1 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a flow-sensitive, path-insensitive analysis of 11 // determining reachable blocks within a CFG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Analysis/Analyses/ReachableCode.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/ParentMap.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Analysis/AnalysisContext.h" 22 #include "clang/Analysis/CFG.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/SmallVector.h" 27 28 using namespace clang; 29 30 //===----------------------------------------------------------------------===// 31 // Core Reachability Analysis routines. 32 //===----------------------------------------------------------------------===// 33 34 static bool isEnumConstant(const Expr *Ex) { 35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 36 if (!DR) 37 return false; 38 return isa<EnumConstantDecl>(DR->getDecl()); 39 } 40 41 static bool isTrivialExpression(const Expr *Ex) { 42 Ex = Ex->IgnoreParenCasts(); 43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 45 isa<CharacterLiteral>(Ex) || 46 isEnumConstant(Ex); 47 } 48 49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 50 // Check if the block ends with a do...while() and see if 'S' is the 51 // condition. 52 if (const Stmt *Term = B->getTerminator()) { 53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 54 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 55 return Cond == S && isTrivialExpression(Cond); 56 } 57 } 58 return false; 59 } 60 61 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 62 // Look to see if the current control flow ends with a 'return', and see if 63 // 'S' is a substatement. The 'return' may not be the last element in the 64 // block, or may be in a subsequent block because of destructors. 65 const CFGBlock *Current = B; 66 while (true) { 67 for (CFGBlock::const_reverse_iterator I = Current->rbegin(), 68 E = Current->rend(); 69 I != E; ++I) { 70 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 71 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 72 if (RS == S) 73 return true; 74 if (const Expr *RE = RS->getRetValue()) { 75 RE = RE->IgnoreParenCasts(); 76 if (RE == S) 77 return true; 78 ParentMap PM(const_cast<Expr *>(RE)); 79 // If 'S' is in the ParentMap, it is a subexpression of 80 // the return statement. 81 return PM.getParent(S); 82 } 83 } 84 break; 85 } 86 } 87 // Note also that we are restricting the search for the return statement 88 // to stop at control-flow; only part of a return statement may be dead, 89 // without the whole return statement being dead. 90 if (Current->getTerminator().isTemporaryDtorsBranch()) { 91 // Temporary destructors have a predictable control flow, thus we want to 92 // look into the next block for the return statement. 93 // We look into the false branch, as we know the true branch only contains 94 // the call to the destructor. 95 assert(Current->succ_size() == 2); 96 Current = *(Current->succ_begin() + 1); 97 } else if (!Current->getTerminator() && Current->succ_size() == 1) { 98 // If there is only one successor, we're not dealing with outgoing control 99 // flow. Thus, look into the next block. 100 Current = *Current->succ_begin(); 101 if (Current->pred_size() > 1) { 102 // If there is more than one predecessor, we're dealing with incoming 103 // control flow - if the return statement is in that block, it might 104 // well be reachable via a different control flow, thus it's not dead. 105 return false; 106 } 107 } else { 108 // We hit control flow or a dead end. Stop searching. 109 return false; 110 } 111 } 112 llvm_unreachable("Broke out of infinite loop."); 113 } 114 115 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 116 assert(Loc.isMacroID()); 117 SourceLocation Last; 118 while (Loc.isMacroID()) { 119 Last = Loc; 120 Loc = SM.getImmediateMacroCallerLoc(Loc); 121 } 122 return Last; 123 } 124 125 /// Returns true if the statement is expanded from a configuration macro. 126 static bool isExpandedFromConfigurationMacro(const Stmt *S, 127 Preprocessor &PP, 128 bool IgnoreYES_NO = false) { 129 // FIXME: This is not very precise. Here we just check to see if the 130 // value comes from a macro, but we can do much better. This is likely 131 // to be over conservative. This logic is factored into a separate function 132 // so that we can refine it later. 133 SourceLocation L = S->getLocStart(); 134 if (L.isMacroID()) { 135 if (IgnoreYES_NO) { 136 // The Objective-C constant 'YES' and 'NO' 137 // are defined as macros. Do not treat them 138 // as configuration values. 139 SourceManager &SM = PP.getSourceManager(); 140 SourceLocation TopL = getTopMostMacro(L, SM); 141 StringRef MacroName = PP.getImmediateMacroName(TopL); 142 if (MacroName == "YES" || MacroName == "NO") 143 return false; 144 } 145 return true; 146 } 147 return false; 148 } 149 150 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 151 152 /// Returns true if the statement represents a configuration value. 153 /// 154 /// A configuration value is something usually determined at compile-time 155 /// to conditionally always execute some branch. Such guards are for 156 /// "sometimes unreachable" code. Such code is usually not interesting 157 /// to report as unreachable, and may mask truly unreachable code within 158 /// those blocks. 159 static bool isConfigurationValue(const Stmt *S, 160 Preprocessor &PP, 161 SourceRange *SilenceableCondVal = nullptr, 162 bool IncludeIntegers = true, 163 bool WrappedInParens = false) { 164 if (!S) 165 return false; 166 167 S = S->IgnoreImplicit(); 168 169 if (const Expr *Ex = dyn_cast<Expr>(S)) 170 S = Ex->IgnoreCasts(); 171 172 // Special case looking for the sigil '()' around an integer literal. 173 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 174 if (!PE->getLocStart().isMacroID()) 175 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 176 IncludeIntegers, true); 177 178 if (const Expr *Ex = dyn_cast<Expr>(S)) 179 S = Ex->IgnoreCasts(); 180 181 bool IgnoreYES_NO = false; 182 183 switch (S->getStmtClass()) { 184 case Stmt::CallExprClass: { 185 const FunctionDecl *Callee = 186 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 187 return Callee ? Callee->isConstexpr() : false; 188 } 189 case Stmt::DeclRefExprClass: 190 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 191 case Stmt::ObjCBoolLiteralExprClass: 192 IgnoreYES_NO = true; 193 // Fallthrough. 194 case Stmt::CXXBoolLiteralExprClass: 195 case Stmt::IntegerLiteralClass: { 196 const Expr *E = cast<Expr>(S); 197 if (IncludeIntegers) { 198 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 199 *SilenceableCondVal = E->getSourceRange(); 200 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 201 } 202 return false; 203 } 204 case Stmt::MemberExprClass: 205 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 206 case Stmt::UnaryExprOrTypeTraitExprClass: 207 return true; 208 case Stmt::BinaryOperatorClass: { 209 const BinaryOperator *B = cast<BinaryOperator>(S); 210 // Only include raw integers (not enums) as configuration 211 // values if they are used in a logical or comparison operator 212 // (not arithmetic). 213 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 214 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 215 IncludeIntegers) || 216 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 217 IncludeIntegers); 218 } 219 case Stmt::UnaryOperatorClass: { 220 const UnaryOperator *UO = cast<UnaryOperator>(S); 221 if (SilenceableCondVal) 222 *SilenceableCondVal = UO->getSourceRange(); 223 return UO->getOpcode() == UO_LNot && 224 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 225 IncludeIntegers, WrappedInParens); 226 } 227 default: 228 return false; 229 } 230 } 231 232 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 233 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 234 return isConfigurationValue(ED->getInitExpr(), PP); 235 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 236 // As a heuristic, treat globals as configuration values. Note 237 // that we only will get here if Sema evaluated this 238 // condition to a constant expression, which means the global 239 // had to be declared in a way to be a truly constant value. 240 // We could generalize this to local variables, but it isn't 241 // clear if those truly represent configuration values that 242 // gate unreachable code. 243 if (!VD->hasLocalStorage()) 244 return true; 245 246 // As a heuristic, locals that have been marked 'const' explicitly 247 // can be treated as configuration values as well. 248 return VD->getType().isLocalConstQualified(); 249 } 250 return false; 251 } 252 253 /// Returns true if we should always explore all successors of a block. 254 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 255 Preprocessor &PP) { 256 if (const Stmt *Term = B->getTerminator()) { 257 if (isa<SwitchStmt>(Term)) 258 return true; 259 // Specially handle '||' and '&&'. 260 if (isa<BinaryOperator>(Term)) { 261 return isConfigurationValue(Term, PP); 262 } 263 } 264 265 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 266 return isConfigurationValue(Cond, PP); 267 } 268 269 static unsigned scanFromBlock(const CFGBlock *Start, 270 llvm::BitVector &Reachable, 271 Preprocessor *PP, 272 bool IncludeSometimesUnreachableEdges) { 273 unsigned count = 0; 274 275 // Prep work queue 276 SmallVector<const CFGBlock*, 32> WL; 277 278 // The entry block may have already been marked reachable 279 // by the caller. 280 if (!Reachable[Start->getBlockID()]) { 281 ++count; 282 Reachable[Start->getBlockID()] = true; 283 } 284 285 WL.push_back(Start); 286 287 // Find the reachable blocks from 'Start'. 288 while (!WL.empty()) { 289 const CFGBlock *item = WL.pop_back_val(); 290 291 // There are cases where we want to treat all successors as reachable. 292 // The idea is that some "sometimes unreachable" code is not interesting, 293 // and that we should forge ahead and explore those branches anyway. 294 // This allows us to potentially uncover some "always unreachable" code 295 // within the "sometimes unreachable" code. 296 // Look at the successors and mark then reachable. 297 Optional<bool> TreatAllSuccessorsAsReachable; 298 if (!IncludeSometimesUnreachableEdges) 299 TreatAllSuccessorsAsReachable = false; 300 301 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 302 E = item->succ_end(); I != E; ++I) { 303 const CFGBlock *B = *I; 304 if (!B) do { 305 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 306 if (!UB) 307 break; 308 309 if (!TreatAllSuccessorsAsReachable.hasValue()) { 310 assert(PP); 311 TreatAllSuccessorsAsReachable = 312 shouldTreatSuccessorsAsReachable(item, *PP); 313 } 314 315 if (TreatAllSuccessorsAsReachable.getValue()) { 316 B = UB; 317 break; 318 } 319 } 320 while (false); 321 322 if (B) { 323 unsigned blockID = B->getBlockID(); 324 if (!Reachable[blockID]) { 325 Reachable.set(blockID); 326 WL.push_back(B); 327 ++count; 328 } 329 } 330 } 331 } 332 return count; 333 } 334 335 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 336 Preprocessor &PP, 337 llvm::BitVector &Reachable) { 338 return scanFromBlock(Start, Reachable, &PP, true); 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Dead Code Scanner. 343 //===----------------------------------------------------------------------===// 344 345 namespace { 346 class DeadCodeScan { 347 llvm::BitVector Visited; 348 llvm::BitVector &Reachable; 349 SmallVector<const CFGBlock *, 10> WorkList; 350 Preprocessor &PP; 351 352 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 353 DeferredLocsTy; 354 355 DeferredLocsTy DeferredLocs; 356 357 public: 358 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP) 359 : Visited(reachable.size()), 360 Reachable(reachable), 361 PP(PP) {} 362 363 void enqueue(const CFGBlock *block); 364 unsigned scanBackwards(const CFGBlock *Start, 365 clang::reachable_code::Callback &CB); 366 367 bool isDeadCodeRoot(const CFGBlock *Block); 368 369 const Stmt *findDeadCode(const CFGBlock *Block); 370 371 void reportDeadCode(const CFGBlock *B, 372 const Stmt *S, 373 clang::reachable_code::Callback &CB); 374 }; 375 } 376 377 void DeadCodeScan::enqueue(const CFGBlock *block) { 378 unsigned blockID = block->getBlockID(); 379 if (Reachable[blockID] || Visited[blockID]) 380 return; 381 Visited[blockID] = true; 382 WorkList.push_back(block); 383 } 384 385 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 386 bool isDeadRoot = true; 387 388 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 389 E = Block->pred_end(); I != E; ++I) { 390 if (const CFGBlock *PredBlock = *I) { 391 unsigned blockID = PredBlock->getBlockID(); 392 if (Visited[blockID]) { 393 isDeadRoot = false; 394 continue; 395 } 396 if (!Reachable[blockID]) { 397 isDeadRoot = false; 398 Visited[blockID] = true; 399 WorkList.push_back(PredBlock); 400 continue; 401 } 402 } 403 } 404 405 return isDeadRoot; 406 } 407 408 static bool isValidDeadStmt(const Stmt *S) { 409 if (S->getLocStart().isInvalid()) 410 return false; 411 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 412 return BO->getOpcode() != BO_Comma; 413 return true; 414 } 415 416 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 417 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 418 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 419 const Stmt *S = CS->getStmt(); 420 if (isValidDeadStmt(S)) 421 return S; 422 } 423 424 if (CFGTerminator T = Block->getTerminator()) { 425 if (!T.isTemporaryDtorsBranch()) { 426 const Stmt *S = T.getStmt(); 427 if (isValidDeadStmt(S)) 428 return S; 429 } 430 } 431 432 return nullptr; 433 } 434 435 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 436 const std::pair<const CFGBlock *, const Stmt *> *p2) { 437 if (p1->second->getLocStart() < p2->second->getLocStart()) 438 return -1; 439 if (p2->second->getLocStart() < p1->second->getLocStart()) 440 return 1; 441 return 0; 442 } 443 444 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 445 clang::reachable_code::Callback &CB) { 446 447 unsigned count = 0; 448 enqueue(Start); 449 450 while (!WorkList.empty()) { 451 const CFGBlock *Block = WorkList.pop_back_val(); 452 453 // It is possible that this block has been marked reachable after 454 // it was enqueued. 455 if (Reachable[Block->getBlockID()]) 456 continue; 457 458 // Look for any dead code within the block. 459 const Stmt *S = findDeadCode(Block); 460 461 if (!S) { 462 // No dead code. Possibly an empty block. Look at dead predecessors. 463 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 464 E = Block->pred_end(); I != E; ++I) { 465 if (const CFGBlock *predBlock = *I) 466 enqueue(predBlock); 467 } 468 continue; 469 } 470 471 // Specially handle macro-expanded code. 472 if (S->getLocStart().isMacroID()) { 473 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 474 continue; 475 } 476 477 if (isDeadCodeRoot(Block)) { 478 reportDeadCode(Block, S, CB); 479 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 480 } 481 else { 482 // Record this statement as the possibly best location in a 483 // strongly-connected component of dead code for emitting a 484 // warning. 485 DeferredLocs.push_back(std::make_pair(Block, S)); 486 } 487 } 488 489 // If we didn't find a dead root, then report the dead code with the 490 // earliest location. 491 if (!DeferredLocs.empty()) { 492 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 493 for (DeferredLocsTy::iterator I = DeferredLocs.begin(), 494 E = DeferredLocs.end(); I != E; ++I) { 495 const CFGBlock *Block = I->first; 496 if (Reachable[Block->getBlockID()]) 497 continue; 498 reportDeadCode(Block, I->second, CB); 499 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 500 } 501 } 502 503 return count; 504 } 505 506 static SourceLocation GetUnreachableLoc(const Stmt *S, 507 SourceRange &R1, 508 SourceRange &R2) { 509 R1 = R2 = SourceRange(); 510 511 if (const Expr *Ex = dyn_cast<Expr>(S)) 512 S = Ex->IgnoreParenImpCasts(); 513 514 switch (S->getStmtClass()) { 515 case Expr::BinaryOperatorClass: { 516 const BinaryOperator *BO = cast<BinaryOperator>(S); 517 return BO->getOperatorLoc(); 518 } 519 case Expr::UnaryOperatorClass: { 520 const UnaryOperator *UO = cast<UnaryOperator>(S); 521 R1 = UO->getSubExpr()->getSourceRange(); 522 return UO->getOperatorLoc(); 523 } 524 case Expr::CompoundAssignOperatorClass: { 525 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 526 R1 = CAO->getLHS()->getSourceRange(); 527 R2 = CAO->getRHS()->getSourceRange(); 528 return CAO->getOperatorLoc(); 529 } 530 case Expr::BinaryConditionalOperatorClass: 531 case Expr::ConditionalOperatorClass: { 532 const AbstractConditionalOperator *CO = 533 cast<AbstractConditionalOperator>(S); 534 return CO->getQuestionLoc(); 535 } 536 case Expr::MemberExprClass: { 537 const MemberExpr *ME = cast<MemberExpr>(S); 538 R1 = ME->getSourceRange(); 539 return ME->getMemberLoc(); 540 } 541 case Expr::ArraySubscriptExprClass: { 542 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 543 R1 = ASE->getLHS()->getSourceRange(); 544 R2 = ASE->getRHS()->getSourceRange(); 545 return ASE->getRBracketLoc(); 546 } 547 case Expr::CStyleCastExprClass: { 548 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 549 R1 = CSC->getSubExpr()->getSourceRange(); 550 return CSC->getLParenLoc(); 551 } 552 case Expr::CXXFunctionalCastExprClass: { 553 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 554 R1 = CE->getSubExpr()->getSourceRange(); 555 return CE->getLocStart(); 556 } 557 case Stmt::CXXTryStmtClass: { 558 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 559 } 560 case Expr::ObjCBridgedCastExprClass: { 561 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 562 R1 = CSC->getSubExpr()->getSourceRange(); 563 return CSC->getLParenLoc(); 564 } 565 default: ; 566 } 567 R1 = S->getSourceRange(); 568 return S->getLocStart(); 569 } 570 571 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 572 const Stmt *S, 573 clang::reachable_code::Callback &CB) { 574 // Classify the unreachable code found, or suppress it in some cases. 575 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 576 577 if (isa<BreakStmt>(S)) { 578 UK = reachable_code::UK_Break; 579 } 580 else if (isTrivialDoWhile(B, S)) { 581 return; 582 } 583 else if (isDeadReturn(B, S)) { 584 UK = reachable_code::UK_Return; 585 } 586 587 SourceRange SilenceableCondVal; 588 589 if (UK == reachable_code::UK_Other) { 590 // Check if the dead code is part of the "loop target" of 591 // a for/for-range loop. This is the block that contains 592 // the increment code. 593 if (const Stmt *LoopTarget = B->getLoopTarget()) { 594 SourceLocation Loc = LoopTarget->getLocStart(); 595 SourceRange R1(Loc, Loc), R2; 596 597 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 598 const Expr *Inc = FS->getInc(); 599 Loc = Inc->getLocStart(); 600 R2 = Inc->getSourceRange(); 601 } 602 603 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 604 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 605 return; 606 } 607 608 // Check if the dead block has a predecessor whose branch has 609 // a configuration value that *could* be modified to 610 // silence the warning. 611 CFGBlock::const_pred_iterator PI = B->pred_begin(); 612 if (PI != B->pred_end()) { 613 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 614 const Stmt *TermCond = 615 PredBlock->getTerminatorCondition(/* strip parens */ false); 616 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 617 } 618 } 619 } 620 621 SourceRange R1, R2; 622 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 623 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Reachability APIs. 628 //===----------------------------------------------------------------------===// 629 630 namespace clang { namespace reachable_code { 631 632 void Callback::anchor() { } 633 634 unsigned ScanReachableFromBlock(const CFGBlock *Start, 635 llvm::BitVector &Reachable) { 636 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 637 } 638 639 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 640 Callback &CB) { 641 642 CFG *cfg = AC.getCFG(); 643 if (!cfg) 644 return; 645 646 // Scan for reachable blocks from the entrance of the CFG. 647 // If there are no unreachable blocks, we're done. 648 llvm::BitVector reachable(cfg->getNumBlockIDs()); 649 unsigned numReachable = 650 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 651 if (numReachable == cfg->getNumBlockIDs()) 652 return; 653 654 // If there aren't explicit EH edges, we should include the 'try' dispatch 655 // blocks as roots. 656 if (!AC.getCFGBuildOptions().AddEHEdges) { 657 for (CFG::try_block_iterator I = cfg->try_blocks_begin(), 658 E = cfg->try_blocks_end() ; I != E; ++I) { 659 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); 660 } 661 if (numReachable == cfg->getNumBlockIDs()) 662 return; 663 } 664 665 // There are some unreachable blocks. We need to find the root blocks that 666 // contain code that should be considered unreachable. 667 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { 668 const CFGBlock *block = *I; 669 // A block may have been marked reachable during this loop. 670 if (reachable[block->getBlockID()]) 671 continue; 672 673 DeadCodeScan DS(reachable, PP); 674 numReachable += DS.scanBackwards(block, CB); 675 676 if (numReachable == cfg->getNumBlockIDs()) 677 return; 678 } 679 } 680 681 }} // end namespace clang::reachable_code 682