1 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/AnalysisDeclContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/SmallVector.h"
26 
27 using namespace clang;
28 
29 //===----------------------------------------------------------------------===//
30 // Core Reachability Analysis routines.
31 //===----------------------------------------------------------------------===//
32 
33 static bool isEnumConstant(const Expr *Ex) {
34   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
35   if (!DR)
36     return false;
37   return isa<EnumConstantDecl>(DR->getDecl());
38 }
39 
40 static bool isTrivialExpression(const Expr *Ex) {
41   Ex = Ex->IgnoreParenCasts();
42   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
43          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
44          isa<CharacterLiteral>(Ex) ||
45          isEnumConstant(Ex);
46 }
47 
48 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
49   // Check if the block ends with a do...while() and see if 'S' is the
50   // condition.
51   if (const Stmt *Term = B->getTerminator()) {
52     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
53       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
54       return Cond == S && isTrivialExpression(Cond);
55     }
56   }
57   return false;
58 }
59 
60 static bool isBuiltinUnreachable(const Stmt *S) {
61   if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
62     if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
63       return FDecl->getIdentifier() &&
64              FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
65   return false;
66 }
67 
68 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
69                                  ASTContext &C) {
70   if (B->empty())  {
71     // Happens if S is B's terminator and B contains nothing else
72     // (e.g. a CFGBlock containing only a goto).
73     return false;
74   }
75   if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
76     if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
77       return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
78     }
79   }
80   return false;
81 }
82 
83 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
84   // Look to see if the current control flow ends with a 'return', and see if
85   // 'S' is a substatement. The 'return' may not be the last element in the
86   // block, or may be in a subsequent block because of destructors.
87   const CFGBlock *Current = B;
88   while (true) {
89     for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
90                                           E = Current->rend();
91          I != E; ++I) {
92       if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
93         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
94           if (RS == S)
95             return true;
96           if (const Expr *RE = RS->getRetValue()) {
97             RE = RE->IgnoreParenCasts();
98             if (RE == S)
99               return true;
100             ParentMap PM(const_cast<Expr *>(RE));
101             // If 'S' is in the ParentMap, it is a subexpression of
102             // the return statement.
103             return PM.getParent(S);
104           }
105         }
106         break;
107       }
108     }
109     // Note also that we are restricting the search for the return statement
110     // to stop at control-flow; only part of a return statement may be dead,
111     // without the whole return statement being dead.
112     if (Current->getTerminator().isTemporaryDtorsBranch()) {
113       // Temporary destructors have a predictable control flow, thus we want to
114       // look into the next block for the return statement.
115       // We look into the false branch, as we know the true branch only contains
116       // the call to the destructor.
117       assert(Current->succ_size() == 2);
118       Current = *(Current->succ_begin() + 1);
119     } else if (!Current->getTerminator() && Current->succ_size() == 1) {
120       // If there is only one successor, we're not dealing with outgoing control
121       // flow. Thus, look into the next block.
122       Current = *Current->succ_begin();
123       if (Current->pred_size() > 1) {
124         // If there is more than one predecessor, we're dealing with incoming
125         // control flow - if the return statement is in that block, it might
126         // well be reachable via a different control flow, thus it's not dead.
127         return false;
128       }
129     } else {
130       // We hit control flow or a dead end. Stop searching.
131       return false;
132     }
133   }
134   llvm_unreachable("Broke out of infinite loop.");
135 }
136 
137 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
138   assert(Loc.isMacroID());
139   SourceLocation Last;
140   while (Loc.isMacroID()) {
141     Last = Loc;
142     Loc = SM.getImmediateMacroCallerLoc(Loc);
143   }
144   return Last;
145 }
146 
147 /// Returns true if the statement is expanded from a configuration macro.
148 static bool isExpandedFromConfigurationMacro(const Stmt *S,
149                                              Preprocessor &PP,
150                                              bool IgnoreYES_NO = false) {
151   // FIXME: This is not very precise.  Here we just check to see if the
152   // value comes from a macro, but we can do much better.  This is likely
153   // to be over conservative.  This logic is factored into a separate function
154   // so that we can refine it later.
155   SourceLocation L = S->getBeginLoc();
156   if (L.isMacroID()) {
157     SourceManager &SM = PP.getSourceManager();
158     if (IgnoreYES_NO) {
159       // The Objective-C constant 'YES' and 'NO'
160       // are defined as macros.  Do not treat them
161       // as configuration values.
162       SourceLocation TopL = getTopMostMacro(L, SM);
163       StringRef MacroName = PP.getImmediateMacroName(TopL);
164       if (MacroName == "YES" || MacroName == "NO")
165         return false;
166     } else if (!PP.getLangOpts().CPlusPlus) {
167       // Do not treat C 'false' and 'true' macros as configuration values.
168       SourceLocation TopL = getTopMostMacro(L, SM);
169       StringRef MacroName = PP.getImmediateMacroName(TopL);
170       if (MacroName == "false" || MacroName == "true")
171         return false;
172     }
173     return true;
174   }
175   return false;
176 }
177 
178 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
179 
180 /// Returns true if the statement represents a configuration value.
181 ///
182 /// A configuration value is something usually determined at compile-time
183 /// to conditionally always execute some branch.  Such guards are for
184 /// "sometimes unreachable" code.  Such code is usually not interesting
185 /// to report as unreachable, and may mask truly unreachable code within
186 /// those blocks.
187 static bool isConfigurationValue(const Stmt *S,
188                                  Preprocessor &PP,
189                                  SourceRange *SilenceableCondVal = nullptr,
190                                  bool IncludeIntegers = true,
191                                  bool WrappedInParens = false) {
192   if (!S)
193     return false;
194 
195   S = S->IgnoreImplicit();
196 
197   if (const Expr *Ex = dyn_cast<Expr>(S))
198     S = Ex->IgnoreCasts();
199 
200   // Special case looking for the sigil '()' around an integer literal.
201   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
202     if (!PE->getBeginLoc().isMacroID())
203       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
204                                   IncludeIntegers, true);
205 
206   if (const Expr *Ex = dyn_cast<Expr>(S))
207     S = Ex->IgnoreCasts();
208 
209   bool IgnoreYES_NO = false;
210 
211   switch (S->getStmtClass()) {
212     case Stmt::CallExprClass: {
213       const FunctionDecl *Callee =
214         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
215       return Callee ? Callee->isConstexpr() : false;
216     }
217     case Stmt::DeclRefExprClass:
218       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
219     case Stmt::ObjCBoolLiteralExprClass:
220       IgnoreYES_NO = true;
221       LLVM_FALLTHROUGH;
222     case Stmt::CXXBoolLiteralExprClass:
223     case Stmt::IntegerLiteralClass: {
224       const Expr *E = cast<Expr>(S);
225       if (IncludeIntegers) {
226         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
227           *SilenceableCondVal = E->getSourceRange();
228         return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
229       }
230       return false;
231     }
232     case Stmt::MemberExprClass:
233       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
234     case Stmt::UnaryExprOrTypeTraitExprClass:
235       return true;
236     case Stmt::BinaryOperatorClass: {
237       const BinaryOperator *B = cast<BinaryOperator>(S);
238       // Only include raw integers (not enums) as configuration
239       // values if they are used in a logical or comparison operator
240       // (not arithmetic).
241       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
242       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
243                                   IncludeIntegers) ||
244              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
245                                   IncludeIntegers);
246     }
247     case Stmt::UnaryOperatorClass: {
248       const UnaryOperator *UO = cast<UnaryOperator>(S);
249       if (UO->getOpcode() != UO_LNot)
250         return false;
251       bool SilenceableCondValNotSet =
252           SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
253       bool IsSubExprConfigValue =
254           isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
255                                IncludeIntegers, WrappedInParens);
256       // Update the silenceable condition value source range only if the range
257       // was set directly by the child expression.
258       if (SilenceableCondValNotSet &&
259           SilenceableCondVal->getBegin().isValid() &&
260           *SilenceableCondVal ==
261               UO->getSubExpr()->IgnoreCasts()->getSourceRange())
262         *SilenceableCondVal = UO->getSourceRange();
263       return IsSubExprConfigValue;
264     }
265     default:
266       return false;
267   }
268 }
269 
270 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
271   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
272     return isConfigurationValue(ED->getInitExpr(), PP);
273   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
274     // As a heuristic, treat globals as configuration values.  Note
275     // that we only will get here if Sema evaluated this
276     // condition to a constant expression, which means the global
277     // had to be declared in a way to be a truly constant value.
278     // We could generalize this to local variables, but it isn't
279     // clear if those truly represent configuration values that
280     // gate unreachable code.
281     if (!VD->hasLocalStorage())
282       return true;
283 
284     // As a heuristic, locals that have been marked 'const' explicitly
285     // can be treated as configuration values as well.
286     return VD->getType().isLocalConstQualified();
287   }
288   return false;
289 }
290 
291 /// Returns true if we should always explore all successors of a block.
292 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
293                                              Preprocessor &PP) {
294   if (const Stmt *Term = B->getTerminator()) {
295     if (isa<SwitchStmt>(Term))
296       return true;
297     // Specially handle '||' and '&&'.
298     if (isa<BinaryOperator>(Term)) {
299       return isConfigurationValue(Term, PP);
300     }
301   }
302 
303   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
304   return isConfigurationValue(Cond, PP);
305 }
306 
307 static unsigned scanFromBlock(const CFGBlock *Start,
308                               llvm::BitVector &Reachable,
309                               Preprocessor *PP,
310                               bool IncludeSometimesUnreachableEdges) {
311   unsigned count = 0;
312 
313   // Prep work queue
314   SmallVector<const CFGBlock*, 32> WL;
315 
316   // The entry block may have already been marked reachable
317   // by the caller.
318   if (!Reachable[Start->getBlockID()]) {
319     ++count;
320     Reachable[Start->getBlockID()] = true;
321   }
322 
323   WL.push_back(Start);
324 
325   // Find the reachable blocks from 'Start'.
326   while (!WL.empty()) {
327     const CFGBlock *item = WL.pop_back_val();
328 
329     // There are cases where we want to treat all successors as reachable.
330     // The idea is that some "sometimes unreachable" code is not interesting,
331     // and that we should forge ahead and explore those branches anyway.
332     // This allows us to potentially uncover some "always unreachable" code
333     // within the "sometimes unreachable" code.
334     // Look at the successors and mark then reachable.
335     Optional<bool> TreatAllSuccessorsAsReachable;
336     if (!IncludeSometimesUnreachableEdges)
337       TreatAllSuccessorsAsReachable = false;
338 
339     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
340          E = item->succ_end(); I != E; ++I) {
341       const CFGBlock *B = *I;
342       if (!B) do {
343         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
344         if (!UB)
345           break;
346 
347         if (!TreatAllSuccessorsAsReachable.hasValue()) {
348           assert(PP);
349           TreatAllSuccessorsAsReachable =
350             shouldTreatSuccessorsAsReachable(item, *PP);
351         }
352 
353         if (TreatAllSuccessorsAsReachable.getValue()) {
354           B = UB;
355           break;
356         }
357       }
358       while (false);
359 
360       if (B) {
361         unsigned blockID = B->getBlockID();
362         if (!Reachable[blockID]) {
363           Reachable.set(blockID);
364           WL.push_back(B);
365           ++count;
366         }
367       }
368     }
369   }
370   return count;
371 }
372 
373 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
374                                             Preprocessor &PP,
375                                             llvm::BitVector &Reachable) {
376   return scanFromBlock(Start, Reachable, &PP, true);
377 }
378 
379 //===----------------------------------------------------------------------===//
380 // Dead Code Scanner.
381 //===----------------------------------------------------------------------===//
382 
383 namespace {
384   class DeadCodeScan {
385     llvm::BitVector Visited;
386     llvm::BitVector &Reachable;
387     SmallVector<const CFGBlock *, 10> WorkList;
388     Preprocessor &PP;
389     ASTContext &C;
390 
391     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
392     DeferredLocsTy;
393 
394     DeferredLocsTy DeferredLocs;
395 
396   public:
397     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
398     : Visited(reachable.size()),
399       Reachable(reachable),
400       PP(PP), C(C) {}
401 
402     void enqueue(const CFGBlock *block);
403     unsigned scanBackwards(const CFGBlock *Start,
404     clang::reachable_code::Callback &CB);
405 
406     bool isDeadCodeRoot(const CFGBlock *Block);
407 
408     const Stmt *findDeadCode(const CFGBlock *Block);
409 
410     void reportDeadCode(const CFGBlock *B,
411                         const Stmt *S,
412                         clang::reachable_code::Callback &CB);
413   };
414 }
415 
416 void DeadCodeScan::enqueue(const CFGBlock *block) {
417   unsigned blockID = block->getBlockID();
418   if (Reachable[blockID] || Visited[blockID])
419     return;
420   Visited[blockID] = true;
421   WorkList.push_back(block);
422 }
423 
424 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
425   bool isDeadRoot = true;
426 
427   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
428        E = Block->pred_end(); I != E; ++I) {
429     if (const CFGBlock *PredBlock = *I) {
430       unsigned blockID = PredBlock->getBlockID();
431       if (Visited[blockID]) {
432         isDeadRoot = false;
433         continue;
434       }
435       if (!Reachable[blockID]) {
436         isDeadRoot = false;
437         Visited[blockID] = true;
438         WorkList.push_back(PredBlock);
439         continue;
440       }
441     }
442   }
443 
444   return isDeadRoot;
445 }
446 
447 static bool isValidDeadStmt(const Stmt *S) {
448   if (S->getBeginLoc().isInvalid())
449     return false;
450   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
451     return BO->getOpcode() != BO_Comma;
452   return true;
453 }
454 
455 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
456   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
457     if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
458       const Stmt *S = CS->getStmt();
459       if (isValidDeadStmt(S))
460         return S;
461     }
462 
463   if (CFGTerminator T = Block->getTerminator()) {
464     if (!T.isTemporaryDtorsBranch()) {
465       const Stmt *S = T.getStmt();
466       if (isValidDeadStmt(S))
467         return S;
468     }
469   }
470 
471   return nullptr;
472 }
473 
474 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
475                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
476   if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
477     return -1;
478   if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
479     return 1;
480   return 0;
481 }
482 
483 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
484                                      clang::reachable_code::Callback &CB) {
485 
486   unsigned count = 0;
487   enqueue(Start);
488 
489   while (!WorkList.empty()) {
490     const CFGBlock *Block = WorkList.pop_back_val();
491 
492     // It is possible that this block has been marked reachable after
493     // it was enqueued.
494     if (Reachable[Block->getBlockID()])
495       continue;
496 
497     // Look for any dead code within the block.
498     const Stmt *S = findDeadCode(Block);
499 
500     if (!S) {
501       // No dead code.  Possibly an empty block.  Look at dead predecessors.
502       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
503            E = Block->pred_end(); I != E; ++I) {
504         if (const CFGBlock *predBlock = *I)
505           enqueue(predBlock);
506       }
507       continue;
508     }
509 
510     // Specially handle macro-expanded code.
511     if (S->getBeginLoc().isMacroID()) {
512       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
513       continue;
514     }
515 
516     if (isDeadCodeRoot(Block)) {
517       reportDeadCode(Block, S, CB);
518       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
519     }
520     else {
521       // Record this statement as the possibly best location in a
522       // strongly-connected component of dead code for emitting a
523       // warning.
524       DeferredLocs.push_back(std::make_pair(Block, S));
525     }
526   }
527 
528   // If we didn't find a dead root, then report the dead code with the
529   // earliest location.
530   if (!DeferredLocs.empty()) {
531     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
532     for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
533          E = DeferredLocs.end(); I != E; ++I) {
534       const CFGBlock *Block = I->first;
535       if (Reachable[Block->getBlockID()])
536         continue;
537       reportDeadCode(Block, I->second, CB);
538       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
539     }
540   }
541 
542   return count;
543 }
544 
545 static SourceLocation GetUnreachableLoc(const Stmt *S,
546                                         SourceRange &R1,
547                                         SourceRange &R2) {
548   R1 = R2 = SourceRange();
549 
550   if (const Expr *Ex = dyn_cast<Expr>(S))
551     S = Ex->IgnoreParenImpCasts();
552 
553   switch (S->getStmtClass()) {
554     case Expr::BinaryOperatorClass: {
555       const BinaryOperator *BO = cast<BinaryOperator>(S);
556       return BO->getOperatorLoc();
557     }
558     case Expr::UnaryOperatorClass: {
559       const UnaryOperator *UO = cast<UnaryOperator>(S);
560       R1 = UO->getSubExpr()->getSourceRange();
561       return UO->getOperatorLoc();
562     }
563     case Expr::CompoundAssignOperatorClass: {
564       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
565       R1 = CAO->getLHS()->getSourceRange();
566       R2 = CAO->getRHS()->getSourceRange();
567       return CAO->getOperatorLoc();
568     }
569     case Expr::BinaryConditionalOperatorClass:
570     case Expr::ConditionalOperatorClass: {
571       const AbstractConditionalOperator *CO =
572       cast<AbstractConditionalOperator>(S);
573       return CO->getQuestionLoc();
574     }
575     case Expr::MemberExprClass: {
576       const MemberExpr *ME = cast<MemberExpr>(S);
577       R1 = ME->getSourceRange();
578       return ME->getMemberLoc();
579     }
580     case Expr::ArraySubscriptExprClass: {
581       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
582       R1 = ASE->getLHS()->getSourceRange();
583       R2 = ASE->getRHS()->getSourceRange();
584       return ASE->getRBracketLoc();
585     }
586     case Expr::CStyleCastExprClass: {
587       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
588       R1 = CSC->getSubExpr()->getSourceRange();
589       return CSC->getLParenLoc();
590     }
591     case Expr::CXXFunctionalCastExprClass: {
592       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
593       R1 = CE->getSubExpr()->getSourceRange();
594       return CE->getBeginLoc();
595     }
596     case Stmt::CXXTryStmtClass: {
597       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
598     }
599     case Expr::ObjCBridgedCastExprClass: {
600       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
601       R1 = CSC->getSubExpr()->getSourceRange();
602       return CSC->getLParenLoc();
603     }
604     default: ;
605   }
606   R1 = S->getSourceRange();
607   return S->getBeginLoc();
608 }
609 
610 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
611                                   const Stmt *S,
612                                   clang::reachable_code::Callback &CB) {
613   // Classify the unreachable code found, or suppress it in some cases.
614   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
615 
616   if (isa<BreakStmt>(S)) {
617     UK = reachable_code::UK_Break;
618   } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
619              isBuiltinAssumeFalse(B, S, C)) {
620     return;
621   }
622   else if (isDeadReturn(B, S)) {
623     UK = reachable_code::UK_Return;
624   }
625 
626   SourceRange SilenceableCondVal;
627 
628   if (UK == reachable_code::UK_Other) {
629     // Check if the dead code is part of the "loop target" of
630     // a for/for-range loop.  This is the block that contains
631     // the increment code.
632     if (const Stmt *LoopTarget = B->getLoopTarget()) {
633       SourceLocation Loc = LoopTarget->getBeginLoc();
634       SourceRange R1(Loc, Loc), R2;
635 
636       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
637         const Expr *Inc = FS->getInc();
638         Loc = Inc->getBeginLoc();
639         R2 = Inc->getSourceRange();
640       }
641 
642       CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
643                            Loc, SourceRange(), SourceRange(Loc, Loc), R2);
644       return;
645     }
646 
647     // Check if the dead block has a predecessor whose branch has
648     // a configuration value that *could* be modified to
649     // silence the warning.
650     CFGBlock::const_pred_iterator PI = B->pred_begin();
651     if (PI != B->pred_end()) {
652       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
653         const Stmt *TermCond =
654             PredBlock->getTerminatorCondition(/* strip parens */ false);
655         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
656       }
657     }
658   }
659 
660   SourceRange R1, R2;
661   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
662   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
663 }
664 
665 //===----------------------------------------------------------------------===//
666 // Reachability APIs.
667 //===----------------------------------------------------------------------===//
668 
669 namespace clang { namespace reachable_code {
670 
671 void Callback::anchor() { }
672 
673 unsigned ScanReachableFromBlock(const CFGBlock *Start,
674                                 llvm::BitVector &Reachable) {
675   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
676 }
677 
678 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
679                          Callback &CB) {
680 
681   CFG *cfg = AC.getCFG();
682   if (!cfg)
683     return;
684 
685   // Scan for reachable blocks from the entrance of the CFG.
686   // If there are no unreachable blocks, we're done.
687   llvm::BitVector reachable(cfg->getNumBlockIDs());
688   unsigned numReachable =
689     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
690   if (numReachable == cfg->getNumBlockIDs())
691     return;
692 
693   // If there aren't explicit EH edges, we should include the 'try' dispatch
694   // blocks as roots.
695   if (!AC.getCFGBuildOptions().AddEHEdges) {
696     for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
697          E = cfg->try_blocks_end() ; I != E; ++I) {
698       numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
699     }
700     if (numReachable == cfg->getNumBlockIDs())
701       return;
702   }
703 
704   // There are some unreachable blocks.  We need to find the root blocks that
705   // contain code that should be considered unreachable.
706   for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
707     const CFGBlock *block = *I;
708     // A block may have been marked reachable during this loop.
709     if (reachable[block->getBlockID()])
710       continue;
711 
712     DeadCodeScan DS(reachable, PP, AC.getASTContext());
713     numReachable += DS.scanBackwards(block, CB);
714 
715     if (numReachable == cfg->getNumBlockIDs())
716       return;
717   }
718 }
719 
720 }} // end namespace clang::reachable_code
721