if (!Mutex.isValid()) {
701     MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
702     return LSet;
703   }
704   LockData NewLock(Loc, LK);
705   return LocksetFactory.add(LSet, Mutex, NewLock);
706 }
707 
708 /// \brief Check a function's CFG for thread-safety violations.
709 ///
710 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
711 /// at the end of each block, and issue warnings for thread safety violations.
712 /// Each block in the CFG is traversed exactly once.
713 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
714   CFG *CFGraph = AC.getCFG();
715   if (!CFGraph) return;
716   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
717 
718   if (!D)
719     return;  // Ignore anonymous functions for now.
720   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
721     return;
722 
723   // FIXME: Switch to SmallVector? Otherwise improve performance impact?
724   std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
725                                      LocksetFactory.getEmptyMap());
726   std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
727                                     LocksetFactory.getEmptyMap());
728 
729   // We need to explore the CFG via a "topological" ordering.
730   // That way, we will be guaranteed to have information about required
731   // predecessor locksets when exploring a new block.
732   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
733   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
734 
735   // Add locks from exclusive_locks_required and shared_locks_required
736   // to initial lockset.
737   if (!SortedGraph->empty() && D->hasAttrs()) {
738     const CFGBlock *FirstBlock = *SortedGraph->begin();
739     Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
740     const AttrVec &ArgAttrs = D->getAttrs();
741     for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
742       Attr *Attr = ArgAttrs[i];
743       SourceLocation AttrLoc = Attr->getLocation();
744       if (SharedLocksRequiredAttr *SLRAttr
745             = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
746         for (SharedLocksRequiredAttr::args_iterator
747             SLRIter = SLRAttr->args_begin(),
748             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
749           InitialLockset = addLock(InitialLockset,
750                                    *SLRIter, D, LK_Shared,
751                                    AttrLoc);
752       } else if (ExclusiveLocksRequiredAttr *ELRAttr
753                    = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
754         for (ExclusiveLocksRequiredAttr::args_iterator
755             ELRIter = ELRAttr->args_begin(),
756             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
757           InitialLockset = addLock(InitialLockset,
758                                    *ELRIter, D, LK_Exclusive,
759                                    AttrLoc);
760       }
761     }
762   }
763 
764   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
765        E = SortedGraph->end(); I!= E; ++I) {
766     const CFGBlock *CurrBlock = *I;
767     int CurrBlockID = CurrBlock->getBlockID();
768 
769     VisitedBlocks.insert(CurrBlock);
770 
771     // Use the default initial lockset in case there are no predecessors.
772     Lockset &Entryset = EntryLocksets[CurrBlockID];
773     Lockset &Exitset = ExitLocksets[CurrBlockID];
774 
775     // Iterate through the predecessor blocks and warn if the lockset for all
776     // predecessors is not the same. We take the entry lockset of the current
777     // block to be the intersection of all previous locksets.
778     // FIXME: By keeping the intersection, we may output more errors in future
779     // for a lock which is not in the intersection, but was in the union. We
780     // may want to also keep the union in future. As an example, let's say
781     // the intersection contains Mutex L, and the union contains L and M.
782     // Later we unlock M. At this point, we would output an error because we
783     // never locked M; although the real error is probably that we forgot to
784     // lock M on all code paths. Conversely, let's say that later we lock M.
785     // In this case, we should compare against the intersection instead of the
786     // union because the real error is probably that we forgot to unlock M on
787     // all code paths.
788     bool LocksetInitialized = false;
789     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
790          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
791 
792       // if *PI -> CurrBlock is a back edge
793       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
794         continue;
795 
796       int PrevBlockID = (*PI)->getBlockID();
797       if (!LocksetInitialized) {
798         Entryset = ExitLocksets[PrevBlockID];
799         LocksetInitialized = true;
800       } else {
801         Entryset = intersectAndWarn(Entryset, ExitLocksets[PrevBlockID],
802                                     LEK_LockedSomePredecessors);
803       }
804     }
805 
806     BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
807     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
808          BE = CurrBlock->end(); BI != BE; ++BI) {
809       switch (BI->getKind()) {
810         case CFGElement::Statement: {
811           const CFGStmt *CS = cast<CFGStmt>(&*BI);
812           LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
813           break;
814         }
815         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
816         case CFGElement::AutomaticObjectDtor: {
817           const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
818           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
819             AD->getDestructorDecl(AC.getASTContext()));
820           if (!DD->hasAttrs())
821             break;
822 
823           // Create a dummy expression,
824           VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
825           DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
826                           AD->getTriggerStmt()->getLocEnd());
827           LocksetBuilder.handleCall(&DRE, DD);
828           break;
829         }
830         default:
831           break;
832       }
833     }
834     Exitset = LocksetBuilder.getLockset();
835 
836     // For every back edge from CurrBlock (the end of the loop) to another block
837     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
838     // the one held at the beginning of FirstLoopBlock. We can look up the
839     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
840     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
841          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
842 
843       // if CurrBlock -> *SI is *not* a back edge
844       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
845         continue;
846 
847       CFGBlock *FirstLoopBlock = *SI;
848       Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
849       Lockset LoopEnd = ExitLocksets[CurrBlockID];
850       intersectAndWarn(LoopEnd, PreLoop, LEK_LockedSomeLoopIterations);
851     }
852   }
853 
854   Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
855   Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
856 
857   // FIXME: Should we call this function for all blocks which exit the function?
858   intersectAndWarn(InitialLockset, FinalLockset, LEK_LockedAtEndOfFunction);
859 }
860 
861 } // end anonymous namespace
862 
863 
864 namespace clang {
865 namespace thread_safety {
866 
867 /// \brief Check a function's CFG for thread-safety violations.
868 ///
869 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
870 /// at the end of each block, and issue warnings for thread safety violations.
871 /// Each block in the CFG is traversed exactly once.
872 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
873                              ThreadSafetyHandler &Handler) {
874   ThreadSafetyAnalyzer Analyzer(Handler);
875   Analyzer.runAnalysis(AC);
876 }
877 
878 /// \brief Helper function that returns a LockKind required for the given level
879 /// of access.
880 LockKind getLockKindFromAccessKind(AccessKind AK) {
881   switch (AK) {
882     case AK_Read :
883       return LK_Shared;
884     case AK_Written :
885       return LK_Exclusive;
886   }
887   llvm_unreachable("Unknown AccessKind");
888 }
889 
890 }} // end namespace clang::thread_safety
891