1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// This file implements classes for searching and anlyzing source code clones. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/CloneDetection.h" 15 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/RecursiveASTVisitor.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Lex/Lexer.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Support/MD5.h" 23 #include "llvm/Support/raw_ostream.h" 24 25 using namespace clang; 26 27 StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context, 28 unsigned StartIndex, unsigned EndIndex) 29 : S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) { 30 assert(Stmt && "Stmt must not be a nullptr"); 31 assert(StartIndex < EndIndex && "Given array should not be empty"); 32 assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); 33 } 34 35 StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context) 36 : S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {} 37 38 StmtSequence::StmtSequence() 39 : S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {} 40 41 bool StmtSequence::contains(const StmtSequence &Other) const { 42 // If both sequences reside in different translation units, they can never 43 // contain each other. 44 if (Context != Other.Context) 45 return false; 46 47 const SourceManager &SM = Context->getSourceManager(); 48 49 // Otherwise check if the start and end locations of the current sequence 50 // surround the other sequence. 51 bool StartIsInBounds = 52 SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) || 53 getStartLoc() == Other.getStartLoc(); 54 if (!StartIsInBounds) 55 return false; 56 57 bool EndIsInBounds = 58 SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || 59 Other.getEndLoc() == getEndLoc(); 60 return EndIsInBounds; 61 } 62 63 StmtSequence::iterator StmtSequence::begin() const { 64 if (!holdsSequence()) { 65 return &S; 66 } 67 auto CS = cast<CompoundStmt>(S); 68 return CS->body_begin() + StartIndex; 69 } 70 71 StmtSequence::iterator StmtSequence::end() const { 72 if (!holdsSequence()) { 73 return reinterpret_cast<StmtSequence::iterator>(&S) + 1; 74 } 75 auto CS = cast<CompoundStmt>(S); 76 return CS->body_begin() + EndIndex; 77 } 78 79 SourceLocation StmtSequence::getStartLoc() const { 80 return front()->getLocStart(); 81 } 82 83 SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); } 84 85 SourceRange StmtSequence::getSourceRange() const { 86 return SourceRange(getStartLoc(), getEndLoc()); 87 } 88 89 namespace { 90 91 /// \brief Analyzes the pattern of the referenced variables in a statement. 92 class VariablePattern { 93 94 /// \brief Describes an occurence of a variable reference in a statement. 95 struct VariableOccurence { 96 /// The index of the associated VarDecl in the Variables vector. 97 size_t KindID; 98 /// The statement in the code where the variable was referenced. 99 const Stmt *Mention; 100 101 VariableOccurence(size_t KindID, const Stmt *Mention) 102 : KindID(KindID), Mention(Mention) {} 103 }; 104 105 /// All occurences of referenced variables in the order of appearance. 106 std::vector<VariableOccurence> Occurences; 107 /// List of referenced variables in the order of appearance. 108 /// Every item in this list is unique. 109 std::vector<const VarDecl *> Variables; 110 111 /// \brief Adds a new variable referenced to this pattern. 112 /// \param VarDecl The declaration of the variable that is referenced. 113 /// \param Mention The SourceRange where this variable is referenced. 114 void addVariableOccurence(const VarDecl *VarDecl, const Stmt *Mention) { 115 // First check if we already reference this variable 116 for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { 117 if (Variables[KindIndex] == VarDecl) { 118 // If yes, add a new occurence that points to the existing entry in 119 // the Variables vector. 120 Occurences.emplace_back(KindIndex, Mention); 121 return; 122 } 123 } 124 // If this variable wasn't already referenced, add it to the list of 125 // referenced variables and add a occurence that points to this new entry. 126 Occurences.emplace_back(Variables.size(), Mention); 127 Variables.push_back(VarDecl); 128 } 129 130 /// \brief Adds each referenced variable from the given statement. 131 void addVariables(const Stmt *S) { 132 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr 133 // children). We skip such statements as they don't reference any 134 // variables. 135 if (!S) 136 return; 137 138 // Check if S is a reference to a variable. If yes, add it to the pattern. 139 if (auto D = dyn_cast<DeclRefExpr>(S)) { 140 if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl())) 141 addVariableOccurence(VD, D); 142 } 143 144 // Recursively check all children of the given statement. 145 for (const Stmt *Child : S->children()) { 146 addVariables(Child); 147 } 148 } 149 150 public: 151 /// \brief Creates an VariablePattern object with information about the given 152 /// StmtSequence. 153 VariablePattern(const StmtSequence &Sequence) { 154 for (const Stmt *S : Sequence) 155 addVariables(S); 156 } 157 158 /// \brief Counts the differences between this pattern and the given one. 159 /// \param Other The given VariablePattern to compare with. 160 /// \param FirstMismatch Output parameter that will be filled with information 161 /// about the first difference between the two patterns. This parameter 162 /// can be a nullptr, in which case it will be ignored. 163 /// \return Returns the number of differences between the pattern this object 164 /// is following and the given VariablePattern. 165 /// 166 /// For example, the following statements all have the same pattern and this 167 /// function would return zero: 168 /// 169 /// if (a < b) return a; return b; 170 /// if (x < y) return x; return y; 171 /// if (u2 < u1) return u2; return u1; 172 /// 173 /// But the following statement has a different pattern (note the changed 174 /// variables in the return statements) and would have two differences when 175 /// compared with one of the statements above. 176 /// 177 /// if (a < b) return b; return a; 178 /// 179 /// This function should only be called if the related statements of the given 180 /// pattern and the statements of this objects are clones of each other. 181 unsigned countPatternDifferences( 182 const VariablePattern &Other, 183 CloneDetector::SuspiciousClonePair *FirstMismatch = nullptr) { 184 unsigned NumberOfDifferences = 0; 185 186 assert(Other.Occurences.size() == Occurences.size()); 187 for (unsigned i = 0; i < Occurences.size(); ++i) { 188 auto ThisOccurence = Occurences[i]; 189 auto OtherOccurence = Other.Occurences[i]; 190 if (ThisOccurence.KindID == OtherOccurence.KindID) 191 continue; 192 193 ++NumberOfDifferences; 194 195 // If FirstMismatch is not a nullptr, we need to store information about 196 // the first difference between the two patterns. 197 if (FirstMismatch == nullptr) 198 continue; 199 200 // Only proceed if we just found the first difference as we only store 201 // information about the first difference. 202 if (NumberOfDifferences != 1) 203 continue; 204 205 const VarDecl *FirstSuggestion = nullptr; 206 // If there is a variable available in the list of referenced variables 207 // which wouldn't break the pattern if it is used in place of the 208 // current variable, we provide this variable as the suggested fix. 209 if (OtherOccurence.KindID < Variables.size()) 210 FirstSuggestion = Variables[OtherOccurence.KindID]; 211 212 // Store information about the first clone. 213 FirstMismatch->FirstCloneInfo = 214 CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo( 215 Variables[ThisOccurence.KindID], ThisOccurence.Mention, 216 FirstSuggestion); 217 218 // Same as above but with the other clone. We do this for both clones as 219 // we don't know which clone is the one containing the unintended 220 // pattern error. 221 const VarDecl *SecondSuggestion = nullptr; 222 if (ThisOccurence.KindID < Other.Variables.size()) 223 SecondSuggestion = Other.Variables[ThisOccurence.KindID]; 224 225 // Store information about the second clone. 226 FirstMismatch->SecondCloneInfo = 227 CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo( 228 Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, 229 SecondSuggestion); 230 231 // SuspiciousClonePair guarantees that the first clone always has a 232 // suggested variable associated with it. As we know that one of the two 233 // clones in the pair always has suggestion, we swap the two clones 234 // in case the first clone has no suggested variable which means that 235 // the second clone has a suggested variable and should be first. 236 if (!FirstMismatch->FirstCloneInfo.Suggestion) 237 std::swap(FirstMismatch->FirstCloneInfo, 238 FirstMismatch->SecondCloneInfo); 239 240 // This ensures that we always have at least one suggestion in a pair. 241 assert(FirstMismatch->FirstCloneInfo.Suggestion); 242 } 243 244 return NumberOfDifferences; 245 } 246 }; 247 } 248 249 /// \brief Prints the macro name that contains the given SourceLocation into 250 /// the given raw_string_ostream. 251 static void printMacroName(llvm::raw_string_ostream &MacroStack, 252 ASTContext &Context, SourceLocation Loc) { 253 MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(), 254 Context.getLangOpts()); 255 256 // Add an empty space at the end as a padding to prevent 257 // that macro names concatenate to the names of other macros. 258 MacroStack << " "; 259 } 260 261 /// \brief Returns a string that represents all macro expansions that 262 /// expanded into the given SourceLocation. 263 /// 264 /// If 'getMacroStack(A) == getMacroStack(B)' is true, then the SourceLocations 265 /// A and B are expanded from the same macros in the same order. 266 static std::string getMacroStack(SourceLocation Loc, ASTContext &Context) { 267 std::string MacroStack; 268 llvm::raw_string_ostream MacroStackStream(MacroStack); 269 SourceManager &SM = Context.getSourceManager(); 270 271 // Iterate over all macros that expanded into the given SourceLocation. 272 while (Loc.isMacroID()) { 273 // Add the macro name to the stream. 274 printMacroName(MacroStackStream, Context, Loc); 275 Loc = SM.getImmediateMacroCallerLoc(Loc); 276 } 277 MacroStackStream.flush(); 278 return MacroStack; 279 } 280 281 namespace { 282 /// \brief Collects the data of a single Stmt. 283 /// 284 /// This class defines what a code clone is: If it collects for two statements 285 /// the same data, then those two statements are considered to be clones of each 286 /// other. 287 /// 288 /// All collected data is forwarded to the given data consumer of the type T. 289 /// The data consumer class needs to provide a member method with the signature: 290 /// update(StringRef Str) 291 template <typename T> 292 class StmtDataCollector : public ConstStmtVisitor<StmtDataCollector<T>> { 293 294 ASTContext &Context; 295 /// \brief The data sink to which all data is forwarded. 296 T &DataConsumer; 297 298 public: 299 /// \brief Collects data of the given Stmt. 300 /// \param S The given statement. 301 /// \param Context The ASTContext of S. 302 /// \param DataConsumer The data sink to which all data is forwarded. 303 StmtDataCollector(const Stmt *S, ASTContext &Context, T &DataConsumer) 304 : Context(Context), DataConsumer(DataConsumer) { 305 this->Visit(S); 306 } 307 308 // Below are utility methods for appending different data to the vector. 309 310 void addData(CloneDetector::DataPiece Integer) { 311 DataConsumer.update( 312 StringRef(reinterpret_cast<char *>(&Integer), sizeof(Integer))); 313 } 314 315 void addData(llvm::StringRef Str) { DataConsumer.update(Str); } 316 317 void addData(const QualType &QT) { addData(QT.getAsString()); } 318 319 // The functions below collect the class specific data of each Stmt subclass. 320 321 // Utility macro for defining a visit method for a given class. This method 322 // calls back to the ConstStmtVisitor to visit all parent classes. 323 #define DEF_ADD_DATA(CLASS, CODE) \ 324 void Visit##CLASS(const CLASS *S) { \ 325 CODE; \ 326 ConstStmtVisitor<StmtDataCollector>::Visit##CLASS(S); \ 327 } 328 329 DEF_ADD_DATA(Stmt, { 330 addData(S->getStmtClass()); 331 // This ensures that macro generated code isn't identical to macro-generated 332 // code. 333 addData(getMacroStack(S->getLocStart(), Context)); 334 addData(getMacroStack(S->getLocEnd(), Context)); 335 }) 336 DEF_ADD_DATA(Expr, { addData(S->getType()); }) 337 338 //--- Builtin functionality ----------------------------------------------// 339 DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); }) 340 DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); }) 341 DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); }) 342 DEF_ADD_DATA(TypeTraitExpr, { 343 addData(S->getTrait()); 344 for (unsigned i = 0; i < S->getNumArgs(); ++i) 345 addData(S->getArg(i)->getType()); 346 }) 347 348 //--- Calls --------------------------------------------------------------// 349 DEF_ADD_DATA(CallExpr, { 350 // Function pointers don't have a callee and we just skip hashing it. 351 if (const FunctionDecl *D = S->getDirectCallee()) { 352 // If the function is a template specialization, we also need to handle 353 // the template arguments as they are not included in the qualified name. 354 if (auto Args = D->getTemplateSpecializationArgs()) { 355 std::string ArgString; 356 357 // Print all template arguments into ArgString 358 llvm::raw_string_ostream OS(ArgString); 359 for (unsigned i = 0; i < Args->size(); ++i) { 360 Args->get(i).print(Context.getLangOpts(), OS); 361 // Add a padding character so that 'foo<X, XX>()' != 'foo<XX, X>()'. 362 OS << '\n'; 363 } 364 OS.flush(); 365 366 addData(ArgString); 367 } 368 addData(D->getQualifiedNameAsString()); 369 } 370 }) 371 372 //--- Exceptions ---------------------------------------------------------// 373 DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); }) 374 375 //--- C++ OOP Stmts ------------------------------------------------------// 376 DEF_ADD_DATA(CXXDeleteExpr, { 377 addData(S->isArrayFormAsWritten()); 378 addData(S->isGlobalDelete()); 379 }) 380 381 //--- Casts --------------------------------------------------------------// 382 DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); }) 383 384 //--- Miscellaneous Exprs ------------------------------------------------// 385 DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); }) 386 DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); }) 387 388 //--- Control flow -------------------------------------------------------// 389 DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); }) 390 DEF_ADD_DATA(IndirectGotoStmt, { 391 if (S->getConstantTarget()) 392 addData(S->getConstantTarget()->getName()); 393 }) 394 DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); }) 395 DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); }) 396 DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); }) 397 398 //--- Objective-C --------------------------------------------------------// 399 DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); }) 400 DEF_ADD_DATA(ObjCPropertyRefExpr, { 401 addData(S->isSuperReceiver()); 402 addData(S->isImplicitProperty()); 403 }) 404 DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); }) 405 406 //--- Miscellaneous Stmts ------------------------------------------------// 407 DEF_ADD_DATA(CXXFoldExpr, { 408 addData(S->isRightFold()); 409 addData(S->getOperator()); 410 }) 411 DEF_ADD_DATA(GenericSelectionExpr, { 412 for (unsigned i = 0; i < S->getNumAssocs(); ++i) { 413 addData(S->getAssocType(i)); 414 } 415 }) 416 DEF_ADD_DATA(LambdaExpr, { 417 for (const LambdaCapture &C : S->captures()) { 418 addData(C.isPackExpansion()); 419 addData(C.getCaptureKind()); 420 if (C.capturesVariable()) 421 addData(C.getCapturedVar()->getType()); 422 } 423 addData(S->isGenericLambda()); 424 addData(S->isMutable()); 425 }) 426 DEF_ADD_DATA(DeclStmt, { 427 auto numDecls = std::distance(S->decl_begin(), S->decl_end()); 428 addData(static_cast<CloneDetector::DataPiece>(numDecls)); 429 for (const Decl *D : S->decls()) { 430 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 431 addData(VD->getType()); 432 } 433 } 434 }) 435 DEF_ADD_DATA(AsmStmt, { 436 addData(S->isSimple()); 437 addData(S->isVolatile()); 438 addData(S->generateAsmString(Context)); 439 for (unsigned i = 0; i < S->getNumInputs(); ++i) { 440 addData(S->getInputConstraint(i)); 441 } 442 for (unsigned i = 0; i < S->getNumOutputs(); ++i) { 443 addData(S->getOutputConstraint(i)); 444 } 445 for (unsigned i = 0; i < S->getNumClobbers(); ++i) { 446 addData(S->getClobber(i)); 447 } 448 }) 449 DEF_ADD_DATA(AttributedStmt, { 450 for (const Attr *A : S->getAttrs()) { 451 addData(std::string(A->getSpelling())); 452 } 453 }) 454 }; 455 } // end anonymous namespace 456 457 namespace { 458 /// Generates CloneSignatures for a set of statements and stores the results in 459 /// a CloneDetector object. 460 class CloneSignatureGenerator { 461 462 CloneDetector &CD; 463 ASTContext &Context; 464 465 /// \brief Generates CloneSignatures for all statements in the given statement 466 /// tree and stores them in the CloneDetector. 467 /// 468 /// \param S The root of the given statement tree. 469 /// \param ParentMacroStack A string representing the macros that generated 470 /// the parent statement or an empty string if no 471 /// macros generated the parent statement. 472 /// See getMacroStack() for generating such a string. 473 /// \return The CloneSignature of the root statement. 474 CloneDetector::CloneSignature 475 generateSignatures(const Stmt *S, const std::string &ParentMacroStack) { 476 // Create an empty signature that will be filled in this method. 477 CloneDetector::CloneSignature Signature; 478 479 llvm::MD5 Hash; 480 481 // Collect all relevant data from S and hash it. 482 StmtDataCollector<llvm::MD5>(S, Context, Hash); 483 484 // Look up what macros expanded into the current statement. 485 std::string StartMacroStack = getMacroStack(S->getLocStart(), Context); 486 std::string EndMacroStack = getMacroStack(S->getLocEnd(), Context); 487 488 // First, check if ParentMacroStack is not empty which means we are currently 489 // dealing with a parent statement which was expanded from a macro. 490 // If this parent statement was expanded from the same macros as this 491 // statement, we reduce the initial complexity of this statement to zero. 492 // This causes that a group of statements that were generated by a single 493 // macro expansion will only increase the total complexity by one. 494 // Note: This is not the final complexity of this statement as we still 495 // add the complexity of the child statements to the complexity value. 496 if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack && 497 EndMacroStack == ParentMacroStack)) { 498 Signature.Complexity = 0; 499 } 500 501 // Storage for the signatures of the direct child statements. This is only 502 // needed if the current statement is a CompoundStmt. 503 std::vector<CloneDetector::CloneSignature> ChildSignatures; 504 const CompoundStmt *CS = dyn_cast<const CompoundStmt>(S); 505 506 // The signature of a statement includes the signatures of its children. 507 // Therefore we create the signatures for every child and add them to the 508 // current signature. 509 for (const Stmt *Child : S->children()) { 510 // Some statements like 'if' can have nullptr children that we will skip. 511 if (!Child) 512 continue; 513 514 // Recursive call to create the signature of the child statement. This 515 // will also create and store all clone groups in this child statement. 516 // We pass only the StartMacroStack along to keep things simple. 517 auto ChildSignature = generateSignatures(Child, StartMacroStack); 518 519 // Add the collected data to the signature of the current statement. 520 Signature.Complexity += ChildSignature.Complexity; 521 Hash.update(StringRef(reinterpret_cast<char *>(&ChildSignature.Hash), 522 sizeof(ChildSignature.Hash))); 523 524 // If the current statement is a CompoundStatement, we need to store the 525 // signature for the generation of the sub-sequences. 526 if (CS) 527 ChildSignatures.push_back(ChildSignature); 528 } 529 530 // If the current statement is a CompoundStmt, we also need to create the 531 // clone groups from the sub-sequences inside the children. 532 if (CS) 533 handleSubSequences(CS, ChildSignatures); 534 535 // Create the final hash code for the current signature. 536 llvm::MD5::MD5Result HashResult; 537 Hash.final(HashResult); 538 539 // Copy as much of the generated hash code to the signature's hash code. 540 std::memcpy(&Signature.Hash, &HashResult, 541 std::min(sizeof(Signature.Hash), sizeof(HashResult))); 542 543 // Save the signature for the current statement in the CloneDetector object. 544 CD.add(StmtSequence(S, Context), Signature); 545 546 return Signature; 547 } 548 549 /// \brief Adds all possible sub-sequences in the child array of the given 550 /// CompoundStmt to the CloneDetector. 551 /// \param CS The given CompoundStmt. 552 /// \param ChildSignatures A list of calculated signatures for each child in 553 /// the given CompoundStmt. 554 void handleSubSequences( 555 const CompoundStmt *CS, 556 const std::vector<CloneDetector::CloneSignature> &ChildSignatures) { 557 558 // FIXME: This function has quadratic runtime right now. Check if skipping 559 // this function for too long CompoundStmts is an option. 560 561 // The length of the sub-sequence. We don't need to handle sequences with 562 // the length 1 as they are already handled in CollectData(). 563 for (unsigned Length = 2; Length <= CS->size(); ++Length) { 564 // The start index in the body of the CompoundStmt. We increase the 565 // position until the end of the sub-sequence reaches the end of the 566 // CompoundStmt body. 567 for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) { 568 // Create an empty signature and add the signatures of all selected 569 // child statements to it. 570 CloneDetector::CloneSignature SubSignature; 571 llvm::MD5 SubHash; 572 573 for (unsigned i = Pos; i < Pos + Length; ++i) { 574 SubSignature.Complexity += ChildSignatures[i].Complexity; 575 size_t ChildHash = ChildSignatures[i].Hash; 576 577 SubHash.update(StringRef(reinterpret_cast<char *>(&ChildHash), 578 sizeof(ChildHash))); 579 } 580 581 // Create the final hash code for the current signature. 582 llvm::MD5::MD5Result HashResult; 583 SubHash.final(HashResult); 584 585 // Copy as much of the generated hash code to the signature's hash code. 586 std::memcpy(&SubSignature.Hash, &HashResult, 587 std::min(sizeof(SubSignature.Hash), sizeof(HashResult))); 588 589 // Save the signature together with the information about what children 590 // sequence we selected. 591 CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature); 592 } 593 } 594 } 595 596 public: 597 explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context) 598 : CD(CD), Context(Context) {} 599 600 /// \brief Generates signatures for all statements in the given function body. 601 void consumeCodeBody(const Stmt *S) { generateSignatures(S, ""); } 602 }; 603 } // end anonymous namespace 604 605 void CloneDetector::analyzeCodeBody(const Decl *D) { 606 assert(D); 607 assert(D->hasBody()); 608 CloneSignatureGenerator Generator(*this, D->getASTContext()); 609 Generator.consumeCodeBody(D->getBody()); 610 } 611 612 void CloneDetector::add(const StmtSequence &S, 613 const CloneSignature &Signature) { 614 Sequences.push_back(std::make_pair(Signature, S)); 615 } 616 617 namespace { 618 /// \brief Returns true if and only if \p Stmt contains at least one other 619 /// sequence in the \p Group. 620 bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) { 621 for (StmtSequence &GroupStmt : Group.Sequences) { 622 if (Stmt.contains(GroupStmt)) 623 return true; 624 } 625 return false; 626 } 627 628 /// \brief Returns true if and only if all sequences in \p OtherGroup are 629 /// contained by a sequence in \p Group. 630 bool containsGroup(CloneDetector::CloneGroup &Group, 631 CloneDetector::CloneGroup &OtherGroup) { 632 // We have less sequences in the current group than we have in the other, 633 // so we will never fulfill the requirement for returning true. This is only 634 // possible because we know that a sequence in Group can contain at most 635 // one sequence in OtherGroup. 636 if (Group.Sequences.size() < OtherGroup.Sequences.size()) 637 return false; 638 639 for (StmtSequence &Stmt : Group.Sequences) { 640 if (!containsAnyInGroup(Stmt, OtherGroup)) 641 return false; 642 } 643 return true; 644 } 645 } // end anonymous namespace 646 647 namespace { 648 /// \brief Wrapper around FoldingSetNodeID that it can be used as the template 649 /// argument of the StmtDataCollector. 650 class FoldingSetNodeIDWrapper { 651 652 llvm::FoldingSetNodeID &FS; 653 654 public: 655 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} 656 657 void update(StringRef Str) { FS.AddString(Str); } 658 }; 659 } // end anonymous namespace 660 661 /// \brief Writes the relevant data from all statements and child statements 662 /// in the given StmtSequence into the given FoldingSetNodeID. 663 static void CollectStmtSequenceData(const StmtSequence &Sequence, 664 FoldingSetNodeIDWrapper &OutputData) { 665 for (const Stmt *S : Sequence) { 666 StmtDataCollector<FoldingSetNodeIDWrapper>(S, Sequence.getASTContext(), 667 OutputData); 668 669 for (const Stmt *Child : S->children()) { 670 if (!Child) 671 continue; 672 673 CollectStmtSequenceData(StmtSequence(Child, Sequence.getASTContext()), 674 OutputData); 675 } 676 } 677 } 678 679 /// \brief Returns true if both sequences are clones of each other. 680 static bool areSequencesClones(const StmtSequence &LHS, 681 const StmtSequence &RHS) { 682 // We collect the data from all statements in the sequence as we did before 683 // when generating a hash value for each sequence. But this time we don't 684 // hash the collected data and compare the whole data set instead. This 685 // prevents any false-positives due to hash code collisions. 686 llvm::FoldingSetNodeID DataLHS, DataRHS; 687 FoldingSetNodeIDWrapper LHSWrapper(DataLHS); 688 FoldingSetNodeIDWrapper RHSWrapper(DataRHS); 689 690 CollectStmtSequenceData(LHS, LHSWrapper); 691 CollectStmtSequenceData(RHS, RHSWrapper); 692 693 return DataLHS == DataRHS; 694 } 695 696 /// \brief Finds all actual clone groups in a single group of presumed clones. 697 /// \param Result Output parameter to which all found groups are added. 698 /// \param Group A group of presumed clones. The clones are allowed to have a 699 /// different variable pattern and may not be actual clones of each 700 /// other. 701 /// \param CheckVariablePattern If true, every clone in a group that was added 702 /// to the output follows the same variable pattern as the other 703 /// clones in its group. 704 static void createCloneGroups(std::vector<CloneDetector::CloneGroup> &Result, 705 const CloneDetector::CloneGroup &Group, 706 bool CheckVariablePattern) { 707 // We remove the Sequences one by one, so a list is more appropriate. 708 std::list<StmtSequence> UnassignedSequences(Group.Sequences.begin(), 709 Group.Sequences.end()); 710 711 // Search for clones as long as there could be clones in UnassignedSequences. 712 while (UnassignedSequences.size() > 1) { 713 714 // Pick the first Sequence as a protoype for a new clone group. 715 StmtSequence Prototype = UnassignedSequences.front(); 716 UnassignedSequences.pop_front(); 717 718 CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Signature); 719 720 // Analyze the variable pattern of the prototype. Every other StmtSequence 721 // needs to have the same pattern to get into the new clone group. 722 VariablePattern PrototypeFeatures(Prototype); 723 724 // Search all remaining StmtSequences for an identical variable pattern 725 // and assign them to our new clone group. 726 auto I = UnassignedSequences.begin(), E = UnassignedSequences.end(); 727 while (I != E) { 728 // If the sequence doesn't fit to the prototype, we have encountered 729 // an unintended hash code collision and we skip it. 730 if (!areSequencesClones(Prototype, *I)) { 731 ++I; 732 continue; 733 } 734 735 // If we weren't asked to check for a matching variable pattern in clone 736 // groups we can add the sequence now to the new clone group. 737 // If we were asked to check for matching variable pattern, we first have 738 // to check that there are no differences between the two patterns and 739 // only proceed if they match. 740 if (!CheckVariablePattern || 741 VariablePattern(*I).countPatternDifferences(PrototypeFeatures) == 0) { 742 FilteredGroup.Sequences.push_back(*I); 743 I = UnassignedSequences.erase(I); 744 continue; 745 } 746 747 // We didn't found a matching variable pattern, so we continue with the 748 // next sequence. 749 ++I; 750 } 751 752 // Add a valid clone group to the list of found clone groups. 753 if (!FilteredGroup.isValid()) 754 continue; 755 756 Result.push_back(FilteredGroup); 757 } 758 } 759 760 void CloneDetector::findClones(std::vector<CloneGroup> &Result, 761 unsigned MinGroupComplexity, 762 bool CheckPatterns) { 763 // A shortcut (and necessary for the for-loop later in this function). 764 if (Sequences.empty()) 765 return; 766 767 // We need to search for groups of StmtSequences with the same hash code to 768 // create our initial clone groups. By sorting all known StmtSequences by 769 // their hash value we make sure that StmtSequences with the same hash code 770 // are grouped together in the Sequences vector. 771 // Note: We stable sort here because the StmtSequences are added in the order 772 // in which they appear in the source file. We want to preserve that order 773 // because we also want to report them in that order in the CloneChecker. 774 std::stable_sort(Sequences.begin(), Sequences.end(), 775 [](std::pair<CloneSignature, StmtSequence> LHS, 776 std::pair<CloneSignature, StmtSequence> RHS) { 777 return LHS.first.Hash < RHS.first.Hash; 778 }); 779 780 std::vector<CloneGroup> CloneGroups; 781 782 // Check for each CloneSignature if its successor has the same hash value. 783 // We don't check the last CloneSignature as it has no successor. 784 // Note: The 'size - 1' in the condition is safe because we check for an empty 785 // Sequences vector at the beginning of this function. 786 for (unsigned i = 0; i < Sequences.size() - 1; ++i) { 787 const auto Current = Sequences[i]; 788 const auto Next = Sequences[i + 1]; 789 790 if (Current.first.Hash != Next.first.Hash) 791 continue; 792 793 // It's likely that we just found an sequence of CloneSignatures that 794 // represent a CloneGroup, so we create a new group and start checking and 795 // adding the CloneSignatures in this sequence. 796 CloneGroup Group; 797 Group.Signature = Current.first; 798 799 for (; i < Sequences.size(); ++i) { 800 const auto &Signature = Sequences[i]; 801 802 // A different hash value means we have reached the end of the sequence. 803 if (Current.first.Hash != Signature.first.Hash) { 804 // The current Signature could be the start of a new CloneGroup. So we 805 // decrement i so that we visit it again in the outer loop. 806 // Note: i can never be 0 at this point because we are just comparing 807 // the hash of the Current CloneSignature with itself in the 'if' above. 808 assert(i != 0); 809 --i; 810 break; 811 } 812 813 // Skip CloneSignatures that won't pass the complexity requirement. 814 if (Signature.first.Complexity < MinGroupComplexity) 815 continue; 816 817 Group.Sequences.push_back(Signature.second); 818 } 819 820 // There is a chance that we haven't found more than two fitting 821 // CloneSignature because not enough CloneSignatures passed the complexity 822 // requirement. As a CloneGroup with less than two members makes no sense, 823 // we ignore this CloneGroup and won't add it to the result. 824 if (!Group.isValid()) 825 continue; 826 827 CloneGroups.push_back(Group); 828 } 829 830 // Add every valid clone group that fulfills the complexity requirement. 831 for (const CloneGroup &Group : CloneGroups) { 832 createCloneGroups(Result, Group, CheckPatterns); 833 } 834 835 std::vector<unsigned> IndexesToRemove; 836 837 // Compare every group in the result with the rest. If one groups contains 838 // another group, we only need to return the bigger group. 839 // Note: This doesn't scale well, so if possible avoid calling any heavy 840 // function from this loop to minimize the performance impact. 841 for (unsigned i = 0; i < Result.size(); ++i) { 842 for (unsigned j = 0; j < Result.size(); ++j) { 843 // Don't compare a group with itself. 844 if (i == j) 845 continue; 846 847 if (containsGroup(Result[j], Result[i])) { 848 IndexesToRemove.push_back(i); 849 break; 850 } 851 } 852 } 853 854 // Erasing a list of indexes from the vector should be done with decreasing 855 // indexes. As IndexesToRemove is constructed with increasing values, we just 856 // reverse iterate over it to get the desired order. 857 for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { 858 Result.erase(Result.begin() + *I); 859 } 860 } 861 862 void CloneDetector::findSuspiciousClones( 863 std::vector<CloneDetector::SuspiciousClonePair> &Result, 864 unsigned MinGroupComplexity) { 865 std::vector<CloneGroup> Clones; 866 // Reuse the normal search for clones but specify that the clone groups don't 867 // need to have a common referenced variable pattern so that we can manually 868 // search for the kind of pattern errors this function is supposed to find. 869 findClones(Clones, MinGroupComplexity, false); 870 871 for (const CloneGroup &Group : Clones) { 872 for (unsigned i = 0; i < Group.Sequences.size(); ++i) { 873 VariablePattern PatternA(Group.Sequences[i]); 874 875 for (unsigned j = i + 1; j < Group.Sequences.size(); ++j) { 876 VariablePattern PatternB(Group.Sequences[j]); 877 878 CloneDetector::SuspiciousClonePair ClonePair; 879 // For now, we only report clones which break the variable pattern just 880 // once because multiple differences in a pattern are an indicator that 881 // those differences are maybe intended (e.g. because it's actually 882 // a different algorithm). 883 // TODO: In very big clones even multiple variables can be unintended, 884 // so replacing this number with a percentage could better handle such 885 // cases. On the other hand it could increase the false-positive rate 886 // for all clones if the percentage is too high. 887 if (PatternA.countPatternDifferences(PatternB, &ClonePair) == 1) { 888 Result.push_back(ClonePair); 889 break; 890 } 891 } 892 } 893 } 894 } 895