1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14 // information.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Analysis/CFGStmtMap.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/SourceLocation.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/FoldingSet.h"
31 #include "llvm/ADT/ImmutableMap.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <utility>
38 #include <vector>
39 
40 using namespace clang;
41 using namespace thread_safety;
42 
43 // Key method definition
44 ThreadSafetyHandler::~ThreadSafetyHandler() {}
45 
46 namespace {
47 
48 /// \brief A MutexID object uniquely identifies a particular mutex, and
49 /// is built from an Expr* (i.e. calling a lock function).
50 ///
51 /// Thread-safety analysis works by comparing lock expressions.  Within the
52 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
53 /// a particular mutex object at run-time.  Subsequent occurrences of the same
54 /// expression (where "same" means syntactic equality) will refer to the same
55 /// run-time object if three conditions hold:
56 /// (1) Local variables in the expression, such as "x" have not changed.
57 /// (2) Values on the heap that affect the expression have not changed.
58 /// (3) The expression involves only pure function calls.
59 ///
60 /// The current implementation assumes, but does not verify, that multiple uses
61 /// of the same lock expression satisfies these criteria.
62 ///
63 /// Clang introduces an additional wrinkle, which is that it is difficult to
64 /// derive canonical expressions, or compare expressions directly for equality.
65 /// Thus, we identify a mutex not by an Expr, but by the set of named
66 /// declarations that are referenced by the Expr.  In other words,
67 /// x->foo->bar.mu will be a four element vector with the Decls for
68 /// mu, bar, and foo, and x.  The vector will uniquely identify the expression
69 /// for all practical purposes.
70 ///
71 /// Note we will need to perform substitution on "this" and function parameter
72 /// names when constructing a lock expression.
73 ///
74 /// For example:
75 /// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
76 /// void myFunc(C *X) { ... X->lock() ... }
77 /// The original expression for the mutex acquired by myFunc is "this->Mu", but
78 /// "X" is substituted for "this" so we get X->Mu();
79 ///
80 /// For another example:
81 /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
82 /// MyList *MyL;
83 /// foo(MyL);  // requires lock MyL->Mu to be held
84 class MutexID {
85   SmallVector<NamedDecl*, 2> DeclSeq;
86 
87   /// Build a Decl sequence representing the lock from the given expression.
88   /// Recursive function that terminates on DeclRefExpr.
89   /// Note: this function merely creates a MutexID; it does not check to
90   /// ensure that the original expression is a valid mutex expression.
91   void buildMutexID(Expr *Exp, const NamedDecl *D, Expr *Parent,
92                     unsigned NumArgs, Expr **FunArgs) {
93     if (!Exp) {
94       DeclSeq.clear();
95       return;
96     }
97 
98     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
99       NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
100       ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
101       if (PV) {
102         FunctionDecl *FD =
103           cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
104         unsigned i = PV->getFunctionScopeIndex();
105 
106         if (FunArgs && FD == D->getCanonicalDecl()) {
107           // Substitute call arguments for references to function parameters
108           assert(i < NumArgs);
109           buildMutexID(FunArgs[i], D, 0, 0, 0);
110           return;
111         }
112         // Map the param back to the param of the original function declaration.
113         DeclSeq.push_back(FD->getParamDecl(i));
114         return;
115       }
116       // Not a function parameter -- just store the reference.
117       DeclSeq.push_back(ND);
118     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
119       NamedDecl *ND = ME->getMemberDecl();
120       DeclSeq.push_back(ND);
121       buildMutexID(ME->getBase(), D, Parent, NumArgs, FunArgs);
122     } else if (isa<CXXThisExpr>(Exp)) {
123       if (Parent)
124         buildMutexID(Parent, D, 0, 0, 0);
125       else
126         return;  // mutexID is still valid in this case
127     } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
128       buildMutexID(UOE->getSubExpr(), D, Parent, NumArgs, FunArgs);
129     else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
130       buildMutexID(CE->getSubExpr(), D, Parent, NumArgs, FunArgs);
131     else
132       DeclSeq.clear(); // Mark as invalid lock expression.
133   }
134 
135   /// \brief Construct a MutexID from an expression.
136   /// \param MutexExp The original mutex expression within an attribute
137   /// \param DeclExp An expression involving the Decl on which the attribute
138   ///        occurs.
139   /// \param D  The declaration to which the lock/unlock attribute is attached.
140   void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
141     Expr *Parent = 0;
142     unsigned NumArgs = 0;
143     Expr **FunArgs = 0;
144 
145     // If we are processing a raw attribute expression, with no substitutions.
146     if (DeclExp == 0) {
147       buildMutexID(MutexExp, D, 0, 0, 0);
148       return;
149     }
150 
151     // Examine DeclExp to find Parent and FunArgs, which are used to substitute
152     // for formal parameters when we call buildMutexID later.
153     if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
154       Parent = ME->getBase();
155     } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
156       Parent = CE->getImplicitObjectArgument();
157       NumArgs = CE->getNumArgs();
158       FunArgs = CE->getArgs();
159     } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
160       NumArgs = CE->getNumArgs();
161       FunArgs = CE->getArgs();
162     } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
163       Parent = 0;  // FIXME -- get the parent from DeclStmt
164       NumArgs = CE->getNumArgs();
165       FunArgs = CE->getArgs();
166     } else if (D && isa<CXXDestructorDecl>(D)) {
167       // There's no such thing as a "destructor call" in the AST.
168       Parent = DeclExp;
169     }
170 
171     // If the attribute has no arguments, then assume the argument is "this".
172     if (MutexExp == 0) {
173       buildMutexID(Parent, D, 0, 0, 0);
174       return;
175     }
176 
177     buildMutexID(MutexExp, D, Parent, NumArgs, FunArgs);
178   }
179 
180 public:
181   explicit MutexID(clang::Decl::EmptyShell e) {
182     DeclSeq.clear();
183   }
184 
185   /// \param MutexExp The original mutex expression within an attribute
186   /// \param DeclExp An expression involving the Decl on which the attribute
187   ///        occurs.
188   /// \param D  The declaration to which the lock/unlock attribute is attached.
189   /// Caller must check isValid() after construction.
190   MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
191     buildMutexIDFromExp(MutexExp, DeclExp, D);
192   }
193 
194   /// Return true if this is a valid decl sequence.
195   /// Caller must call this by hand after construction to handle errors.
196   bool isValid() const {
197     return !DeclSeq.empty();
198   }
199 
200   /// Issue a warning about an invalid lock expression
201   static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
202                               Expr *DeclExp, const NamedDecl* D) {
203     SourceLocation Loc;
204     if (DeclExp)
205       Loc = DeclExp->getExprLoc();
206 
207     // FIXME: add a note about the attribute location in MutexExp or D
208     if (Loc.isValid())
209       Handler.handleInvalidLockExp(Loc);
210   }
211 
212   bool operator==(const MutexID &other) const {
213     return DeclSeq == other.DeclSeq;
214   }
215 
216   bool operator!=(const MutexID &other) const {
217     return !(*this == other);
218   }
219 
220   // SmallVector overloads Operator< to do lexicographic ordering. Note that
221   // we use pointer equality (and <) to compare NamedDecls. This means the order
222   // of MutexIDs in a lockset is nondeterministic. In order to output
223   // diagnostics in a deterministic ordering, we must order all diagnostics to
224   // output by SourceLocation when iterating through this lockset.
225   bool operator<(const MutexID &other) const {
226     return DeclSeq < other.DeclSeq;
227   }
228 
229   /// \brief Returns the name of the first Decl in the list for a given MutexID;
230   /// e.g. the lock expression foo.bar() has name "bar".
231   /// The caret will point unambiguously to the lock expression, so using this
232   /// name in diagnostics is a way to get simple, and consistent, mutex names.
233   /// We do not want to output the entire expression text for security reasons.
234   StringRef getName() const {
235     assert(isValid());
236     return DeclSeq.front()->getName();
237   }
238 
239   void Profile(llvm::FoldingSetNodeID &ID) const {
240     for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
241          E = DeclSeq.end(); I != E; ++I) {
242       ID.AddPointer(*I);
243     }
244   }
245 };
246 
247 
248 /// \brief This is a helper class that stores info about the most recent
249 /// accquire of a Lock.
250 ///
251 /// The main body of the analysis maps MutexIDs to LockDatas.
252 struct LockData {
253   SourceLocation AcquireLoc;
254 
255   /// \brief LKind stores whether a lock is held shared or exclusively.
256   /// Note that this analysis does not currently support either re-entrant
257   /// locking or lock "upgrading" and "downgrading" between exclusive and
258   /// shared.
259   ///
260   /// FIXME: add support for re-entrant locking and lock up/downgrading
261   LockKind LKind;
262   MutexID UnderlyingMutex;  // for ScopedLockable objects
263 
264   LockData(SourceLocation AcquireLoc, LockKind LKind)
265     : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
266   {}
267 
268   LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
269     : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
270 
271   bool operator==(const LockData &other) const {
272     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
273   }
274 
275   bool operator!=(const LockData &other) const {
276     return !(*this == other);
277   }
278 
279   void Profile(llvm::FoldingSetNodeID &ID) const {
280     ID.AddInteger(AcquireLoc.getRawEncoding());
281     ID.AddInteger(LKind);
282   }
283 };
284 
285 
286 /// A Lockset maps each MutexID (defined above) to information about how it has
287 /// been locked.
288 typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
289 typedef llvm::ImmutableMap<NamedDecl*, unsigned> LocalVarContext;
290 
291 class LocalVariableMap;
292 
293 /// A side (entry or exit) of a CFG node.
294 enum CFGBlockSide { CBS_Entry, CBS_Exit };
295 
296 /// CFGBlockInfo is a struct which contains all the information that is
297 /// maintained for each block in the CFG.  See LocalVariableMap for more
298 /// information about the contexts.
299 struct CFGBlockInfo {
300   Lockset EntrySet;             // Lockset held at entry to block
301   Lockset ExitSet;              // Lockset held at exit from block
302   LocalVarContext EntryContext; // Context held at entry to block
303   LocalVarContext ExitContext;  // Context held at exit from block
304   SourceLocation EntryLoc;      // Location of first statement in block
305   SourceLocation ExitLoc;       // Location of last statement in block.
306   unsigned EntryIndex;          // Used to replay contexts later
307 
308   const Lockset &getSet(CFGBlockSide Side) const {
309     return Side == CBS_Entry ? EntrySet : ExitSet;
310   }
311   SourceLocation getLocation(CFGBlockSide Side) const {
312     return Side == CBS_Entry ? EntryLoc : ExitLoc;
313   }
314 
315 private:
316   CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
317     : EntrySet(EmptySet), ExitSet(EmptySet),
318       EntryContext(EmptyCtx), ExitContext(EmptyCtx)
319   { }
320 
321 public:
322   static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
323                                         LocalVariableMap &M);
324 };
325 
326 
327 
328 // A LocalVariableMap maintains a map from local variables to their currently
329 // valid definitions.  It provides SSA-like functionality when traversing the
330 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
331 // unique name (an integer), which acts as the SSA name for that definition.
332 // The total set of names is shared among all CFG basic blocks.
333 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
334 // with their SSA-names.  Instead, we compute a Context for each point in the
335 // code, which maps local variables to the appropriate SSA-name.  This map
336 // changes with each assignment.
337 //
338 // The map is computed in a single pass over the CFG.  Subsequent analyses can
339 // then query the map to find the appropriate Context for a statement, and use
340 // that Context to look up the definitions of variables.
341 class LocalVariableMap {
342 public:
343   typedef LocalVarContext Context;
344 
345   /// A VarDefinition consists of an expression, representing the value of the
346   /// variable, along with the context in which that expression should be
347   /// interpreted.  A reference VarDefinition does not itself contain this
348   /// information, but instead contains a pointer to a previous VarDefinition.
349   struct VarDefinition {
350   public:
351     friend class LocalVariableMap;
352 
353     NamedDecl *Dec;       // The original declaration for this variable.
354     Expr *Exp;            // The expression for this variable, OR
355     unsigned Ref;         // Reference to another VarDefinition
356     Context Ctx;          // The map with which Exp should be interpreted.
357 
358     bool isReference() { return !Exp; }
359 
360   private:
361     // Create ordinary variable definition
362     VarDefinition(NamedDecl *D, Expr *E, Context C)
363       : Dec(D), Exp(E), Ref(0), Ctx(C)
364     { }
365 
366     // Create reference to previous definition
367     VarDefinition(NamedDecl *D, unsigned R, Context C)
368       : Dec(D), Exp(0), Ref(R), Ctx(C)
369     { }
370   };
371 
372 private:
373   Context::Factory ContextFactory;
374   std::vector<VarDefinition> VarDefinitions;
375   std::vector<unsigned> CtxIndices;
376   std::vector<std::pair<Stmt*, Context> > SavedContexts;
377 
378 public:
379   LocalVariableMap() {
380     // index 0 is a placeholder for undefined variables (aka phi-nodes).
381     VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
382   }
383 
384   /// Look up a definition, within the given context.
385   const VarDefinition* lookup(NamedDecl *D, Context Ctx) {
386     const unsigned *i = Ctx.lookup(D);
387     if (!i)
388       return 0;
389     assert(*i < VarDefinitions.size());
390     return &VarDefinitions[*i];
391   }
392 
393   /// Look up the definition for D within the given context.  Returns
394   /// NULL if the expression is not statically known.  If successful, also
395   /// modifies Ctx to hold the context of the return Expr.
396   Expr* lookupExpr(NamedDecl *D, Context &Ctx) {
397     const unsigned *P = Ctx.lookup(D);
398     if (!P)
399       return 0;
400 
401     unsigned i = *P;
402     while (i > 0) {
403       if (VarDefinitions[i].Exp) {
404         Ctx = VarDefinitions[i].Ctx;
405         return VarDefinitions[i].Exp;
406       }
407       i = VarDefinitions[i].Ref;
408     }
409     return 0;
410   }
411 
412   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
413 
414   /// Return the next context after processing S.  This function is used by
415   /// clients of the class to get the appropriate context when traversing the
416   /// CFG.  It must be called for every assignment or DeclStmt.
417   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
418     if (SavedContexts[CtxIndex+1].first == S) {
419       CtxIndex++;
420       Context Result = SavedContexts[CtxIndex].second;
421       return Result;
422     }
423     return C;
424   }
425 
426   void dumpVarDefinitionName(unsigned i) {
427     if (i == 0) {
428       llvm::errs() << "Undefined";
429       return;
430     }
431     NamedDecl *Dec = VarDefinitions[i].Dec;
432     if (!Dec) {
433       llvm::errs() << "<<NULL>>";
434       return;
435     }
436     Dec->printName(llvm::errs());
437     llvm::errs() << "." << i << " " << ((void*) Dec);
438   }
439 
440   /// Dumps an ASCII representation of the variable map to llvm::errs()
441   void dump() {
442     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
443       Expr *Exp = VarDefinitions[i].Exp;
444       unsigned Ref = VarDefinitions[i].Ref;
445 
446       dumpVarDefinitionName(i);
447       llvm::errs() << " = ";
448       if (Exp) Exp->dump();
449       else {
450         dumpVarDefinitionName(Ref);
451         llvm::errs() << "\n";
452       }
453     }
454   }
455 
456   /// Dumps an ASCII representation of a Context to llvm::errs()
457   void dumpContext(Context C) {
458     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
459       NamedDecl *D = I.getKey();
460       D->printName(llvm::errs());
461       const unsigned *i = C.lookup(D);
462       llvm::errs() << " -> ";
463       dumpVarDefinitionName(*i);
464       llvm::errs() << "\n";
465     }
466   }
467 
468   /// Builds the variable map.
469   void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
470                      std::vector<CFGBlockInfo> &BlockInfo);
471 
472 protected:
473   // Get the current context index
474   unsigned getContextIndex() { return SavedContexts.size()-1; }
475 
476   // Save the current context for later replay
477   void saveContext(Stmt *S, Context C) {
478     SavedContexts.push_back(std::make_pair(S,C));
479   }
480 
481   // Adds a new definition to the given context, and returns a new context.
482   // This method should be called when declaring a new variable.
483   Context addDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
484     assert(!Ctx.contains(D));
485     unsigned newID = VarDefinitions.size();
486     Context NewCtx = ContextFactory.add(Ctx, D, newID);
487     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
488     return NewCtx;
489   }
490 
491   // Add a new reference to an existing definition.
492   Context addReference(NamedDecl *D, unsigned i, Context Ctx) {
493     unsigned newID = VarDefinitions.size();
494     Context NewCtx = ContextFactory.add(Ctx, D, newID);
495     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
496     return NewCtx;
497   }
498 
499   // Updates a definition only if that definition is already in the map.
500   // This method should be called when assigning to an existing variable.
501   Context updateDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
502     if (Ctx.contains(D)) {
503       unsigned newID = VarDefinitions.size();
504       Context NewCtx = ContextFactory.remove(Ctx, D);
505       NewCtx = ContextFactory.add(NewCtx, D, newID);
506       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
507       return NewCtx;
508     }
509     return Ctx;
510   }
511 
512   // Removes a definition from the context, but keeps the variable name
513   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
514   Context clearDefinition(NamedDecl *D, Context Ctx) {
515     Context NewCtx = Ctx;
516     if (NewCtx.contains(D)) {
517       NewCtx = ContextFactory.remove(NewCtx, D);
518       NewCtx = ContextFactory.add(NewCtx, D, 0);
519     }
520     return NewCtx;
521   }
522 
523   // Remove a definition entirely frmo the context.
524   Context removeDefinition(NamedDecl *D, Context Ctx) {
525     Context NewCtx = Ctx;
526     if (NewCtx.contains(D)) {
527       NewCtx = ContextFactory.remove(NewCtx, D);
528     }
529     return NewCtx;
530   }
531 
532   Context intersectContexts(Context C1, Context C2);
533   Context createReferenceContext(Context C);
534   void intersectBackEdge(Context C1, Context C2);
535 
536   friend class VarMapBuilder;
537 };
538 
539 
540 // This has to be defined after LocalVariableMap.
541 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
542                                              LocalVariableMap &M) {
543   return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
544 }
545 
546 
547 /// Visitor which builds a LocalVariableMap
548 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
549 public:
550   LocalVariableMap* VMap;
551   LocalVariableMap::Context Ctx;
552 
553   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
554     : VMap(VM), Ctx(C) {}
555 
556   void VisitDeclStmt(DeclStmt *S);
557   void VisitBinaryOperator(BinaryOperator *BO);
558 };
559 
560 
561 // Add new local variables to the variable map
562 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
563   bool modifiedCtx = false;
564   DeclGroupRef DGrp = S->getDeclGroup();
565   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
566     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
567       Expr *E = VD->getInit();
568 
569       // Add local variables with trivial type to the variable map
570       QualType T = VD->getType();
571       if (T.isTrivialType(VD->getASTContext())) {
572         Ctx = VMap->addDefinition(VD, E, Ctx);
573         modifiedCtx = true;
574       }
575     }
576   }
577   if (modifiedCtx)
578     VMap->saveContext(S, Ctx);
579 }
580 
581 // Update local variable definitions in variable map
582 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
583   if (!BO->isAssignmentOp())
584     return;
585 
586   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
587 
588   // Update the variable map and current context.
589   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
590     ValueDecl *VDec = DRE->getDecl();
591     if (Ctx.lookup(VDec)) {
592       if (BO->getOpcode() == BO_Assign)
593         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
594       else
595         // FIXME -- handle compound assignment operators
596         Ctx = VMap->clearDefinition(VDec, Ctx);
597       VMap->saveContext(BO, Ctx);
598     }
599   }
600 }
601 
602 
603 // Computes the intersection of two contexts.  The intersection is the
604 // set of variables which have the same definition in both contexts;
605 // variables with different definitions are discarded.
606 LocalVariableMap::Context
607 LocalVariableMap::intersectContexts(Context C1, Context C2) {
608   Context Result = C1;
609   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
610     NamedDecl *Dec = I.getKey();
611     unsigned i1 = I.getData();
612     const unsigned *i2 = C2.lookup(Dec);
613     if (!i2)             // variable doesn't exist on second path
614       Result = removeDefinition(Dec, Result);
615     else if (*i2 != i1)  // variable exists, but has different definition
616       Result = clearDefinition(Dec, Result);
617   }
618   return Result;
619 }
620 
621 // For every variable in C, create a new variable that refers to the
622 // definition in C.  Return a new context that contains these new variables.
623 // (We use this for a naive implementation of SSA on loop back-edges.)
624 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
625   Context Result = getEmptyContext();
626   for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
627     NamedDecl *Dec = I.getKey();
628     unsigned i = I.getData();
629     Result = addReference(Dec, i, Result);
630   }
631   return Result;
632 }
633 
634 // This routine also takes the intersection of C1 and C2, but it does so by
635 // altering the VarDefinitions.  C1 must be the result of an earlier call to
636 // createReferenceContext.
637 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
638   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
639     NamedDecl *Dec = I.getKey();
640     unsigned i1 = I.getData();
641     VarDefinition *VDef = &VarDefinitions[i1];
642     assert(VDef->isReference());
643 
644     const unsigned *i2 = C2.lookup(Dec);
645     if (!i2 || (*i2 != i1))
646       VDef->Ref = 0;    // Mark this variable as undefined
647   }
648 }
649 
650 
651 // Traverse the CFG in topological order, so all predecessors of a block
652 // (excluding back-edges) are visited before the block itself.  At
653 // each point in the code, we calculate a Context, which holds the set of
654 // variable definitions which are visible at that point in execution.
655 // Visible variables are mapped to their definitions using an array that
656 // contains all definitions.
657 //
658 // At join points in the CFG, the set is computed as the intersection of
659 // the incoming sets along each edge, E.g.
660 //
661 //                       { Context                 | VarDefinitions }
662 //   int x = 0;          { x -> x1                 | x1 = 0 }
663 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
664 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
665 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
666 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
667 //
668 // This is essentially a simpler and more naive version of the standard SSA
669 // algorithm.  Those definitions that remain in the intersection are from blocks
670 // that strictly dominate the current block.  We do not bother to insert proper
671 // phi nodes, because they are not used in our analysis; instead, wherever
672 // a phi node would be required, we simply remove that definition from the
673 // context (E.g. x above).
674 //
675 // The initial traversal does not capture back-edges, so those need to be
676 // handled on a separate pass.  Whenever the first pass encounters an
677 // incoming back edge, it duplicates the context, creating new definitions
678 // that refer back to the originals.  (These correspond to places where SSA
679 // might have to insert a phi node.)  On the second pass, these definitions are
680 // set to NULL if the the variable has changed on the back-edge (i.e. a phi
681 // node was actually required.)  E.g.
682 //
683 //                       { Context           | VarDefinitions }
684 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
685 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
686 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
687 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
688 //
689 void LocalVariableMap::traverseCFG(CFG *CFGraph,
690                                    PostOrderCFGView *SortedGraph,
691                                    std::vector<CFGBlockInfo> &BlockInfo) {
692   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
693 
694   CtxIndices.resize(CFGraph->getNumBlockIDs());
695 
696   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
697        E = SortedGraph->end(); I!= E; ++I) {
698     const CFGBlock *CurrBlock = *I;
699     int CurrBlockID = CurrBlock->getBlockID();
700     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
701 
702     VisitedBlocks.insert(CurrBlock);
703 
704     // Calculate the entry context for the current block
705     bool HasBackEdges = false;
706     bool CtxInit = true;
707     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
708          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
709       // if *PI -> CurrBlock is a back edge, so skip it
710       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
711         HasBackEdges = true;
712         continue;
713       }
714 
715       int PrevBlockID = (*PI)->getBlockID();
716       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
717 
718       if (CtxInit) {
719         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
720         CtxInit = false;
721       }
722       else {
723         CurrBlockInfo->EntryContext =
724           intersectContexts(CurrBlockInfo->EntryContext,
725                             PrevBlockInfo->ExitContext);
726       }
727     }
728 
729     // Duplicate the context if we have back-edges, so we can call
730     // intersectBackEdges later.
731     if (HasBackEdges)
732       CurrBlockInfo->EntryContext =
733         createReferenceContext(CurrBlockInfo->EntryContext);
734 
735     // Create a starting context index for the current block
736     saveContext(0, CurrBlockInfo->EntryContext);
737     CurrBlockInfo->EntryIndex = getContextIndex();
738 
739     // Visit all the statements in the basic block.
740     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
741     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
742          BE = CurrBlock->end(); BI != BE; ++BI) {
743       switch (BI->getKind()) {
744         case CFGElement::Statement: {
745           const CFGStmt *CS = cast<CFGStmt>(&*BI);
746           VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
747           break;
748         }
749         default:
750           break;
751       }
752     }
753     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
754 
755     // Mark variables on back edges as "unknown" if they've been changed.
756     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
757          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
758       // if CurrBlock -> *SI is *not* a back edge
759       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
760         continue;
761 
762       CFGBlock *FirstLoopBlock = *SI;
763       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
764       Context LoopEnd   = CurrBlockInfo->ExitContext;
765       intersectBackEdge(LoopBegin, LoopEnd);
766     }
767   }
768 
769   // Put an extra entry at the end of the indexed context array
770   unsigned exitID = CFGraph->getExit().getBlockID();
771   saveContext(0, BlockInfo[exitID].ExitContext);
772 }
773 
774 /// Find the appropriate source locations to use when producing diagnostics for
775 /// each block in the CFG.
776 static void findBlockLocations(CFG *CFGraph,
777                                PostOrderCFGView *SortedGraph,
778                                std::vector<CFGBlockInfo> &BlockInfo) {
779   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
780        E = SortedGraph->end(); I!= E; ++I) {
781     const CFGBlock *CurrBlock = *I;
782     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
783 
784     // Find the source location of the last statement in the block, if the
785     // block is not empty.
786     if (const Stmt *S = CurrBlock->getTerminator()) {
787       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
788     } else {
789       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
790            BE = CurrBlock->rend(); BI != BE; ++BI) {
791         // FIXME: Handle other CFGElement kinds.
792         if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
793           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
794           break;
795         }
796       }
797     }
798 
799     if (!CurrBlockInfo->ExitLoc.isInvalid()) {
800       // This block contains at least one statement. Find the source location
801       // of the first statement in the block.
802       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
803            BE = CurrBlock->end(); BI != BE; ++BI) {
804         // FIXME: Handle other CFGElement kinds.
805         if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
806           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
807           break;
808         }
809       }
810     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
811                CurrBlock != &CFGraph->getExit()) {
812       // The block is empty, and has a single predecessor. Use its exit
813       // location.
814       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
815           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
816     }
817   }
818 }
819 
820 /// \brief Class which implements the core thread safety analysis routines.
821 class ThreadSafetyAnalyzer {
822   friend class BuildLockset;
823 
824   ThreadSafetyHandler &Handler;
825   Lockset::Factory    LocksetFactory;
826   LocalVariableMap    LocalVarMap;
827 
828 public:
829   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
830 
831   Lockset intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1,
832                            const CFGBlockInfo &Block2, CFGBlockSide Side2,
833                            LockErrorKind LEK);
834 
835   Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
836                   LockKind LK, SourceLocation Loc);
837 
838   void runAnalysis(AnalysisDeclContext &AC);
839 };
840 
841 
842 /// \brief We use this class to visit different types of expressions in
843 /// CFGBlocks, and build up the lockset.
844 /// An expression may cause us to add or remove locks from the lockset, or else
845 /// output error messages related to missing locks.
846 /// FIXME: In future, we may be able to not inherit from a visitor.
847 class BuildLockset : public StmtVisitor<BuildLockset> {
848   friend class ThreadSafetyAnalyzer;
849 
850   ThreadSafetyHandler &Handler;
851   Lockset::Factory &LocksetFactory;
852   LocalVariableMap &LocalVarMap;
853 
854   Lockset LSet;
855   LocalVariableMap::Context LVarCtx;
856   unsigned CtxIndex;
857 
858   // Helper functions
859   void addLock(const MutexID &Mutex, const LockData &LDat);
860   void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
861 
862   template <class AttrType>
863   void addLocksToSet(LockKind LK, AttrType *Attr,
864                      Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
865   void removeLocksFromSet(UnlockFunctionAttr *Attr,
866                           Expr *Exp, NamedDecl* FunDecl);
867 
868   const ValueDecl *getValueDecl(Expr *Exp);
869   void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
870                            Expr *MutexExp, ProtectedOperationKind POK);
871   void checkAccess(Expr *Exp, AccessKind AK);
872   void checkDereference(Expr *Exp, AccessKind AK);
873   void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
874 
875   template <class AttrType>
876   void addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
877                   const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
878                   Expr *BrE, bool Neg);
879   CallExpr* getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C,
880                                bool &Negate);
881   void handleTrylock(Stmt *Cond, const CFGBlock* PredBlock,
882                      const CFGBlock *CurrBlock);
883 
884   /// \brief Returns true if the lockset contains a lock, regardless of whether
885   /// the lock is held exclusively or shared.
886   bool locksetContains(const MutexID &Lock) const {
887     return LSet.lookup(Lock);
888   }
889 
890   /// \brief Returns true if the lockset contains a lock with the passed in
891   /// locktype.
892   bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
893     const LockData *LockHeld = LSet.lookup(Lock);
894     return (LockHeld && KindRequested == LockHeld->LKind);
895   }
896 
897   /// \brief Returns true if the lockset contains a lock with at least the
898   /// passed in locktype. So for example, if we pass in LK_Shared, this function
899   /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
900   /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
901   bool locksetContainsAtLeast(const MutexID &Lock,
902                               LockKind KindRequested) const {
903     switch (KindRequested) {
904       case LK_Shared:
905         return locksetContains(Lock);
906       case LK_Exclusive:
907         return locksetContains(Lock, KindRequested);
908     }
909     llvm_unreachable("Unknown LockKind");
910   }
911 
912 public:
913   BuildLockset(ThreadSafetyAnalyzer *analyzer, CFGBlockInfo &Info)
914     : StmtVisitor<BuildLockset>(),
915       Handler(analyzer->Handler),
916       LocksetFactory(analyzer->LocksetFactory),
917       LocalVarMap(analyzer->LocalVarMap),
918       LSet(Info.EntrySet),
919       LVarCtx(Info.EntryContext),
920       CtxIndex(Info.EntryIndex)
921   {}
922 
923   void VisitUnaryOperator(UnaryOperator *UO);
924   void VisitBinaryOperator(BinaryOperator *BO);
925   void VisitCastExpr(CastExpr *CE);
926   void VisitCallExpr(CallExpr *Exp);
927   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
928   void VisitDeclStmt(DeclStmt *S);
929 };
930 
931 /// \brief Add a new lock to the lockset, warning if the lock is already there.
932 /// \param Mutex -- the Mutex expression for the lock
933 /// \param LDat  -- the LockData for the lock
934 void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
935   // FIXME: deal with acquired before/after annotations.
936   // FIXME: Don't always warn when we have support for reentrant locks.
937   if (locksetContains(Mutex))
938     Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
939   else
940     LSet = LocksetFactory.add(LSet, Mutex, LDat);
941 }
942 
943 /// \brief Remove a lock from the lockset, warning if the lock is not there.
944 /// \param LockExp The lock expression corresponding to the lock to be removed
945 /// \param UnlockLoc The source location of the unlock (only used in error msg)
946 void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
947   const LockData *LDat = LSet.lookup(Mutex);
948   if (!LDat)
949     Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
950   else {
951     // For scoped-lockable vars, remove the mutex associated with this var.
952     if (LDat->UnderlyingMutex.isValid())
953       removeLock(LDat->UnderlyingMutex, UnlockLoc);
954     LSet = LocksetFactory.remove(LSet, Mutex);
955   }
956 }
957 
958 /// \brief This function, parameterized by an attribute type, is used to add a
959 /// set of locks specified as attribute arguments to the lockset.
960 template <typename AttrType>
961 void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
962                                  Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
963   typedef typename AttrType::args_iterator iterator_type;
964 
965   SourceLocation ExpLocation = Exp->getExprLoc();
966 
967   // Figure out if we're calling the constructor of scoped lockable class
968   bool isScopedVar = false;
969   if (VD) {
970     if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
971       CXXRecordDecl* PD = CD->getParent();
972       if (PD && PD->getAttr<ScopedLockableAttr>())
973         isScopedVar = true;
974     }
975   }
976 
977   if (Attr->args_size() == 0) {
978     // The mutex held is the "this" object.
979     MutexID Mutex(0, Exp, FunDecl);
980     if (!Mutex.isValid())
981       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
982     else
983       addLock(Mutex, LockData(ExpLocation, LK));
984     return;
985   }
986 
987   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
988     MutexID Mutex(*I, Exp, FunDecl);
989     if (!Mutex.isValid())
990       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
991     else {
992       addLock(Mutex, LockData(ExpLocation, LK));
993       if (isScopedVar) {
994         // For scoped lockable vars, map this var to its underlying mutex.
995         DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
996         MutexID SMutex(&DRE, 0, 0);
997         addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
998       }
999     }
1000   }
1001 }
1002 
1003 /// \brief This function removes a set of locks specified as attribute
1004 /// arguments from the lockset.
1005 void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
1006                                       Expr *Exp, NamedDecl* FunDecl) {
1007   SourceLocation ExpLocation;
1008   if (Exp) ExpLocation = Exp->getExprLoc();
1009 
1010   if (Attr->args_size() == 0) {
1011     // The mutex held is the "this" object.
1012     MutexID Mu(0, Exp, FunDecl);
1013     if (!Mu.isValid())
1014       MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1015     else
1016       removeLock(Mu, ExpLocation);
1017     return;
1018   }
1019 
1020   for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
1021        E = Attr->args_end(); I != E; ++I) {
1022     MutexID Mutex(*I, Exp, FunDecl);
1023     if (!Mutex.isValid())
1024       MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1025     else
1026       removeLock(Mutex, ExpLocation);
1027   }
1028 }
1029 
1030 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1031 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1032   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1033     return DR->getDecl();
1034 
1035   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1036     return ME->getMemberDecl();
1037 
1038   return 0;
1039 }
1040 
1041 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
1042 /// of at least the passed in AccessKind.
1043 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1044                                       AccessKind AK, Expr *MutexExp,
1045                                       ProtectedOperationKind POK) {
1046   LockKind LK = getLockKindFromAccessKind(AK);
1047 
1048   MutexID Mutex(MutexExp, Exp, D);
1049   if (!Mutex.isValid())
1050     MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
1051   else if (!locksetContainsAtLeast(Mutex, LK))
1052     Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
1053 }
1054 
1055 /// \brief This method identifies variable dereferences and checks pt_guarded_by
1056 /// and pt_guarded_var annotations. Note that we only check these annotations
1057 /// at the time a pointer is dereferenced.
1058 /// FIXME: We need to check for other types of pointer dereferences
1059 /// (e.g. [], ->) and deal with them here.
1060 /// \param Exp An expression that has been read or written.
1061 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1062   UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1063   if (!UO || UO->getOpcode() != clang::UO_Deref)
1064     return;
1065   Exp = UO->getSubExpr()->IgnoreParenCasts();
1066 
1067   const ValueDecl *D = getValueDecl(Exp);
1068   if(!D || !D->hasAttrs())
1069     return;
1070 
1071   if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
1072     Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
1073 
1074   const AttrVec &ArgAttrs = D->getAttrs();
1075   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1076     if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1077       warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1078 }
1079 
1080 /// \brief Checks guarded_by and guarded_var attributes.
1081 /// Whenever we identify an access (read or write) of a DeclRefExpr or
1082 /// MemberExpr, we need to check whether there are any guarded_by or
1083 /// guarded_var attributes, and make sure we hold the appropriate mutexes.
1084 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1085   const ValueDecl *D = getValueDecl(Exp);
1086   if(!D || !D->hasAttrs())
1087     return;
1088 
1089   if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
1090     Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
1091 
1092   const AttrVec &ArgAttrs = D->getAttrs();
1093   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1094     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1095       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1096 }
1097 
1098 /// \brief Process a function call, method call, constructor call,
1099 /// or destructor call.  This involves looking at the attributes on the
1100 /// corresponding function/method/constructor/destructor, issuing warnings,
1101 /// and updating the locksets accordingly.
1102 ///
1103 /// FIXME: For classes annotated with one of the guarded annotations, we need
1104 /// to treat const method calls as reads and non-const method calls as writes,
1105 /// and check that the appropriate locks are held. Non-const method calls with
1106 /// the same signature as const method calls can be also treated as reads.
1107 ///
1108 /// FIXME: We need to also visit CallExprs to catch/check global functions.
1109 ///
1110 /// FIXME: Do not flag an error for member variables accessed in constructors/
1111 /// destructors
1112 void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
1113   AttrVec &ArgAttrs = D->getAttrs();
1114   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1115     Attr *Attr = ArgAttrs[i];
1116     switch (Attr->getKind()) {
1117       // When we encounter an exclusive lock function, we need to add the lock
1118       // to our lockset with kind exclusive.
1119       case attr::ExclusiveLockFunction: {
1120         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
1121         addLocksToSet(LK_Exclusive, A, Exp, D, VD);
1122         break;
1123       }
1124 
1125       // When we encounter a shared lock function, we need to add the lock
1126       // to our lockset with kind shared.
1127       case attr::SharedLockFunction: {
1128         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
1129         addLocksToSet(LK_Shared, A, Exp, D, VD);
1130         break;
1131       }
1132 
1133       // When we encounter an unlock function, we need to remove unlocked
1134       // mutexes from the lockset, and flag a warning if they are not there.
1135       case attr::UnlockFunction: {
1136         UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
1137         removeLocksFromSet(UFAttr, Exp, D);
1138         break;
1139       }
1140 
1141       case attr::ExclusiveLocksRequired: {
1142         ExclusiveLocksRequiredAttr *ELRAttr =
1143             cast<ExclusiveLocksRequiredAttr>(Attr);
1144 
1145         for (ExclusiveLocksRequiredAttr::args_iterator
1146              I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
1147           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1148         break;
1149       }
1150 
1151       case attr::SharedLocksRequired: {
1152         SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
1153 
1154         for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
1155              E = SLRAttr->args_end(); I != E; ++I)
1156           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1157         break;
1158       }
1159 
1160       case attr::LocksExcluded: {
1161         LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
1162         for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
1163             E = LEAttr->args_end(); I != E; ++I) {
1164           MutexID Mutex(*I, Exp, D);
1165           if (!Mutex.isValid())
1166             MutexID::warnInvalidLock(Handler, *I, Exp, D);
1167           else if (locksetContains(Mutex))
1168             Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
1169                                           Exp->getExprLoc());
1170         }
1171         break;
1172       }
1173 
1174       // Ignore other (non thread-safety) attributes
1175       default:
1176         break;
1177     }
1178   }
1179 }
1180 
1181 
1182 /// \brief Add lock to set, if the current block is in the taken branch of a
1183 /// trylock.
1184 template <class AttrType>
1185 void BuildLockset::addTrylock(LockKind LK, AttrType *Attr, Expr *Exp,
1186                               NamedDecl *FunDecl, const CFGBlock *PredBlock,
1187                               const CFGBlock *CurrBlock, Expr *BrE, bool Neg) {
1188   // Find out which branch has the lock
1189   bool branch = 0;
1190   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1191     branch = BLE->getValue();
1192   }
1193   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1194     branch = ILE->getValue().getBoolValue();
1195   }
1196   int branchnum = branch ? 0 : 1;
1197   if (Neg) branchnum = !branchnum;
1198 
1199   // If we've taken the trylock branch, then add the lock
1200   int i = 0;
1201   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1202        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1203     if (*SI == CurrBlock && i == branchnum) {
1204       addLocksToSet(LK, Attr, Exp, FunDecl, 0);
1205     }
1206   }
1207 }
1208 
1209 
1210 // If Cond can be traced back to a function call, return the call expression.
1211 // The negate variable should be called with false, and will be set to true
1212 // if the function call is negated, e.g. if (!mu.tryLock(...))
1213 CallExpr* BuildLockset::getTrylockCallExpr(Stmt *Cond,
1214                                LocalVariableMap::Context C,
1215                                bool &Negate) {
1216   if (!Cond)
1217     return 0;
1218 
1219   if (CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1220     return CallExp;
1221   }
1222   else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1223     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1224   }
1225   else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1226     Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1227     return getTrylockCallExpr(E, C, Negate);
1228   }
1229   else if (UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1230     if (UOP->getOpcode() == UO_LNot) {
1231       Negate = !Negate;
1232       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1233     }
1234   }
1235   // FIXME -- handle && and || as well.
1236   return NULL;
1237 }
1238 
1239 
1240 /// \brief Process a conditional branch from a previous block to the current
1241 /// block, looking for trylock calls.
1242 void BuildLockset::handleTrylock(Stmt *Cond, const CFGBlock *PredBlock,
1243                                  const CFGBlock *CurrBlock) {
1244   bool Negate = false;
1245   CallExpr *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1246   if (!Exp)
1247     return;
1248 
1249   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1250   if(!FunDecl || !FunDecl->hasAttrs())
1251     return;
1252 
1253   // If the condition is a call to a Trylock function, then grab the attributes
1254   AttrVec &ArgAttrs = FunDecl->getAttrs();
1255   for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1256     Attr *Attr = ArgAttrs[i];
1257     switch (Attr->getKind()) {
1258       case attr::ExclusiveTrylockFunction: {
1259         ExclusiveTrylockFunctionAttr *A =
1260           cast<ExclusiveTrylockFunctionAttr>(Attr);
1261         addTrylock(LK_Exclusive, A, Exp, FunDecl, PredBlock, CurrBlock,
1262                    A->getSuccessValue(), Negate);
1263         break;
1264       }
1265       case attr::SharedTrylockFunction: {
1266         SharedTrylockFunctionAttr *A =
1267           cast<SharedTrylockFunctionAttr>(Attr);
1268         addTrylock(LK_Shared, A, Exp, FunDecl, PredBlock, CurrBlock,
1269                    A->getSuccessValue(), Negate);
1270         break;
1271       }
1272       default:
1273         break;
1274     }
1275   }
1276 }
1277 
1278 
1279 /// \brief For unary operations which read and write a variable, we need to
1280 /// check whether we hold any required mutexes. Reads are checked in
1281 /// VisitCastExpr.
1282 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1283   switch (UO->getOpcode()) {
1284     case clang::UO_PostDec:
1285     case clang::UO_PostInc:
1286     case clang::UO_PreDec:
1287     case clang::UO_PreInc: {
1288       Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1289       checkAccess(SubExp, AK_Written);
1290       checkDereference(SubExp, AK_Written);
1291       break;
1292     }
1293     default:
1294       break;
1295   }
1296 }
1297 
1298 /// For binary operations which assign to a variable (writes), we need to check
1299 /// whether we hold any required mutexes.
1300 /// FIXME: Deal with non-primitive types.
1301 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1302   if (!BO->isAssignmentOp())
1303     return;
1304 
1305   // adjust the context
1306   LVarCtx = LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1307 
1308   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1309   checkAccess(LHSExp, AK_Written);
1310   checkDereference(LHSExp, AK_Written);
1311 }
1312 
1313 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1314 /// need to ensure we hold any required mutexes.
1315 /// FIXME: Deal with non-primitive types.
1316 void BuildLockset::VisitCastExpr(CastExpr *CE) {
1317   if (CE->getCastKind() != CK_LValueToRValue)
1318     return;
1319   Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1320   checkAccess(SubExp, AK_Read);
1321   checkDereference(SubExp, AK_Read);
1322 }
1323 
1324 
1325 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1326   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1327   if(!D || !D->hasAttrs())
1328     return;
1329   handleCall(Exp, D);
1330 }
1331 
1332 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1333   // FIXME -- only handles constructors in DeclStmt below.
1334 }
1335 
1336 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1337   // adjust the context
1338   LVarCtx = LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1339 
1340   DeclGroupRef DGrp = S->getDeclGroup();
1341   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1342     Decl *D = *I;
1343     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1344       Expr *E = VD->getInit();
1345       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1346         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1347         if (!CtorD || !CtorD->hasAttrs())
1348           return;
1349         handleCall(CE, CtorD, VD);
1350       }
1351     }
1352   }
1353 }
1354 
1355 
1356 /// \brief Compute the intersection of two locksets and issue warnings for any
1357 /// locks in the symmetric difference.
1358 ///
1359 /// This function is used at a merge point in the CFG when comparing the lockset
1360 /// of each branch being merged. For example, given the following sequence:
1361 /// A; if () then B; else C; D; we need to check that the lockset after B and C
1362 /// are the same. In the event of a difference, we use the intersection of these
1363 /// two locksets at the start of D.
1364 Lockset ThreadSafetyAnalyzer::intersectAndWarn(const CFGBlockInfo &Block1,
1365                                                CFGBlockSide Side1,
1366                                                const CFGBlockInfo &Block2,
1367                                                CFGBlockSide Side2,
1368                                                LockErrorKind LEK) {
1369   Lockset LSet1 = Block1.getSet(Side1);
1370   Lockset LSet2 = Block2.getSet(Side2);
1371 
1372   Lockset Intersection = LSet1;
1373   for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
1374     const MutexID &LSet2Mutex = I.getKey();
1375     const LockData &LSet2LockData = I.getData();
1376     if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
1377       if (LD->LKind != LSet2LockData.LKind) {
1378         Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
1379                                          LSet2LockData.AcquireLoc,
1380                                          LD->AcquireLoc);
1381         if (LD->LKind != LK_Exclusive)
1382           Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
1383                                             LSet2LockData);
1384       }
1385     } else {
1386       Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
1387                                         LSet2LockData.AcquireLoc,
1388                                         Block1.getLocation(Side1), LEK);
1389     }
1390   }
1391 
1392   for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
1393     if (!LSet2.contains(I.getKey())) {
1394       const MutexID &Mutex = I.getKey();
1395       const LockData &MissingLock = I.getData();
1396       Handler.handleMutexHeldEndOfScope(Mutex.getName(),
1397                                         MissingLock.AcquireLoc,
1398                                         Block2.getLocation(Side2), LEK);
1399       Intersection = LocksetFactory.remove(Intersection, Mutex);
1400     }
1401   }
1402   return Intersection;
1403 }
1404 
1405 Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
1406                                       const NamedDecl *D,
1407                                       LockKind LK, SourceLocation Loc) {
1408   MutexID Mutex(MutexExp, 0, D);
1409   if (!Mutex.isValid()) {
1410     MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
1411     return LSet;
1412   }
1413   LockData NewLock(Loc, LK);
1414   return LocksetFactory.add(LSet, Mutex, NewLock);
1415 }
1416 
1417 /// \brief Check a function's CFG for thread-safety violations.
1418 ///
1419 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
1420 /// at the end of each block, and issue warnings for thread safety violations.
1421 /// Each block in the CFG is traversed exactly once.
1422 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
1423   CFG *CFGraph = AC.getCFG();
1424   if (!CFGraph) return;
1425   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
1426 
1427   if (!D)
1428     return;  // Ignore anonymous functions for now.
1429   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
1430     return;
1431 
1432   std::vector<CFGBlockInfo> BlockInfo(CFGraph->getNumBlockIDs(),
1433     CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
1434 
1435   // We need to explore the CFG via a "topological" ordering.
1436   // That way, we will be guaranteed to have information about required
1437   // predecessor locksets when exploring a new block.
1438   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
1439   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1440 
1441   // Compute SSA names for local variables
1442   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
1443 
1444   // Fill in source locations for all CFGBlocks.
1445   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
1446 
1447   // Add locks from exclusive_locks_required and shared_locks_required
1448   // to initial lockset.
1449   if (!SortedGraph->empty() && D->hasAttrs()) {
1450     const CFGBlock *FirstBlock = *SortedGraph->begin();
1451     Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
1452     const AttrVec &ArgAttrs = D->getAttrs();
1453     for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1454       Attr *Attr = ArgAttrs[i];
1455       SourceLocation AttrLoc = Attr->getLocation();
1456       if (SharedLocksRequiredAttr *SLRAttr
1457             = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
1458         for (SharedLocksRequiredAttr::args_iterator
1459             SLRIter = SLRAttr->args_begin(),
1460             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
1461           InitialLockset = addLock(InitialLockset,
1462                                    *SLRIter, D, LK_Shared,
1463                                    AttrLoc);
1464       } else if (ExclusiveLocksRequiredAttr *ELRAttr
1465                    = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
1466         for (ExclusiveLocksRequiredAttr::args_iterator
1467             ELRIter = ELRAttr->args_begin(),
1468             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
1469           InitialLockset = addLock(InitialLockset,
1470                                    *ELRIter, D, LK_Exclusive,
1471                                    AttrLoc);
1472       }
1473     }
1474   }
1475 
1476   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1477        E = SortedGraph->end(); I!= E; ++I) {
1478     const CFGBlock *CurrBlock = *I;
1479     int CurrBlockID = CurrBlock->getBlockID();
1480     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1481 
1482     // Use the default initial lockset in case there are no predecessors.
1483     VisitedBlocks.insert(CurrBlock);
1484 
1485     // Iterate through the predecessor blocks and warn if the lockset for all
1486     // predecessors is not the same. We take the entry lockset of the current
1487     // block to be the intersection of all previous locksets.
1488     // FIXME: By keeping the intersection, we may output more errors in future
1489     // for a lock which is not in the intersection, but was in the union. We
1490     // may want to also keep the union in future. As an example, let's say
1491     // the intersection contains Mutex L, and the union contains L and M.
1492     // Later we unlock M. At this point, we would output an error because we
1493     // never locked M; although the real error is probably that we forgot to
1494     // lock M on all code paths. Conversely, let's say that later we lock M.
1495     // In this case, we should compare against the intersection instead of the
1496     // union because the real error is probably that we forgot to unlock M on
1497     // all code paths.
1498     bool LocksetInitialized = false;
1499     llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
1500     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1501          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1502 
1503       // if *PI -> CurrBlock is a back edge
1504       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1505         continue;
1506 
1507       // If the previous block ended in a 'continue' or 'break' statement, then
1508       // a difference in locksets is probably due to a bug in that block, rather
1509       // than in some other predecessor. In that case, keep the other
1510       // predecessor's lockset.
1511       if (const Stmt *Terminator = (*PI)->getTerminator()) {
1512         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
1513           SpecialBlocks.push_back(*PI);
1514           continue;
1515         }
1516       }
1517 
1518       int PrevBlockID = (*PI)->getBlockID();
1519       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1520 
1521       if (!LocksetInitialized) {
1522         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1523         LocksetInitialized = true;
1524       } else {
1525         CurrBlockInfo->EntrySet =
1526           intersectAndWarn(*CurrBlockInfo, CBS_Entry,
1527                            *PrevBlockInfo, CBS_Exit,
1528                            LEK_LockedSomePredecessors);
1529       }
1530     }
1531 
1532     // Process continue and break blocks. Assume that the lockset for the
1533     // resulting block is unaffected by any discrepancies in them.
1534     for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
1535          SpecialI < SpecialN; ++SpecialI) {
1536       CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
1537       int PrevBlockID = PrevBlock->getBlockID();
1538       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1539 
1540       if (!LocksetInitialized) {
1541         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1542         LocksetInitialized = true;
1543       } else {
1544         // Determine whether this edge is a loop terminator for diagnostic
1545         // purposes. FIXME: A 'break' statement might be a loop terminator, but
1546         // it might also be part of a switch. Also, a subsequent destructor
1547         // might add to the lockset, in which case the real issue might be a
1548         // double lock on the other path.
1549         const Stmt *Terminator = PrevBlock->getTerminator();
1550         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
1551 
1552         // Do not update EntrySet.
1553         intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit,
1554                          IsLoop ? LEK_LockedSomeLoopIterations
1555                                 : LEK_LockedSomePredecessors);
1556       }
1557     }
1558 
1559     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
1560     CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1561                                   PE = CurrBlock->pred_end();
1562     if (PI != PE) {
1563       // If the predecessor ended in a branch, then process any trylocks.
1564       // FIXME -- check to make sure there's only one predecessor.
1565       if (Stmt *TCE = (*PI)->getTerminatorCondition()) {
1566         LocksetBuilder.handleTrylock(TCE, *PI, CurrBlock);
1567       }
1568     }
1569 
1570     // Visit all the statements in the basic block.
1571     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1572          BE = CurrBlock->end(); BI != BE; ++BI) {
1573       switch (BI->getKind()) {
1574         case CFGElement::Statement: {
1575           const CFGStmt *CS = cast<CFGStmt>(&*BI);
1576           LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1577           break;
1578         }
1579         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
1580         case CFGElement::AutomaticObjectDtor: {
1581           const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
1582           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
1583             AD->getDestructorDecl(AC.getASTContext()));
1584           if (!DD->hasAttrs())
1585             break;
1586 
1587           // Create a dummy expression,
1588           VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
1589           DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
1590                           AD->getTriggerStmt()->getLocEnd());
1591           LocksetBuilder.handleCall(&DRE, DD);
1592           break;
1593         }
1594         default:
1595           break;
1596       }
1597     }
1598     CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
1599 
1600     // For every back edge from CurrBlock (the end of the loop) to another block
1601     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1602     // the one held at the beginning of FirstLoopBlock. We can look up the
1603     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1604     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1605          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1606 
1607       // if CurrBlock -> *SI is *not* a back edge
1608       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1609         continue;
1610 
1611       CFGBlock *FirstLoopBlock = *SI;
1612       CFGBlockInfo &PreLoop = BlockInfo[FirstLoopBlock->getBlockID()];
1613       CFGBlockInfo &LoopEnd = BlockInfo[CurrBlockID];
1614       intersectAndWarn(LoopEnd, CBS_Exit, PreLoop, CBS_Entry,
1615                        LEK_LockedSomeLoopIterations);
1616     }
1617   }
1618 
1619   CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
1620   CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
1621 
1622   // FIXME: Should we call this function for all blocks which exit the function?
1623   intersectAndWarn(Initial, CBS_Entry, Final, CBS_Exit,
1624                    LEK_LockedAtEndOfFunction);
1625 }
1626 
1627 } // end anonymous namespace
1628 
1629 
1630 namespace clang {
1631 namespace thread_safety {
1632 
1633 /// \brief Check a function's CFG for thread-safety violations.
1634 ///
1635 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
1636 /// at the end of each block, and issue warnings for thread safety violations.
1637 /// Each block in the CFG is traversed exactly once.
1638 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
1639                              ThreadSafetyHandler &Handler) {
1640   ThreadSafetyAnalyzer Analyzer(Handler);
1641   Analyzer.runAnalysis(AC);
1642 }
1643 
1644 /// \brief Helper function that returns a LockKind required for the given level
1645 /// of access.
1646 LockKind getLockKindFromAccessKind(AccessKind AK) {
1647   switch (AK) {
1648     case AK_Read :
1649       return LK_Shared;
1650     case AK_Written :
1651       return LK_Exclusive;
1652   }
1653   llvm_unreachable("Unknown AccessKind");
1654 }
1655 
1656 }} // end namespace clang::thread_safety
1657