1 //===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a SAT solver implementation that can be used by dataflow 10 // analyses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include <cassert> 15 #include <cstdint> 16 #include <iterator> 17 #include <queue> 18 #include <vector> 19 20 #include "clang/Analysis/FlowSensitive/Solver.h" 21 #include "clang/Analysis/FlowSensitive/Value.h" 22 #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/STLExtras.h" 26 27 namespace clang { 28 namespace dataflow { 29 30 // `WatchedLiteralsSolver` is an implementation of Algorithm D from Knuth's 31 // The Art of Computer Programming Volume 4: Satisfiability, Fascicle 6. It is 32 // based on the backtracking DPLL algorithm [1], keeps references to a single 33 // "watched" literal per clause, and uses a set of "active" variables to perform 34 // unit propagation. 35 // 36 // The solver expects that its input is a boolean formula in conjunctive normal 37 // form that consists of clauses of at least one literal. A literal is either a 38 // boolean variable or its negation. Below we define types, data structures, and 39 // utilities that are used to represent boolean formulas in conjunctive normal 40 // form. 41 // 42 // [1] https://en.wikipedia.org/wiki/DPLL_algorithm 43 44 /// Boolean variables are represented as positive integers. 45 using Variable = uint32_t; 46 47 /// A null boolean variable is used as a placeholder in various data structures 48 /// and algorithms. 49 static constexpr Variable NullVar = 0; 50 51 /// Literals are represented as positive integers. Specifically, for a boolean 52 /// variable `V` that is represented as the positive integer `I`, the positive 53 /// literal `V` is represented as the integer `2*I` and the negative literal 54 /// `!V` is represented as the integer `2*I+1`. 55 using Literal = uint32_t; 56 57 /// A null literal is used as a placeholder in various data structures and 58 /// algorithms. 59 static constexpr Literal NullLit = 0; 60 61 /// Returns the positive literal `V`. 62 static constexpr Literal posLit(Variable V) { return 2 * V; } 63 64 /// Returns the negative literal `!V`. 65 static constexpr Literal negLit(Variable V) { return 2 * V + 1; } 66 67 /// Returns the negated literal `!L`. 68 static constexpr Literal notLit(Literal L) { return L ^ 1; } 69 70 /// Returns the variable of `L`. 71 static constexpr Variable var(Literal L) { return L >> 1; } 72 73 /// Clause identifiers are represented as positive integers. 74 using ClauseID = uint32_t; 75 76 /// A null clause identifier is used as a placeholder in various data structures 77 /// and algorithms. 78 static constexpr ClauseID NullClause = 0; 79 80 /// A boolean formula in conjunctive normal form. 81 struct BooleanFormula { 82 /// `LargestVar` is equal to the largest positive integer that represents a 83 /// variable in the formula. 84 const Variable LargestVar; 85 86 /// Literals of all clauses in the formula. 87 /// 88 /// The element at index 0 stands for the literal in the null clause. It is 89 /// set to 0 and isn't used. Literals of clauses in the formula start from the 90 /// element at index 1. 91 /// 92 /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of 93 /// `Clauses` will be `[0, L1, L2, L2, L3, L4]`. 94 std::vector<Literal> Clauses; 95 96 /// Start indices of clauses of the formula in `Clauses`. 97 /// 98 /// The element at index 0 stands for the start index of the null clause. It 99 /// is set to 0 and isn't used. Start indices of clauses in the formula start 100 /// from the element at index 1. 101 /// 102 /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of 103 /// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first 104 /// clause always start at index 1. The start index for the literals of the 105 /// second clause depends on the size of the first clause and so on. 106 std::vector<size_t> ClauseStarts; 107 108 /// Maps literals (indices of the vector) to clause identifiers (elements of 109 /// the vector) that watch the respective literals. 110 /// 111 /// For a given clause, its watched literal is always its first literal in 112 /// `Clauses`. This invariant is maintained when watched literals change. 113 std::vector<ClauseID> WatchedHead; 114 115 /// Maps clause identifiers (elements of the vector) to identifiers of other 116 /// clauses that watch the same literals, forming a set of linked lists. 117 /// 118 /// The element at index 0 stands for the identifier of the clause that 119 /// follows the null clause. It is set to 0 and isn't used. Identifiers of 120 /// clauses in the formula start from the element at index 1. 121 std::vector<ClauseID> NextWatched; 122 123 explicit BooleanFormula(Variable LargestVar) : LargestVar(LargestVar) { 124 Clauses.push_back(0); 125 ClauseStarts.push_back(0); 126 NextWatched.push_back(0); 127 const size_t NumLiterals = 2 * LargestVar + 1; 128 WatchedHead.resize(NumLiterals + 1, 0); 129 } 130 131 /// Adds the `L1 v L2 v L3` clause to the formula. If `L2` or `L3` are 132 /// `NullLit` they are respectively omitted from the clause. 133 /// 134 /// Requirements: 135 /// 136 /// `L1` must not be `NullLit`. 137 /// 138 /// All literals in the input that are not `NullLit` must be distinct. 139 void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) { 140 // The literals are guaranteed to be distinct from properties of BoolValue 141 // and the construction in `buildBooleanFormula`. 142 assert(L1 != NullLit && L1 != L2 && L1 != L3 && 143 (L2 != L3 || L2 == NullLit)); 144 145 const ClauseID C = ClauseStarts.size(); 146 const size_t S = Clauses.size(); 147 ClauseStarts.push_back(S); 148 149 Clauses.push_back(L1); 150 if (L2 != NullLit) 151 Clauses.push_back(L2); 152 if (L3 != NullLit) 153 Clauses.push_back(L3); 154 155 // Designate the first literal as the "watched" literal of the clause. 156 NextWatched.push_back(WatchedHead[L1]); 157 WatchedHead[L1] = C; 158 } 159 160 /// Returns the number of literals in clause `C`. 161 size_t clauseSize(ClauseID C) const { 162 return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C] 163 : ClauseStarts[C + 1] - ClauseStarts[C]; 164 } 165 166 /// Returns the literals of clause `C`. 167 llvm::ArrayRef<Literal> clauseLiterals(ClauseID C) const { 168 return llvm::ArrayRef<Literal>(&Clauses[ClauseStarts[C]], clauseSize(C)); 169 } 170 }; 171 172 /// Converts the conjunction of `Vals` into a formula in conjunctive normal 173 /// form where each clause has at least one and at most three literals. 174 BooleanFormula buildBooleanFormula(const llvm::DenseSet<BoolValue *> &Vals) { 175 // The general strategy of the algorithm implemented below is to map each 176 // of the sub-values in `Vals` to a unique variable and use these variables in 177 // the resulting CNF expression to avoid exponential blow up. The number of 178 // literals in the resulting formula is guaranteed to be linear in the number 179 // of sub-values in `Vals`. 180 181 // Map each sub-value in `Vals` to a unique variable. 182 llvm::DenseMap<BoolValue *, Variable> SubValsToVar; 183 Variable NextVar = 1; 184 { 185 std::queue<BoolValue *> UnprocessedSubVals; 186 for (BoolValue *Val : Vals) 187 UnprocessedSubVals.push(Val); 188 while (!UnprocessedSubVals.empty()) { 189 BoolValue *Val = UnprocessedSubVals.front(); 190 UnprocessedSubVals.pop(); 191 192 if (!SubValsToVar.try_emplace(Val, NextVar).second) 193 continue; 194 ++NextVar; 195 196 // Visit the sub-values of `Val`. 197 if (auto *C = dyn_cast<ConjunctionValue>(Val)) { 198 UnprocessedSubVals.push(&C->getLeftSubValue()); 199 UnprocessedSubVals.push(&C->getRightSubValue()); 200 } else if (auto *D = dyn_cast<DisjunctionValue>(Val)) { 201 UnprocessedSubVals.push(&D->getLeftSubValue()); 202 UnprocessedSubVals.push(&D->getRightSubValue()); 203 } else if (auto *N = dyn_cast<NegationValue>(Val)) { 204 UnprocessedSubVals.push(&N->getSubVal()); 205 } 206 } 207 } 208 209 auto GetVar = [&SubValsToVar](const BoolValue *Val) { 210 auto ValIt = SubValsToVar.find(Val); 211 assert(ValIt != SubValsToVar.end()); 212 return ValIt->second; 213 }; 214 215 BooleanFormula Formula(NextVar - 1); 216 std::vector<bool> ProcessedSubVals(NextVar, false); 217 218 // Add a conjunct for each variable that represents a top-level conjunction 219 // value in `Vals`. 220 for (BoolValue *Val : Vals) 221 Formula.addClause(posLit(GetVar(Val))); 222 223 // Add conjuncts that represent the mapping between newly-created variables 224 // and their corresponding sub-values. 225 std::queue<BoolValue *> UnprocessedSubVals; 226 for (BoolValue *Val : Vals) 227 UnprocessedSubVals.push(Val); 228 while (!UnprocessedSubVals.empty()) { 229 const BoolValue *Val = UnprocessedSubVals.front(); 230 UnprocessedSubVals.pop(); 231 const Variable Var = GetVar(Val); 232 233 if (ProcessedSubVals[Var]) 234 continue; 235 ProcessedSubVals[Var] = true; 236 237 if (auto *C = dyn_cast<ConjunctionValue>(Val)) { 238 const Variable LeftSubVar = GetVar(&C->getLeftSubValue()); 239 const Variable RightSubVar = GetVar(&C->getRightSubValue()); 240 241 // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)` 242 // which is already in conjunctive normal form. Below we add each of the 243 // conjuncts of the latter expression to the result. 244 Formula.addClause(negLit(Var), posLit(LeftSubVar)); 245 Formula.addClause(negLit(Var), posLit(RightSubVar)); 246 Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); 247 248 // Visit the sub-values of `Val`. 249 UnprocessedSubVals.push(&C->getLeftSubValue()); 250 UnprocessedSubVals.push(&C->getRightSubValue()); 251 } else if (auto *D = dyn_cast<DisjunctionValue>(Val)) { 252 const Variable LeftSubVar = GetVar(&D->getLeftSubValue()); 253 const Variable RightSubVar = GetVar(&D->getRightSubValue()); 254 255 // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)` 256 // which is already in conjunctive normal form. Below we add each of the 257 // conjuncts of the latter expression to the result. 258 Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); 259 Formula.addClause(posLit(Var), negLit(LeftSubVar)); 260 Formula.addClause(posLit(Var), negLit(RightSubVar)); 261 262 // Visit the sub-values of `Val`. 263 UnprocessedSubVals.push(&D->getLeftSubValue()); 264 UnprocessedSubVals.push(&D->getRightSubValue()); 265 } else if (auto *N = dyn_cast<NegationValue>(Val)) { 266 const Variable SubVar = GetVar(&N->getSubVal()); 267 268 // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in 269 // conjunctive normal form. Below we add each of the conjuncts of the 270 // latter expression to the result. 271 Formula.addClause(negLit(Var), negLit(SubVar)); 272 Formula.addClause(posLit(Var), posLit(SubVar)); 273 274 // Visit the sub-values of `Val`. 275 UnprocessedSubVals.push(&N->getSubVal()); 276 } 277 } 278 279 return Formula; 280 } 281 282 class WatchedLiteralsSolverImpl { 283 /// A boolean formula in conjunctive normal form that the solver will attempt 284 /// to prove satisfiable. The formula will be modified in the process. 285 BooleanFormula Formula; 286 287 /// The search for a satisfying assignment of the variables in `Formula` will 288 /// proceed in levels, starting from 1 and going up to `Formula.LargestVar` 289 /// (inclusive). The current level is stored in `Level`. At each level the 290 /// solver will assign a value to an unassigned variable. If this leads to a 291 /// consistent partial assignment, `Level` will be incremented. Otherwise, if 292 /// it results in a conflict, the solver will backtrack by decrementing 293 /// `Level` until it reaches the most recent level where a decision was made. 294 size_t Level = 0; 295 296 /// Maps levels (indices of the vector) to variables (elements of the vector) 297 /// that are assigned values at the respective levels. 298 /// 299 /// The element at index 0 isn't used. Variables start from the element at 300 /// index 1. 301 std::vector<Variable> LevelVars; 302 303 /// State of the solver at a particular level. 304 enum class State : uint8_t { 305 /// Indicates that the solver made a decision. 306 Decision = 0, 307 308 /// Indicates that the solver made a forced move. 309 Forced = 1, 310 }; 311 312 /// State of the solver at a particular level. It keeps track of previous 313 /// decisions that the solver can refer to when backtracking. 314 /// 315 /// The element at index 0 isn't used. States start from the element at index 316 /// 1. 317 std::vector<State> LevelStates; 318 319 enum class Assignment : int8_t { 320 Unassigned = -1, 321 AssignedFalse = 0, 322 AssignedTrue = 1 323 }; 324 325 /// Maps variables (indices of the vector) to their assignments (elements of 326 /// the vector). 327 /// 328 /// The element at index 0 isn't used. Variable assignments start from the 329 /// element at index 1. 330 std::vector<Assignment> VarAssignments; 331 332 /// A set of unassigned variables that appear in watched literals in 333 /// `Formula`. The vector is guaranteed to contain unique elements. 334 std::vector<Variable> ActiveVars; 335 336 public: 337 explicit WatchedLiteralsSolverImpl(const llvm::DenseSet<BoolValue *> &Vals) 338 : Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1), 339 LevelStates(Formula.LargestVar + 1) { 340 assert(!Vals.empty()); 341 342 // Initialize the state at the root level to a decision so that in 343 // `reverseForcedMoves` we don't have to check that `Level >= 0` on each 344 // iteration. 345 LevelStates[0] = State::Decision; 346 347 // Initialize all variables as unassigned. 348 VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned); 349 350 // Initialize the active variables. 351 for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) { 352 if (isWatched(posLit(Var)) || isWatched(negLit(Var))) 353 ActiveVars.push_back(Var); 354 } 355 } 356 357 Solver::Result solve() && { 358 size_t I = 0; 359 while (I < ActiveVars.size()) { 360 // Assert that the following invariants hold: 361 // 1. All active variables are unassigned. 362 // 2. All active variables form watched literals. 363 // 3. Unassigned variables that form watched literals are active. 364 // FIXME: Consider replacing these with test cases that fail if the any 365 // of the invariants is broken. That might not be easy due to the 366 // transformations performed by `buildBooleanFormula`. 367 assert(activeVarsAreUnassigned()); 368 assert(activeVarsFormWatchedLiterals()); 369 assert(unassignedVarsFormingWatchedLiteralsAreActive()); 370 371 const Variable ActiveVar = ActiveVars[I]; 372 373 // Look for unit clauses that contain the active variable. 374 const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar)); 375 const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar)); 376 if (unitPosLit && unitNegLit) { 377 // We found a conflict! 378 379 // Backtrack and rewind the `Level` until the most recent non-forced 380 // assignment. 381 reverseForcedMoves(); 382 383 // If the root level is reached, then all possible assignments lead to 384 // a conflict. 385 if (Level == 0) 386 return WatchedLiteralsSolver::Result::Unsatisfiable; 387 388 // Otherwise, take the other branch at the most recent level where a 389 // decision was made. 390 LevelStates[Level] = State::Forced; 391 const Variable Var = LevelVars[Level]; 392 VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue 393 ? Assignment::AssignedFalse 394 : Assignment::AssignedTrue; 395 396 updateWatchedLiterals(); 397 } else if (unitPosLit || unitNegLit) { 398 // We found a unit clause! The value of its unassigned variable is 399 // forced. 400 ++Level; 401 402 LevelVars[Level] = ActiveVar; 403 LevelStates[Level] = State::Forced; 404 VarAssignments[ActiveVar] = 405 unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse; 406 407 // Remove the variable that was just assigned from the set of active 408 // variables. 409 if (I + 1 < ActiveVars.size()) { 410 // Replace the variable that was just assigned with the last active 411 // variable for efficient removal. 412 ActiveVars[I] = ActiveVars.back(); 413 } else { 414 // This was the last active variable. Repeat the process from the 415 // beginning. 416 I = 0; 417 } 418 ActiveVars.pop_back(); 419 420 updateWatchedLiterals(); 421 } else if (I + 1 == ActiveVars.size()) { 422 // There are no remaining unit clauses in the formula! Make a decision 423 // for one of the active variables at the current level. 424 ++Level; 425 426 LevelVars[Level] = ActiveVar; 427 LevelStates[Level] = State::Decision; 428 VarAssignments[ActiveVar] = decideAssignment(ActiveVar); 429 430 // Remove the variable that was just assigned from the set of active 431 // variables. 432 ActiveVars.pop_back(); 433 434 updateWatchedLiterals(); 435 436 // This was the last active variable. Repeat the process from the 437 // beginning. 438 I = 0; 439 } else { 440 ++I; 441 } 442 } 443 return WatchedLiteralsSolver::Result::Satisfiable; 444 } 445 446 private: 447 // Reverses forced moves until the most recent level where a decision was made 448 // on the assignment of a variable. 449 void reverseForcedMoves() { 450 for (; LevelStates[Level] == State::Forced; --Level) { 451 const Variable Var = LevelVars[Level]; 452 453 VarAssignments[Var] = Assignment::Unassigned; 454 455 // If the variable that we pass through is watched then we add it to the 456 // active variables. 457 if (isWatched(posLit(Var)) || isWatched(negLit(Var))) 458 ActiveVars.push_back(Var); 459 } 460 } 461 462 // Updates watched literals that are affected by a variable assignment. 463 void updateWatchedLiterals() { 464 const Variable Var = LevelVars[Level]; 465 466 // Update the watched literals of clauses that currently watch the literal 467 // that falsifies `Var`. 468 const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue 469 ? negLit(Var) 470 : posLit(Var); 471 ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit]; 472 Formula.WatchedHead[FalseLit] = NullClause; 473 while (FalseLitWatcher != NullClause) { 474 const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher]; 475 476 // Pick the first non-false literal as the new watched literal. 477 const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher]; 478 size_t NewWatchedLitIdx = FalseLitWatcherStart + 1; 479 while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx])) 480 ++NewWatchedLitIdx; 481 const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx]; 482 const Variable NewWatchedLitVar = var(NewWatchedLit); 483 484 // Swap the old watched literal for the new one in `FalseLitWatcher` to 485 // maintain the invariant that the watched literal is at the beginning of 486 // the clause. 487 Formula.Clauses[NewWatchedLitIdx] = FalseLit; 488 Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit; 489 490 // If the new watched literal isn't watched by any other clause and its 491 // variable isn't assigned we need to add it to the active variables. 492 if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) && 493 VarAssignments[NewWatchedLitVar] == Assignment::Unassigned) 494 ActiveVars.push_back(NewWatchedLitVar); 495 496 Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit]; 497 Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher; 498 499 // Go to the next clause that watches `FalseLit`. 500 FalseLitWatcher = NextFalseLitWatcher; 501 } 502 } 503 504 /// Returns true if and only if one of the clauses that watch `Lit` is a unit 505 /// clause. 506 bool watchedByUnitClause(Literal Lit) const { 507 for (ClauseID LitWatcher = Formula.WatchedHead[Lit]; 508 LitWatcher != NullClause; 509 LitWatcher = Formula.NextWatched[LitWatcher]) { 510 llvm::ArrayRef<Literal> Clause = Formula.clauseLiterals(LitWatcher); 511 512 // Assert the invariant that the watched literal is always the first one 513 // in the clause. 514 // FIXME: Consider replacing this with a test case that fails if the 515 // invariant is broken by `updateWatchedLiterals`. That might not be easy 516 // due to the transformations performed by `buildBooleanFormula`. 517 assert(Clause.front() == Lit); 518 519 if (isUnit(Clause)) 520 return true; 521 } 522 return false; 523 } 524 525 /// Returns true if and only if `Clause` is a unit clause. 526 bool isUnit(llvm::ArrayRef<Literal> Clause) const { 527 return llvm::all_of(Clause.drop_front(), 528 [this](Literal L) { return isCurrentlyFalse(L); }); 529 } 530 531 /// Returns true if and only if `Lit` evaluates to `false` in the current 532 /// partial assignment. 533 bool isCurrentlyFalse(Literal Lit) const { 534 return static_cast<int8_t>(VarAssignments[var(Lit)]) == 535 static_cast<int8_t>(Lit & 1); 536 } 537 538 /// Returns true if and only if `Lit` is watched by a clause in `Formula`. 539 bool isWatched(Literal Lit) const { 540 return Formula.WatchedHead[Lit] != NullClause; 541 } 542 543 /// Returns an assignment for an unassigned variable. 544 Assignment decideAssignment(Variable Var) const { 545 return !isWatched(posLit(Var)) || isWatched(negLit(Var)) 546 ? Assignment::AssignedFalse 547 : Assignment::AssignedTrue; 548 } 549 550 /// Returns a set of all watched literals. 551 llvm::DenseSet<Literal> watchedLiterals() const { 552 llvm::DenseSet<Literal> WatchedLiterals; 553 for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) { 554 if (Formula.WatchedHead[Lit] == NullClause) 555 continue; 556 WatchedLiterals.insert(Lit); 557 } 558 return WatchedLiterals; 559 } 560 561 /// Returns true if and only if all active variables are unassigned. 562 bool activeVarsAreUnassigned() const { 563 return llvm::all_of(ActiveVars, [this](Variable Var) { 564 return VarAssignments[Var] == Assignment::Unassigned; 565 }); 566 } 567 568 /// Returns true if and only if all active variables form watched literals. 569 bool activeVarsFormWatchedLiterals() const { 570 const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals(); 571 return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) { 572 return WatchedLiterals.contains(posLit(Var)) || 573 WatchedLiterals.contains(negLit(Var)); 574 }); 575 } 576 577 /// Returns true if and only if all unassigned variables that are forming 578 /// watched literals are active. 579 bool unassignedVarsFormingWatchedLiteralsAreActive() const { 580 const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(), 581 ActiveVars.end()); 582 for (Literal Lit : watchedLiterals()) { 583 const Variable Var = var(Lit); 584 if (VarAssignments[Var] != Assignment::Unassigned) 585 continue; 586 if (ActiveVarsSet.contains(Var)) 587 continue; 588 return false; 589 } 590 return true; 591 } 592 }; 593 594 Solver::Result WatchedLiteralsSolver::solve(llvm::DenseSet<BoolValue *> Vals) { 595 return Vals.empty() ? WatchedLiteralsSolver::Result::Satisfiable 596 : WatchedLiteralsSolverImpl(Vals).solve(); 597 } 598 599 } // namespace dataflow 600 } // namespace clang 601