1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
14 // for more information.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/Analyses/ThreadSafety.h"
25 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
26 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
27 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
28 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
29 #include "clang/Analysis/AnalysisContext.h"
30 #include "clang/Analysis/CFG.h"
31 #include "clang/Analysis/CFGStmtMap.h"
32 #include "clang/Basic/OperatorKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "llvm/ADT/BitVector.h"
36 #include "llvm/ADT/FoldingSet.h"
37 #include "llvm/ADT/ImmutableMap.h"
38 #include "llvm/ADT/PostOrderIterator.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <ostream>
44 #include <sstream>
45 #include <utility>
46 #include <vector>
47 
48 
49 namespace clang {
50 namespace threadSafety {
51 
52 // Key method definition
53 ThreadSafetyHandler::~ThreadSafetyHandler() {}
54 
55 class TILPrinter :
56   public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
57 
58 
59 /// Issue a warning about an invalid lock expression
60 static void warnInvalidLock(ThreadSafetyHandler &Handler,
61                             const Expr *MutexExp, const NamedDecl *D,
62                             const Expr *DeclExp, StringRef Kind) {
63   SourceLocation Loc;
64   if (DeclExp)
65     Loc = DeclExp->getExprLoc();
66 
67   // FIXME: add a note about the attribute location in MutexExp or D
68   if (Loc.isValid())
69     Handler.handleInvalidLockExp(Kind, Loc);
70 }
71 
72 
73 /// \brief A set of CapabilityInfo objects, which are compiled from the
74 /// requires attributes on a function.
75 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
76 public:
77   /// \brief Push M onto list, but discard duplicates.
78   void push_back_nodup(const CapabilityExpr &CapE) {
79     iterator It = std::find_if(begin(), end(),
80                                [=](const CapabilityExpr &CapE2) {
81       return CapE.equals(CapE2);
82     });
83     if (It == end())
84       push_back(CapE);
85   }
86 };
87 
88 
89 
90 /// \brief This is a helper class that stores a fact that is known at a
91 /// particular point in program execution.  Currently, a fact is a capability,
92 /// along with additional information, such as where it was acquired, whether
93 /// it is exclusive or shared, etc.
94 ///
95 /// FIXME: this analysis does not currently support either re-entrant
96 /// locking or lock "upgrading" and "downgrading" between exclusive and
97 /// shared.
98 class FactEntry : public CapabilityExpr {
99 private:
100   LockKind          LKind;            ///<  exclusive or shared
101   SourceLocation    AcquireLoc;       ///<  where it was acquired.
102   bool              Managed;          ///<  for ScopedLockable objects
103   bool              Asserted;         ///<  true if the lock was asserted
104   const til::SExpr* UnderlyingMutex;  ///<  for ScopedLockable objects
105 
106 public:
107   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
108             bool Mng=false, bool Asrt=false)
109     : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Managed(Mng),
110       Asserted(Asrt), UnderlyingMutex(nullptr)
111   {}
112 
113   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
114             const til::SExpr *Mu)
115     : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Managed(false),
116       Asserted(false), UnderlyingMutex(Mu)
117   {}
118 
119   LockKind          kind()       const { return LKind;    }
120   SourceLocation    loc()        const { return AcquireLoc; }
121   bool              asserted()   const { return Asserted; }
122   bool              managed()    const { return Managed;  }
123   const til::SExpr* underlying() const { return UnderlyingMutex; }
124 
125   // Return true if LKind >= LK, where exclusive > shared
126   bool isAtLeast(LockKind LK) {
127     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
128   }
129 };
130 
131 
132 typedef unsigned short FactID;
133 
134 /// \brief FactManager manages the memory for all facts that are created during
135 /// the analysis of a single routine.
136 class FactManager {
137 private:
138   std::vector<FactEntry> Facts;
139 
140 public:
141   FactID newFact(const FactEntry &Entry) {
142     Facts.push_back(Entry);
143     return static_cast<unsigned short>(Facts.size() - 1);
144   }
145 
146   const FactEntry& operator[](FactID F) const { return Facts[F]; }
147   FactEntry&       operator[](FactID F)       { return Facts[F]; }
148 };
149 
150 
151 /// \brief A FactSet is the set of facts that are known to be true at a
152 /// particular program point.  FactSets must be small, because they are
153 /// frequently copied, and are thus implemented as a set of indices into a
154 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
155 /// locks, so we can get away with doing a linear search for lookup.  Note
156 /// that a hashtable or map is inappropriate in this case, because lookups
157 /// may involve partial pattern matches, rather than exact matches.
158 class FactSet {
159 private:
160   typedef SmallVector<FactID, 4> FactVec;
161 
162   FactVec FactIDs;
163 
164 public:
165   typedef FactVec::iterator       iterator;
166   typedef FactVec::const_iterator const_iterator;
167 
168   iterator       begin()       { return FactIDs.begin(); }
169   const_iterator begin() const { return FactIDs.begin(); }
170 
171   iterator       end()       { return FactIDs.end(); }
172   const_iterator end() const { return FactIDs.end(); }
173 
174   bool isEmpty() const { return FactIDs.size() == 0; }
175 
176   // Return true if the set contains only negative facts
177   bool isEmpty(FactManager &FactMan) const {
178     for (FactID FID : *this) {
179       if (!FactMan[FID].negative())
180         return false;
181     }
182     return true;
183   }
184 
185   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
186 
187   FactID addLock(FactManager& FM, const FactEntry &Entry) {
188     FactID F = FM.newFact(Entry);
189     FactIDs.push_back(F);
190     return F;
191   }
192 
193   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
194     unsigned n = FactIDs.size();
195     if (n == 0)
196       return false;
197 
198     for (unsigned i = 0; i < n-1; ++i) {
199       if (FM[FactIDs[i]].matches(CapE)) {
200         FactIDs[i] = FactIDs[n-1];
201         FactIDs.pop_back();
202         return true;
203       }
204     }
205     if (FM[FactIDs[n-1]].matches(CapE)) {
206       FactIDs.pop_back();
207       return true;
208     }
209     return false;
210   }
211 
212   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
213     return std::find_if(begin(), end(), [&](FactID ID) {
214       return FM[ID].matches(CapE);
215     });
216   }
217 
218   FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
219     auto I = std::find_if(begin(), end(), [&](FactID ID) {
220       return FM[ID].matches(CapE);
221     });
222     return I != end() ? &FM[*I] : nullptr;
223   }
224 
225   FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
226     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
227       return FM[ID].matchesUniv(CapE);
228     });
229     return I != end() ? &FM[*I] : nullptr;
230   }
231 
232   FactEntry *findPartialMatch(FactManager &FM,
233                               const CapabilityExpr &CapE) const {
234     auto I = std::find_if(begin(), end(), [&](FactID ID) {
235       return FM[ID].partiallyMatches(CapE);
236     });
237     return I != end() ? &FM[*I] : nullptr;
238   }
239 };
240 
241 
242 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
243 class LocalVariableMap;
244 
245 /// A side (entry or exit) of a CFG node.
246 enum CFGBlockSide { CBS_Entry, CBS_Exit };
247 
248 /// CFGBlockInfo is a struct which contains all the information that is
249 /// maintained for each block in the CFG.  See LocalVariableMap for more
250 /// information about the contexts.
251 struct CFGBlockInfo {
252   FactSet EntrySet;             // Lockset held at entry to block
253   FactSet ExitSet;              // Lockset held at exit from block
254   LocalVarContext EntryContext; // Context held at entry to block
255   LocalVarContext ExitContext;  // Context held at exit from block
256   SourceLocation EntryLoc;      // Location of first statement in block
257   SourceLocation ExitLoc;       // Location of last statement in block.
258   unsigned EntryIndex;          // Used to replay contexts later
259   bool Reachable;               // Is this block reachable?
260 
261   const FactSet &getSet(CFGBlockSide Side) const {
262     return Side == CBS_Entry ? EntrySet : ExitSet;
263   }
264   SourceLocation getLocation(CFGBlockSide Side) const {
265     return Side == CBS_Entry ? EntryLoc : ExitLoc;
266   }
267 
268 private:
269   CFGBlockInfo(LocalVarContext EmptyCtx)
270     : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
271   { }
272 
273 public:
274   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
275 };
276 
277 
278 
279 // A LocalVariableMap maintains a map from local variables to their currently
280 // valid definitions.  It provides SSA-like functionality when traversing the
281 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
282 // unique name (an integer), which acts as the SSA name for that definition.
283 // The total set of names is shared among all CFG basic blocks.
284 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
285 // with their SSA-names.  Instead, we compute a Context for each point in the
286 // code, which maps local variables to the appropriate SSA-name.  This map
287 // changes with each assignment.
288 //
289 // The map is computed in a single pass over the CFG.  Subsequent analyses can
290 // then query the map to find the appropriate Context for a statement, and use
291 // that Context to look up the definitions of variables.
292 class LocalVariableMap {
293 public:
294   typedef LocalVarContext Context;
295 
296   /// A VarDefinition consists of an expression, representing the value of the
297   /// variable, along with the context in which that expression should be
298   /// interpreted.  A reference VarDefinition does not itself contain this
299   /// information, but instead contains a pointer to a previous VarDefinition.
300   struct VarDefinition {
301   public:
302     friend class LocalVariableMap;
303 
304     const NamedDecl *Dec;  // The original declaration for this variable.
305     const Expr *Exp;       // The expression for this variable, OR
306     unsigned Ref;          // Reference to another VarDefinition
307     Context Ctx;           // The map with which Exp should be interpreted.
308 
309     bool isReference() { return !Exp; }
310 
311   private:
312     // Create ordinary variable definition
313     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
314       : Dec(D), Exp(E), Ref(0), Ctx(C)
315     { }
316 
317     // Create reference to previous definition
318     VarDefinition(const NamedDecl *D, unsigned R, Context C)
319       : Dec(D), Exp(nullptr), Ref(R), Ctx(C)
320     { }
321   };
322 
323 private:
324   Context::Factory ContextFactory;
325   std::vector<VarDefinition> VarDefinitions;
326   std::vector<unsigned> CtxIndices;
327   std::vector<std::pair<Stmt*, Context> > SavedContexts;
328 
329 public:
330   LocalVariableMap() {
331     // index 0 is a placeholder for undefined variables (aka phi-nodes).
332     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
333   }
334 
335   /// Look up a definition, within the given context.
336   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
337     const unsigned *i = Ctx.lookup(D);
338     if (!i)
339       return nullptr;
340     assert(*i < VarDefinitions.size());
341     return &VarDefinitions[*i];
342   }
343 
344   /// Look up the definition for D within the given context.  Returns
345   /// NULL if the expression is not statically known.  If successful, also
346   /// modifies Ctx to hold the context of the return Expr.
347   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
348     const unsigned *P = Ctx.lookup(D);
349     if (!P)
350       return nullptr;
351 
352     unsigned i = *P;
353     while (i > 0) {
354       if (VarDefinitions[i].Exp) {
355         Ctx = VarDefinitions[i].Ctx;
356         return VarDefinitions[i].Exp;
357       }
358       i = VarDefinitions[i].Ref;
359     }
360     return nullptr;
361   }
362 
363   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
364 
365   /// Return the next context after processing S.  This function is used by
366   /// clients of the class to get the appropriate context when traversing the
367   /// CFG.  It must be called for every assignment or DeclStmt.
368   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
369     if (SavedContexts[CtxIndex+1].first == S) {
370       CtxIndex++;
371       Context Result = SavedContexts[CtxIndex].second;
372       return Result;
373     }
374     return C;
375   }
376 
377   void dumpVarDefinitionName(unsigned i) {
378     if (i == 0) {
379       llvm::errs() << "Undefined";
380       return;
381     }
382     const NamedDecl *Dec = VarDefinitions[i].Dec;
383     if (!Dec) {
384       llvm::errs() << "<<NULL>>";
385       return;
386     }
387     Dec->printName(llvm::errs());
388     llvm::errs() << "." << i << " " << ((const void*) Dec);
389   }
390 
391   /// Dumps an ASCII representation of the variable map to llvm::errs()
392   void dump() {
393     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
394       const Expr *Exp = VarDefinitions[i].Exp;
395       unsigned Ref = VarDefinitions[i].Ref;
396 
397       dumpVarDefinitionName(i);
398       llvm::errs() << " = ";
399       if (Exp) Exp->dump();
400       else {
401         dumpVarDefinitionName(Ref);
402         llvm::errs() << "\n";
403       }
404     }
405   }
406 
407   /// Dumps an ASCII representation of a Context to llvm::errs()
408   void dumpContext(Context C) {
409     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
410       const NamedDecl *D = I.getKey();
411       D->printName(llvm::errs());
412       const unsigned *i = C.lookup(D);
413       llvm::errs() << " -> ";
414       dumpVarDefinitionName(*i);
415       llvm::errs() << "\n";
416     }
417   }
418 
419   /// Builds the variable map.
420   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
421                    std::vector<CFGBlockInfo> &BlockInfo);
422 
423 protected:
424   // Get the current context index
425   unsigned getContextIndex() { return SavedContexts.size()-1; }
426 
427   // Save the current context for later replay
428   void saveContext(Stmt *S, Context C) {
429     SavedContexts.push_back(std::make_pair(S,C));
430   }
431 
432   // Adds a new definition to the given context, and returns a new context.
433   // This method should be called when declaring a new variable.
434   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
435     assert(!Ctx.contains(D));
436     unsigned newID = VarDefinitions.size();
437     Context NewCtx = ContextFactory.add(Ctx, D, newID);
438     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
439     return NewCtx;
440   }
441 
442   // Add a new reference to an existing definition.
443   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
444     unsigned newID = VarDefinitions.size();
445     Context NewCtx = ContextFactory.add(Ctx, D, newID);
446     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
447     return NewCtx;
448   }
449 
450   // Updates a definition only if that definition is already in the map.
451   // This method should be called when assigning to an existing variable.
452   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
453     if (Ctx.contains(D)) {
454       unsigned newID = VarDefinitions.size();
455       Context NewCtx = ContextFactory.remove(Ctx, D);
456       NewCtx = ContextFactory.add(NewCtx, D, newID);
457       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
458       return NewCtx;
459     }
460     return Ctx;
461   }
462 
463   // Removes a definition from the context, but keeps the variable name
464   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
465   Context clearDefinition(const NamedDecl *D, Context Ctx) {
466     Context NewCtx = Ctx;
467     if (NewCtx.contains(D)) {
468       NewCtx = ContextFactory.remove(NewCtx, D);
469       NewCtx = ContextFactory.add(NewCtx, D, 0);
470     }
471     return NewCtx;
472   }
473 
474   // Remove a definition entirely frmo the context.
475   Context removeDefinition(const NamedDecl *D, Context Ctx) {
476     Context NewCtx = Ctx;
477     if (NewCtx.contains(D)) {
478       NewCtx = ContextFactory.remove(NewCtx, D);
479     }
480     return NewCtx;
481   }
482 
483   Context intersectContexts(Context C1, Context C2);
484   Context createReferenceContext(Context C);
485   void intersectBackEdge(Context C1, Context C2);
486 
487   friend class VarMapBuilder;
488 };
489 
490 
491 // This has to be defined after LocalVariableMap.
492 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
493   return CFGBlockInfo(M.getEmptyContext());
494 }
495 
496 
497 /// Visitor which builds a LocalVariableMap
498 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
499 public:
500   LocalVariableMap* VMap;
501   LocalVariableMap::Context Ctx;
502 
503   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
504     : VMap(VM), Ctx(C) {}
505 
506   void VisitDeclStmt(DeclStmt *S);
507   void VisitBinaryOperator(BinaryOperator *BO);
508 };
509 
510 
511 // Add new local variables to the variable map
512 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
513   bool modifiedCtx = false;
514   DeclGroupRef DGrp = S->getDeclGroup();
515   for (const auto *D : DGrp) {
516     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
517       const Expr *E = VD->getInit();
518 
519       // Add local variables with trivial type to the variable map
520       QualType T = VD->getType();
521       if (T.isTrivialType(VD->getASTContext())) {
522         Ctx = VMap->addDefinition(VD, E, Ctx);
523         modifiedCtx = true;
524       }
525     }
526   }
527   if (modifiedCtx)
528     VMap->saveContext(S, Ctx);
529 }
530 
531 // Update local variable definitions in variable map
532 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
533   if (!BO->isAssignmentOp())
534     return;
535 
536   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
537 
538   // Update the variable map and current context.
539   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
540     ValueDecl *VDec = DRE->getDecl();
541     if (Ctx.lookup(VDec)) {
542       if (BO->getOpcode() == BO_Assign)
543         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
544       else
545         // FIXME -- handle compound assignment operators
546         Ctx = VMap->clearDefinition(VDec, Ctx);
547       VMap->saveContext(BO, Ctx);
548     }
549   }
550 }
551 
552 
553 // Computes the intersection of two contexts.  The intersection is the
554 // set of variables which have the same definition in both contexts;
555 // variables with different definitions are discarded.
556 LocalVariableMap::Context
557 LocalVariableMap::intersectContexts(Context C1, Context C2) {
558   Context Result = C1;
559   for (const auto &P : C1) {
560     const NamedDecl *Dec = P.first;
561     const unsigned *i2 = C2.lookup(Dec);
562     if (!i2)             // variable doesn't exist on second path
563       Result = removeDefinition(Dec, Result);
564     else if (*i2 != P.second)  // variable exists, but has different definition
565       Result = clearDefinition(Dec, Result);
566   }
567   return Result;
568 }
569 
570 // For every variable in C, create a new variable that refers to the
571 // definition in C.  Return a new context that contains these new variables.
572 // (We use this for a naive implementation of SSA on loop back-edges.)
573 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
574   Context Result = getEmptyContext();
575   for (const auto &P : C)
576     Result = addReference(P.first, P.second, Result);
577   return Result;
578 }
579 
580 // This routine also takes the intersection of C1 and C2, but it does so by
581 // altering the VarDefinitions.  C1 must be the result of an earlier call to
582 // createReferenceContext.
583 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
584   for (const auto &P : C1) {
585     unsigned i1 = P.second;
586     VarDefinition *VDef = &VarDefinitions[i1];
587     assert(VDef->isReference());
588 
589     const unsigned *i2 = C2.lookup(P.first);
590     if (!i2 || (*i2 != i1))
591       VDef->Ref = 0;    // Mark this variable as undefined
592   }
593 }
594 
595 
596 // Traverse the CFG in topological order, so all predecessors of a block
597 // (excluding back-edges) are visited before the block itself.  At
598 // each point in the code, we calculate a Context, which holds the set of
599 // variable definitions which are visible at that point in execution.
600 // Visible variables are mapped to their definitions using an array that
601 // contains all definitions.
602 //
603 // At join points in the CFG, the set is computed as the intersection of
604 // the incoming sets along each edge, E.g.
605 //
606 //                       { Context                 | VarDefinitions }
607 //   int x = 0;          { x -> x1                 | x1 = 0 }
608 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
609 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
610 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
611 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
612 //
613 // This is essentially a simpler and more naive version of the standard SSA
614 // algorithm.  Those definitions that remain in the intersection are from blocks
615 // that strictly dominate the current block.  We do not bother to insert proper
616 // phi nodes, because they are not used in our analysis; instead, wherever
617 // a phi node would be required, we simply remove that definition from the
618 // context (E.g. x above).
619 //
620 // The initial traversal does not capture back-edges, so those need to be
621 // handled on a separate pass.  Whenever the first pass encounters an
622 // incoming back edge, it duplicates the context, creating new definitions
623 // that refer back to the originals.  (These correspond to places where SSA
624 // might have to insert a phi node.)  On the second pass, these definitions are
625 // set to NULL if the variable has changed on the back-edge (i.e. a phi
626 // node was actually required.)  E.g.
627 //
628 //                       { Context           | VarDefinitions }
629 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
630 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
631 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
632 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
633 //
634 void LocalVariableMap::traverseCFG(CFG *CFGraph,
635                                    const PostOrderCFGView *SortedGraph,
636                                    std::vector<CFGBlockInfo> &BlockInfo) {
637   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
638 
639   CtxIndices.resize(CFGraph->getNumBlockIDs());
640 
641   for (const auto *CurrBlock : *SortedGraph) {
642     int CurrBlockID = CurrBlock->getBlockID();
643     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
644 
645     VisitedBlocks.insert(CurrBlock);
646 
647     // Calculate the entry context for the current block
648     bool HasBackEdges = false;
649     bool CtxInit = true;
650     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
651          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
652       // if *PI -> CurrBlock is a back edge, so skip it
653       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
654         HasBackEdges = true;
655         continue;
656       }
657 
658       int PrevBlockID = (*PI)->getBlockID();
659       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
660 
661       if (CtxInit) {
662         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
663         CtxInit = false;
664       }
665       else {
666         CurrBlockInfo->EntryContext =
667           intersectContexts(CurrBlockInfo->EntryContext,
668                             PrevBlockInfo->ExitContext);
669       }
670     }
671 
672     // Duplicate the context if we have back-edges, so we can call
673     // intersectBackEdges later.
674     if (HasBackEdges)
675       CurrBlockInfo->EntryContext =
676         createReferenceContext(CurrBlockInfo->EntryContext);
677 
678     // Create a starting context index for the current block
679     saveContext(nullptr, CurrBlockInfo->EntryContext);
680     CurrBlockInfo->EntryIndex = getContextIndex();
681 
682     // Visit all the statements in the basic block.
683     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
684     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
685          BE = CurrBlock->end(); BI != BE; ++BI) {
686       switch (BI->getKind()) {
687         case CFGElement::Statement: {
688           CFGStmt CS = BI->castAs<CFGStmt>();
689           VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
690           break;
691         }
692         default:
693           break;
694       }
695     }
696     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
697 
698     // Mark variables on back edges as "unknown" if they've been changed.
699     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
700          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
701       // if CurrBlock -> *SI is *not* a back edge
702       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
703         continue;
704 
705       CFGBlock *FirstLoopBlock = *SI;
706       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
707       Context LoopEnd   = CurrBlockInfo->ExitContext;
708       intersectBackEdge(LoopBegin, LoopEnd);
709     }
710   }
711 
712   // Put an extra entry at the end of the indexed context array
713   unsigned exitID = CFGraph->getExit().getBlockID();
714   saveContext(nullptr, BlockInfo[exitID].ExitContext);
715 }
716 
717 /// Find the appropriate source locations to use when producing diagnostics for
718 /// each block in the CFG.
719 static void findBlockLocations(CFG *CFGraph,
720                                const PostOrderCFGView *SortedGraph,
721                                std::vector<CFGBlockInfo> &BlockInfo) {
722   for (const auto *CurrBlock : *SortedGraph) {
723     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
724 
725     // Find the source location of the last statement in the block, if the
726     // block is not empty.
727     if (const Stmt *S = CurrBlock->getTerminator()) {
728       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
729     } else {
730       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
731            BE = CurrBlock->rend(); BI != BE; ++BI) {
732         // FIXME: Handle other CFGElement kinds.
733         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
734           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
735           break;
736         }
737       }
738     }
739 
740     if (!CurrBlockInfo->ExitLoc.isInvalid()) {
741       // This block contains at least one statement. Find the source location
742       // of the first statement in the block.
743       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
744            BE = CurrBlock->end(); BI != BE; ++BI) {
745         // FIXME: Handle other CFGElement kinds.
746         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
747           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
748           break;
749         }
750       }
751     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
752                CurrBlock != &CFGraph->getExit()) {
753       // The block is empty, and has a single predecessor. Use its exit
754       // location.
755       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
756           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
757     }
758   }
759 }
760 
761 /// \brief Class which implements the core thread safety analysis routines.
762 class ThreadSafetyAnalyzer {
763   friend class BuildLockset;
764 
765   llvm::BumpPtrAllocator Bpa;
766   threadSafety::til::MemRegionRef Arena;
767   threadSafety::SExprBuilder SxBuilder;
768 
769   ThreadSafetyHandler       &Handler;
770   const CXXMethodDecl       *CurrentMethod;
771   LocalVariableMap          LocalVarMap;
772   FactManager               FactMan;
773   std::vector<CFGBlockInfo> BlockInfo;
774 
775 public:
776   ThreadSafetyAnalyzer(ThreadSafetyHandler &H)
777      : Arena(&Bpa), SxBuilder(Arena), Handler(H) {}
778 
779   bool inCurrentScope(const CapabilityExpr &CapE);
780 
781   void addLock(FactSet &FSet, const FactEntry &Entry, StringRef DiagKind,
782                bool ReqAttr = false);
783   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
784                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
785                   StringRef DiagKind);
786 
787   template <typename AttrType>
788   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
789                    const NamedDecl *D, VarDecl *SelfDecl = nullptr);
790 
791   template <class AttrType>
792   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
793                    const NamedDecl *D,
794                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
795                    Expr *BrE, bool Neg);
796 
797   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
798                                      bool &Negate);
799 
800   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
801                       const CFGBlock* PredBlock,
802                       const CFGBlock *CurrBlock);
803 
804   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
805                         SourceLocation JoinLoc,
806                         LockErrorKind LEK1, LockErrorKind LEK2,
807                         bool Modify=true);
808 
809   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
810                         SourceLocation JoinLoc, LockErrorKind LEK1,
811                         bool Modify=true) {
812     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
813   }
814 
815   void runAnalysis(AnalysisDeclContext &AC);
816 };
817 
818 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs.
819 static const ValueDecl *getValueDecl(const Expr *Exp) {
820   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
821     return getValueDecl(CE->getSubExpr());
822 
823   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
824     return DR->getDecl();
825 
826   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
827     return ME->getMemberDecl();
828 
829   return nullptr;
830 }
831 
832 template <typename Ty>
833 class has_arg_iterator_range {
834   typedef char yes[1];
835   typedef char no[2];
836 
837   template <typename Inner>
838   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
839 
840   template <typename>
841   static no& test(...);
842 
843 public:
844   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
845 };
846 
847 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
848   return A->getName();
849 }
850 
851 static StringRef ClassifyDiagnostic(QualType VDT) {
852   // We need to look at the declaration of the type of the value to determine
853   // which it is. The type should either be a record or a typedef, or a pointer
854   // or reference thereof.
855   if (const auto *RT = VDT->getAs<RecordType>()) {
856     if (const auto *RD = RT->getDecl())
857       if (const auto *CA = RD->getAttr<CapabilityAttr>())
858         return ClassifyDiagnostic(CA);
859   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
860     if (const auto *TD = TT->getDecl())
861       if (const auto *CA = TD->getAttr<CapabilityAttr>())
862         return ClassifyDiagnostic(CA);
863   } else if (VDT->isPointerType() || VDT->isReferenceType())
864     return ClassifyDiagnostic(VDT->getPointeeType());
865 
866   return "mutex";
867 }
868 
869 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
870   assert(VD && "No ValueDecl passed");
871 
872   // The ValueDecl is the declaration of a mutex or role (hopefully).
873   return ClassifyDiagnostic(VD->getType());
874 }
875 
876 template <typename AttrTy>
877 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
878                                StringRef>::type
879 ClassifyDiagnostic(const AttrTy *A) {
880   if (const ValueDecl *VD = getValueDecl(A->getArg()))
881     return ClassifyDiagnostic(VD);
882   return "mutex";
883 }
884 
885 template <typename AttrTy>
886 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
887                                StringRef>::type
888 ClassifyDiagnostic(const AttrTy *A) {
889   for (const auto *Arg : A->args()) {
890     if (const ValueDecl *VD = getValueDecl(Arg))
891       return ClassifyDiagnostic(VD);
892   }
893   return "mutex";
894 }
895 
896 
897 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
898   if (!CurrentMethod)
899       return false;
900   if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
901     auto *VD = P->clangDecl();
902     if (VD)
903       return VD->getDeclContext() == CurrentMethod->getDeclContext();
904   }
905   return false;
906 }
907 
908 
909 /// \brief Add a new lock to the lockset, warning if the lock is already there.
910 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
911 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const FactEntry &Entry,
912                                    StringRef DiagKind, bool ReqAttr) {
913   if (Entry.shouldIgnore())
914     return;
915 
916   if (!ReqAttr && !Entry.negative()) {
917     // look for the negative capability, and remove it from the fact set.
918     CapabilityExpr NegC = !Entry;
919     FactEntry *Nen = FSet.findLock(FactMan, NegC);
920     if (Nen) {
921       FSet.removeLock(FactMan, NegC);
922     }
923     else {
924       if (inCurrentScope(Entry) && !Entry.asserted())
925         Handler.handleNegativeNotHeld(DiagKind, Entry.toString(),
926                                       NegC.toString(), Entry.loc());
927     }
928   }
929 
930   // FIXME: deal with acquired before/after annotations.
931   // FIXME: Don't always warn when we have support for reentrant locks.
932   if (FSet.findLock(FactMan, Entry)) {
933     if (!Entry.asserted())
934       Handler.handleDoubleLock(DiagKind, Entry.toString(), Entry.loc());
935   } else {
936     FSet.addLock(FactMan, Entry);
937   }
938 }
939 
940 
941 /// \brief Remove a lock from the lockset, warning if the lock is not there.
942 /// \param UnlockLoc The source location of the unlock (only used in error msg)
943 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
944                                       SourceLocation UnlockLoc,
945                                       bool FullyRemove, LockKind ReceivedKind,
946                                       StringRef DiagKind) {
947   if (Cp.shouldIgnore())
948     return;
949 
950   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
951   if (!LDat) {
952     Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
953     return;
954   }
955 
956   // Generic lock removal doesn't care about lock kind mismatches, but
957   // otherwise diagnose when the lock kinds are mismatched.
958   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
959     Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
960                                       LDat->kind(), ReceivedKind, UnlockLoc);
961   }
962 
963   if (LDat->underlying()) {
964     assert(!Cp.negative() && "Managing object cannot be negative.");
965     CapabilityExpr UnderCp(LDat->underlying(), false);
966     FactEntry UnderEntry(!UnderCp, LK_Exclusive, UnlockLoc);
967 
968     // This is scoped lockable object, which manages the real mutex.
969     if (FullyRemove) {
970       // We're destroying the managing object.
971       // Remove the underlying mutex if it exists; but don't warn.
972       if (FSet.findLock(FactMan, UnderCp)) {
973         FSet.removeLock(FactMan, UnderCp);
974         FSet.addLock(FactMan, UnderEntry);
975       }
976       FSet.removeLock(FactMan, Cp);
977     } else {
978       // We're releasing the underlying mutex, but not destroying the
979       // managing object.  Warn on dual release.
980       if (!FSet.findLock(FactMan, UnderCp)) {
981         Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), UnlockLoc);
982       }
983       FSet.removeLock(FactMan, UnderCp);
984       FSet.addLock(FactMan, UnderEntry);
985     }
986     return;
987   }
988   // else !LDat->underlying()
989 
990   FSet.removeLock(FactMan, Cp);
991   if (!Cp.negative()) {
992     FSet.addLock(FactMan, FactEntry(!Cp, LK_Exclusive, UnlockLoc));
993   }
994 }
995 
996 
997 /// \brief Extract the list of mutexIDs from the attribute on an expression,
998 /// and push them onto Mtxs, discarding any duplicates.
999 template <typename AttrType>
1000 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1001                                        Expr *Exp, const NamedDecl *D,
1002                                        VarDecl *SelfDecl) {
1003   if (Attr->args_size() == 0) {
1004     // The mutex held is the "this" object.
1005     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1006     if (Cp.isInvalid()) {
1007        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1008        return;
1009     }
1010     //else
1011     if (!Cp.shouldIgnore())
1012       Mtxs.push_back_nodup(Cp);
1013     return;
1014   }
1015 
1016   for (const auto *Arg : Attr->args()) {
1017     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1018     if (Cp.isInvalid()) {
1019        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1020        continue;
1021     }
1022     //else
1023     if (!Cp.shouldIgnore())
1024       Mtxs.push_back_nodup(Cp);
1025   }
1026 }
1027 
1028 
1029 /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1030 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1031 /// any duplicates.
1032 template <class AttrType>
1033 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1034                                        Expr *Exp, const NamedDecl *D,
1035                                        const CFGBlock *PredBlock,
1036                                        const CFGBlock *CurrBlock,
1037                                        Expr *BrE, bool Neg) {
1038   // Find out which branch has the lock
1039   bool branch = false;
1040   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1041     branch = BLE->getValue();
1042   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1043     branch = ILE->getValue().getBoolValue();
1044 
1045   int branchnum = branch ? 0 : 1;
1046   if (Neg)
1047     branchnum = !branchnum;
1048 
1049   // If we've taken the trylock branch, then add the lock
1050   int i = 0;
1051   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1052        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1053     if (*SI == CurrBlock && i == branchnum)
1054       getMutexIDs(Mtxs, Attr, Exp, D);
1055   }
1056 }
1057 
1058 
1059 bool getStaticBooleanValue(Expr* E, bool& TCond) {
1060   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1061     TCond = false;
1062     return true;
1063   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1064     TCond = BLE->getValue();
1065     return true;
1066   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1067     TCond = ILE->getValue().getBoolValue();
1068     return true;
1069   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1070     return getStaticBooleanValue(CE->getSubExpr(), TCond);
1071   }
1072   return false;
1073 }
1074 
1075 
1076 // If Cond can be traced back to a function call, return the call expression.
1077 // The negate variable should be called with false, and will be set to true
1078 // if the function call is negated, e.g. if (!mu.tryLock(...))
1079 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1080                                                          LocalVarContext C,
1081                                                          bool &Negate) {
1082   if (!Cond)
1083     return nullptr;
1084 
1085   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1086     return CallExp;
1087   }
1088   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1089     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1090   }
1091   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1092     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1093   }
1094   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1095     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1096   }
1097   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1098     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1099     return getTrylockCallExpr(E, C, Negate);
1100   }
1101   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1102     if (UOP->getOpcode() == UO_LNot) {
1103       Negate = !Negate;
1104       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1105     }
1106     return nullptr;
1107   }
1108   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1109     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1110       if (BOP->getOpcode() == BO_NE)
1111         Negate = !Negate;
1112 
1113       bool TCond = false;
1114       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1115         if (!TCond) Negate = !Negate;
1116         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1117       }
1118       TCond = false;
1119       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1120         if (!TCond) Negate = !Negate;
1121         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1122       }
1123       return nullptr;
1124     }
1125     if (BOP->getOpcode() == BO_LAnd) {
1126       // LHS must have been evaluated in a different block.
1127       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1128     }
1129     if (BOP->getOpcode() == BO_LOr) {
1130       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1131     }
1132     return nullptr;
1133   }
1134   return nullptr;
1135 }
1136 
1137 
1138 /// \brief Find the lockset that holds on the edge between PredBlock
1139 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1140 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1141 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1142                                           const FactSet &ExitSet,
1143                                           const CFGBlock *PredBlock,
1144                                           const CFGBlock *CurrBlock) {
1145   Result = ExitSet;
1146 
1147   const Stmt *Cond = PredBlock->getTerminatorCondition();
1148   if (!Cond)
1149     return;
1150 
1151   bool Negate = false;
1152   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1153   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1154   StringRef CapDiagKind = "mutex";
1155 
1156   CallExpr *Exp =
1157     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1158   if (!Exp)
1159     return;
1160 
1161   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1162   if(!FunDecl || !FunDecl->hasAttrs())
1163     return;
1164 
1165   CapExprSet ExclusiveLocksToAdd;
1166   CapExprSet SharedLocksToAdd;
1167 
1168   // If the condition is a call to a Trylock function, then grab the attributes
1169   for (auto *Attr : FunDecl->getAttrs()) {
1170     switch (Attr->getKind()) {
1171       case attr::ExclusiveTrylockFunction: {
1172         ExclusiveTrylockFunctionAttr *A =
1173           cast<ExclusiveTrylockFunctionAttr>(Attr);
1174         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1175                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1176         CapDiagKind = ClassifyDiagnostic(A);
1177         break;
1178       }
1179       case attr::SharedTrylockFunction: {
1180         SharedTrylockFunctionAttr *A =
1181           cast<SharedTrylockFunctionAttr>(Attr);
1182         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1183                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1184         CapDiagKind = ClassifyDiagnostic(A);
1185         break;
1186       }
1187       default:
1188         break;
1189     }
1190   }
1191 
1192   // Add and remove locks.
1193   SourceLocation Loc = Exp->getExprLoc();
1194   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1195     addLock(Result, FactEntry(ExclusiveLockToAdd, LK_Exclusive, Loc),
1196             CapDiagKind);
1197   for (const auto &SharedLockToAdd : SharedLocksToAdd)
1198     addLock(Result, FactEntry(SharedLockToAdd, LK_Shared, Loc),
1199             CapDiagKind);
1200 }
1201 
1202 /// \brief We use this class to visit different types of expressions in
1203 /// CFGBlocks, and build up the lockset.
1204 /// An expression may cause us to add or remove locks from the lockset, or else
1205 /// output error messages related to missing locks.
1206 /// FIXME: In future, we may be able to not inherit from a visitor.
1207 class BuildLockset : public StmtVisitor<BuildLockset> {
1208   friend class ThreadSafetyAnalyzer;
1209 
1210   ThreadSafetyAnalyzer *Analyzer;
1211   FactSet FSet;
1212   LocalVariableMap::Context LVarCtx;
1213   unsigned CtxIndex;
1214 
1215   // helper functions
1216   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1217                           Expr *MutexExp, ProtectedOperationKind POK,
1218                           StringRef DiagKind, SourceLocation Loc);
1219   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1220                        StringRef DiagKind);
1221 
1222   void checkAccess(const Expr *Exp, AccessKind AK);
1223   void checkPtAccess(const Expr *Exp, AccessKind AK);
1224 
1225   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1226 
1227 public:
1228   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1229     : StmtVisitor<BuildLockset>(),
1230       Analyzer(Anlzr),
1231       FSet(Info.EntrySet),
1232       LVarCtx(Info.EntryContext),
1233       CtxIndex(Info.EntryIndex)
1234   {}
1235 
1236   void VisitUnaryOperator(UnaryOperator *UO);
1237   void VisitBinaryOperator(BinaryOperator *BO);
1238   void VisitCastExpr(CastExpr *CE);
1239   void VisitCallExpr(CallExpr *Exp);
1240   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1241   void VisitDeclStmt(DeclStmt *S);
1242 };
1243 
1244 
1245 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
1246 /// of at least the passed in AccessKind.
1247 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1248                                       AccessKind AK, Expr *MutexExp,
1249                                       ProtectedOperationKind POK,
1250                                       StringRef DiagKind, SourceLocation Loc) {
1251   LockKind LK = getLockKindFromAccessKind(AK);
1252 
1253   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1254   if (Cp.isInvalid()) {
1255     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1256     return;
1257   } else if (Cp.shouldIgnore()) {
1258     return;
1259   }
1260 
1261   if (Cp.negative()) {
1262     // Negative capabilities act like locks excluded
1263     FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1264     if (LDat) {
1265       Analyzer->Handler.handleFunExcludesLock(
1266           DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1267       return;
1268     }
1269 
1270     // If this does not refer to a negative capability in the same class,
1271     // then stop here.
1272     if (!Analyzer->inCurrentScope(Cp))
1273       return;
1274 
1275     // Otherwise the negative requirement must be propagated to the caller.
1276     LDat = FSet.findLock(Analyzer->FactMan, Cp);
1277     if (!LDat) {
1278       Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
1279                                            LK_Shared, Loc);
1280     }
1281     return;
1282   }
1283 
1284   FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1285   bool NoError = true;
1286   if (!LDat) {
1287     // No exact match found.  Look for a partial match.
1288     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1289     if (LDat) {
1290       // Warn that there's no precise match.
1291       std::string PartMatchStr = LDat->toString();
1292       StringRef   PartMatchName(PartMatchStr);
1293       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1294                                            LK, Loc, &PartMatchName);
1295     } else {
1296       // Warn that there's no match at all.
1297       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1298                                            LK, Loc);
1299     }
1300     NoError = false;
1301   }
1302   // Make sure the mutex we found is the right kind.
1303   if (NoError && LDat && !LDat->isAtLeast(LK)) {
1304     Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1305                                          LK, Loc);
1306   }
1307 }
1308 
1309 /// \brief Warn if the LSet contains the given lock.
1310 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1311                                    Expr *MutexExp, StringRef DiagKind) {
1312   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1313   if (Cp.isInvalid()) {
1314     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1315     return;
1316   } else if (Cp.shouldIgnore()) {
1317     return;
1318   }
1319 
1320   FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
1321   if (LDat) {
1322     Analyzer->Handler.handleFunExcludesLock(
1323         DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1324   }
1325 }
1326 
1327 /// \brief Checks guarded_by and pt_guarded_by attributes.
1328 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1329 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1330 /// Similarly, we check if the access is to an expression that dereferences
1331 /// a pointer marked with pt_guarded_by.
1332 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
1333   Exp = Exp->IgnoreParenCasts();
1334 
1335   SourceLocation Loc = Exp->getExprLoc();
1336 
1337   if (Analyzer->Handler.issueBetaWarnings()) {
1338     // Local variables of reference type cannot be re-assigned;
1339     // map them to their initializer.
1340     while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1341       const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1342       if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1343         if (const auto *E = VD->getInit()) {
1344           Exp = E;
1345           continue;
1346         }
1347       }
1348       break;
1349     }
1350   }
1351 
1352   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
1353     // For dereferences
1354     if (UO->getOpcode() == clang::UO_Deref)
1355       checkPtAccess(UO->getSubExpr(), AK);
1356     return;
1357   }
1358 
1359   if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1360     checkPtAccess(AE->getLHS(), AK);
1361     return;
1362   }
1363 
1364   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
1365     if (ME->isArrow())
1366       checkPtAccess(ME->getBase(), AK);
1367     else
1368       checkAccess(ME->getBase(), AK);
1369   }
1370 
1371   const ValueDecl *D = getValueDecl(Exp);
1372   if (!D || !D->hasAttrs())
1373     return;
1374 
1375   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1376     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarAccess, AK,
1377                                         Loc);
1378   }
1379 
1380   for (const auto *I : D->specific_attrs<GuardedByAttr>())
1381     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarAccess,
1382                        ClassifyDiagnostic(I), Loc);
1383 }
1384 
1385 
1386 /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
1387 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
1388   while (true) {
1389     if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
1390       Exp = PE->getSubExpr();
1391       continue;
1392     }
1393     if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
1394       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1395         // If it's an actual array, and not a pointer, then it's elements
1396         // are protected by GUARDED_BY, not PT_GUARDED_BY;
1397         checkAccess(CE->getSubExpr(), AK);
1398         return;
1399       }
1400       Exp = CE->getSubExpr();
1401       continue;
1402     }
1403     break;
1404   }
1405 
1406   const ValueDecl *D = getValueDecl(Exp);
1407   if (!D || !D->hasAttrs())
1408     return;
1409 
1410   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1411     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarDereference, AK,
1412                                         Exp->getExprLoc());
1413 
1414   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1415     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarDereference,
1416                        ClassifyDiagnostic(I), Exp->getExprLoc());
1417 }
1418 
1419 /// \brief Process a function call, method call, constructor call,
1420 /// or destructor call.  This involves looking at the attributes on the
1421 /// corresponding function/method/constructor/destructor, issuing warnings,
1422 /// and updating the locksets accordingly.
1423 ///
1424 /// FIXME: For classes annotated with one of the guarded annotations, we need
1425 /// to treat const method calls as reads and non-const method calls as writes,
1426 /// and check that the appropriate locks are held. Non-const method calls with
1427 /// the same signature as const method calls can be also treated as reads.
1428 ///
1429 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1430   SourceLocation Loc = Exp->getExprLoc();
1431   const AttrVec &ArgAttrs = D->getAttrs();
1432   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1433   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1434   StringRef CapDiagKind = "mutex";
1435 
1436   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1437     Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1438     switch (At->getKind()) {
1439       // When we encounter a lock function, we need to add the lock to our
1440       // lockset.
1441       case attr::AcquireCapability: {
1442         auto *A = cast<AcquireCapabilityAttr>(At);
1443         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1444                                             : ExclusiveLocksToAdd,
1445                               A, Exp, D, VD);
1446 
1447         CapDiagKind = ClassifyDiagnostic(A);
1448         break;
1449       }
1450 
1451       // An assert will add a lock to the lockset, but will not generate
1452       // a warning if it is already there, and will not generate a warning
1453       // if it is not removed.
1454       case attr::AssertExclusiveLock: {
1455         AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
1456 
1457         CapExprSet AssertLocks;
1458         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1459         for (const auto &AssertLock : AssertLocks)
1460           Analyzer->addLock(FSet, FactEntry(AssertLock, LK_Exclusive, Loc,
1461                                             false, true),
1462                             ClassifyDiagnostic(A));
1463         break;
1464       }
1465       case attr::AssertSharedLock: {
1466         AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
1467 
1468         CapExprSet AssertLocks;
1469         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1470         for (const auto &AssertLock : AssertLocks)
1471           Analyzer->addLock(FSet, FactEntry(AssertLock, LK_Shared, Loc,
1472                                             false, true),
1473                             ClassifyDiagnostic(A));
1474         break;
1475       }
1476 
1477       // When we encounter an unlock function, we need to remove unlocked
1478       // mutexes from the lockset, and flag a warning if they are not there.
1479       case attr::ReleaseCapability: {
1480         auto *A = cast<ReleaseCapabilityAttr>(At);
1481         if (A->isGeneric())
1482           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1483         else if (A->isShared())
1484           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1485         else
1486           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1487 
1488         CapDiagKind = ClassifyDiagnostic(A);
1489         break;
1490       }
1491 
1492       case attr::RequiresCapability: {
1493         RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
1494         for (auto *Arg : A->args())
1495           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1496                              POK_FunctionCall, ClassifyDiagnostic(A),
1497                              Exp->getExprLoc());
1498         break;
1499       }
1500 
1501       case attr::LocksExcluded: {
1502         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1503         for (auto *Arg : A->args())
1504           warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1505         break;
1506       }
1507 
1508       // Ignore attributes unrelated to thread-safety
1509       default:
1510         break;
1511     }
1512   }
1513 
1514   // Figure out if we're calling the constructor of scoped lockable class
1515   bool isScopedVar = false;
1516   if (VD) {
1517     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1518       const CXXRecordDecl* PD = CD->getParent();
1519       if (PD && PD->hasAttr<ScopedLockableAttr>())
1520         isScopedVar = true;
1521     }
1522   }
1523 
1524   // Add locks.
1525   for (const auto &M : ExclusiveLocksToAdd)
1526     Analyzer->addLock(FSet, FactEntry(M, LK_Exclusive, Loc, isScopedVar),
1527                       CapDiagKind);
1528   for (const auto &M : SharedLocksToAdd)
1529     Analyzer->addLock(FSet, FactEntry(M, LK_Shared, Loc, isScopedVar),
1530                       CapDiagKind);
1531 
1532   // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1533   // FIXME: this doesn't work if we acquire multiple locks.
1534   if (isScopedVar) {
1535     SourceLocation MLoc = VD->getLocation();
1536     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1537     // FIXME: does this store a pointer to DRE?
1538     CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1539 
1540     for (const auto &M : ExclusiveLocksToAdd)
1541       Analyzer->addLock(FSet, FactEntry(Scp, LK_Exclusive, MLoc, M.sexpr()),
1542                         CapDiagKind);
1543     for (const auto &M : SharedLocksToAdd)
1544       Analyzer->addLock(FSet, FactEntry(Scp, LK_Shared, MLoc, M.sexpr()),
1545                         CapDiagKind);
1546 
1547     // handle corner case where the underlying mutex is invalid
1548     if (ExclusiveLocksToAdd.size() == 0 && SharedLocksToAdd.size() == 0) {
1549       Analyzer->addLock(FSet, FactEntry(Scp, LK_Exclusive, MLoc),
1550                         CapDiagKind);
1551     }
1552   }
1553 
1554   // Remove locks.
1555   // FIXME -- should only fully remove if the attribute refers to 'this'.
1556   bool Dtor = isa<CXXDestructorDecl>(D);
1557   for (const auto &M : ExclusiveLocksToRemove)
1558     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1559   for (const auto &M : SharedLocksToRemove)
1560     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1561   for (const auto &M : GenericLocksToRemove)
1562     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1563 }
1564 
1565 
1566 /// \brief For unary operations which read and write a variable, we need to
1567 /// check whether we hold any required mutexes. Reads are checked in
1568 /// VisitCastExpr.
1569 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1570   switch (UO->getOpcode()) {
1571     case clang::UO_PostDec:
1572     case clang::UO_PostInc:
1573     case clang::UO_PreDec:
1574     case clang::UO_PreInc: {
1575       checkAccess(UO->getSubExpr(), AK_Written);
1576       break;
1577     }
1578     default:
1579       break;
1580   }
1581 }
1582 
1583 /// For binary operations which assign to a variable (writes), we need to check
1584 /// whether we hold any required mutexes.
1585 /// FIXME: Deal with non-primitive types.
1586 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1587   if (!BO->isAssignmentOp())
1588     return;
1589 
1590   // adjust the context
1591   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1592 
1593   checkAccess(BO->getLHS(), AK_Written);
1594 }
1595 
1596 
1597 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1598 /// need to ensure we hold any required mutexes.
1599 /// FIXME: Deal with non-primitive types.
1600 void BuildLockset::VisitCastExpr(CastExpr *CE) {
1601   if (CE->getCastKind() != CK_LValueToRValue)
1602     return;
1603   checkAccess(CE->getSubExpr(), AK_Read);
1604 }
1605 
1606 
1607 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1608   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
1609     MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
1610     // ME can be null when calling a method pointer
1611     CXXMethodDecl *MD = CE->getMethodDecl();
1612 
1613     if (ME && MD) {
1614       if (ME->isArrow()) {
1615         if (MD->isConst()) {
1616           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
1617         } else {  // FIXME -- should be AK_Written
1618           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
1619         }
1620       } else {
1621         if (MD->isConst())
1622           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
1623         else     // FIXME -- should be AK_Written
1624           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
1625       }
1626     }
1627   } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
1628     switch (OE->getOperator()) {
1629       case OO_Equal: {
1630         const Expr *Target = OE->getArg(0);
1631         const Expr *Source = OE->getArg(1);
1632         checkAccess(Target, AK_Written);
1633         checkAccess(Source, AK_Read);
1634         break;
1635       }
1636       case OO_Star:
1637       case OO_Arrow:
1638       case OO_Subscript: {
1639         const Expr *Obj = OE->getArg(0);
1640         checkAccess(Obj, AK_Read);
1641         checkPtAccess(Obj, AK_Read);
1642         break;
1643       }
1644       default: {
1645         const Expr *Obj = OE->getArg(0);
1646         checkAccess(Obj, AK_Read);
1647         break;
1648       }
1649     }
1650   }
1651   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1652   if(!D || !D->hasAttrs())
1653     return;
1654   handleCall(Exp, D);
1655 }
1656 
1657 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1658   const CXXConstructorDecl *D = Exp->getConstructor();
1659   if (D && D->isCopyConstructor()) {
1660     const Expr* Source = Exp->getArg(0);
1661     checkAccess(Source, AK_Read);
1662   }
1663   // FIXME -- only handles constructors in DeclStmt below.
1664 }
1665 
1666 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1667   // adjust the context
1668   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1669 
1670   for (auto *D : S->getDeclGroup()) {
1671     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1672       Expr *E = VD->getInit();
1673       // handle constructors that involve temporaries
1674       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
1675         E = EWC->getSubExpr();
1676 
1677       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1678         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1679         if (!CtorD || !CtorD->hasAttrs())
1680           return;
1681         handleCall(CE, CtorD, VD);
1682       }
1683     }
1684   }
1685 }
1686 
1687 
1688 
1689 /// \brief Compute the intersection of two locksets and issue warnings for any
1690 /// locks in the symmetric difference.
1691 ///
1692 /// This function is used at a merge point in the CFG when comparing the lockset
1693 /// of each branch being merged. For example, given the following sequence:
1694 /// A; if () then B; else C; D; we need to check that the lockset after B and C
1695 /// are the same. In the event of a difference, we use the intersection of these
1696 /// two locksets at the start of D.
1697 ///
1698 /// \param FSet1 The first lockset.
1699 /// \param FSet2 The second lockset.
1700 /// \param JoinLoc The location of the join point for error reporting
1701 /// \param LEK1 The error message to report if a mutex is missing from LSet1
1702 /// \param LEK2 The error message to report if a mutex is missing from Lset2
1703 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
1704                                             const FactSet &FSet2,
1705                                             SourceLocation JoinLoc,
1706                                             LockErrorKind LEK1,
1707                                             LockErrorKind LEK2,
1708                                             bool Modify) {
1709   FactSet FSet1Orig = FSet1;
1710 
1711   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
1712   for (const auto &Fact : FSet2) {
1713     const FactEntry *LDat1 = nullptr;
1714     const FactEntry *LDat2 = &FactMan[Fact];
1715     FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
1716     if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
1717 
1718     if (LDat1) {
1719       if (LDat1->kind() != LDat2->kind()) {
1720         Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
1721                                          LDat2->loc(), LDat1->loc());
1722         if (Modify && LDat1->kind() != LK_Exclusive) {
1723           // Take the exclusive lock, which is the one in FSet2.
1724           *Iter1 = Fact;
1725         }
1726       }
1727       else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
1728         // The non-asserted lock in FSet2 is the one we want to track.
1729         *Iter1 = Fact;
1730       }
1731     } else {
1732       if (LDat2->underlying()) {
1733         if (FSet2.findLock(FactMan, CapabilityExpr(LDat2->underlying(),
1734                                                     false))) {
1735           // If this is a scoped lock that manages another mutex, and if the
1736           // underlying mutex is still held, then warn about the underlying
1737           // mutex.
1738           Handler.handleMutexHeldEndOfScope("mutex",
1739                                             sx::toString(LDat2->underlying()),
1740                                             LDat2->loc(), JoinLoc, LEK1);
1741         }
1742       }
1743       else if (!LDat2->managed() && !LDat2->asserted() &&
1744                !LDat2->negative() && !LDat2->isUniversal()) {
1745         Handler.handleMutexHeldEndOfScope("mutex", LDat2->toString(),
1746                                           LDat2->loc(), JoinLoc, LEK1);
1747       }
1748     }
1749   }
1750 
1751   // Find locks in FSet1 that are not in FSet2, and remove them.
1752   for (const auto &Fact : FSet1Orig) {
1753     const FactEntry *LDat1 = &FactMan[Fact];
1754     const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
1755 
1756     if (!LDat2) {
1757       if (LDat1->underlying()) {
1758         if (FSet1Orig.findLock(FactMan, CapabilityExpr(LDat1->underlying(),
1759                                                        false))) {
1760           // If this is a scoped lock that manages another mutex, and if the
1761           // underlying mutex is still held, then warn about the underlying
1762           // mutex.
1763           Handler.handleMutexHeldEndOfScope("mutex",
1764                                             sx::toString(LDat1->underlying()),
1765                                             LDat1->loc(), JoinLoc, LEK1);
1766         }
1767       }
1768       else if (!LDat1->managed() && !LDat1->asserted() &&
1769                !LDat1->negative() && !LDat1->isUniversal()) {
1770         Handler.handleMutexHeldEndOfScope("mutex", LDat1->toString(),
1771                                           LDat1->loc(), JoinLoc, LEK2);
1772       }
1773       if (Modify)
1774         FSet1.removeLock(FactMan, *LDat1);
1775     }
1776   }
1777 }
1778 
1779 
1780 // Return true if block B never continues to its successors.
1781 inline bool neverReturns(const CFGBlock* B) {
1782   if (B->hasNoReturnElement())
1783     return true;
1784   if (B->empty())
1785     return false;
1786 
1787   CFGElement Last = B->back();
1788   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
1789     if (isa<CXXThrowExpr>(S->getStmt()))
1790       return true;
1791   }
1792   return false;
1793 }
1794 
1795 
1796 /// \brief Check a function's CFG for thread-safety violations.
1797 ///
1798 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
1799 /// at the end of each block, and issue warnings for thread safety violations.
1800 /// Each block in the CFG is traversed exactly once.
1801 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
1802   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
1803   // For now, we just use the walker to set things up.
1804   threadSafety::CFGWalker walker;
1805   if (!walker.init(AC))
1806     return;
1807 
1808   // AC.dumpCFG(true);
1809   // threadSafety::printSCFG(walker);
1810 
1811   CFG *CFGraph = walker.getGraph();
1812   const NamedDecl *D = walker.getDecl();
1813   const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
1814   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
1815 
1816   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
1817     return;
1818 
1819   // FIXME: Do something a bit more intelligent inside constructor and
1820   // destructor code.  Constructors and destructors must assume unique access
1821   // to 'this', so checks on member variable access is disabled, but we should
1822   // still enable checks on other objects.
1823   if (isa<CXXConstructorDecl>(D))
1824     return;  // Don't check inside constructors.
1825   if (isa<CXXDestructorDecl>(D))
1826     return;  // Don't check inside destructors.
1827 
1828   Handler.enterFunction(CurrentFunction);
1829 
1830   BlockInfo.resize(CFGraph->getNumBlockIDs(),
1831     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
1832 
1833   // We need to explore the CFG via a "topological" ordering.
1834   // That way, we will be guaranteed to have information about required
1835   // predecessor locksets when exploring a new block.
1836   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
1837   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1838 
1839   // Mark entry block as reachable
1840   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
1841 
1842   // Compute SSA names for local variables
1843   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
1844 
1845   // Fill in source locations for all CFGBlocks.
1846   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
1847 
1848   CapExprSet ExclusiveLocksAcquired;
1849   CapExprSet SharedLocksAcquired;
1850   CapExprSet LocksReleased;
1851 
1852   // Add locks from exclusive_locks_required and shared_locks_required
1853   // to initial lockset. Also turn off checking for lock and unlock functions.
1854   // FIXME: is there a more intelligent way to check lock/unlock functions?
1855   if (!SortedGraph->empty() && D->hasAttrs()) {
1856     const CFGBlock *FirstBlock = *SortedGraph->begin();
1857     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
1858     const AttrVec &ArgAttrs = D->getAttrs();
1859 
1860     CapExprSet ExclusiveLocksToAdd;
1861     CapExprSet SharedLocksToAdd;
1862     StringRef CapDiagKind = "mutex";
1863 
1864     SourceLocation Loc = D->getLocation();
1865     for (const auto *Attr : ArgAttrs) {
1866       Loc = Attr->getLocation();
1867       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
1868         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1869                     nullptr, D);
1870         CapDiagKind = ClassifyDiagnostic(A);
1871       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
1872         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
1873         // We must ignore such methods.
1874         if (A->args_size() == 0)
1875           return;
1876         // FIXME -- deal with exclusive vs. shared unlock functions?
1877         getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
1878         getMutexIDs(LocksReleased, A, nullptr, D);
1879         CapDiagKind = ClassifyDiagnostic(A);
1880       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
1881         if (A->args_size() == 0)
1882           return;
1883         getMutexIDs(A->isShared() ? SharedLocksAcquired
1884                                   : ExclusiveLocksAcquired,
1885                     A, nullptr, D);
1886         CapDiagKind = ClassifyDiagnostic(A);
1887       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
1888         // Don't try to check trylock functions for now
1889         return;
1890       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
1891         // Don't try to check trylock functions for now
1892         return;
1893       }
1894     }
1895 
1896     // FIXME -- Loc can be wrong here.
1897     for (const auto &Mu : ExclusiveLocksToAdd)
1898       addLock(InitialLockset, FactEntry(Mu, LK_Exclusive, Loc),
1899               CapDiagKind, true);
1900     for (const auto &Mu : SharedLocksToAdd)
1901       addLock(InitialLockset, FactEntry(Mu, LK_Shared, Loc),
1902               CapDiagKind, true);
1903   }
1904 
1905   for (const auto *CurrBlock : *SortedGraph) {
1906     int CurrBlockID = CurrBlock->getBlockID();
1907     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1908 
1909     // Use the default initial lockset in case there are no predecessors.
1910     VisitedBlocks.insert(CurrBlock);
1911 
1912     // Iterate through the predecessor blocks and warn if the lockset for all
1913     // predecessors is not the same. We take the entry lockset of the current
1914     // block to be the intersection of all previous locksets.
1915     // FIXME: By keeping the intersection, we may output more errors in future
1916     // for a lock which is not in the intersection, but was in the union. We
1917     // may want to also keep the union in future. As an example, let's say
1918     // the intersection contains Mutex L, and the union contains L and M.
1919     // Later we unlock M. At this point, we would output an error because we
1920     // never locked M; although the real error is probably that we forgot to
1921     // lock M on all code paths. Conversely, let's say that later we lock M.
1922     // In this case, we should compare against the intersection instead of the
1923     // union because the real error is probably that we forgot to unlock M on
1924     // all code paths.
1925     bool LocksetInitialized = false;
1926     SmallVector<CFGBlock *, 8> SpecialBlocks;
1927     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1928          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1929 
1930       // if *PI -> CurrBlock is a back edge
1931       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
1932         continue;
1933 
1934       int PrevBlockID = (*PI)->getBlockID();
1935       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1936 
1937       // Ignore edges from blocks that can't return.
1938       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
1939         continue;
1940 
1941       // Okay, we can reach this block from the entry.
1942       CurrBlockInfo->Reachable = true;
1943 
1944       // If the previous block ended in a 'continue' or 'break' statement, then
1945       // a difference in locksets is probably due to a bug in that block, rather
1946       // than in some other predecessor. In that case, keep the other
1947       // predecessor's lockset.
1948       if (const Stmt *Terminator = (*PI)->getTerminator()) {
1949         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
1950           SpecialBlocks.push_back(*PI);
1951           continue;
1952         }
1953       }
1954 
1955       FactSet PrevLockset;
1956       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
1957 
1958       if (!LocksetInitialized) {
1959         CurrBlockInfo->EntrySet = PrevLockset;
1960         LocksetInitialized = true;
1961       } else {
1962         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
1963                          CurrBlockInfo->EntryLoc,
1964                          LEK_LockedSomePredecessors);
1965       }
1966     }
1967 
1968     // Skip rest of block if it's not reachable.
1969     if (!CurrBlockInfo->Reachable)
1970       continue;
1971 
1972     // Process continue and break blocks. Assume that the lockset for the
1973     // resulting block is unaffected by any discrepancies in them.
1974     for (const auto *PrevBlock : SpecialBlocks) {
1975       int PrevBlockID = PrevBlock->getBlockID();
1976       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1977 
1978       if (!LocksetInitialized) {
1979         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1980         LocksetInitialized = true;
1981       } else {
1982         // Determine whether this edge is a loop terminator for diagnostic
1983         // purposes. FIXME: A 'break' statement might be a loop terminator, but
1984         // it might also be part of a switch. Also, a subsequent destructor
1985         // might add to the lockset, in which case the real issue might be a
1986         // double lock on the other path.
1987         const Stmt *Terminator = PrevBlock->getTerminator();
1988         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
1989 
1990         FactSet PrevLockset;
1991         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
1992                        PrevBlock, CurrBlock);
1993 
1994         // Do not update EntrySet.
1995         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
1996                          PrevBlockInfo->ExitLoc,
1997                          IsLoop ? LEK_LockedSomeLoopIterations
1998                                 : LEK_LockedSomePredecessors,
1999                          false);
2000       }
2001     }
2002 
2003     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2004 
2005     // Visit all the statements in the basic block.
2006     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2007          BE = CurrBlock->end(); BI != BE; ++BI) {
2008       switch (BI->getKind()) {
2009         case CFGElement::Statement: {
2010           CFGStmt CS = BI->castAs<CFGStmt>();
2011           LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
2012           break;
2013         }
2014         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2015         case CFGElement::AutomaticObjectDtor: {
2016           CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
2017           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
2018               AD.getDestructorDecl(AC.getASTContext()));
2019           if (!DD->hasAttrs())
2020             break;
2021 
2022           // Create a dummy expression,
2023           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
2024           DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2025                           AD.getTriggerStmt()->getLocEnd());
2026           LocksetBuilder.handleCall(&DRE, DD);
2027           break;
2028         }
2029         default:
2030           break;
2031       }
2032     }
2033     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2034 
2035     // For every back edge from CurrBlock (the end of the loop) to another block
2036     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2037     // the one held at the beginning of FirstLoopBlock. We can look up the
2038     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2039     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2040          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2041 
2042       // if CurrBlock -> *SI is *not* a back edge
2043       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2044         continue;
2045 
2046       CFGBlock *FirstLoopBlock = *SI;
2047       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2048       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2049       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2050                        PreLoop->EntryLoc,
2051                        LEK_LockedSomeLoopIterations,
2052                        false);
2053     }
2054   }
2055 
2056   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2057   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2058 
2059   // Skip the final check if the exit block is unreachable.
2060   if (!Final->Reachable)
2061     return;
2062 
2063   // By default, we expect all locks held on entry to be held on exit.
2064   FactSet ExpectedExitSet = Initial->EntrySet;
2065 
2066   // Adjust the expected exit set by adding or removing locks, as declared
2067   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2068   // issue the appropriate warning.
2069   // FIXME: the location here is not quite right.
2070   for (const auto &Lock : ExclusiveLocksAcquired)
2071     ExpectedExitSet.addLock(FactMan, FactEntry(Lock, LK_Exclusive,
2072                                                D->getLocation()));
2073   for (const auto &Lock : SharedLocksAcquired)
2074     ExpectedExitSet.addLock(FactMan, FactEntry(Lock, LK_Shared,
2075                                                D->getLocation()));
2076   for (const auto &Lock : LocksReleased)
2077     ExpectedExitSet.removeLock(FactMan, Lock);
2078 
2079   // FIXME: Should we call this function for all blocks which exit the function?
2080   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2081                    Final->ExitLoc,
2082                    LEK_LockedAtEndOfFunction,
2083                    LEK_NotLockedAtEndOfFunction,
2084                    false);
2085 
2086   Handler.leaveFunction(CurrentFunction);
2087 }
2088 
2089 
2090 /// \brief Check a function's CFG for thread-safety violations.
2091 ///
2092 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2093 /// at the end of each block, and issue warnings for thread safety violations.
2094 /// Each block in the CFG is traversed exactly once.
2095 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2096                              ThreadSafetyHandler &Handler) {
2097   ThreadSafetyAnalyzer Analyzer(Handler);
2098   Analyzer.runAnalysis(AC);
2099 }
2100 
2101 /// \brief Helper function that returns a LockKind required for the given level
2102 /// of access.
2103 LockKind getLockKindFromAccessKind(AccessKind AK) {
2104   switch (AK) {
2105     case AK_Read :
2106       return LK_Shared;
2107     case AK_Written :
2108       return LK_Exclusive;
2109   }
2110   llvm_unreachable("Unknown AccessKind");
2111 }
2112 
2113 }} // end namespace clang::threadSafety
2114