1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a flow-sensitive, path-insensitive analysis of 10 // determining reachable blocks within a CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ReachableCode.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/AnalysisDeclContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/SmallVector.h" 27 28 using namespace clang; 29 30 //===----------------------------------------------------------------------===// 31 // Core Reachability Analysis routines. 32 //===----------------------------------------------------------------------===// 33 34 static bool isEnumConstant(const Expr *Ex) { 35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 36 if (!DR) 37 return false; 38 return isa<EnumConstantDecl>(DR->getDecl()); 39 } 40 41 static bool isTrivialExpression(const Expr *Ex) { 42 Ex = Ex->IgnoreParenCasts(); 43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 45 isa<CharacterLiteral>(Ex) || 46 isEnumConstant(Ex); 47 } 48 49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 50 // Check if the block ends with a do...while() and see if 'S' is the 51 // condition. 52 if (const Stmt *Term = B->getTerminatorStmt()) { 53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 54 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 55 return Cond == S && isTrivialExpression(Cond); 56 } 57 } 58 return false; 59 } 60 61 static bool isBuiltinUnreachable(const Stmt *S) { 62 if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) 63 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) 64 return FDecl->getIdentifier() && 65 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; 66 return false; 67 } 68 69 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, 70 ASTContext &C) { 71 if (B->empty()) { 72 // Happens if S is B's terminator and B contains nothing else 73 // (e.g. a CFGBlock containing only a goto). 74 return false; 75 } 76 if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { 77 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { 78 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); 79 } 80 } 81 return false; 82 } 83 84 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 85 // Look to see if the current control flow ends with a 'return', and see if 86 // 'S' is a substatement. The 'return' may not be the last element in the 87 // block, or may be in a subsequent block because of destructors. 88 const CFGBlock *Current = B; 89 while (true) { 90 for (CFGBlock::const_reverse_iterator I = Current->rbegin(), 91 E = Current->rend(); 92 I != E; ++I) { 93 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 94 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 95 if (RS == S) 96 return true; 97 if (const Expr *RE = RS->getRetValue()) { 98 RE = RE->IgnoreParenCasts(); 99 if (RE == S) 100 return true; 101 ParentMap PM(const_cast<Expr *>(RE)); 102 // If 'S' is in the ParentMap, it is a subexpression of 103 // the return statement. 104 return PM.getParent(S); 105 } 106 } 107 break; 108 } 109 } 110 // Note also that we are restricting the search for the return statement 111 // to stop at control-flow; only part of a return statement may be dead, 112 // without the whole return statement being dead. 113 if (Current->getTerminator().isTemporaryDtorsBranch()) { 114 // Temporary destructors have a predictable control flow, thus we want to 115 // look into the next block for the return statement. 116 // We look into the false branch, as we know the true branch only contains 117 // the call to the destructor. 118 assert(Current->succ_size() == 2); 119 Current = *(Current->succ_begin() + 1); 120 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { 121 // If there is only one successor, we're not dealing with outgoing control 122 // flow. Thus, look into the next block. 123 Current = *Current->succ_begin(); 124 if (Current->pred_size() > 1) { 125 // If there is more than one predecessor, we're dealing with incoming 126 // control flow - if the return statement is in that block, it might 127 // well be reachable via a different control flow, thus it's not dead. 128 return false; 129 } 130 } else { 131 // We hit control flow or a dead end. Stop searching. 132 return false; 133 } 134 } 135 llvm_unreachable("Broke out of infinite loop."); 136 } 137 138 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 139 assert(Loc.isMacroID()); 140 SourceLocation Last; 141 do { 142 Last = Loc; 143 Loc = SM.getImmediateMacroCallerLoc(Loc); 144 } while (Loc.isMacroID()); 145 return Last; 146 } 147 148 /// Returns true if the statement is expanded from a configuration macro. 149 static bool isExpandedFromConfigurationMacro(const Stmt *S, 150 Preprocessor &PP, 151 bool IgnoreYES_NO = false) { 152 // FIXME: This is not very precise. Here we just check to see if the 153 // value comes from a macro, but we can do much better. This is likely 154 // to be over conservative. This logic is factored into a separate function 155 // so that we can refine it later. 156 SourceLocation L = S->getBeginLoc(); 157 if (L.isMacroID()) { 158 SourceManager &SM = PP.getSourceManager(); 159 if (IgnoreYES_NO) { 160 // The Objective-C constant 'YES' and 'NO' 161 // are defined as macros. Do not treat them 162 // as configuration values. 163 SourceLocation TopL = getTopMostMacro(L, SM); 164 StringRef MacroName = PP.getImmediateMacroName(TopL); 165 if (MacroName == "YES" || MacroName == "NO") 166 return false; 167 } else if (!PP.getLangOpts().CPlusPlus) { 168 // Do not treat C 'false' and 'true' macros as configuration values. 169 SourceLocation TopL = getTopMostMacro(L, SM); 170 StringRef MacroName = PP.getImmediateMacroName(TopL); 171 if (MacroName == "false" || MacroName == "true") 172 return false; 173 } 174 return true; 175 } 176 return false; 177 } 178 179 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 180 181 /// Returns true if the statement represents a configuration value. 182 /// 183 /// A configuration value is something usually determined at compile-time 184 /// to conditionally always execute some branch. Such guards are for 185 /// "sometimes unreachable" code. Such code is usually not interesting 186 /// to report as unreachable, and may mask truly unreachable code within 187 /// those blocks. 188 static bool isConfigurationValue(const Stmt *S, 189 Preprocessor &PP, 190 SourceRange *SilenceableCondVal = nullptr, 191 bool IncludeIntegers = true, 192 bool WrappedInParens = false) { 193 if (!S) 194 return false; 195 196 if (const auto *Ex = dyn_cast<Expr>(S)) 197 S = Ex->IgnoreImplicit(); 198 199 if (const auto *Ex = dyn_cast<Expr>(S)) 200 S = Ex->IgnoreCasts(); 201 202 // Special case looking for the sigil '()' around an integer literal. 203 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 204 if (!PE->getBeginLoc().isMacroID()) 205 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 206 IncludeIntegers, true); 207 208 if (const Expr *Ex = dyn_cast<Expr>(S)) 209 S = Ex->IgnoreCasts(); 210 211 bool IgnoreYES_NO = false; 212 213 switch (S->getStmtClass()) { 214 case Stmt::CallExprClass: { 215 const FunctionDecl *Callee = 216 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 217 return Callee ? Callee->isConstexpr() : false; 218 } 219 case Stmt::DeclRefExprClass: 220 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 221 case Stmt::ObjCBoolLiteralExprClass: 222 IgnoreYES_NO = true; 223 LLVM_FALLTHROUGH; 224 case Stmt::CXXBoolLiteralExprClass: 225 case Stmt::IntegerLiteralClass: { 226 const Expr *E = cast<Expr>(S); 227 if (IncludeIntegers) { 228 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 229 *SilenceableCondVal = E->getSourceRange(); 230 return WrappedInParens || 231 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 232 } 233 return false; 234 } 235 case Stmt::MemberExprClass: 236 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 237 case Stmt::UnaryExprOrTypeTraitExprClass: 238 return true; 239 case Stmt::BinaryOperatorClass: { 240 const BinaryOperator *B = cast<BinaryOperator>(S); 241 // Only include raw integers (not enums) as configuration 242 // values if they are used in a logical or comparison operator 243 // (not arithmetic). 244 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 245 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 246 IncludeIntegers) || 247 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 248 IncludeIntegers); 249 } 250 case Stmt::UnaryOperatorClass: { 251 const UnaryOperator *UO = cast<UnaryOperator>(S); 252 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus) 253 return false; 254 bool SilenceableCondValNotSet = 255 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); 256 bool IsSubExprConfigValue = 257 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 258 IncludeIntegers, WrappedInParens); 259 // Update the silenceable condition value source range only if the range 260 // was set directly by the child expression. 261 if (SilenceableCondValNotSet && 262 SilenceableCondVal->getBegin().isValid() && 263 *SilenceableCondVal == 264 UO->getSubExpr()->IgnoreCasts()->getSourceRange()) 265 *SilenceableCondVal = UO->getSourceRange(); 266 return IsSubExprConfigValue; 267 } 268 default: 269 return false; 270 } 271 } 272 273 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 274 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 275 return isConfigurationValue(ED->getInitExpr(), PP); 276 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 277 // As a heuristic, treat globals as configuration values. Note 278 // that we only will get here if Sema evaluated this 279 // condition to a constant expression, which means the global 280 // had to be declared in a way to be a truly constant value. 281 // We could generalize this to local variables, but it isn't 282 // clear if those truly represent configuration values that 283 // gate unreachable code. 284 if (!VD->hasLocalStorage()) 285 return true; 286 287 // As a heuristic, locals that have been marked 'const' explicitly 288 // can be treated as configuration values as well. 289 return VD->getType().isLocalConstQualified(); 290 } 291 return false; 292 } 293 294 /// Returns true if we should always explore all successors of a block. 295 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 296 Preprocessor &PP) { 297 if (const Stmt *Term = B->getTerminatorStmt()) { 298 if (isa<SwitchStmt>(Term)) 299 return true; 300 // Specially handle '||' and '&&'. 301 if (isa<BinaryOperator>(Term)) { 302 return isConfigurationValue(Term, PP); 303 } 304 } 305 306 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 307 return isConfigurationValue(Cond, PP); 308 } 309 310 static unsigned scanFromBlock(const CFGBlock *Start, 311 llvm::BitVector &Reachable, 312 Preprocessor *PP, 313 bool IncludeSometimesUnreachableEdges) { 314 unsigned count = 0; 315 316 // Prep work queue 317 SmallVector<const CFGBlock*, 32> WL; 318 319 // The entry block may have already been marked reachable 320 // by the caller. 321 if (!Reachable[Start->getBlockID()]) { 322 ++count; 323 Reachable[Start->getBlockID()] = true; 324 } 325 326 WL.push_back(Start); 327 328 // Find the reachable blocks from 'Start'. 329 while (!WL.empty()) { 330 const CFGBlock *item = WL.pop_back_val(); 331 332 // There are cases where we want to treat all successors as reachable. 333 // The idea is that some "sometimes unreachable" code is not interesting, 334 // and that we should forge ahead and explore those branches anyway. 335 // This allows us to potentially uncover some "always unreachable" code 336 // within the "sometimes unreachable" code. 337 // Look at the successors and mark then reachable. 338 Optional<bool> TreatAllSuccessorsAsReachable; 339 if (!IncludeSometimesUnreachableEdges) 340 TreatAllSuccessorsAsReachable = false; 341 342 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 343 E = item->succ_end(); I != E; ++I) { 344 const CFGBlock *B = *I; 345 if (!B) do { 346 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 347 if (!UB) 348 break; 349 350 if (!TreatAllSuccessorsAsReachable.hasValue()) { 351 assert(PP); 352 TreatAllSuccessorsAsReachable = 353 shouldTreatSuccessorsAsReachable(item, *PP); 354 } 355 356 if (TreatAllSuccessorsAsReachable.getValue()) { 357 B = UB; 358 break; 359 } 360 } 361 while (false); 362 363 if (B) { 364 unsigned blockID = B->getBlockID(); 365 if (!Reachable[blockID]) { 366 Reachable.set(blockID); 367 WL.push_back(B); 368 ++count; 369 } 370 } 371 } 372 } 373 return count; 374 } 375 376 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 377 Preprocessor &PP, 378 llvm::BitVector &Reachable) { 379 return scanFromBlock(Start, Reachable, &PP, true); 380 } 381 382 //===----------------------------------------------------------------------===// 383 // Dead Code Scanner. 384 //===----------------------------------------------------------------------===// 385 386 namespace { 387 class DeadCodeScan { 388 llvm::BitVector Visited; 389 llvm::BitVector &Reachable; 390 SmallVector<const CFGBlock *, 10> WorkList; 391 Preprocessor &PP; 392 ASTContext &C; 393 394 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 395 DeferredLocsTy; 396 397 DeferredLocsTy DeferredLocs; 398 399 public: 400 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) 401 : Visited(reachable.size()), 402 Reachable(reachable), 403 PP(PP), C(C) {} 404 405 void enqueue(const CFGBlock *block); 406 unsigned scanBackwards(const CFGBlock *Start, 407 clang::reachable_code::Callback &CB); 408 409 bool isDeadCodeRoot(const CFGBlock *Block); 410 411 const Stmt *findDeadCode(const CFGBlock *Block); 412 413 void reportDeadCode(const CFGBlock *B, 414 const Stmt *S, 415 clang::reachable_code::Callback &CB); 416 }; 417 } 418 419 void DeadCodeScan::enqueue(const CFGBlock *block) { 420 unsigned blockID = block->getBlockID(); 421 if (Reachable[blockID] || Visited[blockID]) 422 return; 423 Visited[blockID] = true; 424 WorkList.push_back(block); 425 } 426 427 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 428 bool isDeadRoot = true; 429 430 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 431 E = Block->pred_end(); I != E; ++I) { 432 if (const CFGBlock *PredBlock = *I) { 433 unsigned blockID = PredBlock->getBlockID(); 434 if (Visited[blockID]) { 435 isDeadRoot = false; 436 continue; 437 } 438 if (!Reachable[blockID]) { 439 isDeadRoot = false; 440 Visited[blockID] = true; 441 WorkList.push_back(PredBlock); 442 continue; 443 } 444 } 445 } 446 447 return isDeadRoot; 448 } 449 450 static bool isValidDeadStmt(const Stmt *S) { 451 if (S->getBeginLoc().isInvalid()) 452 return false; 453 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 454 return BO->getOpcode() != BO_Comma; 455 return true; 456 } 457 458 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 459 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 460 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 461 const Stmt *S = CS->getStmt(); 462 if (isValidDeadStmt(S)) 463 return S; 464 } 465 466 CFGTerminator T = Block->getTerminator(); 467 if (T.isStmtBranch()) { 468 const Stmt *S = T.getStmt(); 469 if (S && isValidDeadStmt(S)) 470 return S; 471 } 472 473 return nullptr; 474 } 475 476 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 477 const std::pair<const CFGBlock *, const Stmt *> *p2) { 478 if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) 479 return -1; 480 if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) 481 return 1; 482 return 0; 483 } 484 485 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 486 clang::reachable_code::Callback &CB) { 487 488 unsigned count = 0; 489 enqueue(Start); 490 491 while (!WorkList.empty()) { 492 const CFGBlock *Block = WorkList.pop_back_val(); 493 494 // It is possible that this block has been marked reachable after 495 // it was enqueued. 496 if (Reachable[Block->getBlockID()]) 497 continue; 498 499 // Look for any dead code within the block. 500 const Stmt *S = findDeadCode(Block); 501 502 if (!S) { 503 // No dead code. Possibly an empty block. Look at dead predecessors. 504 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 505 E = Block->pred_end(); I != E; ++I) { 506 if (const CFGBlock *predBlock = *I) 507 enqueue(predBlock); 508 } 509 continue; 510 } 511 512 // Specially handle macro-expanded code. 513 if (S->getBeginLoc().isMacroID()) { 514 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 515 continue; 516 } 517 518 if (isDeadCodeRoot(Block)) { 519 reportDeadCode(Block, S, CB); 520 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 521 } 522 else { 523 // Record this statement as the possibly best location in a 524 // strongly-connected component of dead code for emitting a 525 // warning. 526 DeferredLocs.push_back(std::make_pair(Block, S)); 527 } 528 } 529 530 // If we didn't find a dead root, then report the dead code with the 531 // earliest location. 532 if (!DeferredLocs.empty()) { 533 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 534 for (const auto &I : DeferredLocs) { 535 const CFGBlock *Block = I.first; 536 if (Reachable[Block->getBlockID()]) 537 continue; 538 reportDeadCode(Block, I.second, CB); 539 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 540 } 541 } 542 543 return count; 544 } 545 546 static SourceLocation GetUnreachableLoc(const Stmt *S, 547 SourceRange &R1, 548 SourceRange &R2) { 549 R1 = R2 = SourceRange(); 550 551 if (const Expr *Ex = dyn_cast<Expr>(S)) 552 S = Ex->IgnoreParenImpCasts(); 553 554 switch (S->getStmtClass()) { 555 case Expr::BinaryOperatorClass: { 556 const BinaryOperator *BO = cast<BinaryOperator>(S); 557 return BO->getOperatorLoc(); 558 } 559 case Expr::UnaryOperatorClass: { 560 const UnaryOperator *UO = cast<UnaryOperator>(S); 561 R1 = UO->getSubExpr()->getSourceRange(); 562 return UO->getOperatorLoc(); 563 } 564 case Expr::CompoundAssignOperatorClass: { 565 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 566 R1 = CAO->getLHS()->getSourceRange(); 567 R2 = CAO->getRHS()->getSourceRange(); 568 return CAO->getOperatorLoc(); 569 } 570 case Expr::BinaryConditionalOperatorClass: 571 case Expr::ConditionalOperatorClass: { 572 const AbstractConditionalOperator *CO = 573 cast<AbstractConditionalOperator>(S); 574 return CO->getQuestionLoc(); 575 } 576 case Expr::MemberExprClass: { 577 const MemberExpr *ME = cast<MemberExpr>(S); 578 R1 = ME->getSourceRange(); 579 return ME->getMemberLoc(); 580 } 581 case Expr::ArraySubscriptExprClass: { 582 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 583 R1 = ASE->getLHS()->getSourceRange(); 584 R2 = ASE->getRHS()->getSourceRange(); 585 return ASE->getRBracketLoc(); 586 } 587 case Expr::CStyleCastExprClass: { 588 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 589 R1 = CSC->getSubExpr()->getSourceRange(); 590 return CSC->getLParenLoc(); 591 } 592 case Expr::CXXFunctionalCastExprClass: { 593 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 594 R1 = CE->getSubExpr()->getSourceRange(); 595 return CE->getBeginLoc(); 596 } 597 case Stmt::CXXTryStmtClass: { 598 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 599 } 600 case Expr::ObjCBridgedCastExprClass: { 601 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 602 R1 = CSC->getSubExpr()->getSourceRange(); 603 return CSC->getLParenLoc(); 604 } 605 default: ; 606 } 607 R1 = S->getSourceRange(); 608 return S->getBeginLoc(); 609 } 610 611 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 612 const Stmt *S, 613 clang::reachable_code::Callback &CB) { 614 // Classify the unreachable code found, or suppress it in some cases. 615 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 616 617 if (isa<BreakStmt>(S)) { 618 UK = reachable_code::UK_Break; 619 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || 620 isBuiltinAssumeFalse(B, S, C)) { 621 return; 622 } 623 else if (isDeadReturn(B, S)) { 624 UK = reachable_code::UK_Return; 625 } 626 627 SourceRange SilenceableCondVal; 628 629 if (UK == reachable_code::UK_Other) { 630 // Check if the dead code is part of the "loop target" of 631 // a for/for-range loop. This is the block that contains 632 // the increment code. 633 if (const Stmt *LoopTarget = B->getLoopTarget()) { 634 SourceLocation Loc = LoopTarget->getBeginLoc(); 635 SourceRange R1(Loc, Loc), R2; 636 637 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 638 const Expr *Inc = FS->getInc(); 639 Loc = Inc->getBeginLoc(); 640 R2 = Inc->getSourceRange(); 641 } 642 643 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 644 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 645 return; 646 } 647 648 // Check if the dead block has a predecessor whose branch has 649 // a configuration value that *could* be modified to 650 // silence the warning. 651 CFGBlock::const_pred_iterator PI = B->pred_begin(); 652 if (PI != B->pred_end()) { 653 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 654 const Stmt *TermCond = 655 PredBlock->getTerminatorCondition(/* strip parens */ false); 656 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 657 } 658 } 659 } 660 661 SourceRange R1, R2; 662 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 663 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // Reachability APIs. 668 //===----------------------------------------------------------------------===// 669 670 namespace clang { namespace reachable_code { 671 672 void Callback::anchor() { } 673 674 unsigned ScanReachableFromBlock(const CFGBlock *Start, 675 llvm::BitVector &Reachable) { 676 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 677 } 678 679 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 680 Callback &CB) { 681 682 CFG *cfg = AC.getCFG(); 683 if (!cfg) 684 return; 685 686 // Scan for reachable blocks from the entrance of the CFG. 687 // If there are no unreachable blocks, we're done. 688 llvm::BitVector reachable(cfg->getNumBlockIDs()); 689 unsigned numReachable = 690 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 691 if (numReachable == cfg->getNumBlockIDs()) 692 return; 693 694 // If there aren't explicit EH edges, we should include the 'try' dispatch 695 // blocks as roots. 696 if (!AC.getCFGBuildOptions().AddEHEdges) { 697 for (const CFGBlock *B : cfg->try_blocks()) 698 numReachable += scanMaybeReachableFromBlock(B, PP, reachable); 699 if (numReachable == cfg->getNumBlockIDs()) 700 return; 701 } 702 703 // There are some unreachable blocks. We need to find the root blocks that 704 // contain code that should be considered unreachable. 705 for (const CFGBlock *block : *cfg) { 706 // A block may have been marked reachable during this loop. 707 if (reachable[block->getBlockID()]) 708 continue; 709 710 DeadCodeScan DS(reachable, PP, AC.getASTContext()); 711 numReachable += DS.scanBackwards(block, CB); 712 713 if (numReachable == cfg->getNumBlockIDs()) 714 return; 715 } 716 } 717 718 }} // end namespace clang::reachable_code 719