xref: /llvm-project-15.0.7/clang/lib/AST/Type.cpp (revision ff461fcf)
1 //===--- Type.cpp - Type representation and manipulation ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements type-related functionality.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CharUnits.h"
16 #include "clang/AST/Type.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/PrettyPrinter.h"
22 #include "clang/AST/TypeVisitor.h"
23 #include "clang/Basic/Specifiers.h"
24 #include "llvm/ADT/APSInt.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace clang;
29 
30 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31   return (*this != Other) &&
32     // CVR qualifiers superset
33     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34     // ObjC GC qualifiers superset
35     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37     // Address space superset.
38     ((getAddressSpace() == Other.getAddressSpace()) ||
39      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40     // Lifetime qualifier superset.
41     ((getObjCLifetime() == Other.getObjCLifetime()) ||
42      (hasObjCLifetime() && !Other.hasObjCLifetime()));
43 }
44 
45 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
46   const Type* ty = getTypePtr();
47   NamedDecl *ND = NULL;
48   if (ty->isPointerType() || ty->isReferenceType())
49     return ty->getPointeeType().getBaseTypeIdentifier();
50   else if (ty->isRecordType())
51     ND = ty->getAs<RecordType>()->getDecl();
52   else if (ty->isEnumeralType())
53     ND = ty->getAs<EnumType>()->getDecl();
54   else if (ty->getTypeClass() == Type::Typedef)
55     ND = ty->getAs<TypedefType>()->getDecl();
56   else if (ty->isArrayType())
57     return ty->castAsArrayTypeUnsafe()->
58         getElementType().getBaseTypeIdentifier();
59 
60   if (ND)
61     return ND->getIdentifier();
62   return NULL;
63 }
64 
65 bool QualType::isConstant(QualType T, ASTContext &Ctx) {
66   if (T.isConstQualified())
67     return true;
68 
69   if (const ArrayType *AT = Ctx.getAsArrayType(T))
70     return AT->getElementType().isConstant(Ctx);
71 
72   return false;
73 }
74 
75 unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
76                                                  QualType ElementType,
77                                                const llvm::APInt &NumElements) {
78   llvm::APSInt SizeExtended(NumElements, true);
79   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
80   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
81                                               SizeExtended.getBitWidth()) * 2);
82 
83   uint64_t ElementSize
84     = Context.getTypeSizeInChars(ElementType).getQuantity();
85   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
86   TotalSize *= SizeExtended;
87 
88   return TotalSize.getActiveBits();
89 }
90 
91 unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
92   unsigned Bits = Context.getTypeSize(Context.getSizeType());
93 
94   // GCC appears to only allow 63 bits worth of address space when compiling
95   // for 64-bit, so we do the same.
96   if (Bits == 64)
97     --Bits;
98 
99   return Bits;
100 }
101 
102 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
103                                                  QualType et, QualType can,
104                                                  Expr *e, ArraySizeModifier sm,
105                                                  unsigned tq,
106                                                  SourceRange brackets)
107     : ArrayType(DependentSizedArray, et, can, sm, tq,
108                 (et->containsUnexpandedParameterPack() ||
109                  (e && e->containsUnexpandedParameterPack()))),
110       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
111 {
112 }
113 
114 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
115                                       const ASTContext &Context,
116                                       QualType ET,
117                                       ArraySizeModifier SizeMod,
118                                       unsigned TypeQuals,
119                                       Expr *E) {
120   ID.AddPointer(ET.getAsOpaquePtr());
121   ID.AddInteger(SizeMod);
122   ID.AddInteger(TypeQuals);
123   E->Profile(ID, Context, true);
124 }
125 
126 DependentSizedExtVectorType::DependentSizedExtVectorType(const
127                                                          ASTContext &Context,
128                                                          QualType ElementType,
129                                                          QualType can,
130                                                          Expr *SizeExpr,
131                                                          SourceLocation loc)
132     : Type(DependentSizedExtVector, can, /*Dependent=*/true,
133            /*InstantiationDependent=*/true,
134            ElementType->isVariablyModifiedType(),
135            (ElementType->containsUnexpandedParameterPack() ||
136             (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
137       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
138       loc(loc)
139 {
140 }
141 
142 void
143 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
144                                      const ASTContext &Context,
145                                      QualType ElementType, Expr *SizeExpr) {
146   ID.AddPointer(ElementType.getAsOpaquePtr());
147   SizeExpr->Profile(ID, Context, true);
148 }
149 
150 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
151                        VectorKind vecKind)
152   : Type(Vector, canonType, vecType->isDependentType(),
153          vecType->isInstantiationDependentType(),
154          vecType->isVariablyModifiedType(),
155          vecType->containsUnexpandedParameterPack()),
156     ElementType(vecType)
157 {
158   VectorTypeBits.VecKind = vecKind;
159   VectorTypeBits.NumElements = nElements;
160 }
161 
162 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
163                        QualType canonType, VectorKind vecKind)
164   : Type(tc, canonType, vecType->isDependentType(),
165          vecType->isInstantiationDependentType(),
166          vecType->isVariablyModifiedType(),
167          vecType->containsUnexpandedParameterPack()),
168     ElementType(vecType)
169 {
170   VectorTypeBits.VecKind = vecKind;
171   VectorTypeBits.NumElements = nElements;
172 }
173 
174 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
175 /// element type of the array, potentially with type qualifiers missing.
176 /// This method should never be used when type qualifiers are meaningful.
177 const Type *Type::getArrayElementTypeNoTypeQual() const {
178   // If this is directly an array type, return it.
179   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180     return ATy->getElementType().getTypePtr();
181 
182   // If the canonical form of this type isn't the right kind, reject it.
183   if (!isa<ArrayType>(CanonicalType))
184     return 0;
185 
186   // If this is a typedef for an array type, strip the typedef off without
187   // losing all typedef information.
188   return cast<ArrayType>(getUnqualifiedDesugaredType())
189     ->getElementType().getTypePtr();
190 }
191 
192 /// getDesugaredType - Return the specified type with any "sugar" removed from
193 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
194 /// the type is already concrete, it returns it unmodified.  This is similar
195 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
196 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
197 /// concrete.
198 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
199   SplitQualType split = getSplitDesugaredType(T);
200   return Context.getQualifiedType(split.Ty, split.Quals);
201 }
202 
203 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
204                                                   const ASTContext &Context) {
205   SplitQualType split = type.split();
206   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
207   return Context.getQualifiedType(desugar, split.Quals);
208 }
209 
210 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
211   switch (getTypeClass()) {
212 #define ABSTRACT_TYPE(Class, Parent)
213 #define TYPE(Class, Parent) \
214   case Type::Class: { \
215     const Class##Type *ty = cast<Class##Type>(this); \
216     if (!ty->isSugared()) return QualType(ty, 0); \
217     return ty->desugar(); \
218   }
219 #include "clang/AST/TypeNodes.def"
220   }
221   llvm_unreachable("bad type kind!");
222 }
223 
224 SplitQualType QualType::getSplitDesugaredType(QualType T) {
225   QualifierCollector Qs;
226 
227   QualType Cur = T;
228   while (true) {
229     const Type *CurTy = Qs.strip(Cur);
230     switch (CurTy->getTypeClass()) {
231 #define ABSTRACT_TYPE(Class, Parent)
232 #define TYPE(Class, Parent) \
233     case Type::Class: { \
234       const Class##Type *Ty = cast<Class##Type>(CurTy); \
235       if (!Ty->isSugared()) \
236         return SplitQualType(Ty, Qs); \
237       Cur = Ty->desugar(); \
238       break; \
239     }
240 #include "clang/AST/TypeNodes.def"
241     }
242   }
243 }
244 
245 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
246   SplitQualType split = type.split();
247 
248   // All the qualifiers we've seen so far.
249   Qualifiers quals = split.Quals;
250 
251   // The last type node we saw with any nodes inside it.
252   const Type *lastTypeWithQuals = split.Ty;
253 
254   while (true) {
255     QualType next;
256 
257     // Do a single-step desugar, aborting the loop if the type isn't
258     // sugared.
259     switch (split.Ty->getTypeClass()) {
260 #define ABSTRACT_TYPE(Class, Parent)
261 #define TYPE(Class, Parent) \
262     case Type::Class: { \
263       const Class##Type *ty = cast<Class##Type>(split.Ty); \
264       if (!ty->isSugared()) goto done; \
265       next = ty->desugar(); \
266       break; \
267     }
268 #include "clang/AST/TypeNodes.def"
269     }
270 
271     // Otherwise, split the underlying type.  If that yields qualifiers,
272     // update the information.
273     split = next.split();
274     if (!split.Quals.empty()) {
275       lastTypeWithQuals = split.Ty;
276       quals.addConsistentQualifiers(split.Quals);
277     }
278   }
279 
280  done:
281   return SplitQualType(lastTypeWithQuals, quals);
282 }
283 
284 QualType QualType::IgnoreParens(QualType T) {
285   // FIXME: this seems inherently un-qualifiers-safe.
286   while (const ParenType *PT = T->getAs<ParenType>())
287     T = PT->getInnerType();
288   return T;
289 }
290 
291 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
292 /// sugar off the given type.  This should produce an object of the
293 /// same dynamic type as the canonical type.
294 const Type *Type::getUnqualifiedDesugaredType() const {
295   const Type *Cur = this;
296 
297   while (true) {
298     switch (Cur->getTypeClass()) {
299 #define ABSTRACT_TYPE(Class, Parent)
300 #define TYPE(Class, Parent) \
301     case Class: { \
302       const Class##Type *Ty = cast<Class##Type>(Cur); \
303       if (!Ty->isSugared()) return Cur; \
304       Cur = Ty->desugar().getTypePtr(); \
305       break; \
306     }
307 #include "clang/AST/TypeNodes.def"
308     }
309   }
310 }
311 
312 /// isVoidType - Helper method to determine if this is the 'void' type.
313 bool Type::isVoidType() const {
314   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
315     return BT->getKind() == BuiltinType::Void;
316   return false;
317 }
318 
319 bool Type::isDerivedType() const {
320   switch (CanonicalType->getTypeClass()) {
321   case Pointer:
322   case VariableArray:
323   case ConstantArray:
324   case IncompleteArray:
325   case FunctionProto:
326   case FunctionNoProto:
327   case LValueReference:
328   case RValueReference:
329   case Record:
330     return true;
331   default:
332     return false;
333   }
334 }
335 bool Type::isClassType() const {
336   if (const RecordType *RT = getAs<RecordType>())
337     return RT->getDecl()->isClass();
338   return false;
339 }
340 bool Type::isStructureType() const {
341   if (const RecordType *RT = getAs<RecordType>())
342     return RT->getDecl()->isStruct();
343   return false;
344 }
345 bool Type::isStructureOrClassType() const {
346   if (const RecordType *RT = getAs<RecordType>())
347     return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
348   return false;
349 }
350 bool Type::isVoidPointerType() const {
351   if (const PointerType *PT = getAs<PointerType>())
352     return PT->getPointeeType()->isVoidType();
353   return false;
354 }
355 
356 bool Type::isUnionType() const {
357   if (const RecordType *RT = getAs<RecordType>())
358     return RT->getDecl()->isUnion();
359   return false;
360 }
361 
362 bool Type::isComplexType() const {
363   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
364     return CT->getElementType()->isFloatingType();
365   return false;
366 }
367 
368 bool Type::isComplexIntegerType() const {
369   // Check for GCC complex integer extension.
370   return getAsComplexIntegerType();
371 }
372 
373 const ComplexType *Type::getAsComplexIntegerType() const {
374   if (const ComplexType *Complex = getAs<ComplexType>())
375     if (Complex->getElementType()->isIntegerType())
376       return Complex;
377   return 0;
378 }
379 
380 QualType Type::getPointeeType() const {
381   if (const PointerType *PT = getAs<PointerType>())
382     return PT->getPointeeType();
383   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
384     return OPT->getPointeeType();
385   if (const BlockPointerType *BPT = getAs<BlockPointerType>())
386     return BPT->getPointeeType();
387   if (const ReferenceType *RT = getAs<ReferenceType>())
388     return RT->getPointeeType();
389   return QualType();
390 }
391 
392 const RecordType *Type::getAsStructureType() const {
393   // If this is directly a structure type, return it.
394   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
395     if (RT->getDecl()->isStruct())
396       return RT;
397   }
398 
399   // If the canonical form of this type isn't the right kind, reject it.
400   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
401     if (!RT->getDecl()->isStruct())
402       return 0;
403 
404     // If this is a typedef for a structure type, strip the typedef off without
405     // losing all typedef information.
406     return cast<RecordType>(getUnqualifiedDesugaredType());
407   }
408   return 0;
409 }
410 
411 const RecordType *Type::getAsUnionType() const {
412   // If this is directly a union type, return it.
413   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
414     if (RT->getDecl()->isUnion())
415       return RT;
416   }
417 
418   // If the canonical form of this type isn't the right kind, reject it.
419   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
420     if (!RT->getDecl()->isUnion())
421       return 0;
422 
423     // If this is a typedef for a union type, strip the typedef off without
424     // losing all typedef information.
425     return cast<RecordType>(getUnqualifiedDesugaredType());
426   }
427 
428   return 0;
429 }
430 
431 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
432                                ObjCProtocolDecl * const *Protocols,
433                                unsigned NumProtocols)
434   : Type(ObjCObject, Canonical, false, false, false, false),
435     BaseType(Base)
436 {
437   ObjCObjectTypeBits.NumProtocols = NumProtocols;
438   assert(getNumProtocols() == NumProtocols &&
439          "bitfield overflow in protocol count");
440   if (NumProtocols)
441     memcpy(getProtocolStorage(), Protocols,
442            NumProtocols * sizeof(ObjCProtocolDecl*));
443 }
444 
445 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
446   // There is no sugar for ObjCObjectType's, just return the canonical
447   // type pointer if it is the right class.  There is no typedef information to
448   // return and these cannot be Address-space qualified.
449   if (const ObjCObjectType *T = getAs<ObjCObjectType>())
450     if (T->getNumProtocols() && T->getInterface())
451       return T;
452   return 0;
453 }
454 
455 bool Type::isObjCQualifiedInterfaceType() const {
456   return getAsObjCQualifiedInterfaceType() != 0;
457 }
458 
459 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
460   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
461   // type pointer if it is the right class.
462   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
463     if (OPT->isObjCQualifiedIdType())
464       return OPT;
465   }
466   return 0;
467 }
468 
469 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
470   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
471   // type pointer if it is the right class.
472   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
473     if (OPT->isObjCQualifiedClassType())
474       return OPT;
475   }
476   return 0;
477 }
478 
479 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
480   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
481     if (OPT->getInterfaceType())
482       return OPT;
483   }
484   return 0;
485 }
486 
487 const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
488   if (const PointerType *PT = getAs<PointerType>())
489     if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
490       return dyn_cast<CXXRecordDecl>(RT->getDecl());
491   return 0;
492 }
493 
494 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
495   if (const RecordType *RT = getAs<RecordType>())
496     return dyn_cast<CXXRecordDecl>(RT->getDecl());
497   else if (const InjectedClassNameType *Injected
498                                   = getAs<InjectedClassNameType>())
499     return Injected->getDecl();
500 
501   return 0;
502 }
503 
504 namespace {
505   class GetContainedAutoVisitor :
506     public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
507   public:
508     using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
509     AutoType *Visit(QualType T) {
510       if (T.isNull())
511         return 0;
512       return Visit(T.getTypePtr());
513     }
514 
515     // The 'auto' type itself.
516     AutoType *VisitAutoType(const AutoType *AT) {
517       return const_cast<AutoType*>(AT);
518     }
519 
520     // Only these types can contain the desired 'auto' type.
521     AutoType *VisitPointerType(const PointerType *T) {
522       return Visit(T->getPointeeType());
523     }
524     AutoType *VisitBlockPointerType(const BlockPointerType *T) {
525       return Visit(T->getPointeeType());
526     }
527     AutoType *VisitReferenceType(const ReferenceType *T) {
528       return Visit(T->getPointeeTypeAsWritten());
529     }
530     AutoType *VisitMemberPointerType(const MemberPointerType *T) {
531       return Visit(T->getPointeeType());
532     }
533     AutoType *VisitArrayType(const ArrayType *T) {
534       return Visit(T->getElementType());
535     }
536     AutoType *VisitDependentSizedExtVectorType(
537       const DependentSizedExtVectorType *T) {
538       return Visit(T->getElementType());
539     }
540     AutoType *VisitVectorType(const VectorType *T) {
541       return Visit(T->getElementType());
542     }
543     AutoType *VisitFunctionType(const FunctionType *T) {
544       return Visit(T->getResultType());
545     }
546     AutoType *VisitParenType(const ParenType *T) {
547       return Visit(T->getInnerType());
548     }
549     AutoType *VisitAttributedType(const AttributedType *T) {
550       return Visit(T->getModifiedType());
551     }
552   };
553 }
554 
555 AutoType *Type::getContainedAutoType() const {
556   return GetContainedAutoVisitor().Visit(this);
557 }
558 
559 bool Type::isIntegerType() const {
560   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
561     return BT->getKind() >= BuiltinType::Bool &&
562            BT->getKind() <= BuiltinType::Int128;
563   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
564     // Incomplete enum types are not treated as integer types.
565     // FIXME: In C++, enum types are never integer types.
566     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
567   return false;
568 }
569 
570 bool Type::hasIntegerRepresentation() const {
571   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
572     return VT->getElementType()->isIntegerType();
573   else
574     return isIntegerType();
575 }
576 
577 /// \brief Determine whether this type is an integral type.
578 ///
579 /// This routine determines whether the given type is an integral type per
580 /// C++ [basic.fundamental]p7. Although the C standard does not define the
581 /// term "integral type", it has a similar term "integer type", and in C++
582 /// the two terms are equivalent. However, C's "integer type" includes
583 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
584 /// parameter is used to determine whether we should be following the C or
585 /// C++ rules when determining whether this type is an integral/integer type.
586 ///
587 /// For cases where C permits "an integer type" and C++ permits "an integral
588 /// type", use this routine.
589 ///
590 /// For cases where C permits "an integer type" and C++ permits "an integral
591 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
592 ///
593 /// \param Ctx The context in which this type occurs.
594 ///
595 /// \returns true if the type is considered an integral type, false otherwise.
596 bool Type::isIntegralType(ASTContext &Ctx) const {
597   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
598     return BT->getKind() >= BuiltinType::Bool &&
599     BT->getKind() <= BuiltinType::Int128;
600 
601   if (!Ctx.getLangOptions().CPlusPlus)
602     if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
603       return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
604 
605   return false;
606 }
607 
608 bool Type::isIntegralOrEnumerationType() const {
609   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
610     return BT->getKind() >= BuiltinType::Bool &&
611            BT->getKind() <= BuiltinType::Int128;
612 
613   // Check for a complete enum type; incomplete enum types are not properly an
614   // enumeration type in the sense required here.
615   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
616     return ET->getDecl()->isComplete();
617 
618   return false;
619 }
620 
621 bool Type::isIntegralOrUnscopedEnumerationType() const {
622   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
623     return BT->getKind() >= BuiltinType::Bool &&
624            BT->getKind() <= BuiltinType::Int128;
625 
626   // Check for a complete enum type; incomplete enum types are not properly an
627   // enumeration type in the sense required here.
628   // C++0x: However, if the underlying type of the enum is fixed, it is
629   // considered complete.
630   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
631     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
632 
633   return false;
634 }
635 
636 
637 bool Type::isBooleanType() const {
638   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
639     return BT->getKind() == BuiltinType::Bool;
640   return false;
641 }
642 
643 bool Type::isCharType() const {
644   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
645     return BT->getKind() == BuiltinType::Char_U ||
646            BT->getKind() == BuiltinType::UChar ||
647            BT->getKind() == BuiltinType::Char_S ||
648            BT->getKind() == BuiltinType::SChar;
649   return false;
650 }
651 
652 bool Type::isWideCharType() const {
653   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
654     return BT->getKind() == BuiltinType::WChar_S ||
655            BT->getKind() == BuiltinType::WChar_U;
656   return false;
657 }
658 
659 bool Type::isChar16Type() const {
660   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
661     return BT->getKind() == BuiltinType::Char16;
662   return false;
663 }
664 
665 bool Type::isChar32Type() const {
666   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
667     return BT->getKind() == BuiltinType::Char32;
668   return false;
669 }
670 
671 /// \brief Determine whether this type is any of the built-in character
672 /// types.
673 bool Type::isAnyCharacterType() const {
674   const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
675   if (BT == 0) return false;
676   switch (BT->getKind()) {
677   default: return false;
678   case BuiltinType::Char_U:
679   case BuiltinType::UChar:
680   case BuiltinType::WChar_U:
681   case BuiltinType::Char16:
682   case BuiltinType::Char32:
683   case BuiltinType::Char_S:
684   case BuiltinType::SChar:
685   case BuiltinType::WChar_S:
686     return true;
687   }
688 }
689 
690 /// isSignedIntegerType - Return true if this is an integer type that is
691 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
692 /// an enum decl which has a signed representation
693 bool Type::isSignedIntegerType() const {
694   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
695     return BT->getKind() >= BuiltinType::Char_S &&
696            BT->getKind() <= BuiltinType::Int128;
697   }
698 
699   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
700     // Incomplete enum types are not treated as integer types.
701     // FIXME: In C++, enum types are never integer types.
702     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
703       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
704   }
705 
706   return false;
707 }
708 
709 bool Type::isSignedIntegerOrEnumerationType() const {
710   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
711     return BT->getKind() >= BuiltinType::Char_S &&
712     BT->getKind() <= BuiltinType::Int128;
713   }
714 
715   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
716     if (ET->getDecl()->isComplete())
717       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
718   }
719 
720   return false;
721 }
722 
723 bool Type::hasSignedIntegerRepresentation() const {
724   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
725     return VT->getElementType()->isSignedIntegerType();
726   else
727     return isSignedIntegerType();
728 }
729 
730 /// isUnsignedIntegerType - Return true if this is an integer type that is
731 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
732 /// decl which has an unsigned representation
733 bool Type::isUnsignedIntegerType() const {
734   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
735     return BT->getKind() >= BuiltinType::Bool &&
736            BT->getKind() <= BuiltinType::UInt128;
737   }
738 
739   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
740     // Incomplete enum types are not treated as integer types.
741     // FIXME: In C++, enum types are never integer types.
742     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
743       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
744   }
745 
746   return false;
747 }
748 
749 bool Type::isUnsignedIntegerOrEnumerationType() const {
750   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
751     return BT->getKind() >= BuiltinType::Bool &&
752     BT->getKind() <= BuiltinType::UInt128;
753   }
754 
755   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
756     if (ET->getDecl()->isComplete())
757       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
758   }
759 
760   return false;
761 }
762 
763 bool Type::hasUnsignedIntegerRepresentation() const {
764   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
765     return VT->getElementType()->isUnsignedIntegerType();
766   else
767     return isUnsignedIntegerType();
768 }
769 
770 bool Type::isHalfType() const {
771   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
772     return BT->getKind() == BuiltinType::Half;
773   // FIXME: Should we allow complex __fp16? Probably not.
774   return false;
775 }
776 
777 bool Type::isFloatingType() const {
778   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
779     return BT->getKind() >= BuiltinType::Half &&
780            BT->getKind() <= BuiltinType::LongDouble;
781   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
782     return CT->getElementType()->isFloatingType();
783   return false;
784 }
785 
786 bool Type::hasFloatingRepresentation() const {
787   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
788     return VT->getElementType()->isFloatingType();
789   else
790     return isFloatingType();
791 }
792 
793 bool Type::isRealFloatingType() const {
794   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
795     return BT->isFloatingPoint();
796   return false;
797 }
798 
799 bool Type::isRealType() const {
800   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
801     return BT->getKind() >= BuiltinType::Bool &&
802            BT->getKind() <= BuiltinType::LongDouble;
803   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
804       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
805   return false;
806 }
807 
808 bool Type::isArithmeticType() const {
809   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
810     return BT->getKind() >= BuiltinType::Bool &&
811            BT->getKind() <= BuiltinType::LongDouble;
812   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
813     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
814     // If a body isn't seen by the time we get here, return false.
815     //
816     // C++0x: Enumerations are not arithmetic types. For now, just return
817     // false for scoped enumerations since that will disable any
818     // unwanted implicit conversions.
819     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
820   return isa<ComplexType>(CanonicalType);
821 }
822 
823 bool Type::isScalarType() const {
824   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
825     return BT->getKind() > BuiltinType::Void &&
826            BT->getKind() <= BuiltinType::NullPtr;
827   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
828     // Enums are scalar types, but only if they are defined.  Incomplete enums
829     // are not treated as scalar types.
830     return ET->getDecl()->isComplete();
831   return isa<PointerType>(CanonicalType) ||
832          isa<BlockPointerType>(CanonicalType) ||
833          isa<MemberPointerType>(CanonicalType) ||
834          isa<ComplexType>(CanonicalType) ||
835          isa<ObjCObjectPointerType>(CanonicalType);
836 }
837 
838 Type::ScalarTypeKind Type::getScalarTypeKind() const {
839   assert(isScalarType());
840 
841   const Type *T = CanonicalType.getTypePtr();
842   if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
843     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
844     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
845     if (BT->isInteger()) return STK_Integral;
846     if (BT->isFloatingPoint()) return STK_Floating;
847     llvm_unreachable("unknown scalar builtin type");
848   } else if (isa<PointerType>(T)) {
849     return STK_CPointer;
850   } else if (isa<BlockPointerType>(T)) {
851     return STK_BlockPointer;
852   } else if (isa<ObjCObjectPointerType>(T)) {
853     return STK_ObjCObjectPointer;
854   } else if (isa<MemberPointerType>(T)) {
855     return STK_MemberPointer;
856   } else if (isa<EnumType>(T)) {
857     assert(cast<EnumType>(T)->getDecl()->isComplete());
858     return STK_Integral;
859   } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
860     if (CT->getElementType()->isRealFloatingType())
861       return STK_FloatingComplex;
862     return STK_IntegralComplex;
863   }
864 
865   llvm_unreachable("unknown scalar type");
866 }
867 
868 /// \brief Determines whether the type is a C++ aggregate type or C
869 /// aggregate or union type.
870 ///
871 /// An aggregate type is an array or a class type (struct, union, or
872 /// class) that has no user-declared constructors, no private or
873 /// protected non-static data members, no base classes, and no virtual
874 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
875 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
876 /// includes union types.
877 bool Type::isAggregateType() const {
878   if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
879     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
880       return ClassDecl->isAggregate();
881 
882     return true;
883   }
884 
885   return isa<ArrayType>(CanonicalType);
886 }
887 
888 /// isConstantSizeType - Return true if this is not a variable sized type,
889 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
890 /// incomplete types or dependent types.
891 bool Type::isConstantSizeType() const {
892   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
893   assert(!isDependentType() && "This doesn't make sense for dependent types");
894   // The VAT must have a size, as it is known to be complete.
895   return !isa<VariableArrayType>(CanonicalType);
896 }
897 
898 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
899 /// - a type that can describe objects, but which lacks information needed to
900 /// determine its size.
901 bool Type::isIncompleteType(NamedDecl **Def) const {
902   if (Def)
903     *Def = 0;
904 
905   switch (CanonicalType->getTypeClass()) {
906   default: return false;
907   case Builtin:
908     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
909     // be completed.
910     return isVoidType();
911   case Enum: {
912     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
913     if (Def)
914       *Def = EnumD;
915 
916     // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
917     if (EnumD->isFixed())
918       return false;
919 
920     return !EnumD->isCompleteDefinition();
921   }
922   case Record: {
923     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
924     // forward declaration, but not a full definition (C99 6.2.5p22).
925     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
926     if (Def)
927       *Def = Rec;
928     return !Rec->isCompleteDefinition();
929   }
930   case ConstantArray:
931     // An array is incomplete if its element type is incomplete
932     // (C++ [dcl.array]p1).
933     // We don't handle variable arrays (they're not allowed in C++) or
934     // dependent-sized arrays (dependent types are never treated as incomplete).
935     return cast<ArrayType>(CanonicalType)->getElementType()
936              ->isIncompleteType(Def);
937   case IncompleteArray:
938     // An array of unknown size is an incomplete type (C99 6.2.5p22).
939     return true;
940   case ObjCObject:
941     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
942              ->isIncompleteType(Def);
943   case ObjCInterface: {
944     // ObjC interfaces are incomplete if they are @class, not @interface.
945     ObjCInterfaceDecl *Interface
946       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
947     if (Def)
948       *Def = Interface;
949     return !Interface->hasDefinition();
950   }
951   }
952 }
953 
954 bool QualType::isPODType(ASTContext &Context) const {
955   // The compiler shouldn't query this for incomplete types, but the user might.
956   // We return false for that case. Except for incomplete arrays of PODs, which
957   // are PODs according to the standard.
958   if (isNull())
959     return 0;
960 
961   if ((*this)->isIncompleteArrayType())
962     return Context.getBaseElementType(*this).isPODType(Context);
963 
964   if ((*this)->isIncompleteType())
965     return false;
966 
967   if (Context.getLangOptions().ObjCAutoRefCount) {
968     switch (getObjCLifetime()) {
969     case Qualifiers::OCL_ExplicitNone:
970       return true;
971 
972     case Qualifiers::OCL_Strong:
973     case Qualifiers::OCL_Weak:
974     case Qualifiers::OCL_Autoreleasing:
975       return false;
976 
977     case Qualifiers::OCL_None:
978       break;
979     }
980   }
981 
982   QualType CanonicalType = getTypePtr()->CanonicalType;
983   switch (CanonicalType->getTypeClass()) {
984     // Everything not explicitly mentioned is not POD.
985   default: return false;
986   case Type::VariableArray:
987   case Type::ConstantArray:
988     // IncompleteArray is handled above.
989     return Context.getBaseElementType(*this).isPODType(Context);
990 
991   case Type::ObjCObjectPointer:
992   case Type::BlockPointer:
993   case Type::Builtin:
994   case Type::Complex:
995   case Type::Pointer:
996   case Type::MemberPointer:
997   case Type::Vector:
998   case Type::ExtVector:
999     return true;
1000 
1001   case Type::Enum:
1002     return true;
1003 
1004   case Type::Record:
1005     if (CXXRecordDecl *ClassDecl
1006           = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
1007       return ClassDecl->isPOD();
1008 
1009     // C struct/union is POD.
1010     return true;
1011   }
1012 }
1013 
1014 bool QualType::isTrivialType(ASTContext &Context) const {
1015   // The compiler shouldn't query this for incomplete types, but the user might.
1016   // We return false for that case. Except for incomplete arrays of PODs, which
1017   // are PODs according to the standard.
1018   if (isNull())
1019     return 0;
1020 
1021   if ((*this)->isArrayType())
1022     return Context.getBaseElementType(*this).isTrivialType(Context);
1023 
1024   // Return false for incomplete types after skipping any incomplete array
1025   // types which are expressly allowed by the standard and thus our API.
1026   if ((*this)->isIncompleteType())
1027     return false;
1028 
1029   if (Context.getLangOptions().ObjCAutoRefCount) {
1030     switch (getObjCLifetime()) {
1031     case Qualifiers::OCL_ExplicitNone:
1032       return true;
1033 
1034     case Qualifiers::OCL_Strong:
1035     case Qualifiers::OCL_Weak:
1036     case Qualifiers::OCL_Autoreleasing:
1037       return false;
1038 
1039     case Qualifiers::OCL_None:
1040       if ((*this)->isObjCLifetimeType())
1041         return false;
1042       break;
1043     }
1044   }
1045 
1046   QualType CanonicalType = getTypePtr()->CanonicalType;
1047   if (CanonicalType->isDependentType())
1048     return false;
1049 
1050   // C++0x [basic.types]p9:
1051   //   Scalar types, trivial class types, arrays of such types, and
1052   //   cv-qualified versions of these types are collectively called trivial
1053   //   types.
1054 
1055   // As an extension, Clang treats vector types as Scalar types.
1056   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1057     return true;
1058   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1059     if (const CXXRecordDecl *ClassDecl =
1060         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1061       // C++0x [class]p5:
1062       //   A trivial class is a class that has a trivial default constructor
1063       if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1064       //   and is trivially copyable.
1065       if (!ClassDecl->isTriviallyCopyable()) return false;
1066     }
1067 
1068     return true;
1069   }
1070 
1071   // No other types can match.
1072   return false;
1073 }
1074 
1075 bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1076   if ((*this)->isArrayType())
1077     return Context.getBaseElementType(*this).isTrivialType(Context);
1078 
1079   if (Context.getLangOptions().ObjCAutoRefCount) {
1080     switch (getObjCLifetime()) {
1081     case Qualifiers::OCL_ExplicitNone:
1082       return true;
1083 
1084     case Qualifiers::OCL_Strong:
1085     case Qualifiers::OCL_Weak:
1086     case Qualifiers::OCL_Autoreleasing:
1087       return false;
1088 
1089     case Qualifiers::OCL_None:
1090       if ((*this)->isObjCLifetimeType())
1091         return false;
1092       break;
1093     }
1094   }
1095 
1096   // C++0x [basic.types]p9
1097   //   Scalar types, trivially copyable class types, arrays of such types, and
1098   //   cv-qualified versions of these types are collectively called trivial
1099   //   types.
1100 
1101   QualType CanonicalType = getCanonicalType();
1102   if (CanonicalType->isDependentType())
1103     return false;
1104 
1105   // Return false for incomplete types after skipping any incomplete array types
1106   // which are expressly allowed by the standard and thus our API.
1107   if (CanonicalType->isIncompleteType())
1108     return false;
1109 
1110   // As an extension, Clang treats vector types as Scalar types.
1111   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1112     return true;
1113 
1114   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1115     if (const CXXRecordDecl *ClassDecl =
1116           dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1117       if (!ClassDecl->isTriviallyCopyable()) return false;
1118     }
1119 
1120     return true;
1121   }
1122 
1123   // No other types can match.
1124   return false;
1125 }
1126 
1127 
1128 
1129 bool Type::isLiteralType() const {
1130   if (isDependentType())
1131     return false;
1132 
1133   // C++0x [basic.types]p10:
1134   //   A type is a literal type if it is:
1135   //   [...]
1136   //   -- an array of literal type.
1137   // Extension: variable arrays cannot be literal types, since they're
1138   // runtime-sized.
1139   if (isVariableArrayType())
1140     return false;
1141   const Type *BaseTy = getBaseElementTypeUnsafe();
1142   assert(BaseTy && "NULL element type");
1143 
1144   // Return false for incomplete types after skipping any incomplete array
1145   // types; those are expressly allowed by the standard and thus our API.
1146   if (BaseTy->isIncompleteType())
1147     return false;
1148 
1149   // C++0x [basic.types]p10:
1150   //   A type is a literal type if it is:
1151   //    -- a scalar type; or
1152   // As an extension, Clang treats vector types and complex types as
1153   // literal types.
1154   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
1155       BaseTy->isAnyComplexType())
1156     return true;
1157   //    -- a reference type; or
1158   if (BaseTy->isReferenceType())
1159     return true;
1160   //    -- a class type that has all of the following properties:
1161   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1162     //    -- a trivial destructor,
1163     //    -- every constructor call and full-expression in the
1164     //       brace-or-equal-initializers for non-static data members (if any)
1165     //       is a constant expression,
1166     //    -- it is an aggregate type or has at least one constexpr
1167     //       constructor or constructor template that is not a copy or move
1168     //       constructor, and
1169     //    -- all non-static data members and base classes of literal types
1170     //
1171     // We resolve DR1361 by ignoring the second bullet.
1172     if (const CXXRecordDecl *ClassDecl =
1173         dyn_cast<CXXRecordDecl>(RT->getDecl()))
1174       return ClassDecl->isLiteral();
1175 
1176     return true;
1177   }
1178 
1179   return false;
1180 }
1181 
1182 bool Type::isStandardLayoutType() const {
1183   if (isDependentType())
1184     return false;
1185 
1186   // C++0x [basic.types]p9:
1187   //   Scalar types, standard-layout class types, arrays of such types, and
1188   //   cv-qualified versions of these types are collectively called
1189   //   standard-layout types.
1190   const Type *BaseTy = getBaseElementTypeUnsafe();
1191   assert(BaseTy && "NULL element type");
1192 
1193   // Return false for incomplete types after skipping any incomplete array
1194   // types which are expressly allowed by the standard and thus our API.
1195   if (BaseTy->isIncompleteType())
1196     return false;
1197 
1198   // As an extension, Clang treats vector types as Scalar types.
1199   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1200   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1201     if (const CXXRecordDecl *ClassDecl =
1202         dyn_cast<CXXRecordDecl>(RT->getDecl()))
1203       if (!ClassDecl->isStandardLayout())
1204         return false;
1205 
1206     // Default to 'true' for non-C++ class types.
1207     // FIXME: This is a bit dubious, but plain C structs should trivially meet
1208     // all the requirements of standard layout classes.
1209     return true;
1210   }
1211 
1212   // No other types can match.
1213   return false;
1214 }
1215 
1216 // This is effectively the intersection of isTrivialType and
1217 // isStandardLayoutType. We implement it directly to avoid redundant
1218 // conversions from a type to a CXXRecordDecl.
1219 bool QualType::isCXX11PODType(ASTContext &Context) const {
1220   const Type *ty = getTypePtr();
1221   if (ty->isDependentType())
1222     return false;
1223 
1224   if (Context.getLangOptions().ObjCAutoRefCount) {
1225     switch (getObjCLifetime()) {
1226     case Qualifiers::OCL_ExplicitNone:
1227       return true;
1228 
1229     case Qualifiers::OCL_Strong:
1230     case Qualifiers::OCL_Weak:
1231     case Qualifiers::OCL_Autoreleasing:
1232       return false;
1233 
1234     case Qualifiers::OCL_None:
1235       if (ty->isObjCLifetimeType())
1236         return false;
1237       break;
1238     }
1239   }
1240 
1241   // C++11 [basic.types]p9:
1242   //   Scalar types, POD classes, arrays of such types, and cv-qualified
1243   //   versions of these types are collectively called trivial types.
1244   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1245   assert(BaseTy && "NULL element type");
1246 
1247   // Return false for incomplete types after skipping any incomplete array
1248   // types which are expressly allowed by the standard and thus our API.
1249   if (BaseTy->isIncompleteType())
1250     return false;
1251 
1252   // As an extension, Clang treats vector types as Scalar types.
1253   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1254   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1255     if (const CXXRecordDecl *ClassDecl =
1256         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1257       // C++11 [class]p10:
1258       //   A POD struct is a non-union class that is both a trivial class [...]
1259       if (!ClassDecl->isTrivial()) return false;
1260 
1261       // C++11 [class]p10:
1262       //   A POD struct is a non-union class that is both a trivial class and
1263       //   a standard-layout class [...]
1264       if (!ClassDecl->isStandardLayout()) return false;
1265 
1266       // C++11 [class]p10:
1267       //   A POD struct is a non-union class that is both a trivial class and
1268       //   a standard-layout class, and has no non-static data members of type
1269       //   non-POD struct, non-POD union (or array of such types). [...]
1270       //
1271       // We don't directly query the recursive aspect as the requiremets for
1272       // both standard-layout classes and trivial classes apply recursively
1273       // already.
1274     }
1275 
1276     return true;
1277   }
1278 
1279   // No other types can match.
1280   return false;
1281 }
1282 
1283 bool Type::isPromotableIntegerType() const {
1284   if (const BuiltinType *BT = getAs<BuiltinType>())
1285     switch (BT->getKind()) {
1286     case BuiltinType::Bool:
1287     case BuiltinType::Char_S:
1288     case BuiltinType::Char_U:
1289     case BuiltinType::SChar:
1290     case BuiltinType::UChar:
1291     case BuiltinType::Short:
1292     case BuiltinType::UShort:
1293     case BuiltinType::WChar_S:
1294     case BuiltinType::WChar_U:
1295     case BuiltinType::Char16:
1296     case BuiltinType::Char32:
1297       return true;
1298     default:
1299       return false;
1300     }
1301 
1302   // Enumerated types are promotable to their compatible integer types
1303   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1304   if (const EnumType *ET = getAs<EnumType>()){
1305     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1306         || ET->getDecl()->isScoped())
1307       return false;
1308 
1309     return true;
1310   }
1311 
1312   return false;
1313 }
1314 
1315 bool Type::isNullPtrType() const {
1316   if (const BuiltinType *BT = getAs<BuiltinType>())
1317     return BT->getKind() == BuiltinType::NullPtr;
1318   return false;
1319 }
1320 
1321 bool Type::isSpecifierType() const {
1322   // Note that this intentionally does not use the canonical type.
1323   switch (getTypeClass()) {
1324   case Builtin:
1325   case Record:
1326   case Enum:
1327   case Typedef:
1328   case Complex:
1329   case TypeOfExpr:
1330   case TypeOf:
1331   case TemplateTypeParm:
1332   case SubstTemplateTypeParm:
1333   case TemplateSpecialization:
1334   case Elaborated:
1335   case DependentName:
1336   case DependentTemplateSpecialization:
1337   case ObjCInterface:
1338   case ObjCObject:
1339   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1340     return true;
1341   default:
1342     return false;
1343   }
1344 }
1345 
1346 ElaboratedTypeKeyword
1347 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1348   switch (TypeSpec) {
1349   default: return ETK_None;
1350   case TST_typename: return ETK_Typename;
1351   case TST_class: return ETK_Class;
1352   case TST_struct: return ETK_Struct;
1353   case TST_union: return ETK_Union;
1354   case TST_enum: return ETK_Enum;
1355   }
1356 }
1357 
1358 TagTypeKind
1359 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1360   switch(TypeSpec) {
1361   case TST_class: return TTK_Class;
1362   case TST_struct: return TTK_Struct;
1363   case TST_union: return TTK_Union;
1364   case TST_enum: return TTK_Enum;
1365   }
1366 
1367   llvm_unreachable("Type specifier is not a tag type kind.");
1368 }
1369 
1370 ElaboratedTypeKeyword
1371 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1372   switch (Kind) {
1373   case TTK_Class: return ETK_Class;
1374   case TTK_Struct: return ETK_Struct;
1375   case TTK_Union: return ETK_Union;
1376   case TTK_Enum: return ETK_Enum;
1377   }
1378   llvm_unreachable("Unknown tag type kind.");
1379 }
1380 
1381 TagTypeKind
1382 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1383   switch (Keyword) {
1384   case ETK_Class: return TTK_Class;
1385   case ETK_Struct: return TTK_Struct;
1386   case ETK_Union: return TTK_Union;
1387   case ETK_Enum: return TTK_Enum;
1388   case ETK_None: // Fall through.
1389   case ETK_Typename:
1390     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1391   }
1392   llvm_unreachable("Unknown elaborated type keyword.");
1393 }
1394 
1395 bool
1396 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1397   switch (Keyword) {
1398   case ETK_None:
1399   case ETK_Typename:
1400     return false;
1401   case ETK_Class:
1402   case ETK_Struct:
1403   case ETK_Union:
1404   case ETK_Enum:
1405     return true;
1406   }
1407   llvm_unreachable("Unknown elaborated type keyword.");
1408 }
1409 
1410 const char*
1411 TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1412   switch (Keyword) {
1413   case ETK_None: return "";
1414   case ETK_Typename: return "typename";
1415   case ETK_Class:  return "class";
1416   case ETK_Struct: return "struct";
1417   case ETK_Union:  return "union";
1418   case ETK_Enum:   return "enum";
1419   }
1420 
1421   llvm_unreachable("Unknown elaborated type keyword.");
1422 }
1423 
1424 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1425                          ElaboratedTypeKeyword Keyword,
1426                          NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1427                          unsigned NumArgs, const TemplateArgument *Args,
1428                          QualType Canon)
1429   : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1430                     /*VariablyModified=*/false,
1431                     NNS && NNS->containsUnexpandedParameterPack()),
1432     NNS(NNS), Name(Name), NumArgs(NumArgs) {
1433   assert((!NNS || NNS->isDependent()) &&
1434          "DependentTemplateSpecializatonType requires dependent qualifier");
1435   for (unsigned I = 0; I != NumArgs; ++I) {
1436     if (Args[I].containsUnexpandedParameterPack())
1437       setContainsUnexpandedParameterPack();
1438 
1439     new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1440   }
1441 }
1442 
1443 void
1444 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1445                                              const ASTContext &Context,
1446                                              ElaboratedTypeKeyword Keyword,
1447                                              NestedNameSpecifier *Qualifier,
1448                                              const IdentifierInfo *Name,
1449                                              unsigned NumArgs,
1450                                              const TemplateArgument *Args) {
1451   ID.AddInteger(Keyword);
1452   ID.AddPointer(Qualifier);
1453   ID.AddPointer(Name);
1454   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1455     Args[Idx].Profile(ID, Context);
1456 }
1457 
1458 bool Type::isElaboratedTypeSpecifier() const {
1459   ElaboratedTypeKeyword Keyword;
1460   if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1461     Keyword = Elab->getKeyword();
1462   else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1463     Keyword = DepName->getKeyword();
1464   else if (const DependentTemplateSpecializationType *DepTST =
1465              dyn_cast<DependentTemplateSpecializationType>(this))
1466     Keyword = DepTST->getKeyword();
1467   else
1468     return false;
1469 
1470   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1471 }
1472 
1473 const char *Type::getTypeClassName() const {
1474   switch (TypeBits.TC) {
1475 #define ABSTRACT_TYPE(Derived, Base)
1476 #define TYPE(Derived, Base) case Derived: return #Derived;
1477 #include "clang/AST/TypeNodes.def"
1478   }
1479 
1480   llvm_unreachable("Invalid type class.");
1481 }
1482 
1483 const char *BuiltinType::getName(const PrintingPolicy &Policy) const {
1484   switch (getKind()) {
1485   case Void:              return "void";
1486   case Bool:              return Policy.Bool ? "bool" : "_Bool";
1487   case Char_S:            return "char";
1488   case Char_U:            return "char";
1489   case SChar:             return "signed char";
1490   case Short:             return "short";
1491   case Int:               return "int";
1492   case Long:              return "long";
1493   case LongLong:          return "long long";
1494   case Int128:            return "__int128_t";
1495   case UChar:             return "unsigned char";
1496   case UShort:            return "unsigned short";
1497   case UInt:              return "unsigned int";
1498   case ULong:             return "unsigned long";
1499   case ULongLong:         return "unsigned long long";
1500   case UInt128:           return "__uint128_t";
1501   case Half:              return "half";
1502   case Float:             return "float";
1503   case Double:            return "double";
1504   case LongDouble:        return "long double";
1505   case WChar_S:
1506   case WChar_U:           return "wchar_t";
1507   case Char16:            return "char16_t";
1508   case Char32:            return "char32_t";
1509   case NullPtr:           return "nullptr_t";
1510   case Overload:          return "<overloaded function type>";
1511   case BoundMember:       return "<bound member function type>";
1512   case PseudoObject:      return "<pseudo-object type>";
1513   case Dependent:         return "<dependent type>";
1514   case UnknownAny:        return "<unknown type>";
1515   case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
1516   case ObjCId:            return "id";
1517   case ObjCClass:         return "Class";
1518   case ObjCSel:           return "SEL";
1519   }
1520 
1521   llvm_unreachable("Invalid builtin type.");
1522 }
1523 
1524 QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1525   if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1526     return RefType->getPointeeType();
1527 
1528   // C++0x [basic.lval]:
1529   //   Class prvalues can have cv-qualified types; non-class prvalues always
1530   //   have cv-unqualified types.
1531   //
1532   // See also C99 6.3.2.1p2.
1533   if (!Context.getLangOptions().CPlusPlus ||
1534       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1535     return getUnqualifiedType();
1536 
1537   return *this;
1538 }
1539 
1540 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1541   switch (CC) {
1542   case CC_Default:
1543     llvm_unreachable("no name for default cc");
1544 
1545   case CC_C: return "cdecl";
1546   case CC_X86StdCall: return "stdcall";
1547   case CC_X86FastCall: return "fastcall";
1548   case CC_X86ThisCall: return "thiscall";
1549   case CC_X86Pascal: return "pascal";
1550   case CC_AAPCS: return "aapcs";
1551   case CC_AAPCS_VFP: return "aapcs-vfp";
1552   }
1553 
1554   llvm_unreachable("Invalid calling convention.");
1555 }
1556 
1557 FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1558                                      unsigned numArgs, QualType canonical,
1559                                      const ExtProtoInfo &epi)
1560   : FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier,
1561                  canonical,
1562                  result->isDependentType(),
1563                  result->isInstantiationDependentType(),
1564                  result->isVariablyModifiedType(),
1565                  result->containsUnexpandedParameterPack(),
1566                  epi.ExtInfo),
1567     NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1568     ExceptionSpecType(epi.ExceptionSpecType),
1569     HasAnyConsumedArgs(epi.ConsumedArguments != 0),
1570     Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn)
1571 {
1572   // Fill in the trailing argument array.
1573   QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1574   for (unsigned i = 0; i != numArgs; ++i) {
1575     if (args[i]->isDependentType())
1576       setDependent();
1577     else if (args[i]->isInstantiationDependentType())
1578       setInstantiationDependent();
1579 
1580     if (args[i]->containsUnexpandedParameterPack())
1581       setContainsUnexpandedParameterPack();
1582 
1583     argSlot[i] = args[i];
1584   }
1585 
1586   if (getExceptionSpecType() == EST_Dynamic) {
1587     // Fill in the exception array.
1588     QualType *exnSlot = argSlot + numArgs;
1589     for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1590       if (epi.Exceptions[i]->isDependentType())
1591         setDependent();
1592       else if (epi.Exceptions[i]->isInstantiationDependentType())
1593         setInstantiationDependent();
1594 
1595       if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1596         setContainsUnexpandedParameterPack();
1597 
1598       exnSlot[i] = epi.Exceptions[i];
1599     }
1600   } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1601     // Store the noexcept expression and context.
1602     Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1603     *noexSlot = epi.NoexceptExpr;
1604 
1605     if (epi.NoexceptExpr) {
1606       if (epi.NoexceptExpr->isValueDependent()
1607           || epi.NoexceptExpr->isTypeDependent())
1608         setDependent();
1609       else if (epi.NoexceptExpr->isInstantiationDependent())
1610         setInstantiationDependent();
1611     }
1612   }
1613 
1614   if (epi.ConsumedArguments) {
1615     bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1616     for (unsigned i = 0; i != numArgs; ++i)
1617       consumedArgs[i] = epi.ConsumedArguments[i];
1618   }
1619 }
1620 
1621 FunctionProtoType::NoexceptResult
1622 FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1623   ExceptionSpecificationType est = getExceptionSpecType();
1624   if (est == EST_BasicNoexcept)
1625     return NR_Nothrow;
1626 
1627   if (est != EST_ComputedNoexcept)
1628     return NR_NoNoexcept;
1629 
1630   Expr *noexceptExpr = getNoexceptExpr();
1631   if (!noexceptExpr)
1632     return NR_BadNoexcept;
1633   if (noexceptExpr->isValueDependent())
1634     return NR_Dependent;
1635 
1636   llvm::APSInt value;
1637   bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1638                                                    /*evaluated*/false);
1639   (void)isICE;
1640   assert(isICE && "AST should not contain bad noexcept expressions.");
1641 
1642   return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1643 }
1644 
1645 bool FunctionProtoType::isTemplateVariadic() const {
1646   for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1647     if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1648       return true;
1649 
1650   return false;
1651 }
1652 
1653 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1654                                 const QualType *ArgTys, unsigned NumArgs,
1655                                 const ExtProtoInfo &epi,
1656                                 const ASTContext &Context) {
1657 
1658   // We have to be careful not to get ambiguous profile encodings.
1659   // Note that valid type pointers are never ambiguous with anything else.
1660   //
1661   // The encoding grammar begins:
1662   //      type type* bool int bool
1663   // If that final bool is true, then there is a section for the EH spec:
1664   //      bool type*
1665   // This is followed by an optional "consumed argument" section of the
1666   // same length as the first type sequence:
1667   //      bool*
1668   // Finally, we have the ext info and trailing return type flag:
1669   //      int bool
1670   //
1671   // There is no ambiguity between the consumed arguments and an empty EH
1672   // spec because of the leading 'bool' which unambiguously indicates
1673   // whether the following bool is the EH spec or part of the arguments.
1674 
1675   ID.AddPointer(Result.getAsOpaquePtr());
1676   for (unsigned i = 0; i != NumArgs; ++i)
1677     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1678   // This method is relatively performance sensitive, so as a performance
1679   // shortcut, use one AddInteger call instead of four for the next four
1680   // fields.
1681   assert(!(unsigned(epi.Variadic) & ~1) &&
1682          !(unsigned(epi.TypeQuals) & ~255) &&
1683          !(unsigned(epi.RefQualifier) & ~3) &&
1684          !(unsigned(epi.ExceptionSpecType) & ~7) &&
1685          "Values larger than expected.");
1686   ID.AddInteger(unsigned(epi.Variadic) +
1687                 (epi.TypeQuals << 1) +
1688                 (epi.RefQualifier << 9) +
1689                 (epi.ExceptionSpecType << 11));
1690   if (epi.ExceptionSpecType == EST_Dynamic) {
1691     for (unsigned i = 0; i != epi.NumExceptions; ++i)
1692       ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1693   } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1694     epi.NoexceptExpr->Profile(ID, Context, false);
1695   }
1696   if (epi.ConsumedArguments) {
1697     for (unsigned i = 0; i != NumArgs; ++i)
1698       ID.AddBoolean(epi.ConsumedArguments[i]);
1699   }
1700   epi.ExtInfo.Profile(ID);
1701   ID.AddBoolean(epi.HasTrailingReturn);
1702 }
1703 
1704 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1705                                 const ASTContext &Ctx) {
1706   Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1707           Ctx);
1708 }
1709 
1710 QualType TypedefType::desugar() const {
1711   return getDecl()->getUnderlyingType();
1712 }
1713 
1714 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1715   : Type(TypeOfExpr, can, E->isTypeDependent(),
1716          E->isInstantiationDependent(),
1717          E->getType()->isVariablyModifiedType(),
1718          E->containsUnexpandedParameterPack()),
1719     TOExpr(E) {
1720 }
1721 
1722 bool TypeOfExprType::isSugared() const {
1723   return !TOExpr->isTypeDependent();
1724 }
1725 
1726 QualType TypeOfExprType::desugar() const {
1727   if (isSugared())
1728     return getUnderlyingExpr()->getType();
1729 
1730   return QualType(this, 0);
1731 }
1732 
1733 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1734                                       const ASTContext &Context, Expr *E) {
1735   E->Profile(ID, Context, true);
1736 }
1737 
1738 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1739   // C++11 [temp.type]p2: "If an expression e involves a template parameter,
1740   // decltype(e) denotes a unique dependent type." Hence a decltype type is
1741   // type-dependent even if its expression is only instantiation-dependent.
1742   : Type(Decltype, can, E->isInstantiationDependent(),
1743          E->isInstantiationDependent(),
1744          E->getType()->isVariablyModifiedType(),
1745          E->containsUnexpandedParameterPack()),
1746     E(E),
1747   UnderlyingType(underlyingType) {
1748 }
1749 
1750 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1751 
1752 QualType DecltypeType::desugar() const {
1753   if (isSugared())
1754     return getUnderlyingType();
1755 
1756   return QualType(this, 0);
1757 }
1758 
1759 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1760   : DecltypeType(E, Context.DependentTy), Context(Context) { }
1761 
1762 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1763                                     const ASTContext &Context, Expr *E) {
1764   E->Profile(ID, Context, true);
1765 }
1766 
1767 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1768   : Type(TC, can, D->isDependentType(),
1769          /*InstantiationDependent=*/D->isDependentType(),
1770          /*VariablyModified=*/false,
1771          /*ContainsUnexpandedParameterPack=*/false),
1772     decl(const_cast<TagDecl*>(D)) {}
1773 
1774 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1775   for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1776                                 E = decl->redecls_end();
1777        I != E; ++I) {
1778     if (I->isCompleteDefinition() || I->isBeingDefined())
1779       return *I;
1780   }
1781   // If there's no definition (not even in progress), return what we have.
1782   return decl;
1783 }
1784 
1785 UnaryTransformType::UnaryTransformType(QualType BaseType,
1786                                        QualType UnderlyingType,
1787                                        UTTKind UKind,
1788                                        QualType CanonicalType)
1789   : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1790          UnderlyingType->isInstantiationDependentType(),
1791          UnderlyingType->isVariablyModifiedType(),
1792          BaseType->containsUnexpandedParameterPack())
1793   , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1794 {}
1795 
1796 TagDecl *TagType::getDecl() const {
1797   return getInterestingTagDecl(decl);
1798 }
1799 
1800 bool TagType::isBeingDefined() const {
1801   return getDecl()->isBeingDefined();
1802 }
1803 
1804 CXXRecordDecl *InjectedClassNameType::getDecl() const {
1805   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1806 }
1807 
1808 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1809   return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1810 }
1811 
1812 SubstTemplateTypeParmPackType::
1813 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1814                               QualType Canon,
1815                               const TemplateArgument &ArgPack)
1816   : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1817     Replaced(Param),
1818     Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1819 {
1820 }
1821 
1822 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1823   return TemplateArgument(Arguments, NumArguments);
1824 }
1825 
1826 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1827   Profile(ID, getReplacedParameter(), getArgumentPack());
1828 }
1829 
1830 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1831                                            const TemplateTypeParmType *Replaced,
1832                                             const TemplateArgument &ArgPack) {
1833   ID.AddPointer(Replaced);
1834   ID.AddInteger(ArgPack.pack_size());
1835   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1836                                     PEnd = ArgPack.pack_end();
1837        P != PEnd; ++P)
1838     ID.AddPointer(P->getAsType().getAsOpaquePtr());
1839 }
1840 
1841 bool TemplateSpecializationType::
1842 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1843                               bool &InstantiationDependent) {
1844   return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1845                                        InstantiationDependent);
1846 }
1847 
1848 bool TemplateSpecializationType::
1849 anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1850                               bool &InstantiationDependent) {
1851   for (unsigned i = 0; i != N; ++i) {
1852     if (Args[i].getArgument().isDependent()) {
1853       InstantiationDependent = true;
1854       return true;
1855     }
1856 
1857     if (Args[i].getArgument().isInstantiationDependent())
1858       InstantiationDependent = true;
1859   }
1860   return false;
1861 }
1862 
1863 bool TemplateSpecializationType::
1864 anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1865                               bool &InstantiationDependent) {
1866   for (unsigned i = 0; i != N; ++i) {
1867     if (Args[i].isDependent()) {
1868       InstantiationDependent = true;
1869       return true;
1870     }
1871 
1872     if (Args[i].isInstantiationDependent())
1873       InstantiationDependent = true;
1874   }
1875   return false;
1876 }
1877 
1878 TemplateSpecializationType::
1879 TemplateSpecializationType(TemplateName T,
1880                            const TemplateArgument *Args, unsigned NumArgs,
1881                            QualType Canon, QualType AliasedType)
1882   : Type(TemplateSpecialization,
1883          Canon.isNull()? QualType(this, 0) : Canon,
1884          Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1885          Canon.isNull()? T.isDependent()
1886                        : Canon->isInstantiationDependentType(),
1887          false,
1888          Canon.isNull()? T.containsUnexpandedParameterPack()
1889                        : Canon->containsUnexpandedParameterPack()),
1890     Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
1891   assert(!T.getAsDependentTemplateName() &&
1892          "Use DependentTemplateSpecializationType for dependent template-name");
1893   assert((T.getKind() == TemplateName::Template ||
1894           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1895           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1896          "Unexpected template name for TemplateSpecializationType");
1897   bool InstantiationDependent;
1898   (void)InstantiationDependent;
1899   assert((!Canon.isNull() ||
1900           T.isDependent() ||
1901           anyDependentTemplateArguments(Args, NumArgs,
1902                                         InstantiationDependent)) &&
1903          "No canonical type for non-dependent class template specialization");
1904 
1905   TemplateArgument *TemplateArgs
1906     = reinterpret_cast<TemplateArgument *>(this + 1);
1907   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1908     // Update dependent and variably-modified bits.
1909     // If the canonical type exists and is non-dependent, the template
1910     // specialization type can be non-dependent even if one of the type
1911     // arguments is. Given:
1912     //   template<typename T> using U = int;
1913     // U<T> is always non-dependent, irrespective of the type T.
1914     if (Canon.isNull() && Args[Arg].isDependent())
1915       setDependent();
1916     else if (Args[Arg].isInstantiationDependent())
1917       setInstantiationDependent();
1918 
1919     if (Args[Arg].getKind() == TemplateArgument::Type &&
1920         Args[Arg].getAsType()->isVariablyModifiedType())
1921       setVariablyModified();
1922     if (Canon.isNull() && Args[Arg].containsUnexpandedParameterPack())
1923       setContainsUnexpandedParameterPack();
1924 
1925     new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1926   }
1927 
1928   // Store the aliased type if this is a type alias template specialization.
1929   if (TypeAlias) {
1930     TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1931     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1932   }
1933 }
1934 
1935 void
1936 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1937                                     TemplateName T,
1938                                     const TemplateArgument *Args,
1939                                     unsigned NumArgs,
1940                                     const ASTContext &Context) {
1941   T.Profile(ID);
1942   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1943     Args[Idx].Profile(ID, Context);
1944 }
1945 
1946 QualType
1947 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1948   if (!hasNonFastQualifiers())
1949     return QT.withFastQualifiers(getFastQualifiers());
1950 
1951   return Context.getQualifiedType(QT, *this);
1952 }
1953 
1954 QualType
1955 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1956   if (!hasNonFastQualifiers())
1957     return QualType(T, getFastQualifiers());
1958 
1959   return Context.getQualifiedType(T, *this);
1960 }
1961 
1962 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1963                                  QualType BaseType,
1964                                  ObjCProtocolDecl * const *Protocols,
1965                                  unsigned NumProtocols) {
1966   ID.AddPointer(BaseType.getAsOpaquePtr());
1967   for (unsigned i = 0; i != NumProtocols; i++)
1968     ID.AddPointer(Protocols[i]);
1969 }
1970 
1971 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1972   Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1973 }
1974 
1975 namespace {
1976 
1977 /// \brief The cached properties of a type.
1978 class CachedProperties {
1979   NamedDecl::LinkageInfo LV;
1980   bool local;
1981 
1982 public:
1983   CachedProperties(NamedDecl::LinkageInfo LV, bool local)
1984     : LV(LV), local(local) {}
1985 
1986   Linkage getLinkage() const { return LV.linkage(); }
1987   Visibility getVisibility() const { return LV.visibility(); }
1988   bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
1989   bool hasLocalOrUnnamedType() const { return local; }
1990 
1991   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1992     NamedDecl::LinkageInfo MergedLV = L.LV;
1993     MergedLV.merge(R.LV);
1994     return CachedProperties(MergedLV,
1995                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1996   }
1997 };
1998 }
1999 
2000 static CachedProperties computeCachedProperties(const Type *T);
2001 
2002 namespace clang {
2003 /// The type-property cache.  This is templated so as to be
2004 /// instantiated at an internal type to prevent unnecessary symbol
2005 /// leakage.
2006 template <class Private> class TypePropertyCache {
2007 public:
2008   static CachedProperties get(QualType T) {
2009     return get(T.getTypePtr());
2010   }
2011 
2012   static CachedProperties get(const Type *T) {
2013     ensure(T);
2014     NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
2015                               T->TypeBits.getVisibility(),
2016                               T->TypeBits.isVisibilityExplicit());
2017     return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
2018   }
2019 
2020   static void ensure(const Type *T) {
2021     // If the cache is valid, we're okay.
2022     if (T->TypeBits.isCacheValid()) return;
2023 
2024     // If this type is non-canonical, ask its canonical type for the
2025     // relevant information.
2026     if (!T->isCanonicalUnqualified()) {
2027       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
2028       ensure(CT);
2029       T->TypeBits.CacheValidAndVisibility =
2030         CT->TypeBits.CacheValidAndVisibility;
2031       T->TypeBits.CachedExplicitVisibility =
2032         CT->TypeBits.CachedExplicitVisibility;
2033       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
2034       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
2035       return;
2036     }
2037 
2038     // Compute the cached properties and then set the cache.
2039     CachedProperties Result = computeCachedProperties(T);
2040     T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
2041     T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
2042     assert(T->TypeBits.isCacheValid() &&
2043            T->TypeBits.getVisibility() == Result.getVisibility());
2044     T->TypeBits.CachedLinkage = Result.getLinkage();
2045     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
2046   }
2047 };
2048 }
2049 
2050 // Instantiate the friend template at a private class.  In a
2051 // reasonable implementation, these symbols will be internal.
2052 // It is terrible that this is the best way to accomplish this.
2053 namespace { class Private {}; }
2054 typedef TypePropertyCache<Private> Cache;
2055 
2056 static CachedProperties computeCachedProperties(const Type *T) {
2057   switch (T->getTypeClass()) {
2058 #define TYPE(Class,Base)
2059 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2060 #include "clang/AST/TypeNodes.def"
2061     llvm_unreachable("didn't expect a non-canonical type here");
2062 
2063 #define TYPE(Class,Base)
2064 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
2065 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2066 #include "clang/AST/TypeNodes.def"
2067     // Treat instantiation-dependent types as external.
2068     assert(T->isInstantiationDependentType());
2069     return CachedProperties(NamedDecl::LinkageInfo(), false);
2070 
2071   case Type::Builtin:
2072     // C++ [basic.link]p8:
2073     //   A type is said to have linkage if and only if:
2074     //     - it is a fundamental type (3.9.1); or
2075     return CachedProperties(NamedDecl::LinkageInfo(), false);
2076 
2077   case Type::Record:
2078   case Type::Enum: {
2079     const TagDecl *Tag = cast<TagType>(T)->getDecl();
2080 
2081     // C++ [basic.link]p8:
2082     //     - it is a class or enumeration type that is named (or has a name
2083     //       for linkage purposes (7.1.3)) and the name has linkage; or
2084     //     -  it is a specialization of a class template (14); or
2085     NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2086     bool IsLocalOrUnnamed =
2087       Tag->getDeclContext()->isFunctionOrMethod() ||
2088       (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2089     return CachedProperties(LV, IsLocalOrUnnamed);
2090   }
2091 
2092     // C++ [basic.link]p8:
2093     //   - it is a compound type (3.9.2) other than a class or enumeration,
2094     //     compounded exclusively from types that have linkage; or
2095   case Type::Complex:
2096     return Cache::get(cast<ComplexType>(T)->getElementType());
2097   case Type::Pointer:
2098     return Cache::get(cast<PointerType>(T)->getPointeeType());
2099   case Type::BlockPointer:
2100     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2101   case Type::LValueReference:
2102   case Type::RValueReference:
2103     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2104   case Type::MemberPointer: {
2105     const MemberPointerType *MPT = cast<MemberPointerType>(T);
2106     return merge(Cache::get(MPT->getClass()),
2107                  Cache::get(MPT->getPointeeType()));
2108   }
2109   case Type::ConstantArray:
2110   case Type::IncompleteArray:
2111   case Type::VariableArray:
2112     return Cache::get(cast<ArrayType>(T)->getElementType());
2113   case Type::Vector:
2114   case Type::ExtVector:
2115     return Cache::get(cast<VectorType>(T)->getElementType());
2116   case Type::FunctionNoProto:
2117     return Cache::get(cast<FunctionType>(T)->getResultType());
2118   case Type::FunctionProto: {
2119     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2120     CachedProperties result = Cache::get(FPT->getResultType());
2121     for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2122            ae = FPT->arg_type_end(); ai != ae; ++ai)
2123       result = merge(result, Cache::get(*ai));
2124     return result;
2125   }
2126   case Type::ObjCInterface: {
2127     NamedDecl::LinkageInfo LV =
2128       cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2129     return CachedProperties(LV, false);
2130   }
2131   case Type::ObjCObject:
2132     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2133   case Type::ObjCObjectPointer:
2134     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2135   case Type::Atomic:
2136     return Cache::get(cast<AtomicType>(T)->getValueType());
2137   }
2138 
2139   llvm_unreachable("unhandled type class");
2140 }
2141 
2142 /// \brief Determine the linkage of this type.
2143 Linkage Type::getLinkage() const {
2144   Cache::ensure(this);
2145   return TypeBits.getLinkage();
2146 }
2147 
2148 /// \brief Determine the linkage of this type.
2149 Visibility Type::getVisibility() const {
2150   Cache::ensure(this);
2151   return TypeBits.getVisibility();
2152 }
2153 
2154 bool Type::isVisibilityExplicit() const {
2155   Cache::ensure(this);
2156   return TypeBits.isVisibilityExplicit();
2157 }
2158 
2159 bool Type::hasUnnamedOrLocalType() const {
2160   Cache::ensure(this);
2161   return TypeBits.hasLocalOrUnnamedType();
2162 }
2163 
2164 std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2165   Cache::ensure(this);
2166   return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2167 }
2168 
2169 void Type::ClearLinkageCache() {
2170   TypeBits.CacheValidAndVisibility = 0;
2171   if (QualType(this, 0) != CanonicalType)
2172     CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2173 }
2174 
2175 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2176   if (isObjCARCImplicitlyUnretainedType())
2177     return Qualifiers::OCL_ExplicitNone;
2178   return Qualifiers::OCL_Strong;
2179 }
2180 
2181 bool Type::isObjCARCImplicitlyUnretainedType() const {
2182   assert(isObjCLifetimeType() &&
2183          "cannot query implicit lifetime for non-inferrable type");
2184 
2185   const Type *canon = getCanonicalTypeInternal().getTypePtr();
2186 
2187   // Walk down to the base type.  We don't care about qualifiers for this.
2188   while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2189     canon = array->getElementType().getTypePtr();
2190 
2191   if (const ObjCObjectPointerType *opt
2192         = dyn_cast<ObjCObjectPointerType>(canon)) {
2193     // Class and Class<Protocol> don't require retension.
2194     if (opt->getObjectType()->isObjCClass())
2195       return true;
2196   }
2197 
2198   return false;
2199 }
2200 
2201 bool Type::isObjCNSObjectType() const {
2202   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2203     return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2204   return false;
2205 }
2206 bool Type::isObjCRetainableType() const {
2207   return isObjCObjectPointerType() ||
2208          isBlockPointerType() ||
2209          isObjCNSObjectType();
2210 }
2211 bool Type::isObjCIndirectLifetimeType() const {
2212   if (isObjCLifetimeType())
2213     return true;
2214   if (const PointerType *OPT = getAs<PointerType>())
2215     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2216   if (const ReferenceType *Ref = getAs<ReferenceType>())
2217     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2218   if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2219     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2220   return false;
2221 }
2222 
2223 /// Returns true if objects of this type have lifetime semantics under
2224 /// ARC.
2225 bool Type::isObjCLifetimeType() const {
2226   const Type *type = this;
2227   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2228     type = array->getElementType().getTypePtr();
2229   return type->isObjCRetainableType();
2230 }
2231 
2232 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2233 /// which is either an Objective-C object pointer type or an
2234 bool Type::isObjCARCBridgableType() const {
2235   return isObjCObjectPointerType() || isBlockPointerType();
2236 }
2237 
2238 /// \brief Determine whether the given type T is a "bridgeable" C type.
2239 bool Type::isCARCBridgableType() const {
2240   const PointerType *Pointer = getAs<PointerType>();
2241   if (!Pointer)
2242     return false;
2243 
2244   QualType Pointee = Pointer->getPointeeType();
2245   return Pointee->isVoidType() || Pointee->isRecordType();
2246 }
2247 
2248 bool Type::hasSizedVLAType() const {
2249   if (!isVariablyModifiedType()) return false;
2250 
2251   if (const PointerType *ptr = getAs<PointerType>())
2252     return ptr->getPointeeType()->hasSizedVLAType();
2253   if (const ReferenceType *ref = getAs<ReferenceType>())
2254     return ref->getPointeeType()->hasSizedVLAType();
2255   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2256     if (isa<VariableArrayType>(arr) &&
2257         cast<VariableArrayType>(arr)->getSizeExpr())
2258       return true;
2259 
2260     return arr->getElementType()->hasSizedVLAType();
2261   }
2262 
2263   return false;
2264 }
2265 
2266 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2267   switch (type.getObjCLifetime()) {
2268   case Qualifiers::OCL_None:
2269   case Qualifiers::OCL_ExplicitNone:
2270   case Qualifiers::OCL_Autoreleasing:
2271     break;
2272 
2273   case Qualifiers::OCL_Strong:
2274     return DK_objc_strong_lifetime;
2275   case Qualifiers::OCL_Weak:
2276     return DK_objc_weak_lifetime;
2277   }
2278 
2279   /// Currently, the only destruction kind we recognize is C++ objects
2280   /// with non-trivial destructors.
2281   const CXXRecordDecl *record =
2282     type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2283   if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2284     return DK_cxx_destructor;
2285 
2286   return DK_none;
2287 }
2288 
2289 bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
2290   switch (getObjCLifetime()) {
2291   case Qualifiers::OCL_None:
2292     break;
2293 
2294   case Qualifiers::OCL_ExplicitNone:
2295     return true;
2296 
2297   case Qualifiers::OCL_Autoreleasing:
2298   case Qualifiers::OCL_Strong:
2299   case Qualifiers::OCL_Weak:
2300     return !Context.getLangOptions().ObjCAutoRefCount;
2301   }
2302 
2303   if (const CXXRecordDecl *Record
2304             = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2305     return Copying ? Record->hasTrivialCopyAssignment() :
2306                      Record->hasTrivialMoveAssignment();
2307 
2308   return true;
2309 }
2310