1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 14 // for more information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 24 #include "clang/Analysis/Analyses/ThreadSafety.h" 25 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" 26 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 27 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 28 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 29 #include "clang/Analysis/AnalysisContext.h" 30 #include "clang/Analysis/CFG.h" 31 #include "clang/Analysis/CFGStmtMap.h" 32 #include "clang/Basic/OperatorKinds.h" 33 #include "clang/Basic/SourceLocation.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "llvm/ADT/BitVector.h" 36 #include "llvm/ADT/FoldingSet.h" 37 #include "llvm/ADT/ImmutableMap.h" 38 #include "llvm/ADT/PostOrderIterator.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <ostream> 44 #include <sstream> 45 #include <utility> 46 #include <vector> 47 48 49 namespace clang { 50 namespace threadSafety { 51 52 // Key method definition 53 ThreadSafetyHandler::~ThreadSafetyHandler() {} 54 55 class TILPrinter : 56 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 57 58 59 /// Issue a warning about an invalid lock expression 60 static void warnInvalidLock(ThreadSafetyHandler &Handler, 61 const Expr *MutexExp, const NamedDecl *D, 62 const Expr *DeclExp, StringRef Kind) { 63 SourceLocation Loc; 64 if (DeclExp) 65 Loc = DeclExp->getExprLoc(); 66 67 // FIXME: add a note about the attribute location in MutexExp or D 68 if (Loc.isValid()) 69 Handler.handleInvalidLockExp(Kind, Loc); 70 } 71 72 73 /// \brief A set of CapabilityInfo objects, which are compiled from the 74 /// requires attributes on a function. 75 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 76 public: 77 /// \brief Push M onto list, but discard duplicates. 78 void push_back_nodup(const CapabilityExpr &CapE) { 79 iterator It = std::find_if(begin(), end(), 80 [=](const CapabilityExpr &CapE2) { 81 return CapE.equals(CapE2); 82 }); 83 if (It == end()) 84 push_back(CapE); 85 } 86 }; 87 88 89 90 /// \brief This is a helper class that stores a fact that is known at a 91 /// particular point in program execution. Currently, a fact is a capability, 92 /// along with additional information, such as where it was acquired, whether 93 /// it is exclusive or shared, etc. 94 /// 95 /// FIXME: this analysis does not currently support either re-entrant 96 /// locking or lock "upgrading" and "downgrading" between exclusive and 97 /// shared. 98 class FactEntry : public CapabilityExpr { 99 private: 100 LockKind LKind; ///< exclusive or shared 101 SourceLocation AcquireLoc; ///< where it was acquired. 102 bool Managed; ///< for ScopedLockable objects 103 bool Asserted; ///< true if the lock was asserted 104 const til::SExpr* UnderlyingMutex; ///< for ScopedLockable objects 105 106 public: 107 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 108 bool Mng=false, bool Asrt=false) 109 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Managed(Mng), 110 Asserted(Asrt), UnderlyingMutex(nullptr) 111 {} 112 113 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 114 const til::SExpr *Mu) 115 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Managed(false), 116 Asserted(false), UnderlyingMutex(Mu) 117 {} 118 119 LockKind kind() const { return LKind; } 120 SourceLocation loc() const { return AcquireLoc; } 121 bool asserted() const { return Asserted; } 122 bool managed() const { return Managed; } 123 const til::SExpr* underlying() const { return UnderlyingMutex; } 124 125 // Return true if LKind >= LK, where exclusive > shared 126 bool isAtLeast(LockKind LK) { 127 return (LKind == LK_Exclusive) || (LK == LK_Shared); 128 } 129 }; 130 131 132 typedef unsigned short FactID; 133 134 /// \brief FactManager manages the memory for all facts that are created during 135 /// the analysis of a single routine. 136 class FactManager { 137 private: 138 std::vector<FactEntry> Facts; 139 140 public: 141 FactID newFact(const FactEntry &Entry) { 142 Facts.push_back(Entry); 143 return static_cast<unsigned short>(Facts.size() - 1); 144 } 145 146 const FactEntry& operator[](FactID F) const { return Facts[F]; } 147 FactEntry& operator[](FactID F) { return Facts[F]; } 148 }; 149 150 151 /// \brief A FactSet is the set of facts that are known to be true at a 152 /// particular program point. FactSets must be small, because they are 153 /// frequently copied, and are thus implemented as a set of indices into a 154 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 155 /// locks, so we can get away with doing a linear search for lookup. Note 156 /// that a hashtable or map is inappropriate in this case, because lookups 157 /// may involve partial pattern matches, rather than exact matches. 158 class FactSet { 159 private: 160 typedef SmallVector<FactID, 4> FactVec; 161 162 FactVec FactIDs; 163 164 public: 165 typedef FactVec::iterator iterator; 166 typedef FactVec::const_iterator const_iterator; 167 168 iterator begin() { return FactIDs.begin(); } 169 const_iterator begin() const { return FactIDs.begin(); } 170 171 iterator end() { return FactIDs.end(); } 172 const_iterator end() const { return FactIDs.end(); } 173 174 bool isEmpty() const { return FactIDs.size() == 0; } 175 176 // Return true if the set contains only negative facts 177 bool isEmpty(FactManager &FactMan) const { 178 for (FactID FID : *this) { 179 if (!FactMan[FID].negative()) 180 return false; 181 } 182 return true; 183 } 184 185 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 186 187 FactID addLock(FactManager& FM, const FactEntry &Entry) { 188 FactID F = FM.newFact(Entry); 189 FactIDs.push_back(F); 190 return F; 191 } 192 193 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 194 unsigned n = FactIDs.size(); 195 if (n == 0) 196 return false; 197 198 for (unsigned i = 0; i < n-1; ++i) { 199 if (FM[FactIDs[i]].matches(CapE)) { 200 FactIDs[i] = FactIDs[n-1]; 201 FactIDs.pop_back(); 202 return true; 203 } 204 } 205 if (FM[FactIDs[n-1]].matches(CapE)) { 206 FactIDs.pop_back(); 207 return true; 208 } 209 return false; 210 } 211 212 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 213 return std::find_if(begin(), end(), [&](FactID ID) { 214 return FM[ID].matches(CapE); 215 }); 216 } 217 218 FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 219 auto I = std::find_if(begin(), end(), [&](FactID ID) { 220 return FM[ID].matches(CapE); 221 }); 222 return I != end() ? &FM[*I] : nullptr; 223 } 224 225 FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { 226 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 227 return FM[ID].matchesUniv(CapE); 228 }); 229 return I != end() ? &FM[*I] : nullptr; 230 } 231 232 FactEntry *findPartialMatch(FactManager &FM, 233 const CapabilityExpr &CapE) const { 234 auto I = std::find_if(begin(), end(), [&](FactID ID) { 235 return FM[ID].partiallyMatches(CapE); 236 }); 237 return I != end() ? &FM[*I] : nullptr; 238 } 239 }; 240 241 242 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; 243 class LocalVariableMap; 244 245 /// A side (entry or exit) of a CFG node. 246 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 247 248 /// CFGBlockInfo is a struct which contains all the information that is 249 /// maintained for each block in the CFG. See LocalVariableMap for more 250 /// information about the contexts. 251 struct CFGBlockInfo { 252 FactSet EntrySet; // Lockset held at entry to block 253 FactSet ExitSet; // Lockset held at exit from block 254 LocalVarContext EntryContext; // Context held at entry to block 255 LocalVarContext ExitContext; // Context held at exit from block 256 SourceLocation EntryLoc; // Location of first statement in block 257 SourceLocation ExitLoc; // Location of last statement in block. 258 unsigned EntryIndex; // Used to replay contexts later 259 bool Reachable; // Is this block reachable? 260 261 const FactSet &getSet(CFGBlockSide Side) const { 262 return Side == CBS_Entry ? EntrySet : ExitSet; 263 } 264 SourceLocation getLocation(CFGBlockSide Side) const { 265 return Side == CBS_Entry ? EntryLoc : ExitLoc; 266 } 267 268 private: 269 CFGBlockInfo(LocalVarContext EmptyCtx) 270 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) 271 { } 272 273 public: 274 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 275 }; 276 277 278 279 // A LocalVariableMap maintains a map from local variables to their currently 280 // valid definitions. It provides SSA-like functionality when traversing the 281 // CFG. Like SSA, each definition or assignment to a variable is assigned a 282 // unique name (an integer), which acts as the SSA name for that definition. 283 // The total set of names is shared among all CFG basic blocks. 284 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 285 // with their SSA-names. Instead, we compute a Context for each point in the 286 // code, which maps local variables to the appropriate SSA-name. This map 287 // changes with each assignment. 288 // 289 // The map is computed in a single pass over the CFG. Subsequent analyses can 290 // then query the map to find the appropriate Context for a statement, and use 291 // that Context to look up the definitions of variables. 292 class LocalVariableMap { 293 public: 294 typedef LocalVarContext Context; 295 296 /// A VarDefinition consists of an expression, representing the value of the 297 /// variable, along with the context in which that expression should be 298 /// interpreted. A reference VarDefinition does not itself contain this 299 /// information, but instead contains a pointer to a previous VarDefinition. 300 struct VarDefinition { 301 public: 302 friend class LocalVariableMap; 303 304 const NamedDecl *Dec; // The original declaration for this variable. 305 const Expr *Exp; // The expression for this variable, OR 306 unsigned Ref; // Reference to another VarDefinition 307 Context Ctx; // The map with which Exp should be interpreted. 308 309 bool isReference() { return !Exp; } 310 311 private: 312 // Create ordinary variable definition 313 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 314 : Dec(D), Exp(E), Ref(0), Ctx(C) 315 { } 316 317 // Create reference to previous definition 318 VarDefinition(const NamedDecl *D, unsigned R, Context C) 319 : Dec(D), Exp(nullptr), Ref(R), Ctx(C) 320 { } 321 }; 322 323 private: 324 Context::Factory ContextFactory; 325 std::vector<VarDefinition> VarDefinitions; 326 std::vector<unsigned> CtxIndices; 327 std::vector<std::pair<Stmt*, Context> > SavedContexts; 328 329 public: 330 LocalVariableMap() { 331 // index 0 is a placeholder for undefined variables (aka phi-nodes). 332 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 333 } 334 335 /// Look up a definition, within the given context. 336 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 337 const unsigned *i = Ctx.lookup(D); 338 if (!i) 339 return nullptr; 340 assert(*i < VarDefinitions.size()); 341 return &VarDefinitions[*i]; 342 } 343 344 /// Look up the definition for D within the given context. Returns 345 /// NULL if the expression is not statically known. If successful, also 346 /// modifies Ctx to hold the context of the return Expr. 347 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 348 const unsigned *P = Ctx.lookup(D); 349 if (!P) 350 return nullptr; 351 352 unsigned i = *P; 353 while (i > 0) { 354 if (VarDefinitions[i].Exp) { 355 Ctx = VarDefinitions[i].Ctx; 356 return VarDefinitions[i].Exp; 357 } 358 i = VarDefinitions[i].Ref; 359 } 360 return nullptr; 361 } 362 363 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 364 365 /// Return the next context after processing S. This function is used by 366 /// clients of the class to get the appropriate context when traversing the 367 /// CFG. It must be called for every assignment or DeclStmt. 368 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 369 if (SavedContexts[CtxIndex+1].first == S) { 370 CtxIndex++; 371 Context Result = SavedContexts[CtxIndex].second; 372 return Result; 373 } 374 return C; 375 } 376 377 void dumpVarDefinitionName(unsigned i) { 378 if (i == 0) { 379 llvm::errs() << "Undefined"; 380 return; 381 } 382 const NamedDecl *Dec = VarDefinitions[i].Dec; 383 if (!Dec) { 384 llvm::errs() << "<<NULL>>"; 385 return; 386 } 387 Dec->printName(llvm::errs()); 388 llvm::errs() << "." << i << " " << ((const void*) Dec); 389 } 390 391 /// Dumps an ASCII representation of the variable map to llvm::errs() 392 void dump() { 393 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 394 const Expr *Exp = VarDefinitions[i].Exp; 395 unsigned Ref = VarDefinitions[i].Ref; 396 397 dumpVarDefinitionName(i); 398 llvm::errs() << " = "; 399 if (Exp) Exp->dump(); 400 else { 401 dumpVarDefinitionName(Ref); 402 llvm::errs() << "\n"; 403 } 404 } 405 } 406 407 /// Dumps an ASCII representation of a Context to llvm::errs() 408 void dumpContext(Context C) { 409 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 410 const NamedDecl *D = I.getKey(); 411 D->printName(llvm::errs()); 412 const unsigned *i = C.lookup(D); 413 llvm::errs() << " -> "; 414 dumpVarDefinitionName(*i); 415 llvm::errs() << "\n"; 416 } 417 } 418 419 /// Builds the variable map. 420 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 421 std::vector<CFGBlockInfo> &BlockInfo); 422 423 protected: 424 // Get the current context index 425 unsigned getContextIndex() { return SavedContexts.size()-1; } 426 427 // Save the current context for later replay 428 void saveContext(Stmt *S, Context C) { 429 SavedContexts.push_back(std::make_pair(S,C)); 430 } 431 432 // Adds a new definition to the given context, and returns a new context. 433 // This method should be called when declaring a new variable. 434 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 435 assert(!Ctx.contains(D)); 436 unsigned newID = VarDefinitions.size(); 437 Context NewCtx = ContextFactory.add(Ctx, D, newID); 438 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 439 return NewCtx; 440 } 441 442 // Add a new reference to an existing definition. 443 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 444 unsigned newID = VarDefinitions.size(); 445 Context NewCtx = ContextFactory.add(Ctx, D, newID); 446 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 447 return NewCtx; 448 } 449 450 // Updates a definition only if that definition is already in the map. 451 // This method should be called when assigning to an existing variable. 452 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 453 if (Ctx.contains(D)) { 454 unsigned newID = VarDefinitions.size(); 455 Context NewCtx = ContextFactory.remove(Ctx, D); 456 NewCtx = ContextFactory.add(NewCtx, D, newID); 457 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 458 return NewCtx; 459 } 460 return Ctx; 461 } 462 463 // Removes a definition from the context, but keeps the variable name 464 // as a valid variable. The index 0 is a placeholder for cleared definitions. 465 Context clearDefinition(const NamedDecl *D, Context Ctx) { 466 Context NewCtx = Ctx; 467 if (NewCtx.contains(D)) { 468 NewCtx = ContextFactory.remove(NewCtx, D); 469 NewCtx = ContextFactory.add(NewCtx, D, 0); 470 } 471 return NewCtx; 472 } 473 474 // Remove a definition entirely frmo the context. 475 Context removeDefinition(const NamedDecl *D, Context Ctx) { 476 Context NewCtx = Ctx; 477 if (NewCtx.contains(D)) { 478 NewCtx = ContextFactory.remove(NewCtx, D); 479 } 480 return NewCtx; 481 } 482 483 Context intersectContexts(Context C1, Context C2); 484 Context createReferenceContext(Context C); 485 void intersectBackEdge(Context C1, Context C2); 486 487 friend class VarMapBuilder; 488 }; 489 490 491 // This has to be defined after LocalVariableMap. 492 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 493 return CFGBlockInfo(M.getEmptyContext()); 494 } 495 496 497 /// Visitor which builds a LocalVariableMap 498 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 499 public: 500 LocalVariableMap* VMap; 501 LocalVariableMap::Context Ctx; 502 503 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 504 : VMap(VM), Ctx(C) {} 505 506 void VisitDeclStmt(DeclStmt *S); 507 void VisitBinaryOperator(BinaryOperator *BO); 508 }; 509 510 511 // Add new local variables to the variable map 512 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 513 bool modifiedCtx = false; 514 DeclGroupRef DGrp = S->getDeclGroup(); 515 for (const auto *D : DGrp) { 516 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 517 const Expr *E = VD->getInit(); 518 519 // Add local variables with trivial type to the variable map 520 QualType T = VD->getType(); 521 if (T.isTrivialType(VD->getASTContext())) { 522 Ctx = VMap->addDefinition(VD, E, Ctx); 523 modifiedCtx = true; 524 } 525 } 526 } 527 if (modifiedCtx) 528 VMap->saveContext(S, Ctx); 529 } 530 531 // Update local variable definitions in variable map 532 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 533 if (!BO->isAssignmentOp()) 534 return; 535 536 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 537 538 // Update the variable map and current context. 539 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 540 ValueDecl *VDec = DRE->getDecl(); 541 if (Ctx.lookup(VDec)) { 542 if (BO->getOpcode() == BO_Assign) 543 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 544 else 545 // FIXME -- handle compound assignment operators 546 Ctx = VMap->clearDefinition(VDec, Ctx); 547 VMap->saveContext(BO, Ctx); 548 } 549 } 550 } 551 552 553 // Computes the intersection of two contexts. The intersection is the 554 // set of variables which have the same definition in both contexts; 555 // variables with different definitions are discarded. 556 LocalVariableMap::Context 557 LocalVariableMap::intersectContexts(Context C1, Context C2) { 558 Context Result = C1; 559 for (const auto &P : C1) { 560 const NamedDecl *Dec = P.first; 561 const unsigned *i2 = C2.lookup(Dec); 562 if (!i2) // variable doesn't exist on second path 563 Result = removeDefinition(Dec, Result); 564 else if (*i2 != P.second) // variable exists, but has different definition 565 Result = clearDefinition(Dec, Result); 566 } 567 return Result; 568 } 569 570 // For every variable in C, create a new variable that refers to the 571 // definition in C. Return a new context that contains these new variables. 572 // (We use this for a naive implementation of SSA on loop back-edges.) 573 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 574 Context Result = getEmptyContext(); 575 for (const auto &P : C) 576 Result = addReference(P.first, P.second, Result); 577 return Result; 578 } 579 580 // This routine also takes the intersection of C1 and C2, but it does so by 581 // altering the VarDefinitions. C1 must be the result of an earlier call to 582 // createReferenceContext. 583 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 584 for (const auto &P : C1) { 585 unsigned i1 = P.second; 586 VarDefinition *VDef = &VarDefinitions[i1]; 587 assert(VDef->isReference()); 588 589 const unsigned *i2 = C2.lookup(P.first); 590 if (!i2 || (*i2 != i1)) 591 VDef->Ref = 0; // Mark this variable as undefined 592 } 593 } 594 595 596 // Traverse the CFG in topological order, so all predecessors of a block 597 // (excluding back-edges) are visited before the block itself. At 598 // each point in the code, we calculate a Context, which holds the set of 599 // variable definitions which are visible at that point in execution. 600 // Visible variables are mapped to their definitions using an array that 601 // contains all definitions. 602 // 603 // At join points in the CFG, the set is computed as the intersection of 604 // the incoming sets along each edge, E.g. 605 // 606 // { Context | VarDefinitions } 607 // int x = 0; { x -> x1 | x1 = 0 } 608 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 609 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 610 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 611 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 612 // 613 // This is essentially a simpler and more naive version of the standard SSA 614 // algorithm. Those definitions that remain in the intersection are from blocks 615 // that strictly dominate the current block. We do not bother to insert proper 616 // phi nodes, because they are not used in our analysis; instead, wherever 617 // a phi node would be required, we simply remove that definition from the 618 // context (E.g. x above). 619 // 620 // The initial traversal does not capture back-edges, so those need to be 621 // handled on a separate pass. Whenever the first pass encounters an 622 // incoming back edge, it duplicates the context, creating new definitions 623 // that refer back to the originals. (These correspond to places where SSA 624 // might have to insert a phi node.) On the second pass, these definitions are 625 // set to NULL if the variable has changed on the back-edge (i.e. a phi 626 // node was actually required.) E.g. 627 // 628 // { Context | VarDefinitions } 629 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 630 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 631 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 632 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 633 // 634 void LocalVariableMap::traverseCFG(CFG *CFGraph, 635 const PostOrderCFGView *SortedGraph, 636 std::vector<CFGBlockInfo> &BlockInfo) { 637 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 638 639 CtxIndices.resize(CFGraph->getNumBlockIDs()); 640 641 for (const auto *CurrBlock : *SortedGraph) { 642 int CurrBlockID = CurrBlock->getBlockID(); 643 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 644 645 VisitedBlocks.insert(CurrBlock); 646 647 // Calculate the entry context for the current block 648 bool HasBackEdges = false; 649 bool CtxInit = true; 650 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 651 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 652 // if *PI -> CurrBlock is a back edge, so skip it 653 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 654 HasBackEdges = true; 655 continue; 656 } 657 658 int PrevBlockID = (*PI)->getBlockID(); 659 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 660 661 if (CtxInit) { 662 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 663 CtxInit = false; 664 } 665 else { 666 CurrBlockInfo->EntryContext = 667 intersectContexts(CurrBlockInfo->EntryContext, 668 PrevBlockInfo->ExitContext); 669 } 670 } 671 672 // Duplicate the context if we have back-edges, so we can call 673 // intersectBackEdges later. 674 if (HasBackEdges) 675 CurrBlockInfo->EntryContext = 676 createReferenceContext(CurrBlockInfo->EntryContext); 677 678 // Create a starting context index for the current block 679 saveContext(nullptr, CurrBlockInfo->EntryContext); 680 CurrBlockInfo->EntryIndex = getContextIndex(); 681 682 // Visit all the statements in the basic block. 683 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 684 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 685 BE = CurrBlock->end(); BI != BE; ++BI) { 686 switch (BI->getKind()) { 687 case CFGElement::Statement: { 688 CFGStmt CS = BI->castAs<CFGStmt>(); 689 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 690 break; 691 } 692 default: 693 break; 694 } 695 } 696 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 697 698 // Mark variables on back edges as "unknown" if they've been changed. 699 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 700 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 701 // if CurrBlock -> *SI is *not* a back edge 702 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 703 continue; 704 705 CFGBlock *FirstLoopBlock = *SI; 706 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 707 Context LoopEnd = CurrBlockInfo->ExitContext; 708 intersectBackEdge(LoopBegin, LoopEnd); 709 } 710 } 711 712 // Put an extra entry at the end of the indexed context array 713 unsigned exitID = CFGraph->getExit().getBlockID(); 714 saveContext(nullptr, BlockInfo[exitID].ExitContext); 715 } 716 717 /// Find the appropriate source locations to use when producing diagnostics for 718 /// each block in the CFG. 719 static void findBlockLocations(CFG *CFGraph, 720 const PostOrderCFGView *SortedGraph, 721 std::vector<CFGBlockInfo> &BlockInfo) { 722 for (const auto *CurrBlock : *SortedGraph) { 723 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 724 725 // Find the source location of the last statement in the block, if the 726 // block is not empty. 727 if (const Stmt *S = CurrBlock->getTerminator()) { 728 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 729 } else { 730 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 731 BE = CurrBlock->rend(); BI != BE; ++BI) { 732 // FIXME: Handle other CFGElement kinds. 733 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 734 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 735 break; 736 } 737 } 738 } 739 740 if (!CurrBlockInfo->ExitLoc.isInvalid()) { 741 // This block contains at least one statement. Find the source location 742 // of the first statement in the block. 743 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 744 BE = CurrBlock->end(); BI != BE; ++BI) { 745 // FIXME: Handle other CFGElement kinds. 746 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 747 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 748 break; 749 } 750 } 751 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 752 CurrBlock != &CFGraph->getExit()) { 753 // The block is empty, and has a single predecessor. Use its exit 754 // location. 755 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 756 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 757 } 758 } 759 } 760 761 /// \brief Class which implements the core thread safety analysis routines. 762 class ThreadSafetyAnalyzer { 763 friend class BuildLockset; 764 765 llvm::BumpPtrAllocator Bpa; 766 threadSafety::til::MemRegionRef Arena; 767 threadSafety::SExprBuilder SxBuilder; 768 769 ThreadSafetyHandler &Handler; 770 const CXXMethodDecl *CurrentMethod; 771 LocalVariableMap LocalVarMap; 772 FactManager FactMan; 773 std::vector<CFGBlockInfo> BlockInfo; 774 775 public: 776 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) 777 : Arena(&Bpa), SxBuilder(Arena), Handler(H) {} 778 779 bool inCurrentScope(const CapabilityExpr &CapE); 780 781 void addLock(FactSet &FSet, const FactEntry &Entry, StringRef DiagKind, 782 bool ReqAttr = false); 783 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 784 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 785 StringRef DiagKind); 786 787 template <typename AttrType> 788 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 789 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 790 791 template <class AttrType> 792 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 793 const NamedDecl *D, 794 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 795 Expr *BrE, bool Neg); 796 797 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 798 bool &Negate); 799 800 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 801 const CFGBlock* PredBlock, 802 const CFGBlock *CurrBlock); 803 804 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 805 SourceLocation JoinLoc, 806 LockErrorKind LEK1, LockErrorKind LEK2, 807 bool Modify=true); 808 809 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 810 SourceLocation JoinLoc, LockErrorKind LEK1, 811 bool Modify=true) { 812 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 813 } 814 815 void runAnalysis(AnalysisDeclContext &AC); 816 }; 817 818 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. 819 static const ValueDecl *getValueDecl(const Expr *Exp) { 820 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 821 return getValueDecl(CE->getSubExpr()); 822 823 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 824 return DR->getDecl(); 825 826 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 827 return ME->getMemberDecl(); 828 829 return nullptr; 830 } 831 832 template <typename Ty> 833 class has_arg_iterator_range { 834 typedef char yes[1]; 835 typedef char no[2]; 836 837 template <typename Inner> 838 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 839 840 template <typename> 841 static no& test(...); 842 843 public: 844 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 845 }; 846 847 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 848 return A->getName(); 849 } 850 851 static StringRef ClassifyDiagnostic(QualType VDT) { 852 // We need to look at the declaration of the type of the value to determine 853 // which it is. The type should either be a record or a typedef, or a pointer 854 // or reference thereof. 855 if (const auto *RT = VDT->getAs<RecordType>()) { 856 if (const auto *RD = RT->getDecl()) 857 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 858 return ClassifyDiagnostic(CA); 859 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 860 if (const auto *TD = TT->getDecl()) 861 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 862 return ClassifyDiagnostic(CA); 863 } else if (VDT->isPointerType() || VDT->isReferenceType()) 864 return ClassifyDiagnostic(VDT->getPointeeType()); 865 866 return "mutex"; 867 } 868 869 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 870 assert(VD && "No ValueDecl passed"); 871 872 // The ValueDecl is the declaration of a mutex or role (hopefully). 873 return ClassifyDiagnostic(VD->getType()); 874 } 875 876 template <typename AttrTy> 877 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 878 StringRef>::type 879 ClassifyDiagnostic(const AttrTy *A) { 880 if (const ValueDecl *VD = getValueDecl(A->getArg())) 881 return ClassifyDiagnostic(VD); 882 return "mutex"; 883 } 884 885 template <typename AttrTy> 886 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 887 StringRef>::type 888 ClassifyDiagnostic(const AttrTy *A) { 889 for (const auto *Arg : A->args()) { 890 if (const ValueDecl *VD = getValueDecl(Arg)) 891 return ClassifyDiagnostic(VD); 892 } 893 return "mutex"; 894 } 895 896 897 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 898 if (!CurrentMethod) 899 return false; 900 if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 901 auto *VD = P->clangDecl(); 902 if (VD) 903 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 904 } 905 return false; 906 } 907 908 909 /// \brief Add a new lock to the lockset, warning if the lock is already there. 910 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 911 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const FactEntry &Entry, 912 StringRef DiagKind, bool ReqAttr) { 913 if (Entry.shouldIgnore()) 914 return; 915 916 if (!ReqAttr && !Entry.negative()) { 917 // look for the negative capability, and remove it from the fact set. 918 CapabilityExpr NegC = !Entry; 919 FactEntry *Nen = FSet.findLock(FactMan, NegC); 920 if (Nen) { 921 FSet.removeLock(FactMan, NegC); 922 } 923 else { 924 if (inCurrentScope(Entry) && !Entry.asserted()) 925 Handler.handleNegativeNotHeld(DiagKind, Entry.toString(), 926 NegC.toString(), Entry.loc()); 927 } 928 } 929 930 // FIXME: deal with acquired before/after annotations. 931 // FIXME: Don't always warn when we have support for reentrant locks. 932 if (FSet.findLock(FactMan, Entry)) { 933 if (!Entry.asserted()) 934 Handler.handleDoubleLock(DiagKind, Entry.toString(), Entry.loc()); 935 } else { 936 FSet.addLock(FactMan, Entry); 937 } 938 } 939 940 941 /// \brief Remove a lock from the lockset, warning if the lock is not there. 942 /// \param UnlockLoc The source location of the unlock (only used in error msg) 943 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 944 SourceLocation UnlockLoc, 945 bool FullyRemove, LockKind ReceivedKind, 946 StringRef DiagKind) { 947 if (Cp.shouldIgnore()) 948 return; 949 950 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 951 if (!LDat) { 952 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 953 return; 954 } 955 956 // Generic lock removal doesn't care about lock kind mismatches, but 957 // otherwise diagnose when the lock kinds are mismatched. 958 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 959 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), 960 LDat->kind(), ReceivedKind, UnlockLoc); 961 } 962 963 if (LDat->underlying()) { 964 assert(!Cp.negative() && "Managing object cannot be negative."); 965 CapabilityExpr UnderCp(LDat->underlying(), false); 966 FactEntry UnderEntry(!UnderCp, LK_Exclusive, UnlockLoc); 967 968 // This is scoped lockable object, which manages the real mutex. 969 if (FullyRemove) { 970 // We're destroying the managing object. 971 // Remove the underlying mutex if it exists; but don't warn. 972 if (FSet.findLock(FactMan, UnderCp)) { 973 FSet.removeLock(FactMan, UnderCp); 974 FSet.addLock(FactMan, UnderEntry); 975 } 976 FSet.removeLock(FactMan, Cp); 977 } else { 978 // We're releasing the underlying mutex, but not destroying the 979 // managing object. Warn on dual release. 980 if (!FSet.findLock(FactMan, UnderCp)) { 981 Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), UnlockLoc); 982 } 983 FSet.removeLock(FactMan, UnderCp); 984 FSet.addLock(FactMan, UnderEntry); 985 } 986 return; 987 } 988 // else !LDat->underlying() 989 990 FSet.removeLock(FactMan, Cp); 991 if (!Cp.negative()) { 992 FSet.addLock(FactMan, FactEntry(!Cp, LK_Exclusive, UnlockLoc)); 993 } 994 } 995 996 997 /// \brief Extract the list of mutexIDs from the attribute on an expression, 998 /// and push them onto Mtxs, discarding any duplicates. 999 template <typename AttrType> 1000 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1001 Expr *Exp, const NamedDecl *D, 1002 VarDecl *SelfDecl) { 1003 if (Attr->args_size() == 0) { 1004 // The mutex held is the "this" object. 1005 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1006 if (Cp.isInvalid()) { 1007 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1008 return; 1009 } 1010 //else 1011 if (!Cp.shouldIgnore()) 1012 Mtxs.push_back_nodup(Cp); 1013 return; 1014 } 1015 1016 for (const auto *Arg : Attr->args()) { 1017 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1018 if (Cp.isInvalid()) { 1019 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1020 continue; 1021 } 1022 //else 1023 if (!Cp.shouldIgnore()) 1024 Mtxs.push_back_nodup(Cp); 1025 } 1026 } 1027 1028 1029 /// \brief Extract the list of mutexIDs from a trylock attribute. If the 1030 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1031 /// any duplicates. 1032 template <class AttrType> 1033 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1034 Expr *Exp, const NamedDecl *D, 1035 const CFGBlock *PredBlock, 1036 const CFGBlock *CurrBlock, 1037 Expr *BrE, bool Neg) { 1038 // Find out which branch has the lock 1039 bool branch = false; 1040 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1041 branch = BLE->getValue(); 1042 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1043 branch = ILE->getValue().getBoolValue(); 1044 1045 int branchnum = branch ? 0 : 1; 1046 if (Neg) 1047 branchnum = !branchnum; 1048 1049 // If we've taken the trylock branch, then add the lock 1050 int i = 0; 1051 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1052 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1053 if (*SI == CurrBlock && i == branchnum) 1054 getMutexIDs(Mtxs, Attr, Exp, D); 1055 } 1056 } 1057 1058 1059 bool getStaticBooleanValue(Expr* E, bool& TCond) { 1060 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1061 TCond = false; 1062 return true; 1063 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1064 TCond = BLE->getValue(); 1065 return true; 1066 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { 1067 TCond = ILE->getValue().getBoolValue(); 1068 return true; 1069 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { 1070 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1071 } 1072 return false; 1073 } 1074 1075 1076 // If Cond can be traced back to a function call, return the call expression. 1077 // The negate variable should be called with false, and will be set to true 1078 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1079 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1080 LocalVarContext C, 1081 bool &Negate) { 1082 if (!Cond) 1083 return nullptr; 1084 1085 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 1086 return CallExp; 1087 } 1088 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { 1089 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1090 } 1091 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 1092 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1093 } 1094 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { 1095 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 1096 } 1097 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1098 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1099 return getTrylockCallExpr(E, C, Negate); 1100 } 1101 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 1102 if (UOP->getOpcode() == UO_LNot) { 1103 Negate = !Negate; 1104 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1105 } 1106 return nullptr; 1107 } 1108 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { 1109 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1110 if (BOP->getOpcode() == BO_NE) 1111 Negate = !Negate; 1112 1113 bool TCond = false; 1114 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1115 if (!TCond) Negate = !Negate; 1116 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1117 } 1118 TCond = false; 1119 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1120 if (!TCond) Negate = !Negate; 1121 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1122 } 1123 return nullptr; 1124 } 1125 if (BOP->getOpcode() == BO_LAnd) { 1126 // LHS must have been evaluated in a different block. 1127 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1128 } 1129 if (BOP->getOpcode() == BO_LOr) { 1130 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1131 } 1132 return nullptr; 1133 } 1134 return nullptr; 1135 } 1136 1137 1138 /// \brief Find the lockset that holds on the edge between PredBlock 1139 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1140 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1141 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1142 const FactSet &ExitSet, 1143 const CFGBlock *PredBlock, 1144 const CFGBlock *CurrBlock) { 1145 Result = ExitSet; 1146 1147 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1148 if (!Cond) 1149 return; 1150 1151 bool Negate = false; 1152 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1153 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1154 StringRef CapDiagKind = "mutex"; 1155 1156 CallExpr *Exp = 1157 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 1158 if (!Exp) 1159 return; 1160 1161 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1162 if(!FunDecl || !FunDecl->hasAttrs()) 1163 return; 1164 1165 CapExprSet ExclusiveLocksToAdd; 1166 CapExprSet SharedLocksToAdd; 1167 1168 // If the condition is a call to a Trylock function, then grab the attributes 1169 for (auto *Attr : FunDecl->getAttrs()) { 1170 switch (Attr->getKind()) { 1171 case attr::ExclusiveTrylockFunction: { 1172 ExclusiveTrylockFunctionAttr *A = 1173 cast<ExclusiveTrylockFunctionAttr>(Attr); 1174 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1175 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1176 CapDiagKind = ClassifyDiagnostic(A); 1177 break; 1178 } 1179 case attr::SharedTrylockFunction: { 1180 SharedTrylockFunctionAttr *A = 1181 cast<SharedTrylockFunctionAttr>(Attr); 1182 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1183 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1184 CapDiagKind = ClassifyDiagnostic(A); 1185 break; 1186 } 1187 default: 1188 break; 1189 } 1190 } 1191 1192 // Add and remove locks. 1193 SourceLocation Loc = Exp->getExprLoc(); 1194 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1195 addLock(Result, FactEntry(ExclusiveLockToAdd, LK_Exclusive, Loc), 1196 CapDiagKind); 1197 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1198 addLock(Result, FactEntry(SharedLockToAdd, LK_Shared, Loc), 1199 CapDiagKind); 1200 } 1201 1202 /// \brief We use this class to visit different types of expressions in 1203 /// CFGBlocks, and build up the lockset. 1204 /// An expression may cause us to add or remove locks from the lockset, or else 1205 /// output error messages related to missing locks. 1206 /// FIXME: In future, we may be able to not inherit from a visitor. 1207 class BuildLockset : public StmtVisitor<BuildLockset> { 1208 friend class ThreadSafetyAnalyzer; 1209 1210 ThreadSafetyAnalyzer *Analyzer; 1211 FactSet FSet; 1212 LocalVariableMap::Context LVarCtx; 1213 unsigned CtxIndex; 1214 1215 // helper functions 1216 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1217 Expr *MutexExp, ProtectedOperationKind POK, 1218 StringRef DiagKind, SourceLocation Loc); 1219 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1220 StringRef DiagKind); 1221 1222 void checkAccess(const Expr *Exp, AccessKind AK); 1223 void checkPtAccess(const Expr *Exp, AccessKind AK); 1224 1225 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1226 1227 public: 1228 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1229 : StmtVisitor<BuildLockset>(), 1230 Analyzer(Anlzr), 1231 FSet(Info.EntrySet), 1232 LVarCtx(Info.EntryContext), 1233 CtxIndex(Info.EntryIndex) 1234 {} 1235 1236 void VisitUnaryOperator(UnaryOperator *UO); 1237 void VisitBinaryOperator(BinaryOperator *BO); 1238 void VisitCastExpr(CastExpr *CE); 1239 void VisitCallExpr(CallExpr *Exp); 1240 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 1241 void VisitDeclStmt(DeclStmt *S); 1242 }; 1243 1244 1245 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 1246 /// of at least the passed in AccessKind. 1247 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1248 AccessKind AK, Expr *MutexExp, 1249 ProtectedOperationKind POK, 1250 StringRef DiagKind, SourceLocation Loc) { 1251 LockKind LK = getLockKindFromAccessKind(AK); 1252 1253 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1254 if (Cp.isInvalid()) { 1255 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1256 return; 1257 } else if (Cp.shouldIgnore()) { 1258 return; 1259 } 1260 1261 if (Cp.negative()) { 1262 // Negative capabilities act like locks excluded 1263 FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1264 if (LDat) { 1265 Analyzer->Handler.handleFunExcludesLock( 1266 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1267 return; 1268 } 1269 1270 // If this does not refer to a negative capability in the same class, 1271 // then stop here. 1272 if (!Analyzer->inCurrentScope(Cp)) 1273 return; 1274 1275 // Otherwise the negative requirement must be propagated to the caller. 1276 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1277 if (!LDat) { 1278 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 1279 LK_Shared, Loc); 1280 } 1281 return; 1282 } 1283 1284 FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1285 bool NoError = true; 1286 if (!LDat) { 1287 // No exact match found. Look for a partial match. 1288 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1289 if (LDat) { 1290 // Warn that there's no precise match. 1291 std::string PartMatchStr = LDat->toString(); 1292 StringRef PartMatchName(PartMatchStr); 1293 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1294 LK, Loc, &PartMatchName); 1295 } else { 1296 // Warn that there's no match at all. 1297 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1298 LK, Loc); 1299 } 1300 NoError = false; 1301 } 1302 // Make sure the mutex we found is the right kind. 1303 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1304 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1305 LK, Loc); 1306 } 1307 } 1308 1309 /// \brief Warn if the LSet contains the given lock. 1310 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1311 Expr *MutexExp, StringRef DiagKind) { 1312 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1313 if (Cp.isInvalid()) { 1314 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1315 return; 1316 } else if (Cp.shouldIgnore()) { 1317 return; 1318 } 1319 1320 FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); 1321 if (LDat) { 1322 Analyzer->Handler.handleFunExcludesLock( 1323 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1324 } 1325 } 1326 1327 /// \brief Checks guarded_by and pt_guarded_by attributes. 1328 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1329 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1330 /// Similarly, we check if the access is to an expression that dereferences 1331 /// a pointer marked with pt_guarded_by. 1332 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) { 1333 Exp = Exp->IgnoreParenCasts(); 1334 1335 SourceLocation Loc = Exp->getExprLoc(); 1336 1337 if (Analyzer->Handler.issueBetaWarnings()) { 1338 // Local variables of reference type cannot be re-assigned; 1339 // map them to their initializer. 1340 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1341 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1342 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1343 if (const auto *E = VD->getInit()) { 1344 Exp = E; 1345 continue; 1346 } 1347 } 1348 break; 1349 } 1350 } 1351 1352 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { 1353 // For dereferences 1354 if (UO->getOpcode() == clang::UO_Deref) 1355 checkPtAccess(UO->getSubExpr(), AK); 1356 return; 1357 } 1358 1359 if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1360 checkPtAccess(AE->getLHS(), AK); 1361 return; 1362 } 1363 1364 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 1365 if (ME->isArrow()) 1366 checkPtAccess(ME->getBase(), AK); 1367 else 1368 checkAccess(ME->getBase(), AK); 1369 } 1370 1371 const ValueDecl *D = getValueDecl(Exp); 1372 if (!D || !D->hasAttrs()) 1373 return; 1374 1375 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1376 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarAccess, AK, 1377 Loc); 1378 } 1379 1380 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1381 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarAccess, 1382 ClassifyDiagnostic(I), Loc); 1383 } 1384 1385 1386 /// \brief Checks pt_guarded_by and pt_guarded_var attributes. 1387 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) { 1388 while (true) { 1389 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 1390 Exp = PE->getSubExpr(); 1391 continue; 1392 } 1393 if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 1394 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1395 // If it's an actual array, and not a pointer, then it's elements 1396 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1397 checkAccess(CE->getSubExpr(), AK); 1398 return; 1399 } 1400 Exp = CE->getSubExpr(); 1401 continue; 1402 } 1403 break; 1404 } 1405 1406 const ValueDecl *D = getValueDecl(Exp); 1407 if (!D || !D->hasAttrs()) 1408 return; 1409 1410 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1411 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarDereference, AK, 1412 Exp->getExprLoc()); 1413 1414 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1415 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarDereference, 1416 ClassifyDiagnostic(I), Exp->getExprLoc()); 1417 } 1418 1419 /// \brief Process a function call, method call, constructor call, 1420 /// or destructor call. This involves looking at the attributes on the 1421 /// corresponding function/method/constructor/destructor, issuing warnings, 1422 /// and updating the locksets accordingly. 1423 /// 1424 /// FIXME: For classes annotated with one of the guarded annotations, we need 1425 /// to treat const method calls as reads and non-const method calls as writes, 1426 /// and check that the appropriate locks are held. Non-const method calls with 1427 /// the same signature as const method calls can be also treated as reads. 1428 /// 1429 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 1430 SourceLocation Loc = Exp->getExprLoc(); 1431 const AttrVec &ArgAttrs = D->getAttrs(); 1432 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1433 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1434 StringRef CapDiagKind = "mutex"; 1435 1436 for(unsigned i = 0; i < ArgAttrs.size(); ++i) { 1437 Attr *At = const_cast<Attr*>(ArgAttrs[i]); 1438 switch (At->getKind()) { 1439 // When we encounter a lock function, we need to add the lock to our 1440 // lockset. 1441 case attr::AcquireCapability: { 1442 auto *A = cast<AcquireCapabilityAttr>(At); 1443 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1444 : ExclusiveLocksToAdd, 1445 A, Exp, D, VD); 1446 1447 CapDiagKind = ClassifyDiagnostic(A); 1448 break; 1449 } 1450 1451 // An assert will add a lock to the lockset, but will not generate 1452 // a warning if it is already there, and will not generate a warning 1453 // if it is not removed. 1454 case attr::AssertExclusiveLock: { 1455 AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); 1456 1457 CapExprSet AssertLocks; 1458 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1459 for (const auto &AssertLock : AssertLocks) 1460 Analyzer->addLock(FSet, FactEntry(AssertLock, LK_Exclusive, Loc, 1461 false, true), 1462 ClassifyDiagnostic(A)); 1463 break; 1464 } 1465 case attr::AssertSharedLock: { 1466 AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); 1467 1468 CapExprSet AssertLocks; 1469 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1470 for (const auto &AssertLock : AssertLocks) 1471 Analyzer->addLock(FSet, FactEntry(AssertLock, LK_Shared, Loc, 1472 false, true), 1473 ClassifyDiagnostic(A)); 1474 break; 1475 } 1476 1477 // When we encounter an unlock function, we need to remove unlocked 1478 // mutexes from the lockset, and flag a warning if they are not there. 1479 case attr::ReleaseCapability: { 1480 auto *A = cast<ReleaseCapabilityAttr>(At); 1481 if (A->isGeneric()) 1482 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1483 else if (A->isShared()) 1484 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1485 else 1486 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1487 1488 CapDiagKind = ClassifyDiagnostic(A); 1489 break; 1490 } 1491 1492 case attr::RequiresCapability: { 1493 RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); 1494 for (auto *Arg : A->args()) 1495 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1496 POK_FunctionCall, ClassifyDiagnostic(A), 1497 Exp->getExprLoc()); 1498 break; 1499 } 1500 1501 case attr::LocksExcluded: { 1502 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); 1503 for (auto *Arg : A->args()) 1504 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1505 break; 1506 } 1507 1508 // Ignore attributes unrelated to thread-safety 1509 default: 1510 break; 1511 } 1512 } 1513 1514 // Figure out if we're calling the constructor of scoped lockable class 1515 bool isScopedVar = false; 1516 if (VD) { 1517 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1518 const CXXRecordDecl* PD = CD->getParent(); 1519 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1520 isScopedVar = true; 1521 } 1522 } 1523 1524 // Add locks. 1525 for (const auto &M : ExclusiveLocksToAdd) 1526 Analyzer->addLock(FSet, FactEntry(M, LK_Exclusive, Loc, isScopedVar), 1527 CapDiagKind); 1528 for (const auto &M : SharedLocksToAdd) 1529 Analyzer->addLock(FSet, FactEntry(M, LK_Shared, Loc, isScopedVar), 1530 CapDiagKind); 1531 1532 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1533 // FIXME: this doesn't work if we acquire multiple locks. 1534 if (isScopedVar) { 1535 SourceLocation MLoc = VD->getLocation(); 1536 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 1537 // FIXME: does this store a pointer to DRE? 1538 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1539 1540 for (const auto &M : ExclusiveLocksToAdd) 1541 Analyzer->addLock(FSet, FactEntry(Scp, LK_Exclusive, MLoc, M.sexpr()), 1542 CapDiagKind); 1543 for (const auto &M : SharedLocksToAdd) 1544 Analyzer->addLock(FSet, FactEntry(Scp, LK_Shared, MLoc, M.sexpr()), 1545 CapDiagKind); 1546 1547 // handle corner case where the underlying mutex is invalid 1548 if (ExclusiveLocksToAdd.size() == 0 && SharedLocksToAdd.size() == 0) { 1549 Analyzer->addLock(FSet, FactEntry(Scp, LK_Exclusive, MLoc), 1550 CapDiagKind); 1551 } 1552 } 1553 1554 // Remove locks. 1555 // FIXME -- should only fully remove if the attribute refers to 'this'. 1556 bool Dtor = isa<CXXDestructorDecl>(D); 1557 for (const auto &M : ExclusiveLocksToRemove) 1558 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1559 for (const auto &M : SharedLocksToRemove) 1560 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1561 for (const auto &M : GenericLocksToRemove) 1562 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1563 } 1564 1565 1566 /// \brief For unary operations which read and write a variable, we need to 1567 /// check whether we hold any required mutexes. Reads are checked in 1568 /// VisitCastExpr. 1569 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 1570 switch (UO->getOpcode()) { 1571 case clang::UO_PostDec: 1572 case clang::UO_PostInc: 1573 case clang::UO_PreDec: 1574 case clang::UO_PreInc: { 1575 checkAccess(UO->getSubExpr(), AK_Written); 1576 break; 1577 } 1578 default: 1579 break; 1580 } 1581 } 1582 1583 /// For binary operations which assign to a variable (writes), we need to check 1584 /// whether we hold any required mutexes. 1585 /// FIXME: Deal with non-primitive types. 1586 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 1587 if (!BO->isAssignmentOp()) 1588 return; 1589 1590 // adjust the context 1591 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1592 1593 checkAccess(BO->getLHS(), AK_Written); 1594 } 1595 1596 1597 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1598 /// need to ensure we hold any required mutexes. 1599 /// FIXME: Deal with non-primitive types. 1600 void BuildLockset::VisitCastExpr(CastExpr *CE) { 1601 if (CE->getCastKind() != CK_LValueToRValue) 1602 return; 1603 checkAccess(CE->getSubExpr(), AK_Read); 1604 } 1605 1606 1607 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 1608 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 1609 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); 1610 // ME can be null when calling a method pointer 1611 CXXMethodDecl *MD = CE->getMethodDecl(); 1612 1613 if (ME && MD) { 1614 if (ME->isArrow()) { 1615 if (MD->isConst()) { 1616 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1617 } else { // FIXME -- should be AK_Written 1618 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1619 } 1620 } else { 1621 if (MD->isConst()) 1622 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1623 else // FIXME -- should be AK_Written 1624 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1625 } 1626 } 1627 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 1628 switch (OE->getOperator()) { 1629 case OO_Equal: { 1630 const Expr *Target = OE->getArg(0); 1631 const Expr *Source = OE->getArg(1); 1632 checkAccess(Target, AK_Written); 1633 checkAccess(Source, AK_Read); 1634 break; 1635 } 1636 case OO_Star: 1637 case OO_Arrow: 1638 case OO_Subscript: { 1639 const Expr *Obj = OE->getArg(0); 1640 checkAccess(Obj, AK_Read); 1641 checkPtAccess(Obj, AK_Read); 1642 break; 1643 } 1644 default: { 1645 const Expr *Obj = OE->getArg(0); 1646 checkAccess(Obj, AK_Read); 1647 break; 1648 } 1649 } 1650 } 1651 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1652 if(!D || !D->hasAttrs()) 1653 return; 1654 handleCall(Exp, D); 1655 } 1656 1657 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 1658 const CXXConstructorDecl *D = Exp->getConstructor(); 1659 if (D && D->isCopyConstructor()) { 1660 const Expr* Source = Exp->getArg(0); 1661 checkAccess(Source, AK_Read); 1662 } 1663 // FIXME -- only handles constructors in DeclStmt below. 1664 } 1665 1666 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 1667 // adjust the context 1668 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 1669 1670 for (auto *D : S->getDeclGroup()) { 1671 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 1672 Expr *E = VD->getInit(); 1673 // handle constructors that involve temporaries 1674 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) 1675 E = EWC->getSubExpr(); 1676 1677 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { 1678 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 1679 if (!CtorD || !CtorD->hasAttrs()) 1680 return; 1681 handleCall(CE, CtorD, VD); 1682 } 1683 } 1684 } 1685 } 1686 1687 1688 1689 /// \brief Compute the intersection of two locksets and issue warnings for any 1690 /// locks in the symmetric difference. 1691 /// 1692 /// This function is used at a merge point in the CFG when comparing the lockset 1693 /// of each branch being merged. For example, given the following sequence: 1694 /// A; if () then B; else C; D; we need to check that the lockset after B and C 1695 /// are the same. In the event of a difference, we use the intersection of these 1696 /// two locksets at the start of D. 1697 /// 1698 /// \param FSet1 The first lockset. 1699 /// \param FSet2 The second lockset. 1700 /// \param JoinLoc The location of the join point for error reporting 1701 /// \param LEK1 The error message to report if a mutex is missing from LSet1 1702 /// \param LEK2 The error message to report if a mutex is missing from Lset2 1703 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 1704 const FactSet &FSet2, 1705 SourceLocation JoinLoc, 1706 LockErrorKind LEK1, 1707 LockErrorKind LEK2, 1708 bool Modify) { 1709 FactSet FSet1Orig = FSet1; 1710 1711 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 1712 for (const auto &Fact : FSet2) { 1713 const FactEntry *LDat1 = nullptr; 1714 const FactEntry *LDat2 = &FactMan[Fact]; 1715 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 1716 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 1717 1718 if (LDat1) { 1719 if (LDat1->kind() != LDat2->kind()) { 1720 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 1721 LDat2->loc(), LDat1->loc()); 1722 if (Modify && LDat1->kind() != LK_Exclusive) { 1723 // Take the exclusive lock, which is the one in FSet2. 1724 *Iter1 = Fact; 1725 } 1726 } 1727 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 1728 // The non-asserted lock in FSet2 is the one we want to track. 1729 *Iter1 = Fact; 1730 } 1731 } else { 1732 if (LDat2->underlying()) { 1733 if (FSet2.findLock(FactMan, CapabilityExpr(LDat2->underlying(), 1734 false))) { 1735 // If this is a scoped lock that manages another mutex, and if the 1736 // underlying mutex is still held, then warn about the underlying 1737 // mutex. 1738 Handler.handleMutexHeldEndOfScope("mutex", 1739 sx::toString(LDat2->underlying()), 1740 LDat2->loc(), JoinLoc, LEK1); 1741 } 1742 } 1743 else if (!LDat2->managed() && !LDat2->asserted() && 1744 !LDat2->negative() && !LDat2->isUniversal()) { 1745 Handler.handleMutexHeldEndOfScope("mutex", LDat2->toString(), 1746 LDat2->loc(), JoinLoc, LEK1); 1747 } 1748 } 1749 } 1750 1751 // Find locks in FSet1 that are not in FSet2, and remove them. 1752 for (const auto &Fact : FSet1Orig) { 1753 const FactEntry *LDat1 = &FactMan[Fact]; 1754 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 1755 1756 if (!LDat2) { 1757 if (LDat1->underlying()) { 1758 if (FSet1Orig.findLock(FactMan, CapabilityExpr(LDat1->underlying(), 1759 false))) { 1760 // If this is a scoped lock that manages another mutex, and if the 1761 // underlying mutex is still held, then warn about the underlying 1762 // mutex. 1763 Handler.handleMutexHeldEndOfScope("mutex", 1764 sx::toString(LDat1->underlying()), 1765 LDat1->loc(), JoinLoc, LEK1); 1766 } 1767 } 1768 else if (!LDat1->managed() && !LDat1->asserted() && 1769 !LDat1->negative() && !LDat1->isUniversal()) { 1770 Handler.handleMutexHeldEndOfScope("mutex", LDat1->toString(), 1771 LDat1->loc(), JoinLoc, LEK2); 1772 } 1773 if (Modify) 1774 FSet1.removeLock(FactMan, *LDat1); 1775 } 1776 } 1777 } 1778 1779 1780 // Return true if block B never continues to its successors. 1781 inline bool neverReturns(const CFGBlock* B) { 1782 if (B->hasNoReturnElement()) 1783 return true; 1784 if (B->empty()) 1785 return false; 1786 1787 CFGElement Last = B->back(); 1788 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 1789 if (isa<CXXThrowExpr>(S->getStmt())) 1790 return true; 1791 } 1792 return false; 1793 } 1794 1795 1796 /// \brief Check a function's CFG for thread-safety violations. 1797 /// 1798 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 1799 /// at the end of each block, and issue warnings for thread safety violations. 1800 /// Each block in the CFG is traversed exactly once. 1801 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 1802 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 1803 // For now, we just use the walker to set things up. 1804 threadSafety::CFGWalker walker; 1805 if (!walker.init(AC)) 1806 return; 1807 1808 // AC.dumpCFG(true); 1809 // threadSafety::printSCFG(walker); 1810 1811 CFG *CFGraph = walker.getGraph(); 1812 const NamedDecl *D = walker.getDecl(); 1813 const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); 1814 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 1815 1816 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 1817 return; 1818 1819 // FIXME: Do something a bit more intelligent inside constructor and 1820 // destructor code. Constructors and destructors must assume unique access 1821 // to 'this', so checks on member variable access is disabled, but we should 1822 // still enable checks on other objects. 1823 if (isa<CXXConstructorDecl>(D)) 1824 return; // Don't check inside constructors. 1825 if (isa<CXXDestructorDecl>(D)) 1826 return; // Don't check inside destructors. 1827 1828 Handler.enterFunction(CurrentFunction); 1829 1830 BlockInfo.resize(CFGraph->getNumBlockIDs(), 1831 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 1832 1833 // We need to explore the CFG via a "topological" ordering. 1834 // That way, we will be guaranteed to have information about required 1835 // predecessor locksets when exploring a new block. 1836 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 1837 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 1838 1839 // Mark entry block as reachable 1840 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 1841 1842 // Compute SSA names for local variables 1843 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 1844 1845 // Fill in source locations for all CFGBlocks. 1846 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 1847 1848 CapExprSet ExclusiveLocksAcquired; 1849 CapExprSet SharedLocksAcquired; 1850 CapExprSet LocksReleased; 1851 1852 // Add locks from exclusive_locks_required and shared_locks_required 1853 // to initial lockset. Also turn off checking for lock and unlock functions. 1854 // FIXME: is there a more intelligent way to check lock/unlock functions? 1855 if (!SortedGraph->empty() && D->hasAttrs()) { 1856 const CFGBlock *FirstBlock = *SortedGraph->begin(); 1857 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 1858 const AttrVec &ArgAttrs = D->getAttrs(); 1859 1860 CapExprSet ExclusiveLocksToAdd; 1861 CapExprSet SharedLocksToAdd; 1862 StringRef CapDiagKind = "mutex"; 1863 1864 SourceLocation Loc = D->getLocation(); 1865 for (const auto *Attr : ArgAttrs) { 1866 Loc = Attr->getLocation(); 1867 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 1868 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1869 nullptr, D); 1870 CapDiagKind = ClassifyDiagnostic(A); 1871 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 1872 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 1873 // We must ignore such methods. 1874 if (A->args_size() == 0) 1875 return; 1876 // FIXME -- deal with exclusive vs. shared unlock functions? 1877 getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); 1878 getMutexIDs(LocksReleased, A, nullptr, D); 1879 CapDiagKind = ClassifyDiagnostic(A); 1880 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 1881 if (A->args_size() == 0) 1882 return; 1883 getMutexIDs(A->isShared() ? SharedLocksAcquired 1884 : ExclusiveLocksAcquired, 1885 A, nullptr, D); 1886 CapDiagKind = ClassifyDiagnostic(A); 1887 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 1888 // Don't try to check trylock functions for now 1889 return; 1890 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 1891 // Don't try to check trylock functions for now 1892 return; 1893 } 1894 } 1895 1896 // FIXME -- Loc can be wrong here. 1897 for (const auto &Mu : ExclusiveLocksToAdd) 1898 addLock(InitialLockset, FactEntry(Mu, LK_Exclusive, Loc), 1899 CapDiagKind, true); 1900 for (const auto &Mu : SharedLocksToAdd) 1901 addLock(InitialLockset, FactEntry(Mu, LK_Shared, Loc), 1902 CapDiagKind, true); 1903 } 1904 1905 for (const auto *CurrBlock : *SortedGraph) { 1906 int CurrBlockID = CurrBlock->getBlockID(); 1907 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 1908 1909 // Use the default initial lockset in case there are no predecessors. 1910 VisitedBlocks.insert(CurrBlock); 1911 1912 // Iterate through the predecessor blocks and warn if the lockset for all 1913 // predecessors is not the same. We take the entry lockset of the current 1914 // block to be the intersection of all previous locksets. 1915 // FIXME: By keeping the intersection, we may output more errors in future 1916 // for a lock which is not in the intersection, but was in the union. We 1917 // may want to also keep the union in future. As an example, let's say 1918 // the intersection contains Mutex L, and the union contains L and M. 1919 // Later we unlock M. At this point, we would output an error because we 1920 // never locked M; although the real error is probably that we forgot to 1921 // lock M on all code paths. Conversely, let's say that later we lock M. 1922 // In this case, we should compare against the intersection instead of the 1923 // union because the real error is probably that we forgot to unlock M on 1924 // all code paths. 1925 bool LocksetInitialized = false; 1926 SmallVector<CFGBlock *, 8> SpecialBlocks; 1927 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 1928 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 1929 1930 // if *PI -> CurrBlock is a back edge 1931 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 1932 continue; 1933 1934 int PrevBlockID = (*PI)->getBlockID(); 1935 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 1936 1937 // Ignore edges from blocks that can't return. 1938 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 1939 continue; 1940 1941 // Okay, we can reach this block from the entry. 1942 CurrBlockInfo->Reachable = true; 1943 1944 // If the previous block ended in a 'continue' or 'break' statement, then 1945 // a difference in locksets is probably due to a bug in that block, rather 1946 // than in some other predecessor. In that case, keep the other 1947 // predecessor's lockset. 1948 if (const Stmt *Terminator = (*PI)->getTerminator()) { 1949 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 1950 SpecialBlocks.push_back(*PI); 1951 continue; 1952 } 1953 } 1954 1955 FactSet PrevLockset; 1956 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 1957 1958 if (!LocksetInitialized) { 1959 CurrBlockInfo->EntrySet = PrevLockset; 1960 LocksetInitialized = true; 1961 } else { 1962 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 1963 CurrBlockInfo->EntryLoc, 1964 LEK_LockedSomePredecessors); 1965 } 1966 } 1967 1968 // Skip rest of block if it's not reachable. 1969 if (!CurrBlockInfo->Reachable) 1970 continue; 1971 1972 // Process continue and break blocks. Assume that the lockset for the 1973 // resulting block is unaffected by any discrepancies in them. 1974 for (const auto *PrevBlock : SpecialBlocks) { 1975 int PrevBlockID = PrevBlock->getBlockID(); 1976 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 1977 1978 if (!LocksetInitialized) { 1979 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 1980 LocksetInitialized = true; 1981 } else { 1982 // Determine whether this edge is a loop terminator for diagnostic 1983 // purposes. FIXME: A 'break' statement might be a loop terminator, but 1984 // it might also be part of a switch. Also, a subsequent destructor 1985 // might add to the lockset, in which case the real issue might be a 1986 // double lock on the other path. 1987 const Stmt *Terminator = PrevBlock->getTerminator(); 1988 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 1989 1990 FactSet PrevLockset; 1991 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 1992 PrevBlock, CurrBlock); 1993 1994 // Do not update EntrySet. 1995 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 1996 PrevBlockInfo->ExitLoc, 1997 IsLoop ? LEK_LockedSomeLoopIterations 1998 : LEK_LockedSomePredecessors, 1999 false); 2000 } 2001 } 2002 2003 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2004 2005 // Visit all the statements in the basic block. 2006 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 2007 BE = CurrBlock->end(); BI != BE; ++BI) { 2008 switch (BI->getKind()) { 2009 case CFGElement::Statement: { 2010 CFGStmt CS = BI->castAs<CFGStmt>(); 2011 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 2012 break; 2013 } 2014 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2015 case CFGElement::AutomaticObjectDtor: { 2016 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); 2017 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( 2018 AD.getDestructorDecl(AC.getASTContext())); 2019 if (!DD->hasAttrs()) 2020 break; 2021 2022 // Create a dummy expression, 2023 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); 2024 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, 2025 AD.getTriggerStmt()->getLocEnd()); 2026 LocksetBuilder.handleCall(&DRE, DD); 2027 break; 2028 } 2029 default: 2030 break; 2031 } 2032 } 2033 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2034 2035 // For every back edge from CurrBlock (the end of the loop) to another block 2036 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2037 // the one held at the beginning of FirstLoopBlock. We can look up the 2038 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2039 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2040 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2041 2042 // if CurrBlock -> *SI is *not* a back edge 2043 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2044 continue; 2045 2046 CFGBlock *FirstLoopBlock = *SI; 2047 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2048 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2049 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2050 PreLoop->EntryLoc, 2051 LEK_LockedSomeLoopIterations, 2052 false); 2053 } 2054 } 2055 2056 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2057 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2058 2059 // Skip the final check if the exit block is unreachable. 2060 if (!Final->Reachable) 2061 return; 2062 2063 // By default, we expect all locks held on entry to be held on exit. 2064 FactSet ExpectedExitSet = Initial->EntrySet; 2065 2066 // Adjust the expected exit set by adding or removing locks, as declared 2067 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2068 // issue the appropriate warning. 2069 // FIXME: the location here is not quite right. 2070 for (const auto &Lock : ExclusiveLocksAcquired) 2071 ExpectedExitSet.addLock(FactMan, FactEntry(Lock, LK_Exclusive, 2072 D->getLocation())); 2073 for (const auto &Lock : SharedLocksAcquired) 2074 ExpectedExitSet.addLock(FactMan, FactEntry(Lock, LK_Shared, 2075 D->getLocation())); 2076 for (const auto &Lock : LocksReleased) 2077 ExpectedExitSet.removeLock(FactMan, Lock); 2078 2079 // FIXME: Should we call this function for all blocks which exit the function? 2080 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2081 Final->ExitLoc, 2082 LEK_LockedAtEndOfFunction, 2083 LEK_NotLockedAtEndOfFunction, 2084 false); 2085 2086 Handler.leaveFunction(CurrentFunction); 2087 } 2088 2089 2090 /// \brief Check a function's CFG for thread-safety violations. 2091 /// 2092 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2093 /// at the end of each block, and issue warnings for thread safety violations. 2094 /// Each block in the CFG is traversed exactly once. 2095 void runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2096 ThreadSafetyHandler &Handler) { 2097 ThreadSafetyAnalyzer Analyzer(Handler); 2098 Analyzer.runAnalysis(AC); 2099 } 2100 2101 /// \brief Helper function that returns a LockKind required for the given level 2102 /// of access. 2103 LockKind getLockKindFromAccessKind(AccessKind AK) { 2104 switch (AK) { 2105 case AK_Read : 2106 return LK_Shared; 2107 case AK_Written : 2108 return LK_Exclusive; 2109 } 2110 llvm_unreachable("Unknown AccessKind"); 2111 } 2112 2113 }} // end namespace clang::threadSafety 2114