1 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a flow-sensitive, path-insensitive analysis of 11 // determining reachable blocks within a CFG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Analysis/Analyses/ReachableCode.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/ParentMap.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Analysis/AnalysisDeclContext.h" 22 #include "clang/Analysis/CFG.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/SmallVector.h" 27 28 using namespace clang; 29 30 //===----------------------------------------------------------------------===// 31 // Core Reachability Analysis routines. 32 //===----------------------------------------------------------------------===// 33 34 static bool isEnumConstant(const Expr *Ex) { 35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 36 if (!DR) 37 return false; 38 return isa<EnumConstantDecl>(DR->getDecl()); 39 } 40 41 static bool isTrivialExpression(const Expr *Ex) { 42 Ex = Ex->IgnoreParenCasts(); 43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 45 isa<CharacterLiteral>(Ex) || 46 isEnumConstant(Ex); 47 } 48 49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 50 // Check if the block ends with a do...while() and see if 'S' is the 51 // condition. 52 if (const Stmt *Term = B->getTerminator()) { 53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 54 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 55 return Cond == S && isTrivialExpression(Cond); 56 } 57 } 58 return false; 59 } 60 61 static bool isBuiltinUnreachable(const Stmt *S) { 62 if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) 63 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) 64 return FDecl->getIdentifier() && 65 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; 66 return false; 67 } 68 69 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 70 // Look to see if the current control flow ends with a 'return', and see if 71 // 'S' is a substatement. The 'return' may not be the last element in the 72 // block, or may be in a subsequent block because of destructors. 73 const CFGBlock *Current = B; 74 while (true) { 75 for (CFGBlock::const_reverse_iterator I = Current->rbegin(), 76 E = Current->rend(); 77 I != E; ++I) { 78 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 79 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 80 if (RS == S) 81 return true; 82 if (const Expr *RE = RS->getRetValue()) { 83 RE = RE->IgnoreParenCasts(); 84 if (RE == S) 85 return true; 86 ParentMap PM(const_cast<Expr *>(RE)); 87 // If 'S' is in the ParentMap, it is a subexpression of 88 // the return statement. 89 return PM.getParent(S); 90 } 91 } 92 break; 93 } 94 } 95 // Note also that we are restricting the search for the return statement 96 // to stop at control-flow; only part of a return statement may be dead, 97 // without the whole return statement being dead. 98 if (Current->getTerminator().isTemporaryDtorsBranch()) { 99 // Temporary destructors have a predictable control flow, thus we want to 100 // look into the next block for the return statement. 101 // We look into the false branch, as we know the true branch only contains 102 // the call to the destructor. 103 assert(Current->succ_size() == 2); 104 Current = *(Current->succ_begin() + 1); 105 } else if (!Current->getTerminator() && Current->succ_size() == 1) { 106 // If there is only one successor, we're not dealing with outgoing control 107 // flow. Thus, look into the next block. 108 Current = *Current->succ_begin(); 109 if (Current->pred_size() > 1) { 110 // If there is more than one predecessor, we're dealing with incoming 111 // control flow - if the return statement is in that block, it might 112 // well be reachable via a different control flow, thus it's not dead. 113 return false; 114 } 115 } else { 116 // We hit control flow or a dead end. Stop searching. 117 return false; 118 } 119 } 120 llvm_unreachable("Broke out of infinite loop."); 121 } 122 123 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 124 assert(Loc.isMacroID()); 125 SourceLocation Last; 126 while (Loc.isMacroID()) { 127 Last = Loc; 128 Loc = SM.getImmediateMacroCallerLoc(Loc); 129 } 130 return Last; 131 } 132 133 /// Returns true if the statement is expanded from a configuration macro. 134 static bool isExpandedFromConfigurationMacro(const Stmt *S, 135 Preprocessor &PP, 136 bool IgnoreYES_NO = false) { 137 // FIXME: This is not very precise. Here we just check to see if the 138 // value comes from a macro, but we can do much better. This is likely 139 // to be over conservative. This logic is factored into a separate function 140 // so that we can refine it later. 141 SourceLocation L = S->getLocStart(); 142 if (L.isMacroID()) { 143 SourceManager &SM = PP.getSourceManager(); 144 if (IgnoreYES_NO) { 145 // The Objective-C constant 'YES' and 'NO' 146 // are defined as macros. Do not treat them 147 // as configuration values. 148 SourceLocation TopL = getTopMostMacro(L, SM); 149 StringRef MacroName = PP.getImmediateMacroName(TopL); 150 if (MacroName == "YES" || MacroName == "NO") 151 return false; 152 } else if (!PP.getLangOpts().CPlusPlus) { 153 // Do not treat C 'false' and 'true' macros as configuration values. 154 SourceLocation TopL = getTopMostMacro(L, SM); 155 StringRef MacroName = PP.getImmediateMacroName(TopL); 156 if (MacroName == "false" || MacroName == "true") 157 return false; 158 } 159 return true; 160 } 161 return false; 162 } 163 164 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 165 166 /// Returns true if the statement represents a configuration value. 167 /// 168 /// A configuration value is something usually determined at compile-time 169 /// to conditionally always execute some branch. Such guards are for 170 /// "sometimes unreachable" code. Such code is usually not interesting 171 /// to report as unreachable, and may mask truly unreachable code within 172 /// those blocks. 173 static bool isConfigurationValue(const Stmt *S, 174 Preprocessor &PP, 175 SourceRange *SilenceableCondVal = nullptr, 176 bool IncludeIntegers = true, 177 bool WrappedInParens = false) { 178 if (!S) 179 return false; 180 181 S = S->IgnoreImplicit(); 182 183 if (const Expr *Ex = dyn_cast<Expr>(S)) 184 S = Ex->IgnoreCasts(); 185 186 // Special case looking for the sigil '()' around an integer literal. 187 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 188 if (!PE->getLocStart().isMacroID()) 189 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 190 IncludeIntegers, true); 191 192 if (const Expr *Ex = dyn_cast<Expr>(S)) 193 S = Ex->IgnoreCasts(); 194 195 bool IgnoreYES_NO = false; 196 197 switch (S->getStmtClass()) { 198 case Stmt::CallExprClass: { 199 const FunctionDecl *Callee = 200 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 201 return Callee ? Callee->isConstexpr() : false; 202 } 203 case Stmt::DeclRefExprClass: 204 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 205 case Stmt::ObjCBoolLiteralExprClass: 206 IgnoreYES_NO = true; 207 // Fallthrough. 208 case Stmt::CXXBoolLiteralExprClass: 209 case Stmt::IntegerLiteralClass: { 210 const Expr *E = cast<Expr>(S); 211 if (IncludeIntegers) { 212 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 213 *SilenceableCondVal = E->getSourceRange(); 214 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 215 } 216 return false; 217 } 218 case Stmt::MemberExprClass: 219 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 220 case Stmt::UnaryExprOrTypeTraitExprClass: 221 return true; 222 case Stmt::BinaryOperatorClass: { 223 const BinaryOperator *B = cast<BinaryOperator>(S); 224 // Only include raw integers (not enums) as configuration 225 // values if they are used in a logical or comparison operator 226 // (not arithmetic). 227 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 228 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 229 IncludeIntegers) || 230 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 231 IncludeIntegers); 232 } 233 case Stmt::UnaryOperatorClass: { 234 const UnaryOperator *UO = cast<UnaryOperator>(S); 235 if (UO->getOpcode() != UO_LNot) 236 return false; 237 bool SilenceableCondValNotSet = 238 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); 239 bool IsSubExprConfigValue = 240 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 241 IncludeIntegers, WrappedInParens); 242 // Update the silenceable condition value source range only if the range 243 // was set directly by the child expression. 244 if (SilenceableCondValNotSet && 245 SilenceableCondVal->getBegin().isValid() && 246 *SilenceableCondVal == 247 UO->getSubExpr()->IgnoreCasts()->getSourceRange()) 248 *SilenceableCondVal = UO->getSourceRange(); 249 return IsSubExprConfigValue; 250 } 251 default: 252 return false; 253 } 254 } 255 256 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 257 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 258 return isConfigurationValue(ED->getInitExpr(), PP); 259 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 260 // As a heuristic, treat globals as configuration values. Note 261 // that we only will get here if Sema evaluated this 262 // condition to a constant expression, which means the global 263 // had to be declared in a way to be a truly constant value. 264 // We could generalize this to local variables, but it isn't 265 // clear if those truly represent configuration values that 266 // gate unreachable code. 267 if (!VD->hasLocalStorage()) 268 return true; 269 270 // As a heuristic, locals that have been marked 'const' explicitly 271 // can be treated as configuration values as well. 272 return VD->getType().isLocalConstQualified(); 273 } 274 return false; 275 } 276 277 /// Returns true if we should always explore all successors of a block. 278 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 279 Preprocessor &PP) { 280 if (const Stmt *Term = B->getTerminator()) { 281 if (isa<SwitchStmt>(Term)) 282 return true; 283 // Specially handle '||' and '&&'. 284 if (isa<BinaryOperator>(Term)) { 285 return isConfigurationValue(Term, PP); 286 } 287 } 288 289 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 290 return isConfigurationValue(Cond, PP); 291 } 292 293 static unsigned scanFromBlock(const CFGBlock *Start, 294 llvm::BitVector &Reachable, 295 Preprocessor *PP, 296 bool IncludeSometimesUnreachableEdges) { 297 unsigned count = 0; 298 299 // Prep work queue 300 SmallVector<const CFGBlock*, 32> WL; 301 302 // The entry block may have already been marked reachable 303 // by the caller. 304 if (!Reachable[Start->getBlockID()]) { 305 ++count; 306 Reachable[Start->getBlockID()] = true; 307 } 308 309 WL.push_back(Start); 310 311 // Find the reachable blocks from 'Start'. 312 while (!WL.empty()) { 313 const CFGBlock *item = WL.pop_back_val(); 314 315 // There are cases where we want to treat all successors as reachable. 316 // The idea is that some "sometimes unreachable" code is not interesting, 317 // and that we should forge ahead and explore those branches anyway. 318 // This allows us to potentially uncover some "always unreachable" code 319 // within the "sometimes unreachable" code. 320 // Look at the successors and mark then reachable. 321 Optional<bool> TreatAllSuccessorsAsReachable; 322 if (!IncludeSometimesUnreachableEdges) 323 TreatAllSuccessorsAsReachable = false; 324 325 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 326 E = item->succ_end(); I != E; ++I) { 327 const CFGBlock *B = *I; 328 if (!B) do { 329 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 330 if (!UB) 331 break; 332 333 if (!TreatAllSuccessorsAsReachable.hasValue()) { 334 assert(PP); 335 TreatAllSuccessorsAsReachable = 336 shouldTreatSuccessorsAsReachable(item, *PP); 337 } 338 339 if (TreatAllSuccessorsAsReachable.getValue()) { 340 B = UB; 341 break; 342 } 343 } 344 while (false); 345 346 if (B) { 347 unsigned blockID = B->getBlockID(); 348 if (!Reachable[blockID]) { 349 Reachable.set(blockID); 350 WL.push_back(B); 351 ++count; 352 } 353 } 354 } 355 } 356 return count; 357 } 358 359 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 360 Preprocessor &PP, 361 llvm::BitVector &Reachable) { 362 return scanFromBlock(Start, Reachable, &PP, true); 363 } 364 365 //===----------------------------------------------------------------------===// 366 // Dead Code Scanner. 367 //===----------------------------------------------------------------------===// 368 369 namespace { 370 class DeadCodeScan { 371 llvm::BitVector Visited; 372 llvm::BitVector &Reachable; 373 SmallVector<const CFGBlock *, 10> WorkList; 374 Preprocessor &PP; 375 376 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 377 DeferredLocsTy; 378 379 DeferredLocsTy DeferredLocs; 380 381 public: 382 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP) 383 : Visited(reachable.size()), 384 Reachable(reachable), 385 PP(PP) {} 386 387 void enqueue(const CFGBlock *block); 388 unsigned scanBackwards(const CFGBlock *Start, 389 clang::reachable_code::Callback &CB); 390 391 bool isDeadCodeRoot(const CFGBlock *Block); 392 393 const Stmt *findDeadCode(const CFGBlock *Block); 394 395 void reportDeadCode(const CFGBlock *B, 396 const Stmt *S, 397 clang::reachable_code::Callback &CB); 398 }; 399 } 400 401 void DeadCodeScan::enqueue(const CFGBlock *block) { 402 unsigned blockID = block->getBlockID(); 403 if (Reachable[blockID] || Visited[blockID]) 404 return; 405 Visited[blockID] = true; 406 WorkList.push_back(block); 407 } 408 409 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 410 bool isDeadRoot = true; 411 412 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 413 E = Block->pred_end(); I != E; ++I) { 414 if (const CFGBlock *PredBlock = *I) { 415 unsigned blockID = PredBlock->getBlockID(); 416 if (Visited[blockID]) { 417 isDeadRoot = false; 418 continue; 419 } 420 if (!Reachable[blockID]) { 421 isDeadRoot = false; 422 Visited[blockID] = true; 423 WorkList.push_back(PredBlock); 424 continue; 425 } 426 } 427 } 428 429 return isDeadRoot; 430 } 431 432 static bool isValidDeadStmt(const Stmt *S) { 433 if (S->getLocStart().isInvalid()) 434 return false; 435 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 436 return BO->getOpcode() != BO_Comma; 437 return true; 438 } 439 440 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 441 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 442 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 443 const Stmt *S = CS->getStmt(); 444 if (isValidDeadStmt(S)) 445 return S; 446 } 447 448 if (CFGTerminator T = Block->getTerminator()) { 449 if (!T.isTemporaryDtorsBranch()) { 450 const Stmt *S = T.getStmt(); 451 if (isValidDeadStmt(S)) 452 return S; 453 } 454 } 455 456 return nullptr; 457 } 458 459 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 460 const std::pair<const CFGBlock *, const Stmt *> *p2) { 461 if (p1->second->getLocStart() < p2->second->getLocStart()) 462 return -1; 463 if (p2->second->getLocStart() < p1->second->getLocStart()) 464 return 1; 465 return 0; 466 } 467 468 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 469 clang::reachable_code::Callback &CB) { 470 471 unsigned count = 0; 472 enqueue(Start); 473 474 while (!WorkList.empty()) { 475 const CFGBlock *Block = WorkList.pop_back_val(); 476 477 // It is possible that this block has been marked reachable after 478 // it was enqueued. 479 if (Reachable[Block->getBlockID()]) 480 continue; 481 482 // Look for any dead code within the block. 483 const Stmt *S = findDeadCode(Block); 484 485 if (!S) { 486 // No dead code. Possibly an empty block. Look at dead predecessors. 487 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 488 E = Block->pred_end(); I != E; ++I) { 489 if (const CFGBlock *predBlock = *I) 490 enqueue(predBlock); 491 } 492 continue; 493 } 494 495 // Specially handle macro-expanded code. 496 if (S->getLocStart().isMacroID()) { 497 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 498 continue; 499 } 500 501 if (isDeadCodeRoot(Block)) { 502 reportDeadCode(Block, S, CB); 503 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 504 } 505 else { 506 // Record this statement as the possibly best location in a 507 // strongly-connected component of dead code for emitting a 508 // warning. 509 DeferredLocs.push_back(std::make_pair(Block, S)); 510 } 511 } 512 513 // If we didn't find a dead root, then report the dead code with the 514 // earliest location. 515 if (!DeferredLocs.empty()) { 516 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 517 for (DeferredLocsTy::iterator I = DeferredLocs.begin(), 518 E = DeferredLocs.end(); I != E; ++I) { 519 const CFGBlock *Block = I->first; 520 if (Reachable[Block->getBlockID()]) 521 continue; 522 reportDeadCode(Block, I->second, CB); 523 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 524 } 525 } 526 527 return count; 528 } 529 530 static SourceLocation GetUnreachableLoc(const Stmt *S, 531 SourceRange &R1, 532 SourceRange &R2) { 533 R1 = R2 = SourceRange(); 534 535 if (const Expr *Ex = dyn_cast<Expr>(S)) 536 S = Ex->IgnoreParenImpCasts(); 537 538 switch (S->getStmtClass()) { 539 case Expr::BinaryOperatorClass: { 540 const BinaryOperator *BO = cast<BinaryOperator>(S); 541 return BO->getOperatorLoc(); 542 } 543 case Expr::UnaryOperatorClass: { 544 const UnaryOperator *UO = cast<UnaryOperator>(S); 545 R1 = UO->getSubExpr()->getSourceRange(); 546 return UO->getOperatorLoc(); 547 } 548 case Expr::CompoundAssignOperatorClass: { 549 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 550 R1 = CAO->getLHS()->getSourceRange(); 551 R2 = CAO->getRHS()->getSourceRange(); 552 return CAO->getOperatorLoc(); 553 } 554 case Expr::BinaryConditionalOperatorClass: 555 case Expr::ConditionalOperatorClass: { 556 const AbstractConditionalOperator *CO = 557 cast<AbstractConditionalOperator>(S); 558 return CO->getQuestionLoc(); 559 } 560 case Expr::MemberExprClass: { 561 const MemberExpr *ME = cast<MemberExpr>(S); 562 R1 = ME->getSourceRange(); 563 return ME->getMemberLoc(); 564 } 565 case Expr::ArraySubscriptExprClass: { 566 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 567 R1 = ASE->getLHS()->getSourceRange(); 568 R2 = ASE->getRHS()->getSourceRange(); 569 return ASE->getRBracketLoc(); 570 } 571 case Expr::CStyleCastExprClass: { 572 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 573 R1 = CSC->getSubExpr()->getSourceRange(); 574 return CSC->getLParenLoc(); 575 } 576 case Expr::CXXFunctionalCastExprClass: { 577 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 578 R1 = CE->getSubExpr()->getSourceRange(); 579 return CE->getLocStart(); 580 } 581 case Stmt::CXXTryStmtClass: { 582 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 583 } 584 case Expr::ObjCBridgedCastExprClass: { 585 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 586 R1 = CSC->getSubExpr()->getSourceRange(); 587 return CSC->getLParenLoc(); 588 } 589 default: ; 590 } 591 R1 = S->getSourceRange(); 592 return S->getLocStart(); 593 } 594 595 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 596 const Stmt *S, 597 clang::reachable_code::Callback &CB) { 598 // Classify the unreachable code found, or suppress it in some cases. 599 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 600 601 if (isa<BreakStmt>(S)) { 602 UK = reachable_code::UK_Break; 603 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S)) { 604 return; 605 } 606 else if (isDeadReturn(B, S)) { 607 UK = reachable_code::UK_Return; 608 } 609 610 SourceRange SilenceableCondVal; 611 612 if (UK == reachable_code::UK_Other) { 613 // Check if the dead code is part of the "loop target" of 614 // a for/for-range loop. This is the block that contains 615 // the increment code. 616 if (const Stmt *LoopTarget = B->getLoopTarget()) { 617 SourceLocation Loc = LoopTarget->getLocStart(); 618 SourceRange R1(Loc, Loc), R2; 619 620 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 621 const Expr *Inc = FS->getInc(); 622 Loc = Inc->getLocStart(); 623 R2 = Inc->getSourceRange(); 624 } 625 626 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 627 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 628 return; 629 } 630 631 // Check if the dead block has a predecessor whose branch has 632 // a configuration value that *could* be modified to 633 // silence the warning. 634 CFGBlock::const_pred_iterator PI = B->pred_begin(); 635 if (PI != B->pred_end()) { 636 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 637 const Stmt *TermCond = 638 PredBlock->getTerminatorCondition(/* strip parens */ false); 639 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 640 } 641 } 642 } 643 644 SourceRange R1, R2; 645 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 646 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 647 } 648 649 //===----------------------------------------------------------------------===// 650 // Reachability APIs. 651 //===----------------------------------------------------------------------===// 652 653 namespace clang { namespace reachable_code { 654 655 void Callback::anchor() { } 656 657 unsigned ScanReachableFromBlock(const CFGBlock *Start, 658 llvm::BitVector &Reachable) { 659 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 660 } 661 662 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 663 Callback &CB) { 664 665 CFG *cfg = AC.getCFG(); 666 if (!cfg) 667 return; 668 669 // Scan for reachable blocks from the entrance of the CFG. 670 // If there are no unreachable blocks, we're done. 671 llvm::BitVector reachable(cfg->getNumBlockIDs()); 672 unsigned numReachable = 673 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 674 if (numReachable == cfg->getNumBlockIDs()) 675 return; 676 677 // If there aren't explicit EH edges, we should include the 'try' dispatch 678 // blocks as roots. 679 if (!AC.getCFGBuildOptions().AddEHEdges) { 680 for (CFG::try_block_iterator I = cfg->try_blocks_begin(), 681 E = cfg->try_blocks_end() ; I != E; ++I) { 682 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); 683 } 684 if (numReachable == cfg->getNumBlockIDs()) 685 return; 686 } 687 688 // There are some unreachable blocks. We need to find the root blocks that 689 // contain code that should be considered unreachable. 690 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { 691 const CFGBlock *block = *I; 692 // A block may have been marked reachable during this loop. 693 if (reachable[block->getBlockID()]) 694 continue; 695 696 DeadCodeScan DS(reachable, PP); 697 numReachable += DS.scanBackwards(block, CB); 698 699 if (numReachable == cfg->getNumBlockIDs()) 700 return; 701 } 702 } 703 704 }} // end namespace clang::reachable_code 705