1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Analysis/CFGStmtMap.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/SourceLocation.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/FoldingSet.h"
31 #include "llvm/ADT/ImmutableMap.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include <algorithm>
36 #include <vector>
37 
38 using namespace clang;
39 using namespace thread_safety;
40 
41 // Key method definition
42 ThreadSafetyHandler::~ThreadSafetyHandler() {}
43 
44 namespace {
45 
46 /// \brief A MutexID object uniquely identifies a particular mutex, and
47 /// is built from an Expr* (i.e. calling a lock function).
48 ///
49 /// Thread-safety analysis works by comparing lock expressions.  Within the
50 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
51 /// a particular mutex object at run-time.  Subsequent occurrences of the same
52 /// expression (where "same" means syntactic equality) will refer to the same
53 /// run-time object if three conditions hold:
54 /// (1) Local variables in the expression, such as "x" have not changed.
55 /// (2) Values on the heap that affect the expression have not changed.
56 /// (3) The expression involves only pure function calls.
57 ///
58 /// The current implementation assumes, but does not verify, that multiple uses
59 /// of the same lock expression satisfies these criteria.
60 ///
61 /// Clang introduces an additional wrinkle, which is that it is difficult to
62 /// derive canonical expressions, or compare expressions directly for equality.
63 /// Thus, we identify a mutex not by an Expr, but by the set of named
64 /// declarations that are referenced by the Expr.  In other words,
65 /// x->foo->bar.mu will be a four element vector with the Decls for
66 /// mu, bar, and foo, and x.  The vector will uniquely identify the expression
67 /// for all practical purposes.
68 ///
69 /// Note we will need to perform substitution on "this" and function parameter
70 /// names when constructing a lock expression.
71 ///
72 /// For example:
73 /// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
74 /// void myFunc(C *X) { ... X->lock() ... }
75 /// The original expression for the mutex acquired by myFunc is "this->Mu", but
76 /// "X" is substituted for "this" so we get X->Mu();
77 ///
78 /// For another example:
79 /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
80 /// MyList *MyL;
81 /// foo(MyL);  // requires lock MyL->Mu to be held
82 class MutexID {
83   SmallVector<NamedDecl*, 2> DeclSeq;
84 
85   /// Build a Decl sequence representing the lock from the given expression.
86   /// Recursive function that terminates on DeclRefExpr.
87   /// Note: this function merely creates a MutexID; it does not check to
88   /// ensure that the original expression is a valid mutex expression.
89   void buildMutexID(Expr *Exp, Expr *Parent, int NumArgs,
90                     const NamedDecl **FunArgDecls, Expr **FunArgs) {
91     if (!Exp) {
92       DeclSeq.clear();
93       return;
94     }
95 
96     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
97       if (FunArgDecls) {
98         // Substitute call arguments for references to function parameters
99         for (int i = 0; i < NumArgs; ++i) {
100           if (DRE->getDecl() == FunArgDecls[i]) {
101             buildMutexID(FunArgs[i], 0, 0, 0, 0);
102             return;
103           }
104         }
105       }
106       NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
107       DeclSeq.push_back(ND);
108     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
109       NamedDecl *ND = ME->getMemberDecl();
110       DeclSeq.push_back(ND);
111       buildMutexID(ME->getBase(), Parent, NumArgs, FunArgDecls, FunArgs);
112     } else if (isa<CXXThisExpr>(Exp)) {
113       if (Parent)
114         buildMutexID(Parent, 0, 0, 0, 0);
115       else
116         return;  // mutexID is still valid in this case
117     } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
118       buildMutexID(UOE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
119     else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
120       buildMutexID(CE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
121     else
122       DeclSeq.clear(); // Mark as invalid lock expression.
123   }
124 
125   /// \brief Construct a MutexID from an expression.
126   /// \param MutexExp The original mutex expression within an attribute
127   /// \param DeclExp An expression involving the Decl on which the attribute
128   ///        occurs.
129   /// \param D  The declaration to which the lock/unlock attribute is attached.
130   void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
131     Expr *Parent = 0;
132     unsigned NumArgs = 0;
133     Expr **FunArgs = 0;
134     SmallVector<const NamedDecl*, 8> FunArgDecls;
135 
136     // If we are processing a raw attribute expression, with no substitutions.
137     if (DeclExp == 0) {
138       buildMutexID(MutexExp, 0, 0, 0, 0);
139       return;
140     }
141 
142     // Examine DeclExp to find Parent and FunArgs, which are used to substitute
143     // for formal parameters when we call buildMutexID later.
144     if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
145       Parent = ME->getBase();
146     } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
147       Parent = CE->getImplicitObjectArgument();
148       NumArgs = CE->getNumArgs();
149       FunArgs = CE->getArgs();
150     } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
151       Parent = 0;  // FIXME -- get the parent from DeclStmt
152       NumArgs = CE->getNumArgs();
153       FunArgs = CE->getArgs();
154     } else if (D && isa<CXXDestructorDecl>(D)) {
155       // There's no such thing as a "destructor call" in the AST.
156       Parent = DeclExp;
157     }
158 
159     // If the attribute has no arguments, then assume the argument is "this".
160     if (MutexExp == 0) {
161       buildMutexID(Parent, 0, 0, 0, 0);
162       return;
163     }
164 
165     // FIXME: handle default arguments
166     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
167       for (unsigned i = 0, ni = FD->getNumParams(); i < ni && i < NumArgs; ++i) {
168         FunArgDecls.push_back(FD->getParamDecl(i));
169       }
170     }
171     buildMutexID(MutexExp, Parent, NumArgs, &FunArgDecls.front(), FunArgs);
172   }
173 
174 public:
175   explicit MutexID(clang::Decl::EmptyShell e) {
176     DeclSeq.clear();
177   }
178 
179   /// \param MutexExp The original mutex expression within an attribute
180   /// \param DeclExp An expression involving the Decl on which the attribute
181   ///        occurs.
182   /// \param D  The declaration to which the lock/unlock attribute is attached.
183   /// Caller must check isValid() after construction.
184   MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
185     buildMutexIDFromExp(MutexExp, DeclExp, D);
186   }
187 
188   /// Return true if this is a valid decl sequence.
189   /// Caller must call this by hand after construction to handle errors.
190   bool isValid() const {
191     return !DeclSeq.empty();
192   }
193 
194   /// Issue a warning about an invalid lock expression
195   static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
196                               Expr *DeclExp, const NamedDecl* D) {
197     SourceLocation Loc;
198     if (DeclExp)
199       Loc = DeclExp->getExprLoc();
200 
201     // FIXME: add a note about the attribute location in MutexExp or D
202     if (Loc.isValid())
203       Handler.handleInvalidLockExp(Loc);
204   }
205 
206   bool operator==(const MutexID &other) const {
207     return DeclSeq == other.DeclSeq;
208   }
209 
210   bool operator!=(const MutexID &other) const {
211     return !(*this == other);
212   }
213 
214   // SmallVector overloads Operator< to do lexicographic ordering. Note that
215   // we use pointer equality (and <) to compare NamedDecls. This means the order
216   // of MutexIDs in a lockset is nondeterministic. In order to output
217   // diagnostics in a deterministic ordering, we must order all diagnostics to
218   // output by SourceLocation when iterating through this lockset.
219   bool operator<(const MutexID &other) const {
220     return DeclSeq < other.DeclSeq;
221   }
222 
223   /// \brief Returns the name of the first Decl in the list for a given MutexID;
224   /// e.g. the lock expression foo.bar() has name "bar".
225   /// The caret will point unambiguously to the lock expression, so using this
226   /// name in diagnostics is a way to get simple, and consistent, mutex names.
227   /// We do not want to output the entire expression text for security reasons.
228   StringRef getName() const {
229     assert(isValid());
230     return DeclSeq.front()->getName();
231   }
232 
233   void Profile(llvm::FoldingSetNodeID &ID) const {
234     for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
235          E = DeclSeq.end(); I != E; ++I) {
236       ID.AddPointer(*I);
237     }
238   }
239 };
240 
241 
242 /// \brief This is a helper class that stores info about the most recent
243 /// accquire of a Lock.
244 ///
245 /// The main body of the analysis maps MutexIDs to LockDatas.
246 struct LockData {
247   SourceLocation AcquireLoc;
248 
249   /// \brief LKind stores whether a lock is held shared or exclusively.
250   /// Note that this analysis does not currently support either re-entrant
251   /// locking or lock "upgrading" and "downgrading" between exclusive and
252   /// shared.
253   ///
254   /// FIXME: add support for re-entrant locking and lock up/downgrading
255   LockKind LKind;
256   MutexID UnderlyingMutex;  // for ScopedLockable objects
257 
258   LockData(SourceLocation AcquireLoc, LockKind LKind)
259     : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
260   {}
261 
262   LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
263     : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
264 
265   bool operator==(const LockData &other) const {
266     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
267   }
268 
269   bool operator!=(const LockData &other) const {
270     return !(*this == other);
271   }
272 
273   void Profile(llvm::FoldingSetNodeID &ID) const {
274     ID.AddInteger(AcquireLoc.getRawEncoding());
275     ID.AddInteger(LKind);
276   }
277 };
278 
279 
280 /// A Lockset maps each MutexID (defined above) to information about how it has
281 /// been locked.
282 typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
283 
284 /// \brief We use this class to visit different types of expressions in
285 /// CFGBlocks, and build up the lockset.
286 /// An expression may cause us to add or remove locks from the lockset, or else
287 /// output error messages related to missing locks.
288 /// FIXME: In future, we may be able to not inherit from a visitor.
289 class BuildLockset : public StmtVisitor<BuildLockset> {
290   friend class ThreadSafetyAnalyzer;
291 
292   ThreadSafetyHandler &Handler;
293   Lockset LSet;
294   Lockset::Factory &LocksetFactory;
295 
296   // Helper functions
297   void addLock(const MutexID &Mutex, const LockData &LDat);
298   void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
299 
300   template <class AttrType>
301   void addLocksToSet(LockKind LK, AttrType *Attr,
302                      Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
303   void removeLocksFromSet(UnlockFunctionAttr *Attr,
304                           Expr *Exp, NamedDecl* FunDecl);
305 
306   const ValueDecl *getValueDecl(Expr *Exp);
307   void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
308                            Expr *MutexExp, ProtectedOperationKind POK);
309   void checkAccess(Expr *Exp, AccessKind AK);
310   void checkDereference(Expr *Exp, AccessKind AK);
311   void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
312 
313   /// \brief Returns true if the lockset contains a lock, regardless of whether
314   /// the lock is held exclusively or shared.
315   bool locksetContains(const MutexID &Lock) const {
316     return LSet.lookup(Lock);
317   }
318 
319   /// \brief Returns true if the lockset contains a lock with the passed in
320   /// locktype.
321   bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
322     const LockData *LockHeld = LSet.lookup(Lock);
323     return (LockHeld && KindRequested == LockHeld->LKind);
324   }
325 
326   /// \brief Returns true if the lockset contains a lock with at least the
327   /// passed in locktype. So for example, if we pass in LK_Shared, this function
328   /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
329   /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
330   bool locksetContainsAtLeast(const MutexID &Lock,
331                               LockKind KindRequested) const {
332     switch (KindRequested) {
333       case LK_Shared:
334         return locksetContains(Lock);
335       case LK_Exclusive:
336         return locksetContains(Lock, KindRequested);
337     }
338     llvm_unreachable("Unknown LockKind");
339   }
340 
341 public:
342   BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
343     : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
344       LocksetFactory(F) {}
345 
346   Lockset getLockset() {
347     return LSet;
348   }
349 
350   void VisitUnaryOperator(UnaryOperator *UO);
351   void VisitBinaryOperator(BinaryOperator *BO);
352   void VisitCastExpr(CastExpr *CE);
353   void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
354   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
355   void VisitDeclStmt(DeclStmt *S);
356 };
357 
358 /// \brief Add a new lock to the lockset, warning if the lock is already there.
359 /// \param Mutex -- the Mutex expression for the lock
360 /// \param LDat  -- the LockData for the lock
361 void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
362   // FIXME: deal with acquired before/after annotations.
363   // FIXME: Don't always warn when we have support for reentrant locks.
364   if (locksetContains(Mutex))
365     Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
366   else
367     LSet = LocksetFactory.add(LSet, Mutex, LDat);
368 }
369 
370 /// \brief Remove a lock from the lockset, warning if the lock is not there.
371 /// \param LockExp The lock expression corresponding to the lock to be removed
372 /// \param UnlockLoc The source location of the unlock (only used in error msg)
373 void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
374   const LockData *LDat = LSet.lookup(Mutex);
375   if (!LDat)
376     Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
377   else {
378     // For scoped-lockable vars, remove the mutex associated with this var.
379     if (LDat->UnderlyingMutex.isValid())
380       removeLock(LDat->UnderlyingMutex, UnlockLoc);
381     LSet = LocksetFactory.remove(LSet, Mutex);
382   }
383 }
384 
385 /// \brief This function, parameterized by an attribute type, is used to add a
386 /// set of locks specified as attribute arguments to the lockset.
387 template <typename AttrType>
388 void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
389                                  Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
390   typedef typename AttrType::args_iterator iterator_type;
391 
392   SourceLocation ExpLocation = Exp->getExprLoc();
393 
394   // Figure out if we're calling the constructor of scoped lockable class
395   bool isScopedVar = false;
396   if (VD) {
397     if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
398       CXXRecordDecl* PD = CD->getParent();
399       if (PD && PD->getAttr<ScopedLockableAttr>())
400         isScopedVar = true;
401     }
402   }
403 
404   if (Attr->args_size() == 0) {
405     // The mutex held is the "this" object.
406     MutexID Mutex(0, Exp, FunDecl);
407     if (!Mutex.isValid())
408       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
409     else
410       addLock(Mutex, LockData(ExpLocation, LK));
411     return;
412   }
413 
414   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
415     MutexID Mutex(*I, Exp, FunDecl);
416     if (!Mutex.isValid())
417       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
418     else {
419       addLock(Mutex, LockData(ExpLocation, LK));
420       if (isScopedVar) {
421         // For scoped lockable vars, map this var to its underlying mutex.
422         DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
423         MutexID SMutex(&DRE, 0, 0);
424         addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
425       }
426     }
427   }
428 }
429 
430 /// \brief This function removes a set of locks specified as attribute
431 /// arguments from the lockset.
432 void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
433                                       Expr *Exp, NamedDecl* FunDecl) {
434   SourceLocation ExpLocation;
435   if (Exp) ExpLocation = Exp->getExprLoc();
436 
437   if (Attr->args_size() == 0) {
438     // The mutex held is the "this" object.
439     MutexID Mu(0, Exp, FunDecl);
440     if (!Mu.isValid())
441       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
442     else
443       removeLock(Mu, ExpLocation);
444     return;
445   }
446 
447   for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
448        E = Attr->args_end(); I != E; ++I) {
449     MutexID Mutex(*I, Exp, FunDecl);
450     if (!Mutex.isValid())
451       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
452     else
453       removeLock(Mutex, ExpLocation);
454   }
455 }
456 
457 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
458 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
459   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
460     return DR->getDecl();
461 
462   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
463     return ME->getMemberDecl();
464 
465   return 0;
466 }
467 
468 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
469 /// of at least the passed in AccessKind.
470 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
471                                       AccessKind AK, Expr *MutexExp,
472                                       ProtectedOperationKind POK) {
473   LockKind LK = getLockKindFromAccessKind(AK);
474 
475   MutexID Mutex(MutexExp, Exp, D);
476   if (!Mutex.isValid())
477     MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
478   else if (!locksetContainsAtLeast(Mutex, LK))
479     Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
480 }
481 
482 /// \brief This method identifies variable dereferences and checks pt_guarded_by
483 /// and pt_guarded_var annotations. Note that we only check these annotations
484 /// at the time a pointer is dereferenced.
485 /// FIXME: We need to check for other types of pointer dereferences
486 /// (e.g. [], ->) and deal with them here.
487 /// \param Exp An expression that has been read or written.
488 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
489   UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
490   if (!UO || UO->getOpcode() != clang::UO_Deref)
491     return;
492   Exp = UO->getSubExpr()->IgnoreParenCasts();
493 
494   const ValueDecl *D = getValueDecl(Exp);
495   if(!D || !D->hasAttrs())
496     return;
497 
498   if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
499     Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
500 
501   const AttrVec &ArgAttrs = D->getAttrs();
502   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
503     if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
504       warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
505 }
506 
507 /// \brief Checks guarded_by and guarded_var attributes.
508 /// Whenever we identify an access (read or write) of a DeclRefExpr or
509 /// MemberExpr, we need to check whether there are any guarded_by or
510 /// guarded_var attributes, and make sure we hold the appropriate mutexes.
511 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
512   const ValueDecl *D = getValueDecl(Exp);
513   if(!D || !D->hasAttrs())
514     return;
515 
516   if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
517     Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
518 
519   const AttrVec &ArgAttrs = D->getAttrs();
520   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
521     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
522       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
523 }
524 
525 /// \brief Process a function call, method call, constructor call,
526 /// or destructor call.  This involves looking at the attributes on the
527 /// corresponding function/method/constructor/destructor, issuing warnings,
528 /// and updating the locksets accordingly.
529 ///
530 /// FIXME: For classes annotated with one of the guarded annotations, we need
531 /// to treat const method calls as reads and non-const method calls as writes,
532 /// and check that the appropriate locks are held. Non-const method calls with
533 /// the same signature as const method calls can be also treated as reads.
534 ///
535 /// FIXME: We need to also visit CallExprs to catch/check global functions.
536 ///
537 /// FIXME: Do not flag an error for member variables accessed in constructors/
538 /// destructors
539 void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
540   AttrVec &ArgAttrs = D->getAttrs();
541   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
542     Attr *Attr = ArgAttrs[i];
543     switch (Attr->getKind()) {
544       // When we encounter an exclusive lock function, we need to add the lock
545       // to our lockset with kind exclusive.
546       case attr::ExclusiveLockFunction: {
547         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
548         addLocksToSet(LK_Exclusive, A, Exp, D, VD);
549         break;
550       }
551 
552       // When we encounter a shared lock function, we need to add the lock
553       // to our lockset with kind shared.
554       case attr::SharedLockFunction: {
555         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
556         addLocksToSet(LK_Shared, A, Exp, D, VD);
557         break;
558       }
559 
560       // When we encounter an unlock function, we need to remove unlocked
561       // mutexes from the lockset, and flag a warning if they are not there.
562       case attr::UnlockFunction: {
563         UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
564         removeLocksFromSet(UFAttr, Exp, D);
565         break;
566       }
567 
568       case attr::ExclusiveLocksRequired: {
569         ExclusiveLocksRequiredAttr *ELRAttr =
570             cast<ExclusiveLocksRequiredAttr>(Attr);
571 
572         for (ExclusiveLocksRequiredAttr::args_iterator
573              I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
574           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
575         break;
576       }
577 
578       case attr::SharedLocksRequired: {
579         SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
580 
581         for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
582              E = SLRAttr->args_end(); I != E; ++I)
583           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
584         break;
585       }
586 
587       case attr::LocksExcluded: {
588         LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
589         for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
590             E = LEAttr->args_end(); I != E; ++I) {
591           MutexID Mutex(*I, Exp, D);
592           if (!Mutex.isValid())
593             MutexID::warnInvalidLock(Handler, *I, Exp, D);
594           else if (locksetContains(Mutex))
595             Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
596                                           Exp->getExprLoc());
597         }
598         break;
599       }
600 
601       // Ignore other (non thread-safety) attributes
602       default:
603         break;
604     }
605   }
606 }
607 
608 /// \brief For unary operations which read and write a variable, we need to
609 /// check whether we hold any required mutexes. Reads are checked in
610 /// VisitCastExpr.
611 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
612   switch (UO->getOpcode()) {
613     case clang::UO_PostDec:
614     case clang::UO_PostInc:
615     case clang::UO_PreDec:
616     case clang::UO_PreInc: {
617       Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
618       checkAccess(SubExp, AK_Written);
619       checkDereference(SubExp, AK_Written);
620       break;
621     }
622     default:
623       break;
624   }
625 }
626 
627 /// For binary operations which assign to a variable (writes), we need to check
628 /// whether we hold any required mutexes.
629 /// FIXME: Deal with non-primitive types.
630 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
631   if (!BO->isAssignmentOp())
632     return;
633   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
634   checkAccess(LHSExp, AK_Written);
635   checkDereference(LHSExp, AK_Written);
636 }
637 
638 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
639 /// need to ensure we hold any required mutexes.
640 /// FIXME: Deal with non-primitive types.
641 void BuildLockset::VisitCastExpr(CastExpr *CE) {
642   if (CE->getCastKind() != CK_LValueToRValue)
643     return;
644   Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
645   checkAccess(SubExp, AK_Read);
646   checkDereference(SubExp, AK_Read);
647 }
648 
649 
650 void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
651   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
652   if(!D || !D->hasAttrs())
653     return;
654   handleCall(Exp, D);
655 }
656 
657 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
658   // FIXME -- only handles constructors in DeclStmt below.
659 }
660 
661 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
662   DeclGroupRef DGrp = S->getDeclGroup();
663   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
664     Decl *D = *I;
665     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
666       Expr *E = VD->getInit();
667       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
668         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
669         if (!CtorD || !CtorD->hasAttrs())
670           return;
671         handleCall(CE, CtorD, VD);
672       }
673     }
674   }
675 }
676 
677 
678 /// \brief Class which implements the core thread safety analysis routines.
679 class ThreadSafetyAnalyzer {
680   ThreadSafetyHandler &Handler;
681   Lockset::Factory    LocksetFactory;
682 
683 public:
684   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
685 
686   Lockset intersectAndWarn(const Lockset LSet1, const Lockset LSet2,
687                            LockErrorKind LEK);
688 
689   Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
690                   LockKind LK, SourceLocation Loc);
691 
692   void runAnalysis(AnalysisDeclContext &AC);
693 };
694 
695 /// \brief Compute the intersection of two locksets and issue warnings for any
696 /// locks in the symmetric difference.
697 ///
698 /// This function is used at a merge point in the CFG when comparing the lockset
699 /// of each branch being merged. For example, given the following sequence:
700 /// A; if () then B; else C; D; we need to check that the lockset after B and C
701 /// are the same. In the event of a difference, we use the intersection of these
702 /// two locksets at the start of D.
703 Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset LSet1,
704                                                const Lockset LSet2,
705                                                LockErrorKind LEK) {
706   Lockset Intersection = LSet1;
707   for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
708     const MutexID &LSet2Mutex = I.getKey();
709     const LockData &LSet2LockData = I.getData();
710     if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
711       if (LD->LKind != LSet2LockData.LKind) {
712         Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
713                                          LSet2LockData.AcquireLoc,
714                                          LD->AcquireLoc);
715         if (LD->LKind != LK_Exclusive)
716           Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
717                                             LSet2LockData);
718       }
719     } else {
720       Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
721                                         LSet2LockData.AcquireLoc, LEK);
722     }
723   }
724 
725   for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
726     if (!LSet2.contains(I.getKey())) {
727       const MutexID &Mutex = I.getKey();
728       const LockData &MissingLock = I.getData();
729       Handler.handleMutexHeldEndOfScope(Mutex.getName(),
730                                         MissingLock.AcquireLoc, LEK);
731       Intersection = LocksetFactory.remove(Intersection, Mutex);
732     }
733   }
734   return Intersection;
735 }
736 
737 Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
738                                       const NamedDecl *D,
739                                       LockKind LK, SourceLocation Loc) {
740   MutexID Mutex(MutexExp, 0, D);
741   if (!Mutex.isValid()) {
742     MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
743     return LSet;
744   }
745   LockData NewLock(Loc, LK);
746   return LocksetFactory.add(LSet, Mutex, NewLock);
747 }
748 
749 /// \brief Check a function's CFG for thread-safety violations.
750 ///
751 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
752 /// at the end of each block, and issue warnings for thread safety violations.
753 /// Each block in the CFG is traversed exactly once.
754 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
755   CFG *CFGraph = AC.getCFG();
756   if (!CFGraph) return;
757   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
758 
759   if (!D)
760     return;  // Ignore anonymous functions for now.
761   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
762     return;
763 
764   // FIXME: Switch to SmallVector? Otherwise improve performance impact?
765   std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
766                                      LocksetFactory.getEmptyMap());
767   std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
768                                     LocksetFactory.getEmptyMap());
769 
770   // We need to explore the CFG via a "topological" ordering.
771   // That way, we will be guaranteed to have information about required
772   // predecessor locksets when exploring a new block.
773   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
774   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
775 
776   // Add locks from exclusive_locks_required and shared_locks_required
777   // to initial lockset.
778   if (!SortedGraph->empty() && D->hasAttrs()) {
779     const CFGBlock *FirstBlock = *SortedGraph->begin();
780     Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
781     const AttrVec &ArgAttrs = D->getAttrs();
782     for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
783       Attr *Attr = ArgAttrs[i];
784       SourceLocation AttrLoc = Attr->getLocation();
785       if (SharedLocksRequiredAttr *SLRAttr
786             = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
787         for (SharedLocksRequiredAttr::args_iterator
788             SLRIter = SLRAttr->args_begin(),
789             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
790           InitialLockset = addLock(InitialLockset,
791                                    *SLRIter, D, LK_Shared,
792                                    AttrLoc);
793       } else if (ExclusiveLocksRequiredAttr *ELRAttr
794                    = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
795         for (ExclusiveLocksRequiredAttr::args_iterator
796             ELRIter = ELRAttr->args_begin(),
797             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
798           InitialLockset = addLock(InitialLockset,
799                                    *ELRIter, D, LK_Exclusive,
800                                    AttrLoc);
801       }
802     }
803   }
804 
805   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
806        E = SortedGraph->end(); I!= E; ++I) {
807     const CFGBlock *CurrBlock = *I;
808     int CurrBlockID = CurrBlock->getBlockID();
809 
810     VisitedBlocks.insert(CurrBlock);
811 
812     // Use the default initial lockset in case there are no predecessors.
813     Lockset &Entryset = EntryLocksets[CurrBlockID];
814     Lockset &Exitset = ExitLocksets[CurrBlockID];
815 
816     // Iterate through the predecessor blocks and warn if the lockset for all
817     // predecessors is not the same. We take the entry lockset of the current
818     // block to be the intersection of all previous locksets.
819     // FIXME: By keeping the intersection, we may output more errors in future
820     // for a lock which is not in the intersection, but was in the union. We
821     // may want to also keep the union in future. As an example, let's say
822     // the intersection contains Mutex L, and the union contains L and M.
823     // Later we unlock M. At this point, we would output an error because we
824     // never locked M; although the real error is probably that we forgot to
825     // lock M on all code paths. Conversely, let's say that later we lock M.
826     // In this case, we should compare against the intersection instead of the
827     // union because the real error is probably that we forgot to unlock M on
828     // all code paths.
829     bool LocksetInitialized = false;
830     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
831          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
832 
833       // if *PI -> CurrBlock is a back edge
834       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
835         continue;
836 
837       int PrevBlockID = (*PI)->getBlockID();
838       if (!LocksetInitialized) {
839         Entryset = ExitLocksets[PrevBlockID];
840         LocksetInitialized = true;
841       } else {
842         Entryset = intersectAndWarn(Entryset, ExitLocksets[PrevBlockID],
843                                     LEK_LockedSomePredecessors);
844       }
845     }
846 
847     BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
848     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
849          BE = CurrBlock->end(); BI != BE; ++BI) {
850       switch (BI->getKind()) {
851         case CFGElement::Statement: {
852           const CFGStmt *CS = cast<CFGStmt>(&*BI);
853           LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
854           break;
855         }
856         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
857         case CFGElement::AutomaticObjectDtor: {
858           const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
859           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
860             AD->getDestructorDecl(AC.getASTContext()));
861           if (!DD->hasAttrs())
862             break;
863 
864           // Create a dummy expression,
865           VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
866           DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
867                           AD->getTriggerStmt()->getLocEnd());
868           LocksetBuilder.handleCall(&DRE, DD);
869           break;
870         }
871         default:
872           break;
873       }
874     }
875     Exitset = LocksetBuilder.getLockset();
876 
877     // For every back edge from CurrBlock (the end of the loop) to another block
878     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
879     // the one held at the beginning of FirstLoopBlock. We can look up the
880     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
881     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
882          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
883 
884       // if CurrBlock -> *SI is *not* a back edge
885       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
886         continue;
887 
888       CFGBlock *FirstLoopBlock = *SI;
889       Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
890       Lockset LoopEnd = ExitLocksets[CurrBlockID];
891       intersectAndWarn(LoopEnd, PreLoop, LEK_LockedSomeLoopIterations);
892     }
893   }
894 
895   Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
896   Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
897 
898   // FIXME: Should we call this function for all blocks which exit the function?
899   intersectAndWarn(InitialLockset, FinalLockset, LEK_LockedAtEndOfFunction);
900 }
901 
902 } // end anonymous namespace
903 
904 
905 namespace clang {
906 namespace thread_safety {
907 
908 /// \brief Check a function's CFG for thread-safety violations.
909 ///
910 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
911 /// at the end of each block, and issue warnings for thread safety violations.
912 /// Each block in the CFG is traversed exactly once.
913 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
914                              ThreadSafetyHandler &Handler) {
915   ThreadSafetyAnalyzer Analyzer(Handler);
916   Analyzer.runAnalysis(AC);
917 }
918 
919 /// \brief Helper function that returns a LockKind required for the given level
920 /// of access.
921 LockKind getLockKindFromAccessKind(AccessKind AK) {
922   switch (AK) {
923     case AK_Read :
924       return LK_Shared;
925     case AK_Written :
926       return LK_Exclusive;
927   }
928   llvm_unreachable("Unknown AccessKind");
929 }
930 
931 }} // end namespace clang::thread_safety
932