xref: /llvm-project-15.0.7/clang/lib/AST/Type.cpp (revision 2ea3c8a5)
1 //===- Type.cpp - Type representation and manipulation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related functionality.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Type.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DependenceFlags.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/TypeVisitor.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/ExceptionSpecificationType.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetCXXABI.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Visibility.h"
41 #include "llvm/ADT/APInt.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/FoldingSet.h"
45 #include "llvm/ADT/None.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstring>
54 #include <type_traits>
55 
56 using namespace clang;
57 
58 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
59   return (*this != Other) &&
60     // CVR qualifiers superset
61     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
62     // ObjC GC qualifiers superset
63     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
64      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
65     // Address space superset.
66     ((getAddressSpace() == Other.getAddressSpace()) ||
67      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
68     // Lifetime qualifier superset.
69     ((getObjCLifetime() == Other.getObjCLifetime()) ||
70      (hasObjCLifetime() && !Other.hasObjCLifetime()));
71 }
72 
73 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
74   const Type* ty = getTypePtr();
75   NamedDecl *ND = nullptr;
76   if (ty->isPointerType() || ty->isReferenceType())
77     return ty->getPointeeType().getBaseTypeIdentifier();
78   else if (ty->isRecordType())
79     ND = ty->castAs<RecordType>()->getDecl();
80   else if (ty->isEnumeralType())
81     ND = ty->castAs<EnumType>()->getDecl();
82   else if (ty->getTypeClass() == Type::Typedef)
83     ND = ty->castAs<TypedefType>()->getDecl();
84   else if (ty->isArrayType())
85     return ty->castAsArrayTypeUnsafe()->
86         getElementType().getBaseTypeIdentifier();
87 
88   if (ND)
89     return ND->getIdentifier();
90   return nullptr;
91 }
92 
93 bool QualType::mayBeDynamicClass() const {
94   const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
95   return ClassDecl && ClassDecl->mayBeDynamicClass();
96 }
97 
98 bool QualType::mayBeNotDynamicClass() const {
99   const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
100   return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
101 }
102 
103 bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
104   if (T.isConstQualified())
105     return true;
106 
107   if (const ArrayType *AT = Ctx.getAsArrayType(T))
108     return AT->getElementType().isConstant(Ctx);
109 
110   return T.getAddressSpace() == LangAS::opencl_constant;
111 }
112 
113 // C++ [temp.dep.type]p1:
114 //   A type is dependent if it is...
115 //     - an array type constructed from any dependent type or whose
116 //       size is specified by a constant expression that is
117 //       value-dependent,
118 ArrayType::ArrayType(TypeClass tc, QualType et, QualType can,
119                      ArraySizeModifier sm, unsigned tq, const Expr *sz)
120     // Note, we need to check for DependentSizedArrayType explicitly here
121     // because we use a DependentSizedArrayType with no size expression as the
122     // type of a dependent array of unknown bound with a dependent braced
123     // initializer:
124     //
125     //   template<int ...N> int arr[] = {N...};
126     : Type(tc, can,
127            et->getDependence() |
128                (sz ? toTypeDependence(
129                          turnValueToTypeDependence(sz->getDependence()))
130                    : TypeDependence::None) |
131                (tc == VariableArray ? TypeDependence::VariablyModified
132                                     : TypeDependence::None) |
133                (tc == DependentSizedArray
134                     ? TypeDependence::DependentInstantiation
135                     : TypeDependence::None)),
136       ElementType(et) {
137   ArrayTypeBits.IndexTypeQuals = tq;
138   ArrayTypeBits.SizeModifier = sm;
139 }
140 
141 unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context,
142                                                  QualType ElementType,
143                                                const llvm::APInt &NumElements) {
144   uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
145 
146   // Fast path the common cases so we can avoid the conservative computation
147   // below, which in common cases allocates "large" APSInt values, which are
148   // slow.
149 
150   // If the element size is a power of 2, we can directly compute the additional
151   // number of addressing bits beyond those required for the element count.
152   if (llvm::isPowerOf2_64(ElementSize)) {
153     return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
154   }
155 
156   // If both the element count and element size fit in 32-bits, we can do the
157   // computation directly in 64-bits.
158   if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
159       (NumElements.getZExtValue() >> 32) == 0) {
160     uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
161     return 64 - llvm::countLeadingZeros(TotalSize);
162   }
163 
164   // Otherwise, use APSInt to handle arbitrary sized values.
165   llvm::APSInt SizeExtended(NumElements, true);
166   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
167   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
168                                               SizeExtended.getBitWidth()) * 2);
169 
170   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
171   TotalSize *= SizeExtended;
172 
173   return TotalSize.getActiveBits();
174 }
175 
176 unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) {
177   unsigned Bits = Context.getTypeSize(Context.getSizeType());
178 
179   // Limit the number of bits in size_t so that maximal bit size fits 64 bit
180   // integer (see PR8256).  We can do this as currently there is no hardware
181   // that supports full 64-bit virtual space.
182   if (Bits > 61)
183     Bits = 61;
184 
185   return Bits;
186 }
187 
188 void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID,
189                                 const ASTContext &Context, QualType ET,
190                                 const llvm::APInt &ArraySize,
191                                 const Expr *SizeExpr, ArraySizeModifier SizeMod,
192                                 unsigned TypeQuals) {
193   ID.AddPointer(ET.getAsOpaquePtr());
194   ID.AddInteger(ArraySize.getZExtValue());
195   ID.AddInteger(SizeMod);
196   ID.AddInteger(TypeQuals);
197   ID.AddBoolean(SizeExpr != 0);
198   if (SizeExpr)
199     SizeExpr->Profile(ID, Context, true);
200 }
201 
202 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
203                                                  QualType et, QualType can,
204                                                  Expr *e, ArraySizeModifier sm,
205                                                  unsigned tq,
206                                                  SourceRange brackets)
207     : ArrayType(DependentSizedArray, et, can, sm, tq, e),
208       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
209 
210 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
211                                       const ASTContext &Context,
212                                       QualType ET,
213                                       ArraySizeModifier SizeMod,
214                                       unsigned TypeQuals,
215                                       Expr *E) {
216   ID.AddPointer(ET.getAsOpaquePtr());
217   ID.AddInteger(SizeMod);
218   ID.AddInteger(TypeQuals);
219   E->Profile(ID, Context, true);
220 }
221 
222 DependentVectorType::DependentVectorType(const ASTContext &Context,
223                                          QualType ElementType,
224                                          QualType CanonType, Expr *SizeExpr,
225                                          SourceLocation Loc,
226                                          VectorType::VectorKind VecKind)
227     : Type(DependentVector, CanonType,
228            TypeDependence::DependentInstantiation |
229                ElementType->getDependence() |
230                (SizeExpr ? toTypeDependence(SizeExpr->getDependence())
231                          : TypeDependence::None)),
232       Context(Context), ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
233   VectorTypeBits.VecKind = VecKind;
234 }
235 
236 void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
237                                   const ASTContext &Context,
238                                   QualType ElementType, const Expr *SizeExpr,
239                                   VectorType::VectorKind VecKind) {
240   ID.AddPointer(ElementType.getAsOpaquePtr());
241   ID.AddInteger(VecKind);
242   SizeExpr->Profile(ID, Context, true);
243 }
244 
245 DependentSizedExtVectorType::DependentSizedExtVectorType(
246     const ASTContext &Context, QualType ElementType, QualType can,
247     Expr *SizeExpr, SourceLocation loc)
248     : Type(DependentSizedExtVector, can,
249            TypeDependence::DependentInstantiation |
250                ElementType->getDependence() |
251                (SizeExpr ? toTypeDependence(SizeExpr->getDependence())
252                          : TypeDependence::None)),
253       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {
254 }
255 
256 void
257 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
258                                      const ASTContext &Context,
259                                      QualType ElementType, Expr *SizeExpr) {
260   ID.AddPointer(ElementType.getAsOpaquePtr());
261   SizeExpr->Profile(ID, Context, true);
262 }
263 
264 DependentAddressSpaceType::DependentAddressSpaceType(const ASTContext &Context,
265                                                      QualType PointeeType,
266                                                      QualType can,
267                                                      Expr *AddrSpaceExpr,
268                                                      SourceLocation loc)
269     : Type(DependentAddressSpace, can,
270            TypeDependence::DependentInstantiation |
271                PointeeType->getDependence() |
272                (AddrSpaceExpr ? toTypeDependence(AddrSpaceExpr->getDependence())
273                               : TypeDependence::None)),
274       Context(Context), AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType),
275       loc(loc) {}
276 
277 void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
278                                         const ASTContext &Context,
279                                         QualType PointeeType,
280                                         Expr *AddrSpaceExpr) {
281   ID.AddPointer(PointeeType.getAsOpaquePtr());
282   AddrSpaceExpr->Profile(ID, Context, true);
283 }
284 
285 MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType,
286                        const Expr *RowExpr, const Expr *ColumnExpr)
287     : Type(tc, canonType,
288            (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent |
289                        TypeDependence::Instantiation |
290                        (matrixType->isVariablyModifiedType()
291                             ? TypeDependence::VariablyModified
292                             : TypeDependence::None) |
293                        (matrixType->containsUnexpandedParameterPack() ||
294                                 (RowExpr &&
295                                  RowExpr->containsUnexpandedParameterPack()) ||
296                                 (ColumnExpr &&
297                                  ColumnExpr->containsUnexpandedParameterPack())
298                             ? TypeDependence::UnexpandedPack
299                             : TypeDependence::None))
300                     : matrixType->getDependence())),
301       ElementType(matrixType) {}
302 
303 ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows,
304                                        unsigned nColumns, QualType canonType)
305     : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns,
306                          canonType) {}
307 
308 ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType,
309                                        unsigned nRows, unsigned nColumns,
310                                        QualType canonType)
311     : MatrixType(tc, matrixType, canonType), NumRows(nRows),
312       NumColumns(nColumns) {}
313 
314 DependentSizedMatrixType::DependentSizedMatrixType(
315     const ASTContext &CTX, QualType ElementType, QualType CanonicalType,
316     Expr *RowExpr, Expr *ColumnExpr, SourceLocation loc)
317     : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr,
318                  ColumnExpr),
319       Context(CTX), RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {}
320 
321 void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID,
322                                        const ASTContext &CTX,
323                                        QualType ElementType, Expr *RowExpr,
324                                        Expr *ColumnExpr) {
325   ID.AddPointer(ElementType.getAsOpaquePtr());
326   RowExpr->Profile(ID, CTX, true);
327   ColumnExpr->Profile(ID, CTX, true);
328 }
329 
330 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
331                        VectorKind vecKind)
332     : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
333 
334 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
335                        QualType canonType, VectorKind vecKind)
336     : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) {
337   VectorTypeBits.VecKind = vecKind;
338   VectorTypeBits.NumElements = nElements;
339 }
340 
341 BitIntType::BitIntType(bool IsUnsigned, unsigned NumBits)
342     : Type(BitInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned),
343       NumBits(NumBits) {}
344 
345 DependentBitIntType::DependentBitIntType(const ASTContext &Context,
346                                          bool IsUnsigned, Expr *NumBitsExpr)
347     : Type(DependentBitInt, QualType{},
348            toTypeDependence(NumBitsExpr->getDependence())),
349       Context(Context), ExprAndUnsigned(NumBitsExpr, IsUnsigned) {}
350 
351 bool DependentBitIntType::isUnsigned() const {
352   return ExprAndUnsigned.getInt();
353 }
354 
355 clang::Expr *DependentBitIntType::getNumBitsExpr() const {
356   return ExprAndUnsigned.getPointer();
357 }
358 
359 void DependentBitIntType::Profile(llvm::FoldingSetNodeID &ID,
360                                   const ASTContext &Context, bool IsUnsigned,
361                                   Expr *NumBitsExpr) {
362   ID.AddBoolean(IsUnsigned);
363   NumBitsExpr->Profile(ID, Context, true);
364 }
365 
366 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
367 /// element type of the array, potentially with type qualifiers missing.
368 /// This method should never be used when type qualifiers are meaningful.
369 const Type *Type::getArrayElementTypeNoTypeQual() const {
370   // If this is directly an array type, return it.
371   if (const auto *ATy = dyn_cast<ArrayType>(this))
372     return ATy->getElementType().getTypePtr();
373 
374   // If the canonical form of this type isn't the right kind, reject it.
375   if (!isa<ArrayType>(CanonicalType))
376     return nullptr;
377 
378   // If this is a typedef for an array type, strip the typedef off without
379   // losing all typedef information.
380   return cast<ArrayType>(getUnqualifiedDesugaredType())
381     ->getElementType().getTypePtr();
382 }
383 
384 /// getDesugaredType - Return the specified type with any "sugar" removed from
385 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
386 /// the type is already concrete, it returns it unmodified.  This is similar
387 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
388 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
389 /// concrete.
390 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
391   SplitQualType split = getSplitDesugaredType(T);
392   return Context.getQualifiedType(split.Ty, split.Quals);
393 }
394 
395 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
396                                                   const ASTContext &Context) {
397   SplitQualType split = type.split();
398   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
399   return Context.getQualifiedType(desugar, split.Quals);
400 }
401 
402 // Check that no type class is polymorphic. LLVM style RTTI should be used
403 // instead. If absolutely needed an exception can still be added here by
404 // defining the appropriate macro (but please don't do this).
405 #define TYPE(CLASS, BASE) \
406   static_assert(!std::is_polymorphic<CLASS##Type>::value, \
407                 #CLASS "Type should not be polymorphic!");
408 #include "clang/AST/TypeNodes.inc"
409 
410 // Check that no type class has a non-trival destructor. Types are
411 // allocated with the BumpPtrAllocator from ASTContext and therefore
412 // their destructor is not executed.
413 //
414 // FIXME: ConstantArrayType is not trivially destructible because of its
415 // APInt member. It should be replaced in favor of ASTContext allocation.
416 #define TYPE(CLASS, BASE)                                                      \
417   static_assert(std::is_trivially_destructible<CLASS##Type>::value ||          \
418                     std::is_same<CLASS##Type, ConstantArrayType>::value,       \
419                 #CLASS "Type should be trivially destructible!");
420 #include "clang/AST/TypeNodes.inc"
421 
422 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
423   switch (getTypeClass()) {
424 #define ABSTRACT_TYPE(Class, Parent)
425 #define TYPE(Class, Parent) \
426   case Type::Class: { \
427     const auto *ty = cast<Class##Type>(this); \
428     if (!ty->isSugared()) return QualType(ty, 0); \
429     return ty->desugar(); \
430   }
431 #include "clang/AST/TypeNodes.inc"
432   }
433   llvm_unreachable("bad type kind!");
434 }
435 
436 SplitQualType QualType::getSplitDesugaredType(QualType T) {
437   QualifierCollector Qs;
438 
439   QualType Cur = T;
440   while (true) {
441     const Type *CurTy = Qs.strip(Cur);
442     switch (CurTy->getTypeClass()) {
443 #define ABSTRACT_TYPE(Class, Parent)
444 #define TYPE(Class, Parent) \
445     case Type::Class: { \
446       const auto *Ty = cast<Class##Type>(CurTy); \
447       if (!Ty->isSugared()) \
448         return SplitQualType(Ty, Qs); \
449       Cur = Ty->desugar(); \
450       break; \
451     }
452 #include "clang/AST/TypeNodes.inc"
453     }
454   }
455 }
456 
457 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
458   SplitQualType split = type.split();
459 
460   // All the qualifiers we've seen so far.
461   Qualifiers quals = split.Quals;
462 
463   // The last type node we saw with any nodes inside it.
464   const Type *lastTypeWithQuals = split.Ty;
465 
466   while (true) {
467     QualType next;
468 
469     // Do a single-step desugar, aborting the loop if the type isn't
470     // sugared.
471     switch (split.Ty->getTypeClass()) {
472 #define ABSTRACT_TYPE(Class, Parent)
473 #define TYPE(Class, Parent) \
474     case Type::Class: { \
475       const auto *ty = cast<Class##Type>(split.Ty); \
476       if (!ty->isSugared()) goto done; \
477       next = ty->desugar(); \
478       break; \
479     }
480 #include "clang/AST/TypeNodes.inc"
481     }
482 
483     // Otherwise, split the underlying type.  If that yields qualifiers,
484     // update the information.
485     split = next.split();
486     if (!split.Quals.empty()) {
487       lastTypeWithQuals = split.Ty;
488       quals.addConsistentQualifiers(split.Quals);
489     }
490   }
491 
492  done:
493   return SplitQualType(lastTypeWithQuals, quals);
494 }
495 
496 QualType QualType::IgnoreParens(QualType T) {
497   // FIXME: this seems inherently un-qualifiers-safe.
498   while (const auto *PT = T->getAs<ParenType>())
499     T = PT->getInnerType();
500   return T;
501 }
502 
503 /// This will check for a T (which should be a Type which can act as
504 /// sugar, such as a TypedefType) by removing any existing sugar until it
505 /// reaches a T or a non-sugared type.
506 template<typename T> static const T *getAsSugar(const Type *Cur) {
507   while (true) {
508     if (const auto *Sugar = dyn_cast<T>(Cur))
509       return Sugar;
510     switch (Cur->getTypeClass()) {
511 #define ABSTRACT_TYPE(Class, Parent)
512 #define TYPE(Class, Parent) \
513     case Type::Class: { \
514       const auto *Ty = cast<Class##Type>(Cur); \
515       if (!Ty->isSugared()) return 0; \
516       Cur = Ty->desugar().getTypePtr(); \
517       break; \
518     }
519 #include "clang/AST/TypeNodes.inc"
520     }
521   }
522 }
523 
524 template <> const TypedefType *Type::getAs() const {
525   return getAsSugar<TypedefType>(this);
526 }
527 
528 template <> const TemplateSpecializationType *Type::getAs() const {
529   return getAsSugar<TemplateSpecializationType>(this);
530 }
531 
532 template <> const AttributedType *Type::getAs() const {
533   return getAsSugar<AttributedType>(this);
534 }
535 
536 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
537 /// sugar off the given type.  This should produce an object of the
538 /// same dynamic type as the canonical type.
539 const Type *Type::getUnqualifiedDesugaredType() const {
540   const Type *Cur = this;
541 
542   while (true) {
543     switch (Cur->getTypeClass()) {
544 #define ABSTRACT_TYPE(Class, Parent)
545 #define TYPE(Class, Parent) \
546     case Class: { \
547       const auto *Ty = cast<Class##Type>(Cur); \
548       if (!Ty->isSugared()) return Cur; \
549       Cur = Ty->desugar().getTypePtr(); \
550       break; \
551     }
552 #include "clang/AST/TypeNodes.inc"
553     }
554   }
555 }
556 
557 bool Type::isClassType() const {
558   if (const auto *RT = getAs<RecordType>())
559     return RT->getDecl()->isClass();
560   return false;
561 }
562 
563 bool Type::isStructureType() const {
564   if (const auto *RT = getAs<RecordType>())
565     return RT->getDecl()->isStruct();
566   return false;
567 }
568 
569 bool Type::isObjCBoxableRecordType() const {
570   if (const auto *RT = getAs<RecordType>())
571     return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
572   return false;
573 }
574 
575 bool Type::isInterfaceType() const {
576   if (const auto *RT = getAs<RecordType>())
577     return RT->getDecl()->isInterface();
578   return false;
579 }
580 
581 bool Type::isStructureOrClassType() const {
582   if (const auto *RT = getAs<RecordType>()) {
583     RecordDecl *RD = RT->getDecl();
584     return RD->isStruct() || RD->isClass() || RD->isInterface();
585   }
586   return false;
587 }
588 
589 bool Type::isVoidPointerType() const {
590   if (const auto *PT = getAs<PointerType>())
591     return PT->getPointeeType()->isVoidType();
592   return false;
593 }
594 
595 bool Type::isUnionType() const {
596   if (const auto *RT = getAs<RecordType>())
597     return RT->getDecl()->isUnion();
598   return false;
599 }
600 
601 bool Type::isComplexType() const {
602   if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
603     return CT->getElementType()->isFloatingType();
604   return false;
605 }
606 
607 bool Type::isComplexIntegerType() const {
608   // Check for GCC complex integer extension.
609   return getAsComplexIntegerType();
610 }
611 
612 bool Type::isScopedEnumeralType() const {
613   if (const auto *ET = getAs<EnumType>())
614     return ET->getDecl()->isScoped();
615   return false;
616 }
617 
618 const ComplexType *Type::getAsComplexIntegerType() const {
619   if (const auto *Complex = getAs<ComplexType>())
620     if (Complex->getElementType()->isIntegerType())
621       return Complex;
622   return nullptr;
623 }
624 
625 QualType Type::getPointeeType() const {
626   if (const auto *PT = getAs<PointerType>())
627     return PT->getPointeeType();
628   if (const auto *OPT = getAs<ObjCObjectPointerType>())
629     return OPT->getPointeeType();
630   if (const auto *BPT = getAs<BlockPointerType>())
631     return BPT->getPointeeType();
632   if (const auto *RT = getAs<ReferenceType>())
633     return RT->getPointeeType();
634   if (const auto *MPT = getAs<MemberPointerType>())
635     return MPT->getPointeeType();
636   if (const auto *DT = getAs<DecayedType>())
637     return DT->getPointeeType();
638   return {};
639 }
640 
641 const RecordType *Type::getAsStructureType() const {
642   // If this is directly a structure type, return it.
643   if (const auto *RT = dyn_cast<RecordType>(this)) {
644     if (RT->getDecl()->isStruct())
645       return RT;
646   }
647 
648   // If the canonical form of this type isn't the right kind, reject it.
649   if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
650     if (!RT->getDecl()->isStruct())
651       return nullptr;
652 
653     // If this is a typedef for a structure type, strip the typedef off without
654     // losing all typedef information.
655     return cast<RecordType>(getUnqualifiedDesugaredType());
656   }
657   return nullptr;
658 }
659 
660 const RecordType *Type::getAsUnionType() const {
661   // If this is directly a union type, return it.
662   if (const auto *RT = dyn_cast<RecordType>(this)) {
663     if (RT->getDecl()->isUnion())
664       return RT;
665   }
666 
667   // If the canonical form of this type isn't the right kind, reject it.
668   if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
669     if (!RT->getDecl()->isUnion())
670       return nullptr;
671 
672     // If this is a typedef for a union type, strip the typedef off without
673     // losing all typedef information.
674     return cast<RecordType>(getUnqualifiedDesugaredType());
675   }
676 
677   return nullptr;
678 }
679 
680 bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
681                                       const ObjCObjectType *&bound) const {
682   bound = nullptr;
683 
684   const auto *OPT = getAs<ObjCObjectPointerType>();
685   if (!OPT)
686     return false;
687 
688   // Easy case: id.
689   if (OPT->isObjCIdType())
690     return true;
691 
692   // If it's not a __kindof type, reject it now.
693   if (!OPT->isKindOfType())
694     return false;
695 
696   // If it's Class or qualified Class, it's not an object type.
697   if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
698     return false;
699 
700   // Figure out the type bound for the __kindof type.
701   bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
702             ->getAs<ObjCObjectType>();
703   return true;
704 }
705 
706 bool Type::isObjCClassOrClassKindOfType() const {
707   const auto *OPT = getAs<ObjCObjectPointerType>();
708   if (!OPT)
709     return false;
710 
711   // Easy case: Class.
712   if (OPT->isObjCClassType())
713     return true;
714 
715   // If it's not a __kindof type, reject it now.
716   if (!OPT->isKindOfType())
717     return false;
718 
719   // If it's Class or qualified Class, it's a class __kindof type.
720   return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
721 }
722 
723 ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can,
724                                      ArrayRef<ObjCProtocolDecl *> protocols)
725     : Type(ObjCTypeParam, can,
726            can->getDependence() & ~TypeDependence::UnexpandedPack),
727       OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) {
728   initialize(protocols);
729 }
730 
731 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
732                                ArrayRef<QualType> typeArgs,
733                                ArrayRef<ObjCProtocolDecl *> protocols,
734                                bool isKindOf)
735     : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) {
736   ObjCObjectTypeBits.IsKindOf = isKindOf;
737 
738   ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
739   assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
740          "bitfield overflow in type argument count");
741   if (!typeArgs.empty())
742     memcpy(getTypeArgStorage(), typeArgs.data(),
743            typeArgs.size() * sizeof(QualType));
744 
745   for (auto typeArg : typeArgs) {
746     addDependence(typeArg->getDependence() & ~TypeDependence::VariablyModified);
747   }
748   // Initialize the protocol qualifiers. The protocol storage is known
749   // after we set number of type arguments.
750   initialize(protocols);
751 }
752 
753 bool ObjCObjectType::isSpecialized() const {
754   // If we have type arguments written here, the type is specialized.
755   if (ObjCObjectTypeBits.NumTypeArgs > 0)
756     return true;
757 
758   // Otherwise, check whether the base type is specialized.
759   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
760     // Terminate when we reach an interface type.
761     if (isa<ObjCInterfaceType>(objcObject))
762       return false;
763 
764     return objcObject->isSpecialized();
765   }
766 
767   // Not specialized.
768   return false;
769 }
770 
771 ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
772   // We have type arguments written on this type.
773   if (isSpecializedAsWritten())
774     return getTypeArgsAsWritten();
775 
776   // Look at the base type, which might have type arguments.
777   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
778     // Terminate when we reach an interface type.
779     if (isa<ObjCInterfaceType>(objcObject))
780       return {};
781 
782     return objcObject->getTypeArgs();
783   }
784 
785   // No type arguments.
786   return {};
787 }
788 
789 bool ObjCObjectType::isKindOfType() const {
790   if (isKindOfTypeAsWritten())
791     return true;
792 
793   // Look at the base type, which might have type arguments.
794   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
795     // Terminate when we reach an interface type.
796     if (isa<ObjCInterfaceType>(objcObject))
797       return false;
798 
799     return objcObject->isKindOfType();
800   }
801 
802   // Not a "__kindof" type.
803   return false;
804 }
805 
806 QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
807            const ASTContext &ctx) const {
808   if (!isKindOfType() && qual_empty())
809     return QualType(this, 0);
810 
811   // Recursively strip __kindof.
812   SplitQualType splitBaseType = getBaseType().split();
813   QualType baseType(splitBaseType.Ty, 0);
814   if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
815     baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
816 
817   return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
818                                                     splitBaseType.Quals),
819                                getTypeArgsAsWritten(),
820                                /*protocols=*/{},
821                                /*isKindOf=*/false);
822 }
823 
824 ObjCInterfaceDecl *ObjCInterfaceType::getDecl() const {
825   ObjCInterfaceDecl *Canon = Decl->getCanonicalDecl();
826   if (ObjCInterfaceDecl *Def = Canon->getDefinition())
827     return Def;
828   return Canon;
829 }
830 
831 const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
832                                const ASTContext &ctx) const {
833   if (!isKindOfType() && qual_empty())
834     return this;
835 
836   QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
837   return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>();
838 }
839 
840 namespace {
841 
842 /// Visitor used to perform a simple type transformation that does not change
843 /// the semantics of the type.
844 template <typename Derived>
845 struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
846   ASTContext &Ctx;
847 
848   QualType recurse(QualType type) {
849     // Split out the qualifiers from the type.
850     SplitQualType splitType = type.split();
851 
852     // Visit the type itself.
853     QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
854     if (result.isNull())
855       return result;
856 
857     // Reconstruct the transformed type by applying the local qualifiers
858     // from the split type.
859     return Ctx.getQualifiedType(result, splitType.Quals);
860   }
861 
862 public:
863   explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
864 
865   // None of the clients of this transformation can occur where
866   // there are dependent types, so skip dependent types.
867 #define TYPE(Class, Base)
868 #define DEPENDENT_TYPE(Class, Base) \
869   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
870 #include "clang/AST/TypeNodes.inc"
871 
872 #define TRIVIAL_TYPE_CLASS(Class) \
873   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
874 #define SUGARED_TYPE_CLASS(Class) \
875   QualType Visit##Class##Type(const Class##Type *T) { \
876     if (!T->isSugared()) \
877       return QualType(T, 0); \
878     QualType desugaredType = recurse(T->desugar()); \
879     if (desugaredType.isNull()) \
880       return {}; \
881     if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
882       return QualType(T, 0); \
883     return desugaredType; \
884   }
885 
886   TRIVIAL_TYPE_CLASS(Builtin)
887 
888   QualType VisitComplexType(const ComplexType *T) {
889     QualType elementType = recurse(T->getElementType());
890     if (elementType.isNull())
891       return {};
892 
893     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
894       return QualType(T, 0);
895 
896     return Ctx.getComplexType(elementType);
897   }
898 
899   QualType VisitPointerType(const PointerType *T) {
900     QualType pointeeType = recurse(T->getPointeeType());
901     if (pointeeType.isNull())
902       return {};
903 
904     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
905       return QualType(T, 0);
906 
907     return Ctx.getPointerType(pointeeType);
908   }
909 
910   QualType VisitBlockPointerType(const BlockPointerType *T) {
911     QualType pointeeType = recurse(T->getPointeeType());
912     if (pointeeType.isNull())
913       return {};
914 
915     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
916       return QualType(T, 0);
917 
918     return Ctx.getBlockPointerType(pointeeType);
919   }
920 
921   QualType VisitLValueReferenceType(const LValueReferenceType *T) {
922     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
923     if (pointeeType.isNull())
924       return {};
925 
926     if (pointeeType.getAsOpaquePtr()
927           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
928       return QualType(T, 0);
929 
930     return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
931   }
932 
933   QualType VisitRValueReferenceType(const RValueReferenceType *T) {
934     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
935     if (pointeeType.isNull())
936       return {};
937 
938     if (pointeeType.getAsOpaquePtr()
939           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
940       return QualType(T, 0);
941 
942     return Ctx.getRValueReferenceType(pointeeType);
943   }
944 
945   QualType VisitMemberPointerType(const MemberPointerType *T) {
946     QualType pointeeType = recurse(T->getPointeeType());
947     if (pointeeType.isNull())
948       return {};
949 
950     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
951       return QualType(T, 0);
952 
953     return Ctx.getMemberPointerType(pointeeType, T->getClass());
954   }
955 
956   QualType VisitConstantArrayType(const ConstantArrayType *T) {
957     QualType elementType = recurse(T->getElementType());
958     if (elementType.isNull())
959       return {};
960 
961     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
962       return QualType(T, 0);
963 
964     return Ctx.getConstantArrayType(elementType, T->getSize(), T->getSizeExpr(),
965                                     T->getSizeModifier(),
966                                     T->getIndexTypeCVRQualifiers());
967   }
968 
969   QualType VisitVariableArrayType(const VariableArrayType *T) {
970     QualType elementType = recurse(T->getElementType());
971     if (elementType.isNull())
972       return {};
973 
974     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
975       return QualType(T, 0);
976 
977     return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
978                                     T->getSizeModifier(),
979                                     T->getIndexTypeCVRQualifiers(),
980                                     T->getBracketsRange());
981   }
982 
983   QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
984     QualType elementType = recurse(T->getElementType());
985     if (elementType.isNull())
986       return {};
987 
988     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
989       return QualType(T, 0);
990 
991     return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
992                                       T->getIndexTypeCVRQualifiers());
993   }
994 
995   QualType VisitVectorType(const VectorType *T) {
996     QualType elementType = recurse(T->getElementType());
997     if (elementType.isNull())
998       return {};
999 
1000     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1001       return QualType(T, 0);
1002 
1003     return Ctx.getVectorType(elementType, T->getNumElements(),
1004                              T->getVectorKind());
1005   }
1006 
1007   QualType VisitExtVectorType(const ExtVectorType *T) {
1008     QualType elementType = recurse(T->getElementType());
1009     if (elementType.isNull())
1010       return {};
1011 
1012     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1013       return QualType(T, 0);
1014 
1015     return Ctx.getExtVectorType(elementType, T->getNumElements());
1016   }
1017 
1018   QualType VisitConstantMatrixType(const ConstantMatrixType *T) {
1019     QualType elementType = recurse(T->getElementType());
1020     if (elementType.isNull())
1021       return {};
1022     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1023       return QualType(T, 0);
1024 
1025     return Ctx.getConstantMatrixType(elementType, T->getNumRows(),
1026                                      T->getNumColumns());
1027   }
1028 
1029   QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
1030     QualType returnType = recurse(T->getReturnType());
1031     if (returnType.isNull())
1032       return {};
1033 
1034     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
1035       return QualType(T, 0);
1036 
1037     return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
1038   }
1039 
1040   QualType VisitFunctionProtoType(const FunctionProtoType *T) {
1041     QualType returnType = recurse(T->getReturnType());
1042     if (returnType.isNull())
1043       return {};
1044 
1045     // Transform parameter types.
1046     SmallVector<QualType, 4> paramTypes;
1047     bool paramChanged = false;
1048     for (auto paramType : T->getParamTypes()) {
1049       QualType newParamType = recurse(paramType);
1050       if (newParamType.isNull())
1051         return {};
1052 
1053       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1054         paramChanged = true;
1055 
1056       paramTypes.push_back(newParamType);
1057     }
1058 
1059     // Transform extended info.
1060     FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
1061     bool exceptionChanged = false;
1062     if (info.ExceptionSpec.Type == EST_Dynamic) {
1063       SmallVector<QualType, 4> exceptionTypes;
1064       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1065         QualType newExceptionType = recurse(exceptionType);
1066         if (newExceptionType.isNull())
1067           return {};
1068 
1069         if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1070           exceptionChanged = true;
1071 
1072         exceptionTypes.push_back(newExceptionType);
1073       }
1074 
1075       if (exceptionChanged) {
1076         info.ExceptionSpec.Exceptions =
1077             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1078       }
1079     }
1080 
1081     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
1082         !paramChanged && !exceptionChanged)
1083       return QualType(T, 0);
1084 
1085     return Ctx.getFunctionType(returnType, paramTypes, info);
1086   }
1087 
1088   QualType VisitParenType(const ParenType *T) {
1089     QualType innerType = recurse(T->getInnerType());
1090     if (innerType.isNull())
1091       return {};
1092 
1093     if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
1094       return QualType(T, 0);
1095 
1096     return Ctx.getParenType(innerType);
1097   }
1098 
1099   SUGARED_TYPE_CLASS(Typedef)
1100   SUGARED_TYPE_CLASS(ObjCTypeParam)
1101   SUGARED_TYPE_CLASS(MacroQualified)
1102 
1103   QualType VisitAdjustedType(const AdjustedType *T) {
1104     QualType originalType = recurse(T->getOriginalType());
1105     if (originalType.isNull())
1106       return {};
1107 
1108     QualType adjustedType = recurse(T->getAdjustedType());
1109     if (adjustedType.isNull())
1110       return {};
1111 
1112     if (originalType.getAsOpaquePtr()
1113           == T->getOriginalType().getAsOpaquePtr() &&
1114         adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
1115       return QualType(T, 0);
1116 
1117     return Ctx.getAdjustedType(originalType, adjustedType);
1118   }
1119 
1120   QualType VisitDecayedType(const DecayedType *T) {
1121     QualType originalType = recurse(T->getOriginalType());
1122     if (originalType.isNull())
1123       return {};
1124 
1125     if (originalType.getAsOpaquePtr()
1126           == T->getOriginalType().getAsOpaquePtr())
1127       return QualType(T, 0);
1128 
1129     return Ctx.getDecayedType(originalType);
1130   }
1131 
1132   SUGARED_TYPE_CLASS(TypeOfExpr)
1133   SUGARED_TYPE_CLASS(TypeOf)
1134   SUGARED_TYPE_CLASS(Decltype)
1135   SUGARED_TYPE_CLASS(UnaryTransform)
1136   TRIVIAL_TYPE_CLASS(Record)
1137   TRIVIAL_TYPE_CLASS(Enum)
1138 
1139   // FIXME: Non-trivial to implement, but important for C++
1140   SUGARED_TYPE_CLASS(Elaborated)
1141 
1142   QualType VisitAttributedType(const AttributedType *T) {
1143     QualType modifiedType = recurse(T->getModifiedType());
1144     if (modifiedType.isNull())
1145       return {};
1146 
1147     QualType equivalentType = recurse(T->getEquivalentType());
1148     if (equivalentType.isNull())
1149       return {};
1150 
1151     if (modifiedType.getAsOpaquePtr()
1152           == T->getModifiedType().getAsOpaquePtr() &&
1153         equivalentType.getAsOpaquePtr()
1154           == T->getEquivalentType().getAsOpaquePtr())
1155       return QualType(T, 0);
1156 
1157     return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
1158                                  equivalentType);
1159   }
1160 
1161   QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1162     QualType replacementType = recurse(T->getReplacementType());
1163     if (replacementType.isNull())
1164       return {};
1165 
1166     if (replacementType.getAsOpaquePtr()
1167           == T->getReplacementType().getAsOpaquePtr())
1168       return QualType(T, 0);
1169 
1170     return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
1171                                             replacementType);
1172   }
1173 
1174   // FIXME: Non-trivial to implement, but important for C++
1175   SUGARED_TYPE_CLASS(TemplateSpecialization)
1176 
1177   QualType VisitAutoType(const AutoType *T) {
1178     if (!T->isDeduced())
1179       return QualType(T, 0);
1180 
1181     QualType deducedType = recurse(T->getDeducedType());
1182     if (deducedType.isNull())
1183       return {};
1184 
1185     if (deducedType.getAsOpaquePtr()
1186           == T->getDeducedType().getAsOpaquePtr())
1187       return QualType(T, 0);
1188 
1189     return Ctx.getAutoType(deducedType, T->getKeyword(),
1190                            T->isDependentType(), /*IsPack=*/false,
1191                            T->getTypeConstraintConcept(),
1192                            T->getTypeConstraintArguments());
1193   }
1194 
1195   QualType VisitObjCObjectType(const ObjCObjectType *T) {
1196     QualType baseType = recurse(T->getBaseType());
1197     if (baseType.isNull())
1198       return {};
1199 
1200     // Transform type arguments.
1201     bool typeArgChanged = false;
1202     SmallVector<QualType, 4> typeArgs;
1203     for (auto typeArg : T->getTypeArgsAsWritten()) {
1204       QualType newTypeArg = recurse(typeArg);
1205       if (newTypeArg.isNull())
1206         return {};
1207 
1208       if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1209         typeArgChanged = true;
1210 
1211       typeArgs.push_back(newTypeArg);
1212     }
1213 
1214     if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1215         !typeArgChanged)
1216       return QualType(T, 0);
1217 
1218     return Ctx.getObjCObjectType(baseType, typeArgs,
1219                                  llvm::makeArrayRef(T->qual_begin(),
1220                                                     T->getNumProtocols()),
1221                                  T->isKindOfTypeAsWritten());
1222   }
1223 
1224   TRIVIAL_TYPE_CLASS(ObjCInterface)
1225 
1226   QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1227     QualType pointeeType = recurse(T->getPointeeType());
1228     if (pointeeType.isNull())
1229       return {};
1230 
1231     if (pointeeType.getAsOpaquePtr()
1232           == T->getPointeeType().getAsOpaquePtr())
1233       return QualType(T, 0);
1234 
1235     return Ctx.getObjCObjectPointerType(pointeeType);
1236   }
1237 
1238   QualType VisitAtomicType(const AtomicType *T) {
1239     QualType valueType = recurse(T->getValueType());
1240     if (valueType.isNull())
1241       return {};
1242 
1243     if (valueType.getAsOpaquePtr()
1244           == T->getValueType().getAsOpaquePtr())
1245       return QualType(T, 0);
1246 
1247     return Ctx.getAtomicType(valueType);
1248   }
1249 
1250 #undef TRIVIAL_TYPE_CLASS
1251 #undef SUGARED_TYPE_CLASS
1252 };
1253 
1254 struct SubstObjCTypeArgsVisitor
1255     : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1256   using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1257 
1258   ArrayRef<QualType> TypeArgs;
1259   ObjCSubstitutionContext SubstContext;
1260 
1261   SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1262                            ObjCSubstitutionContext context)
1263       : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1264 
1265   QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1266     // Replace an Objective-C type parameter reference with the corresponding
1267     // type argument.
1268     ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1269     // If we have type arguments, use them.
1270     if (!TypeArgs.empty()) {
1271       QualType argType = TypeArgs[typeParam->getIndex()];
1272       if (OTPTy->qual_empty())
1273         return argType;
1274 
1275       // Apply protocol lists if exists.
1276       bool hasError;
1277       SmallVector<ObjCProtocolDecl *, 8> protocolsVec;
1278       protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end());
1279       ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1280       return Ctx.applyObjCProtocolQualifiers(
1281           argType, protocolsToApply, hasError, true/*allowOnPointerType*/);
1282     }
1283 
1284     switch (SubstContext) {
1285     case ObjCSubstitutionContext::Ordinary:
1286     case ObjCSubstitutionContext::Parameter:
1287     case ObjCSubstitutionContext::Superclass:
1288       // Substitute the bound.
1289       return typeParam->getUnderlyingType();
1290 
1291     case ObjCSubstitutionContext::Result:
1292     case ObjCSubstitutionContext::Property: {
1293       // Substitute the __kindof form of the underlying type.
1294       const auto *objPtr =
1295           typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>();
1296 
1297       // __kindof types, id, and Class don't need an additional
1298       // __kindof.
1299       if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1300         return typeParam->getUnderlyingType();
1301 
1302       // Add __kindof.
1303       const auto *obj = objPtr->getObjectType();
1304       QualType resultTy = Ctx.getObjCObjectType(
1305           obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(),
1306           /*isKindOf=*/true);
1307 
1308       // Rebuild object pointer type.
1309       return Ctx.getObjCObjectPointerType(resultTy);
1310     }
1311     }
1312     llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1313   }
1314 
1315   QualType VisitFunctionType(const FunctionType *funcType) {
1316     // If we have a function type, update the substitution context
1317     // appropriately.
1318 
1319     //Substitute result type.
1320     QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1321         Ctx, TypeArgs, ObjCSubstitutionContext::Result);
1322     if (returnType.isNull())
1323       return {};
1324 
1325     // Handle non-prototyped functions, which only substitute into the result
1326     // type.
1327     if (isa<FunctionNoProtoType>(funcType)) {
1328       // If the return type was unchanged, do nothing.
1329       if (returnType.getAsOpaquePtr() ==
1330           funcType->getReturnType().getAsOpaquePtr())
1331         return BaseType::VisitFunctionType(funcType);
1332 
1333       // Otherwise, build a new type.
1334       return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1335     }
1336 
1337     const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1338 
1339     // Transform parameter types.
1340     SmallVector<QualType, 4> paramTypes;
1341     bool paramChanged = false;
1342     for (auto paramType : funcProtoType->getParamTypes()) {
1343       QualType newParamType = paramType.substObjCTypeArgs(
1344           Ctx, TypeArgs, ObjCSubstitutionContext::Parameter);
1345       if (newParamType.isNull())
1346         return {};
1347 
1348       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1349         paramChanged = true;
1350 
1351       paramTypes.push_back(newParamType);
1352     }
1353 
1354     // Transform extended info.
1355     FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1356     bool exceptionChanged = false;
1357     if (info.ExceptionSpec.Type == EST_Dynamic) {
1358       SmallVector<QualType, 4> exceptionTypes;
1359       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1360         QualType newExceptionType = exceptionType.substObjCTypeArgs(
1361             Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1362         if (newExceptionType.isNull())
1363           return {};
1364 
1365         if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1366           exceptionChanged = true;
1367 
1368         exceptionTypes.push_back(newExceptionType);
1369       }
1370 
1371       if (exceptionChanged) {
1372         info.ExceptionSpec.Exceptions =
1373             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1374       }
1375     }
1376 
1377     if (returnType.getAsOpaquePtr() ==
1378             funcProtoType->getReturnType().getAsOpaquePtr() &&
1379         !paramChanged && !exceptionChanged)
1380       return BaseType::VisitFunctionType(funcType);
1381 
1382     return Ctx.getFunctionType(returnType, paramTypes, info);
1383   }
1384 
1385   QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1386     // Substitute into the type arguments of a specialized Objective-C object
1387     // type.
1388     if (objcObjectType->isSpecializedAsWritten()) {
1389       SmallVector<QualType, 4> newTypeArgs;
1390       bool anyChanged = false;
1391       for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1392         QualType newTypeArg = typeArg.substObjCTypeArgs(
1393             Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1394         if (newTypeArg.isNull())
1395           return {};
1396 
1397         if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1398           // If we're substituting based on an unspecialized context type,
1399           // produce an unspecialized type.
1400           ArrayRef<ObjCProtocolDecl *> protocols(
1401               objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1402           if (TypeArgs.empty() &&
1403               SubstContext != ObjCSubstitutionContext::Superclass) {
1404             return Ctx.getObjCObjectType(
1405                 objcObjectType->getBaseType(), {}, protocols,
1406                 objcObjectType->isKindOfTypeAsWritten());
1407           }
1408 
1409           anyChanged = true;
1410         }
1411 
1412         newTypeArgs.push_back(newTypeArg);
1413       }
1414 
1415       if (anyChanged) {
1416         ArrayRef<ObjCProtocolDecl *> protocols(
1417             objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1418         return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs,
1419                                      protocols,
1420                                      objcObjectType->isKindOfTypeAsWritten());
1421       }
1422     }
1423 
1424     return BaseType::VisitObjCObjectType(objcObjectType);
1425   }
1426 
1427   QualType VisitAttributedType(const AttributedType *attrType) {
1428     QualType newType = BaseType::VisitAttributedType(attrType);
1429     if (newType.isNull())
1430       return {};
1431 
1432     const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr());
1433     if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1434       return newType;
1435 
1436     // Find out if it's an Objective-C object or object pointer type;
1437     QualType newEquivType = newAttrType->getEquivalentType();
1438     const ObjCObjectPointerType *ptrType =
1439         newEquivType->getAs<ObjCObjectPointerType>();
1440     const ObjCObjectType *objType = ptrType
1441                                         ? ptrType->getObjectType()
1442                                         : newEquivType->getAs<ObjCObjectType>();
1443     if (!objType)
1444       return newType;
1445 
1446     // Rebuild the "equivalent" type, which pushes __kindof down into
1447     // the object type.
1448     newEquivType = Ctx.getObjCObjectType(
1449         objType->getBaseType(), objType->getTypeArgsAsWritten(),
1450         objType->getProtocols(),
1451         // There is no need to apply kindof on an unqualified id type.
1452         /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1453 
1454     // If we started with an object pointer type, rebuild it.
1455     if (ptrType)
1456       newEquivType = Ctx.getObjCObjectPointerType(newEquivType);
1457 
1458     // Rebuild the attributed type.
1459     return Ctx.getAttributedType(newAttrType->getAttrKind(),
1460                                  newAttrType->getModifiedType(), newEquivType);
1461   }
1462 };
1463 
1464 struct StripObjCKindOfTypeVisitor
1465     : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1466   using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1467 
1468   explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1469 
1470   QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1471     if (!objType->isKindOfType())
1472       return BaseType::VisitObjCObjectType(objType);
1473 
1474     QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx);
1475     return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(),
1476                                  objType->getProtocols(),
1477                                  /*isKindOf=*/false);
1478   }
1479 };
1480 
1481 } // namespace
1482 
1483 /// Substitute the given type arguments for Objective-C type
1484 /// parameters within the given type, recursively.
1485 QualType QualType::substObjCTypeArgs(ASTContext &ctx,
1486                                      ArrayRef<QualType> typeArgs,
1487                                      ObjCSubstitutionContext context) const {
1488   SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1489   return visitor.recurse(*this);
1490 }
1491 
1492 QualType QualType::substObjCMemberType(QualType objectType,
1493                                        const DeclContext *dc,
1494                                        ObjCSubstitutionContext context) const {
1495   if (auto subs = objectType->getObjCSubstitutions(dc))
1496     return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1497 
1498   return *this;
1499 }
1500 
1501 QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
1502   // FIXME: Because ASTContext::getAttributedType() is non-const.
1503   auto &ctx = const_cast<ASTContext &>(constCtx);
1504   StripObjCKindOfTypeVisitor visitor(ctx);
1505   return visitor.recurse(*this);
1506 }
1507 
1508 QualType QualType::getAtomicUnqualifiedType() const {
1509   if (const auto AT = getTypePtr()->getAs<AtomicType>())
1510     return AT->getValueType().getUnqualifiedType();
1511   return getUnqualifiedType();
1512 }
1513 
1514 Optional<ArrayRef<QualType>> Type::getObjCSubstitutions(
1515                                const DeclContext *dc) const {
1516   // Look through method scopes.
1517   if (const auto method = dyn_cast<ObjCMethodDecl>(dc))
1518     dc = method->getDeclContext();
1519 
1520   // Find the class or category in which the type we're substituting
1521   // was declared.
1522   const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1523   const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1524   ObjCTypeParamList *dcTypeParams = nullptr;
1525   if (dcClassDecl) {
1526     // If the class does not have any type parameters, there's no
1527     // substitution to do.
1528     dcTypeParams = dcClassDecl->getTypeParamList();
1529     if (!dcTypeParams)
1530       return None;
1531   } else {
1532     // If we are in neither a class nor a category, there's no
1533     // substitution to perform.
1534     dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1535     if (!dcCategoryDecl)
1536       return None;
1537 
1538     // If the category does not have any type parameters, there's no
1539     // substitution to do.
1540     dcTypeParams = dcCategoryDecl->getTypeParamList();
1541     if (!dcTypeParams)
1542       return None;
1543 
1544     dcClassDecl = dcCategoryDecl->getClassInterface();
1545     if (!dcClassDecl)
1546       return None;
1547   }
1548   assert(dcTypeParams && "No substitutions to perform");
1549   assert(dcClassDecl && "No class context");
1550 
1551   // Find the underlying object type.
1552   const ObjCObjectType *objectType;
1553   if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1554     objectType = objectPointerType->getObjectType();
1555   } else if (getAs<BlockPointerType>()) {
1556     ASTContext &ctx = dc->getParentASTContext();
1557     objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {})
1558                    ->castAs<ObjCObjectType>();
1559   } else {
1560     objectType = getAs<ObjCObjectType>();
1561   }
1562 
1563   /// Extract the class from the receiver object type.
1564   ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1565                                                : nullptr;
1566   if (!curClassDecl) {
1567     // If we don't have a context type (e.g., this is "id" or some
1568     // variant thereof), substitute the bounds.
1569     return llvm::ArrayRef<QualType>();
1570   }
1571 
1572   // Follow the superclass chain until we've mapped the receiver type
1573   // to the same class as the context.
1574   while (curClassDecl != dcClassDecl) {
1575     // Map to the superclass type.
1576     QualType superType = objectType->getSuperClassType();
1577     if (superType.isNull()) {
1578       objectType = nullptr;
1579       break;
1580     }
1581 
1582     objectType = superType->castAs<ObjCObjectType>();
1583     curClassDecl = objectType->getInterface();
1584   }
1585 
1586   // If we don't have a receiver type, or the receiver type does not
1587   // have type arguments, substitute in the defaults.
1588   if (!objectType || objectType->isUnspecialized()) {
1589     return llvm::ArrayRef<QualType>();
1590   }
1591 
1592   // The receiver type has the type arguments we want.
1593   return objectType->getTypeArgs();
1594 }
1595 
1596 bool Type::acceptsObjCTypeParams() const {
1597   if (auto *IfaceT = getAsObjCInterfaceType()) {
1598     if (auto *ID = IfaceT->getInterface()) {
1599       if (ID->getTypeParamList())
1600         return true;
1601     }
1602   }
1603 
1604   return false;
1605 }
1606 
1607 void ObjCObjectType::computeSuperClassTypeSlow() const {
1608   // Retrieve the class declaration for this type. If there isn't one
1609   // (e.g., this is some variant of "id" or "Class"), then there is no
1610   // superclass type.
1611   ObjCInterfaceDecl *classDecl = getInterface();
1612   if (!classDecl) {
1613     CachedSuperClassType.setInt(true);
1614     return;
1615   }
1616 
1617   // Extract the superclass type.
1618   const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1619   if (!superClassObjTy) {
1620     CachedSuperClassType.setInt(true);
1621     return;
1622   }
1623 
1624   ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1625   if (!superClassDecl) {
1626     CachedSuperClassType.setInt(true);
1627     return;
1628   }
1629 
1630   // If the superclass doesn't have type parameters, then there is no
1631   // substitution to perform.
1632   QualType superClassType(superClassObjTy, 0);
1633   ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1634   if (!superClassTypeParams) {
1635     CachedSuperClassType.setPointerAndInt(
1636       superClassType->castAs<ObjCObjectType>(), true);
1637     return;
1638   }
1639 
1640   // If the superclass reference is unspecialized, return it.
1641   if (superClassObjTy->isUnspecialized()) {
1642     CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1643     return;
1644   }
1645 
1646   // If the subclass is not parameterized, there aren't any type
1647   // parameters in the superclass reference to substitute.
1648   ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1649   if (!typeParams) {
1650     CachedSuperClassType.setPointerAndInt(
1651       superClassType->castAs<ObjCObjectType>(), true);
1652     return;
1653   }
1654 
1655   // If the subclass type isn't specialized, return the unspecialized
1656   // superclass.
1657   if (isUnspecialized()) {
1658     QualType unspecializedSuper
1659       = classDecl->getASTContext().getObjCInterfaceType(
1660           superClassObjTy->getInterface());
1661     CachedSuperClassType.setPointerAndInt(
1662       unspecializedSuper->castAs<ObjCObjectType>(),
1663       true);
1664     return;
1665   }
1666 
1667   // Substitute the provided type arguments into the superclass type.
1668   ArrayRef<QualType> typeArgs = getTypeArgs();
1669   assert(typeArgs.size() == typeParams->size());
1670   CachedSuperClassType.setPointerAndInt(
1671     superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1672                                      ObjCSubstitutionContext::Superclass)
1673       ->castAs<ObjCObjectType>(),
1674     true);
1675 }
1676 
1677 const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
1678   if (auto interfaceDecl = getObjectType()->getInterface()) {
1679     return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1680              ->castAs<ObjCInterfaceType>();
1681   }
1682 
1683   return nullptr;
1684 }
1685 
1686 QualType ObjCObjectPointerType::getSuperClassType() const {
1687   QualType superObjectType = getObjectType()->getSuperClassType();
1688   if (superObjectType.isNull())
1689     return superObjectType;
1690 
1691   ASTContext &ctx = getInterfaceDecl()->getASTContext();
1692   return ctx.getObjCObjectPointerType(superObjectType);
1693 }
1694 
1695 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
1696   // There is no sugar for ObjCObjectType's, just return the canonical
1697   // type pointer if it is the right class.  There is no typedef information to
1698   // return and these cannot be Address-space qualified.
1699   if (const auto *T = getAs<ObjCObjectType>())
1700     if (T->getNumProtocols() && T->getInterface())
1701       return T;
1702   return nullptr;
1703 }
1704 
1705 bool Type::isObjCQualifiedInterfaceType() const {
1706   return getAsObjCQualifiedInterfaceType() != nullptr;
1707 }
1708 
1709 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
1710   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1711   // type pointer if it is the right class.
1712   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1713     if (OPT->isObjCQualifiedIdType())
1714       return OPT;
1715   }
1716   return nullptr;
1717 }
1718 
1719 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
1720   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1721   // type pointer if it is the right class.
1722   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1723     if (OPT->isObjCQualifiedClassType())
1724       return OPT;
1725   }
1726   return nullptr;
1727 }
1728 
1729 const ObjCObjectType *Type::getAsObjCInterfaceType() const {
1730   if (const auto *OT = getAs<ObjCObjectType>()) {
1731     if (OT->getInterface())
1732       return OT;
1733   }
1734   return nullptr;
1735 }
1736 
1737 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
1738   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1739     if (OPT->getInterfaceType())
1740       return OPT;
1741   }
1742   return nullptr;
1743 }
1744 
1745 const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
1746   QualType PointeeType;
1747   if (const auto *PT = getAs<PointerType>())
1748     PointeeType = PT->getPointeeType();
1749   else if (const auto *RT = getAs<ReferenceType>())
1750     PointeeType = RT->getPointeeType();
1751   else
1752     return nullptr;
1753 
1754   if (const auto *RT = PointeeType->getAs<RecordType>())
1755     return dyn_cast<CXXRecordDecl>(RT->getDecl());
1756 
1757   return nullptr;
1758 }
1759 
1760 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
1761   return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1762 }
1763 
1764 RecordDecl *Type::getAsRecordDecl() const {
1765   return dyn_cast_or_null<RecordDecl>(getAsTagDecl());
1766 }
1767 
1768 TagDecl *Type::getAsTagDecl() const {
1769   if (const auto *TT = getAs<TagType>())
1770     return TT->getDecl();
1771   if (const auto *Injected = getAs<InjectedClassNameType>())
1772     return Injected->getDecl();
1773 
1774   return nullptr;
1775 }
1776 
1777 bool Type::hasAttr(attr::Kind AK) const {
1778   const Type *Cur = this;
1779   while (const auto *AT = Cur->getAs<AttributedType>()) {
1780     if (AT->getAttrKind() == AK)
1781       return true;
1782     Cur = AT->getEquivalentType().getTypePtr();
1783   }
1784   return false;
1785 }
1786 
1787 namespace {
1788 
1789   class GetContainedDeducedTypeVisitor :
1790     public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1791     bool Syntactic;
1792 
1793   public:
1794     GetContainedDeducedTypeVisitor(bool Syntactic = false)
1795         : Syntactic(Syntactic) {}
1796 
1797     using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit;
1798 
1799     Type *Visit(QualType T) {
1800       if (T.isNull())
1801         return nullptr;
1802       return Visit(T.getTypePtr());
1803     }
1804 
1805     // The deduced type itself.
1806     Type *VisitDeducedType(const DeducedType *AT) {
1807       return const_cast<DeducedType*>(AT);
1808     }
1809 
1810     // Only these types can contain the desired 'auto' type.
1811     Type *VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1812       return Visit(T->getReplacementType());
1813     }
1814 
1815     Type *VisitElaboratedType(const ElaboratedType *T) {
1816       return Visit(T->getNamedType());
1817     }
1818 
1819     Type *VisitPointerType(const PointerType *T) {
1820       return Visit(T->getPointeeType());
1821     }
1822 
1823     Type *VisitBlockPointerType(const BlockPointerType *T) {
1824       return Visit(T->getPointeeType());
1825     }
1826 
1827     Type *VisitReferenceType(const ReferenceType *T) {
1828       return Visit(T->getPointeeTypeAsWritten());
1829     }
1830 
1831     Type *VisitMemberPointerType(const MemberPointerType *T) {
1832       return Visit(T->getPointeeType());
1833     }
1834 
1835     Type *VisitArrayType(const ArrayType *T) {
1836       return Visit(T->getElementType());
1837     }
1838 
1839     Type *VisitDependentSizedExtVectorType(
1840       const DependentSizedExtVectorType *T) {
1841       return Visit(T->getElementType());
1842     }
1843 
1844     Type *VisitVectorType(const VectorType *T) {
1845       return Visit(T->getElementType());
1846     }
1847 
1848     Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) {
1849       return Visit(T->getElementType());
1850     }
1851 
1852     Type *VisitConstantMatrixType(const ConstantMatrixType *T) {
1853       return Visit(T->getElementType());
1854     }
1855 
1856     Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1857       if (Syntactic && T->hasTrailingReturn())
1858         return const_cast<FunctionProtoType*>(T);
1859       return VisitFunctionType(T);
1860     }
1861 
1862     Type *VisitFunctionType(const FunctionType *T) {
1863       return Visit(T->getReturnType());
1864     }
1865 
1866     Type *VisitParenType(const ParenType *T) {
1867       return Visit(T->getInnerType());
1868     }
1869 
1870     Type *VisitAttributedType(const AttributedType *T) {
1871       return Visit(T->getModifiedType());
1872     }
1873 
1874     Type *VisitMacroQualifiedType(const MacroQualifiedType *T) {
1875       return Visit(T->getUnderlyingType());
1876     }
1877 
1878     Type *VisitAdjustedType(const AdjustedType *T) {
1879       return Visit(T->getOriginalType());
1880     }
1881 
1882     Type *VisitPackExpansionType(const PackExpansionType *T) {
1883       return Visit(T->getPattern());
1884     }
1885   };
1886 
1887 } // namespace
1888 
1889 DeducedType *Type::getContainedDeducedType() const {
1890   return cast_or_null<DeducedType>(
1891       GetContainedDeducedTypeVisitor().Visit(this));
1892 }
1893 
1894 bool Type::hasAutoForTrailingReturnType() const {
1895   return isa_and_nonnull<FunctionType>(
1896       GetContainedDeducedTypeVisitor(true).Visit(this));
1897 }
1898 
1899 bool Type::hasIntegerRepresentation() const {
1900   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1901     return VT->getElementType()->isIntegerType();
1902   else
1903     return isIntegerType();
1904 }
1905 
1906 /// Determine whether this type is an integral type.
1907 ///
1908 /// This routine determines whether the given type is an integral type per
1909 /// C++ [basic.fundamental]p7. Although the C standard does not define the
1910 /// term "integral type", it has a similar term "integer type", and in C++
1911 /// the two terms are equivalent. However, C's "integer type" includes
1912 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1913 /// parameter is used to determine whether we should be following the C or
1914 /// C++ rules when determining whether this type is an integral/integer type.
1915 ///
1916 /// For cases where C permits "an integer type" and C++ permits "an integral
1917 /// type", use this routine.
1918 ///
1919 /// For cases where C permits "an integer type" and C++ permits "an integral
1920 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1921 ///
1922 /// \param Ctx The context in which this type occurs.
1923 ///
1924 /// \returns true if the type is considered an integral type, false otherwise.
1925 bool Type::isIntegralType(const ASTContext &Ctx) const {
1926   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1927     return BT->getKind() >= BuiltinType::Bool &&
1928            BT->getKind() <= BuiltinType::Int128;
1929 
1930   // Complete enum types are integral in C.
1931   if (!Ctx.getLangOpts().CPlusPlus)
1932     if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1933       return ET->getDecl()->isComplete();
1934 
1935   return isBitIntType();
1936 }
1937 
1938 bool Type::isIntegralOrUnscopedEnumerationType() const {
1939   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1940     return BT->getKind() >= BuiltinType::Bool &&
1941            BT->getKind() <= BuiltinType::Int128;
1942 
1943   if (isBitIntType())
1944     return true;
1945 
1946   return isUnscopedEnumerationType();
1947 }
1948 
1949 bool Type::isUnscopedEnumerationType() const {
1950   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1951     return !ET->getDecl()->isScoped();
1952 
1953   return false;
1954 }
1955 
1956 bool Type::isCharType() const {
1957   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1958     return BT->getKind() == BuiltinType::Char_U ||
1959            BT->getKind() == BuiltinType::UChar ||
1960            BT->getKind() == BuiltinType::Char_S ||
1961            BT->getKind() == BuiltinType::SChar;
1962   return false;
1963 }
1964 
1965 bool Type::isWideCharType() const {
1966   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1967     return BT->getKind() == BuiltinType::WChar_S ||
1968            BT->getKind() == BuiltinType::WChar_U;
1969   return false;
1970 }
1971 
1972 bool Type::isChar8Type() const {
1973   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1974     return BT->getKind() == BuiltinType::Char8;
1975   return false;
1976 }
1977 
1978 bool Type::isChar16Type() const {
1979   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1980     return BT->getKind() == BuiltinType::Char16;
1981   return false;
1982 }
1983 
1984 bool Type::isChar32Type() const {
1985   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1986     return BT->getKind() == BuiltinType::Char32;
1987   return false;
1988 }
1989 
1990 /// Determine whether this type is any of the built-in character
1991 /// types.
1992 bool Type::isAnyCharacterType() const {
1993   const auto *BT = dyn_cast<BuiltinType>(CanonicalType);
1994   if (!BT) return false;
1995   switch (BT->getKind()) {
1996   default: return false;
1997   case BuiltinType::Char_U:
1998   case BuiltinType::UChar:
1999   case BuiltinType::WChar_U:
2000   case BuiltinType::Char8:
2001   case BuiltinType::Char16:
2002   case BuiltinType::Char32:
2003   case BuiltinType::Char_S:
2004   case BuiltinType::SChar:
2005   case BuiltinType::WChar_S:
2006     return true;
2007   }
2008 }
2009 
2010 /// isSignedIntegerType - Return true if this is an integer type that is
2011 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2012 /// an enum decl which has a signed representation
2013 bool Type::isSignedIntegerType() const {
2014   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2015     return BT->getKind() >= BuiltinType::Char_S &&
2016            BT->getKind() <= BuiltinType::Int128;
2017   }
2018 
2019   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
2020     // Incomplete enum types are not treated as integer types.
2021     // FIXME: In C++, enum types are never integer types.
2022     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2023       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2024   }
2025 
2026   if (const auto *IT = dyn_cast<BitIntType>(CanonicalType))
2027     return IT->isSigned();
2028   if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType))
2029     return IT->isSigned();
2030 
2031   return false;
2032 }
2033 
2034 bool Type::isSignedIntegerOrEnumerationType() const {
2035   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2036     return BT->getKind() >= BuiltinType::Char_S &&
2037            BT->getKind() <= BuiltinType::Int128;
2038   }
2039 
2040   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2041     if (ET->getDecl()->isComplete())
2042       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2043   }
2044 
2045   if (const auto *IT = dyn_cast<BitIntType>(CanonicalType))
2046     return IT->isSigned();
2047   if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType))
2048     return IT->isSigned();
2049 
2050   return false;
2051 }
2052 
2053 bool Type::hasSignedIntegerRepresentation() const {
2054   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2055     return VT->getElementType()->isSignedIntegerOrEnumerationType();
2056   else
2057     return isSignedIntegerOrEnumerationType();
2058 }
2059 
2060 /// isUnsignedIntegerType - Return true if this is an integer type that is
2061 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
2062 /// decl which has an unsigned representation
2063 bool Type::isUnsignedIntegerType() const {
2064   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2065     return BT->getKind() >= BuiltinType::Bool &&
2066            BT->getKind() <= BuiltinType::UInt128;
2067   }
2068 
2069   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2070     // Incomplete enum types are not treated as integer types.
2071     // FIXME: In C++, enum types are never integer types.
2072     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2073       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2074   }
2075 
2076   if (const auto *IT = dyn_cast<BitIntType>(CanonicalType))
2077     return IT->isUnsigned();
2078   if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType))
2079     return IT->isUnsigned();
2080 
2081   return false;
2082 }
2083 
2084 bool Type::isUnsignedIntegerOrEnumerationType() const {
2085   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2086     return BT->getKind() >= BuiltinType::Bool &&
2087     BT->getKind() <= BuiltinType::UInt128;
2088   }
2089 
2090   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2091     if (ET->getDecl()->isComplete())
2092       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2093   }
2094 
2095   if (const auto *IT = dyn_cast<BitIntType>(CanonicalType))
2096     return IT->isUnsigned();
2097   if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType))
2098     return IT->isUnsigned();
2099 
2100   return false;
2101 }
2102 
2103 bool Type::hasUnsignedIntegerRepresentation() const {
2104   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2105     return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2106   if (const auto *VT = dyn_cast<MatrixType>(CanonicalType))
2107     return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2108   return isUnsignedIntegerOrEnumerationType();
2109 }
2110 
2111 bool Type::isFloatingType() const {
2112   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2113     return BT->getKind() >= BuiltinType::Half &&
2114            BT->getKind() <= BuiltinType::Ibm128;
2115   if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
2116     return CT->getElementType()->isFloatingType();
2117   return false;
2118 }
2119 
2120 bool Type::hasFloatingRepresentation() const {
2121   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2122     return VT->getElementType()->isFloatingType();
2123   else
2124     return isFloatingType();
2125 }
2126 
2127 bool Type::isRealFloatingType() const {
2128   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2129     return BT->isFloatingPoint();
2130   return false;
2131 }
2132 
2133 bool Type::isRealType() const {
2134   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2135     return BT->getKind() >= BuiltinType::Bool &&
2136            BT->getKind() <= BuiltinType::Ibm128;
2137   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2138       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
2139   return isBitIntType();
2140 }
2141 
2142 bool Type::isArithmeticType() const {
2143   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2144     return BT->getKind() >= BuiltinType::Bool &&
2145            BT->getKind() <= BuiltinType::Ibm128 &&
2146            BT->getKind() != BuiltinType::BFloat16;
2147   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2148     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
2149     // If a body isn't seen by the time we get here, return false.
2150     //
2151     // C++0x: Enumerations are not arithmetic types. For now, just return
2152     // false for scoped enumerations since that will disable any
2153     // unwanted implicit conversions.
2154     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
2155   return isa<ComplexType>(CanonicalType) || isBitIntType();
2156 }
2157 
2158 Type::ScalarTypeKind Type::getScalarTypeKind() const {
2159   assert(isScalarType());
2160 
2161   const Type *T = CanonicalType.getTypePtr();
2162   if (const auto *BT = dyn_cast<BuiltinType>(T)) {
2163     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
2164     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
2165     if (BT->isInteger()) return STK_Integral;
2166     if (BT->isFloatingPoint()) return STK_Floating;
2167     if (BT->isFixedPointType()) return STK_FixedPoint;
2168     llvm_unreachable("unknown scalar builtin type");
2169   } else if (isa<PointerType>(T)) {
2170     return STK_CPointer;
2171   } else if (isa<BlockPointerType>(T)) {
2172     return STK_BlockPointer;
2173   } else if (isa<ObjCObjectPointerType>(T)) {
2174     return STK_ObjCObjectPointer;
2175   } else if (isa<MemberPointerType>(T)) {
2176     return STK_MemberPointer;
2177   } else if (isa<EnumType>(T)) {
2178     assert(cast<EnumType>(T)->getDecl()->isComplete());
2179     return STK_Integral;
2180   } else if (const auto *CT = dyn_cast<ComplexType>(T)) {
2181     if (CT->getElementType()->isRealFloatingType())
2182       return STK_FloatingComplex;
2183     return STK_IntegralComplex;
2184   } else if (isBitIntType()) {
2185     return STK_Integral;
2186   }
2187 
2188   llvm_unreachable("unknown scalar type");
2189 }
2190 
2191 /// Determines whether the type is a C++ aggregate type or C
2192 /// aggregate or union type.
2193 ///
2194 /// An aggregate type is an array or a class type (struct, union, or
2195 /// class) that has no user-declared constructors, no private or
2196 /// protected non-static data members, no base classes, and no virtual
2197 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2198 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2199 /// includes union types.
2200 bool Type::isAggregateType() const {
2201   if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) {
2202     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
2203       return ClassDecl->isAggregate();
2204 
2205     return true;
2206   }
2207 
2208   return isa<ArrayType>(CanonicalType);
2209 }
2210 
2211 /// isConstantSizeType - Return true if this is not a variable sized type,
2212 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
2213 /// incomplete types or dependent types.
2214 bool Type::isConstantSizeType() const {
2215   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2216   assert(!isDependentType() && "This doesn't make sense for dependent types");
2217   // The VAT must have a size, as it is known to be complete.
2218   return !isa<VariableArrayType>(CanonicalType);
2219 }
2220 
2221 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2222 /// - a type that can describe objects, but which lacks information needed to
2223 /// determine its size.
2224 bool Type::isIncompleteType(NamedDecl **Def) const {
2225   if (Def)
2226     *Def = nullptr;
2227 
2228   switch (CanonicalType->getTypeClass()) {
2229   default: return false;
2230   case Builtin:
2231     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
2232     // be completed.
2233     return isVoidType();
2234   case Enum: {
2235     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
2236     if (Def)
2237       *Def = EnumD;
2238     return !EnumD->isComplete();
2239   }
2240   case Record: {
2241     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2242     // forward declaration, but not a full definition (C99 6.2.5p22).
2243     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
2244     if (Def)
2245       *Def = Rec;
2246     return !Rec->isCompleteDefinition();
2247   }
2248   case ConstantArray:
2249   case VariableArray:
2250     // An array is incomplete if its element type is incomplete
2251     // (C++ [dcl.array]p1).
2252     // We don't handle dependent-sized arrays (dependent types are never treated
2253     // as incomplete).
2254     return cast<ArrayType>(CanonicalType)->getElementType()
2255              ->isIncompleteType(Def);
2256   case IncompleteArray:
2257     // An array of unknown size is an incomplete type (C99 6.2.5p22).
2258     return true;
2259   case MemberPointer: {
2260     // Member pointers in the MS ABI have special behavior in
2261     // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2262     // to indicate which inheritance model to use.
2263     auto *MPTy = cast<MemberPointerType>(CanonicalType);
2264     const Type *ClassTy = MPTy->getClass();
2265     // Member pointers with dependent class types don't get special treatment.
2266     if (ClassTy->isDependentType())
2267       return false;
2268     const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2269     ASTContext &Context = RD->getASTContext();
2270     // Member pointers not in the MS ABI don't get special treatment.
2271     if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2272       return false;
2273     // The inheritance attribute might only be present on the most recent
2274     // CXXRecordDecl, use that one.
2275     RD = RD->getMostRecentNonInjectedDecl();
2276     // Nothing interesting to do if the inheritance attribute is already set.
2277     if (RD->hasAttr<MSInheritanceAttr>())
2278       return false;
2279     return true;
2280   }
2281   case ObjCObject:
2282     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
2283              ->isIncompleteType(Def);
2284   case ObjCInterface: {
2285     // ObjC interfaces are incomplete if they are @class, not @interface.
2286     ObjCInterfaceDecl *Interface
2287       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
2288     if (Def)
2289       *Def = Interface;
2290     return !Interface->hasDefinition();
2291   }
2292   }
2293 }
2294 
2295 bool Type::isSizelessBuiltinType() const {
2296   if (const BuiltinType *BT = getAs<BuiltinType>()) {
2297     switch (BT->getKind()) {
2298       // SVE Types
2299 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2300 #include "clang/Basic/AArch64SVEACLETypes.def"
2301 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2302 #include "clang/Basic/RISCVVTypes.def"
2303       return true;
2304     default:
2305       return false;
2306     }
2307   }
2308   return false;
2309 }
2310 
2311 bool Type::isSizelessType() const { return isSizelessBuiltinType(); }
2312 
2313 bool Type::isVLSTBuiltinType() const {
2314   if (const BuiltinType *BT = getAs<BuiltinType>()) {
2315     switch (BT->getKind()) {
2316     case BuiltinType::SveInt8:
2317     case BuiltinType::SveInt16:
2318     case BuiltinType::SveInt32:
2319     case BuiltinType::SveInt64:
2320     case BuiltinType::SveUint8:
2321     case BuiltinType::SveUint16:
2322     case BuiltinType::SveUint32:
2323     case BuiltinType::SveUint64:
2324     case BuiltinType::SveFloat16:
2325     case BuiltinType::SveFloat32:
2326     case BuiltinType::SveFloat64:
2327     case BuiltinType::SveBFloat16:
2328     case BuiltinType::SveBool:
2329       return true;
2330     default:
2331       return false;
2332     }
2333   }
2334   return false;
2335 }
2336 
2337 QualType Type::getSveEltType(const ASTContext &Ctx) const {
2338   assert(isVLSTBuiltinType() && "unsupported type!");
2339 
2340   const BuiltinType *BTy = getAs<BuiltinType>();
2341   if (BTy->getKind() == BuiltinType::SveBool)
2342     // Represent predicates as i8 rather than i1 to avoid any layout issues.
2343     // The type is bitcasted to a scalable predicate type when casting between
2344     // scalable and fixed-length vectors.
2345     return Ctx.UnsignedCharTy;
2346   else
2347     return Ctx.getBuiltinVectorTypeInfo(BTy).ElementType;
2348 }
2349 
2350 bool QualType::isPODType(const ASTContext &Context) const {
2351   // C++11 has a more relaxed definition of POD.
2352   if (Context.getLangOpts().CPlusPlus11)
2353     return isCXX11PODType(Context);
2354 
2355   return isCXX98PODType(Context);
2356 }
2357 
2358 bool QualType::isCXX98PODType(const ASTContext &Context) const {
2359   // The compiler shouldn't query this for incomplete types, but the user might.
2360   // We return false for that case. Except for incomplete arrays of PODs, which
2361   // are PODs according to the standard.
2362   if (isNull())
2363     return false;
2364 
2365   if ((*this)->isIncompleteArrayType())
2366     return Context.getBaseElementType(*this).isCXX98PODType(Context);
2367 
2368   if ((*this)->isIncompleteType())
2369     return false;
2370 
2371   if (hasNonTrivialObjCLifetime())
2372     return false;
2373 
2374   QualType CanonicalType = getTypePtr()->CanonicalType;
2375   switch (CanonicalType->getTypeClass()) {
2376     // Everything not explicitly mentioned is not POD.
2377   default: return false;
2378   case Type::VariableArray:
2379   case Type::ConstantArray:
2380     // IncompleteArray is handled above.
2381     return Context.getBaseElementType(*this).isCXX98PODType(Context);
2382 
2383   case Type::ObjCObjectPointer:
2384   case Type::BlockPointer:
2385   case Type::Builtin:
2386   case Type::Complex:
2387   case Type::Pointer:
2388   case Type::MemberPointer:
2389   case Type::Vector:
2390   case Type::ExtVector:
2391   case Type::BitInt:
2392     return true;
2393 
2394   case Type::Enum:
2395     return true;
2396 
2397   case Type::Record:
2398     if (const auto *ClassDecl =
2399             dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2400       return ClassDecl->isPOD();
2401 
2402     // C struct/union is POD.
2403     return true;
2404   }
2405 }
2406 
2407 bool QualType::isTrivialType(const ASTContext &Context) const {
2408   // The compiler shouldn't query this for incomplete types, but the user might.
2409   // We return false for that case. Except for incomplete arrays of PODs, which
2410   // are PODs according to the standard.
2411   if (isNull())
2412     return false;
2413 
2414   if ((*this)->isArrayType())
2415     return Context.getBaseElementType(*this).isTrivialType(Context);
2416 
2417   if ((*this)->isSizelessBuiltinType())
2418     return true;
2419 
2420   // Return false for incomplete types after skipping any incomplete array
2421   // types which are expressly allowed by the standard and thus our API.
2422   if ((*this)->isIncompleteType())
2423     return false;
2424 
2425   if (hasNonTrivialObjCLifetime())
2426     return false;
2427 
2428   QualType CanonicalType = getTypePtr()->CanonicalType;
2429   if (CanonicalType->isDependentType())
2430     return false;
2431 
2432   // C++0x [basic.types]p9:
2433   //   Scalar types, trivial class types, arrays of such types, and
2434   //   cv-qualified versions of these types are collectively called trivial
2435   //   types.
2436 
2437   // As an extension, Clang treats vector types as Scalar types.
2438   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2439     return true;
2440   if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2441     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2442       // C++11 [class]p6:
2443       //   A trivial class is a class that has a default constructor,
2444       //   has no non-trivial default constructors, and is trivially
2445       //   copyable.
2446       return ClassDecl->hasDefaultConstructor() &&
2447              !ClassDecl->hasNonTrivialDefaultConstructor() &&
2448              ClassDecl->isTriviallyCopyable();
2449     }
2450 
2451     return true;
2452   }
2453 
2454   // No other types can match.
2455   return false;
2456 }
2457 
2458 bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2459   if ((*this)->isArrayType())
2460     return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2461 
2462   if (hasNonTrivialObjCLifetime())
2463     return false;
2464 
2465   // C++11 [basic.types]p9 - See Core 2094
2466   //   Scalar types, trivially copyable class types, arrays of such types, and
2467   //   cv-qualified versions of these types are collectively
2468   //   called trivially copyable types.
2469 
2470   QualType CanonicalType = getCanonicalType();
2471   if (CanonicalType->isDependentType())
2472     return false;
2473 
2474   if (CanonicalType->isSizelessBuiltinType())
2475     return true;
2476 
2477   // Return false for incomplete types after skipping any incomplete array types
2478   // which are expressly allowed by the standard and thus our API.
2479   if (CanonicalType->isIncompleteType())
2480     return false;
2481 
2482   // As an extension, Clang treats vector types as Scalar types.
2483   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2484     return true;
2485 
2486   if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2487     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2488       if (!ClassDecl->isTriviallyCopyable()) return false;
2489     }
2490 
2491     return true;
2492   }
2493 
2494   // No other types can match.
2495   return false;
2496 }
2497 
2498 bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const {
2499   return !Context.getLangOpts().ObjCAutoRefCount &&
2500          Context.getLangOpts().ObjCWeak &&
2501          getObjCLifetime() != Qualifiers::OCL_Weak;
2502 }
2503 
2504 bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) {
2505   return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion();
2506 }
2507 
2508 bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) {
2509   return RD->hasNonTrivialToPrimitiveDestructCUnion();
2510 }
2511 
2512 bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) {
2513   return RD->hasNonTrivialToPrimitiveCopyCUnion();
2514 }
2515 
2516 QualType::PrimitiveDefaultInitializeKind
2517 QualType::isNonTrivialToPrimitiveDefaultInitialize() const {
2518   if (const auto *RT =
2519           getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2520     if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2521       return PDIK_Struct;
2522 
2523   switch (getQualifiers().getObjCLifetime()) {
2524   case Qualifiers::OCL_Strong:
2525     return PDIK_ARCStrong;
2526   case Qualifiers::OCL_Weak:
2527     return PDIK_ARCWeak;
2528   default:
2529     return PDIK_Trivial;
2530   }
2531 }
2532 
2533 QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const {
2534   if (const auto *RT =
2535           getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2536     if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2537       return PCK_Struct;
2538 
2539   Qualifiers Qs = getQualifiers();
2540   switch (Qs.getObjCLifetime()) {
2541   case Qualifiers::OCL_Strong:
2542     return PCK_ARCStrong;
2543   case Qualifiers::OCL_Weak:
2544     return PCK_ARCWeak;
2545   default:
2546     return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2547   }
2548 }
2549 
2550 QualType::PrimitiveCopyKind
2551 QualType::isNonTrivialToPrimitiveDestructiveMove() const {
2552   return isNonTrivialToPrimitiveCopy();
2553 }
2554 
2555 bool Type::isLiteralType(const ASTContext &Ctx) const {
2556   if (isDependentType())
2557     return false;
2558 
2559   // C++1y [basic.types]p10:
2560   //   A type is a literal type if it is:
2561   //   -- cv void; or
2562   if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2563     return true;
2564 
2565   // C++11 [basic.types]p10:
2566   //   A type is a literal type if it is:
2567   //   [...]
2568   //   -- an array of literal type other than an array of runtime bound; or
2569   if (isVariableArrayType())
2570     return false;
2571   const Type *BaseTy = getBaseElementTypeUnsafe();
2572   assert(BaseTy && "NULL element type");
2573 
2574   // Return false for incomplete types after skipping any incomplete array
2575   // types; those are expressly allowed by the standard and thus our API.
2576   if (BaseTy->isIncompleteType())
2577     return false;
2578 
2579   // C++11 [basic.types]p10:
2580   //   A type is a literal type if it is:
2581   //    -- a scalar type; or
2582   // As an extension, Clang treats vector types and complex types as
2583   // literal types.
2584   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2585       BaseTy->isAnyComplexType())
2586     return true;
2587   //    -- a reference type; or
2588   if (BaseTy->isReferenceType())
2589     return true;
2590   //    -- a class type that has all of the following properties:
2591   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2592     //    -- a trivial destructor,
2593     //    -- every constructor call and full-expression in the
2594     //       brace-or-equal-initializers for non-static data members (if any)
2595     //       is a constant expression,
2596     //    -- it is an aggregate type or has at least one constexpr
2597     //       constructor or constructor template that is not a copy or move
2598     //       constructor, and
2599     //    -- all non-static data members and base classes of literal types
2600     //
2601     // We resolve DR1361 by ignoring the second bullet.
2602     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2603       return ClassDecl->isLiteral();
2604 
2605     return true;
2606   }
2607 
2608   // We treat _Atomic T as a literal type if T is a literal type.
2609   if (const auto *AT = BaseTy->getAs<AtomicType>())
2610     return AT->getValueType()->isLiteralType(Ctx);
2611 
2612   // If this type hasn't been deduced yet, then conservatively assume that
2613   // it'll work out to be a literal type.
2614   if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2615     return true;
2616 
2617   return false;
2618 }
2619 
2620 bool Type::isStructuralType() const {
2621   // C++20 [temp.param]p6:
2622   //   A structural type is one of the following:
2623   //   -- a scalar type; or
2624   //   -- a vector type [Clang extension]; or
2625   if (isScalarType() || isVectorType())
2626     return true;
2627   //   -- an lvalue reference type; or
2628   if (isLValueReferenceType())
2629     return true;
2630   //  -- a literal class type [...under some conditions]
2631   if (const CXXRecordDecl *RD = getAsCXXRecordDecl())
2632     return RD->isStructural();
2633   return false;
2634 }
2635 
2636 bool Type::isStandardLayoutType() const {
2637   if (isDependentType())
2638     return false;
2639 
2640   // C++0x [basic.types]p9:
2641   //   Scalar types, standard-layout class types, arrays of such types, and
2642   //   cv-qualified versions of these types are collectively called
2643   //   standard-layout types.
2644   const Type *BaseTy = getBaseElementTypeUnsafe();
2645   assert(BaseTy && "NULL element type");
2646 
2647   // Return false for incomplete types after skipping any incomplete array
2648   // types which are expressly allowed by the standard and thus our API.
2649   if (BaseTy->isIncompleteType())
2650     return false;
2651 
2652   // As an extension, Clang treats vector types as Scalar types.
2653   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2654   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2655     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2656       if (!ClassDecl->isStandardLayout())
2657         return false;
2658 
2659     // Default to 'true' for non-C++ class types.
2660     // FIXME: This is a bit dubious, but plain C structs should trivially meet
2661     // all the requirements of standard layout classes.
2662     return true;
2663   }
2664 
2665   // No other types can match.
2666   return false;
2667 }
2668 
2669 // This is effectively the intersection of isTrivialType and
2670 // isStandardLayoutType. We implement it directly to avoid redundant
2671 // conversions from a type to a CXXRecordDecl.
2672 bool QualType::isCXX11PODType(const ASTContext &Context) const {
2673   const Type *ty = getTypePtr();
2674   if (ty->isDependentType())
2675     return false;
2676 
2677   if (hasNonTrivialObjCLifetime())
2678     return false;
2679 
2680   // C++11 [basic.types]p9:
2681   //   Scalar types, POD classes, arrays of such types, and cv-qualified
2682   //   versions of these types are collectively called trivial types.
2683   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2684   assert(BaseTy && "NULL element type");
2685 
2686   if (BaseTy->isSizelessBuiltinType())
2687     return true;
2688 
2689   // Return false for incomplete types after skipping any incomplete array
2690   // types which are expressly allowed by the standard and thus our API.
2691   if (BaseTy->isIncompleteType())
2692     return false;
2693 
2694   // As an extension, Clang treats vector types as Scalar types.
2695   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2696   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2697     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2698       // C++11 [class]p10:
2699       //   A POD struct is a non-union class that is both a trivial class [...]
2700       if (!ClassDecl->isTrivial()) return false;
2701 
2702       // C++11 [class]p10:
2703       //   A POD struct is a non-union class that is both a trivial class and
2704       //   a standard-layout class [...]
2705       if (!ClassDecl->isStandardLayout()) return false;
2706 
2707       // C++11 [class]p10:
2708       //   A POD struct is a non-union class that is both a trivial class and
2709       //   a standard-layout class, and has no non-static data members of type
2710       //   non-POD struct, non-POD union (or array of such types). [...]
2711       //
2712       // We don't directly query the recursive aspect as the requirements for
2713       // both standard-layout classes and trivial classes apply recursively
2714       // already.
2715     }
2716 
2717     return true;
2718   }
2719 
2720   // No other types can match.
2721   return false;
2722 }
2723 
2724 bool Type::isNothrowT() const {
2725   if (const auto *RD = getAsCXXRecordDecl()) {
2726     IdentifierInfo *II = RD->getIdentifier();
2727     if (II && II->isStr("nothrow_t") && RD->isInStdNamespace())
2728       return true;
2729   }
2730   return false;
2731 }
2732 
2733 bool Type::isAlignValT() const {
2734   if (const auto *ET = getAs<EnumType>()) {
2735     IdentifierInfo *II = ET->getDecl()->getIdentifier();
2736     if (II && II->isStr("align_val_t") && ET->getDecl()->isInStdNamespace())
2737       return true;
2738   }
2739   return false;
2740 }
2741 
2742 bool Type::isStdByteType() const {
2743   if (const auto *ET = getAs<EnumType>()) {
2744     IdentifierInfo *II = ET->getDecl()->getIdentifier();
2745     if (II && II->isStr("byte") && ET->getDecl()->isInStdNamespace())
2746       return true;
2747   }
2748   return false;
2749 }
2750 
2751 bool Type::isPromotableIntegerType() const {
2752   if (const auto *BT = getAs<BuiltinType>())
2753     switch (BT->getKind()) {
2754     case BuiltinType::Bool:
2755     case BuiltinType::Char_S:
2756     case BuiltinType::Char_U:
2757     case BuiltinType::SChar:
2758     case BuiltinType::UChar:
2759     case BuiltinType::Short:
2760     case BuiltinType::UShort:
2761     case BuiltinType::WChar_S:
2762     case BuiltinType::WChar_U:
2763     case BuiltinType::Char8:
2764     case BuiltinType::Char16:
2765     case BuiltinType::Char32:
2766       return true;
2767     default:
2768       return false;
2769     }
2770 
2771   // Enumerated types are promotable to their compatible integer types
2772   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2773   if (const auto *ET = getAs<EnumType>()){
2774     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2775         || ET->getDecl()->isScoped())
2776       return false;
2777 
2778     return true;
2779   }
2780 
2781   return false;
2782 }
2783 
2784 bool Type::isSpecifierType() const {
2785   // Note that this intentionally does not use the canonical type.
2786   switch (getTypeClass()) {
2787   case Builtin:
2788   case Record:
2789   case Enum:
2790   case Typedef:
2791   case Complex:
2792   case TypeOfExpr:
2793   case TypeOf:
2794   case TemplateTypeParm:
2795   case SubstTemplateTypeParm:
2796   case TemplateSpecialization:
2797   case Elaborated:
2798   case DependentName:
2799   case DependentTemplateSpecialization:
2800   case ObjCInterface:
2801   case ObjCObject:
2802     return true;
2803   default:
2804     return false;
2805   }
2806 }
2807 
2808 ElaboratedTypeKeyword
2809 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
2810   switch (TypeSpec) {
2811   default: return ETK_None;
2812   case TST_typename: return ETK_Typename;
2813   case TST_class: return ETK_Class;
2814   case TST_struct: return ETK_Struct;
2815   case TST_interface: return ETK_Interface;
2816   case TST_union: return ETK_Union;
2817   case TST_enum: return ETK_Enum;
2818   }
2819 }
2820 
2821 TagTypeKind
2822 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
2823   switch(TypeSpec) {
2824   case TST_class: return TTK_Class;
2825   case TST_struct: return TTK_Struct;
2826   case TST_interface: return TTK_Interface;
2827   case TST_union: return TTK_Union;
2828   case TST_enum: return TTK_Enum;
2829   }
2830 
2831   llvm_unreachable("Type specifier is not a tag type kind.");
2832 }
2833 
2834 ElaboratedTypeKeyword
2835 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
2836   switch (Kind) {
2837   case TTK_Class: return ETK_Class;
2838   case TTK_Struct: return ETK_Struct;
2839   case TTK_Interface: return ETK_Interface;
2840   case TTK_Union: return ETK_Union;
2841   case TTK_Enum: return ETK_Enum;
2842   }
2843   llvm_unreachable("Unknown tag type kind.");
2844 }
2845 
2846 TagTypeKind
2847 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
2848   switch (Keyword) {
2849   case ETK_Class: return TTK_Class;
2850   case ETK_Struct: return TTK_Struct;
2851   case ETK_Interface: return TTK_Interface;
2852   case ETK_Union: return TTK_Union;
2853   case ETK_Enum: return TTK_Enum;
2854   case ETK_None: // Fall through.
2855   case ETK_Typename:
2856     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2857   }
2858   llvm_unreachable("Unknown elaborated type keyword.");
2859 }
2860 
2861 bool
2862 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
2863   switch (Keyword) {
2864   case ETK_None:
2865   case ETK_Typename:
2866     return false;
2867   case ETK_Class:
2868   case ETK_Struct:
2869   case ETK_Interface:
2870   case ETK_Union:
2871   case ETK_Enum:
2872     return true;
2873   }
2874   llvm_unreachable("Unknown elaborated type keyword.");
2875 }
2876 
2877 StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
2878   switch (Keyword) {
2879   case ETK_None: return {};
2880   case ETK_Typename: return "typename";
2881   case ETK_Class:  return "class";
2882   case ETK_Struct: return "struct";
2883   case ETK_Interface: return "__interface";
2884   case ETK_Union:  return "union";
2885   case ETK_Enum:   return "enum";
2886   }
2887 
2888   llvm_unreachable("Unknown elaborated type keyword.");
2889 }
2890 
2891 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2892     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2893     const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args, QualType Canon)
2894     : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon,
2895                       TypeDependence::DependentInstantiation |
2896                           (NNS ? toTypeDependence(NNS->getDependence())
2897                                : TypeDependence::None)),
2898       NNS(NNS), Name(Name) {
2899   DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
2900   assert((!NNS || NNS->isDependent()) &&
2901          "DependentTemplateSpecializatonType requires dependent qualifier");
2902   TemplateArgument *ArgBuffer = getArgBuffer();
2903   for (const TemplateArgument &Arg : Args) {
2904     addDependence(toTypeDependence(Arg.getDependence() &
2905                                    TemplateArgumentDependence::UnexpandedPack));
2906 
2907     new (ArgBuffer++) TemplateArgument(Arg);
2908   }
2909 }
2910 
2911 void
2912 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
2913                                              const ASTContext &Context,
2914                                              ElaboratedTypeKeyword Keyword,
2915                                              NestedNameSpecifier *Qualifier,
2916                                              const IdentifierInfo *Name,
2917                                              ArrayRef<TemplateArgument> Args) {
2918   ID.AddInteger(Keyword);
2919   ID.AddPointer(Qualifier);
2920   ID.AddPointer(Name);
2921   for (const TemplateArgument &Arg : Args)
2922     Arg.Profile(ID, Context);
2923 }
2924 
2925 bool Type::isElaboratedTypeSpecifier() const {
2926   ElaboratedTypeKeyword Keyword;
2927   if (const auto *Elab = dyn_cast<ElaboratedType>(this))
2928     Keyword = Elab->getKeyword();
2929   else if (const auto *DepName = dyn_cast<DependentNameType>(this))
2930     Keyword = DepName->getKeyword();
2931   else if (const auto *DepTST =
2932                dyn_cast<DependentTemplateSpecializationType>(this))
2933     Keyword = DepTST->getKeyword();
2934   else
2935     return false;
2936 
2937   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2938 }
2939 
2940 const char *Type::getTypeClassName() const {
2941   switch (TypeBits.TC) {
2942 #define ABSTRACT_TYPE(Derived, Base)
2943 #define TYPE(Derived, Base) case Derived: return #Derived;
2944 #include "clang/AST/TypeNodes.inc"
2945   }
2946 
2947   llvm_unreachable("Invalid type class.");
2948 }
2949 
2950 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2951   switch (getKind()) {
2952   case Void:
2953     return "void";
2954   case Bool:
2955     return Policy.Bool ? "bool" : "_Bool";
2956   case Char_S:
2957     return "char";
2958   case Char_U:
2959     return "char";
2960   case SChar:
2961     return "signed char";
2962   case Short:
2963     return "short";
2964   case Int:
2965     return "int";
2966   case Long:
2967     return "long";
2968   case LongLong:
2969     return "long long";
2970   case Int128:
2971     return "__int128";
2972   case UChar:
2973     return "unsigned char";
2974   case UShort:
2975     return "unsigned short";
2976   case UInt:
2977     return "unsigned int";
2978   case ULong:
2979     return "unsigned long";
2980   case ULongLong:
2981     return "unsigned long long";
2982   case UInt128:
2983     return "unsigned __int128";
2984   case Half:
2985     return Policy.Half ? "half" : "__fp16";
2986   case BFloat16:
2987     return "__bf16";
2988   case Float:
2989     return "float";
2990   case Double:
2991     return "double";
2992   case LongDouble:
2993     return "long double";
2994   case ShortAccum:
2995     return "short _Accum";
2996   case Accum:
2997     return "_Accum";
2998   case LongAccum:
2999     return "long _Accum";
3000   case UShortAccum:
3001     return "unsigned short _Accum";
3002   case UAccum:
3003     return "unsigned _Accum";
3004   case ULongAccum:
3005     return "unsigned long _Accum";
3006   case BuiltinType::ShortFract:
3007     return "short _Fract";
3008   case BuiltinType::Fract:
3009     return "_Fract";
3010   case BuiltinType::LongFract:
3011     return "long _Fract";
3012   case BuiltinType::UShortFract:
3013     return "unsigned short _Fract";
3014   case BuiltinType::UFract:
3015     return "unsigned _Fract";
3016   case BuiltinType::ULongFract:
3017     return "unsigned long _Fract";
3018   case BuiltinType::SatShortAccum:
3019     return "_Sat short _Accum";
3020   case BuiltinType::SatAccum:
3021     return "_Sat _Accum";
3022   case BuiltinType::SatLongAccum:
3023     return "_Sat long _Accum";
3024   case BuiltinType::SatUShortAccum:
3025     return "_Sat unsigned short _Accum";
3026   case BuiltinType::SatUAccum:
3027     return "_Sat unsigned _Accum";
3028   case BuiltinType::SatULongAccum:
3029     return "_Sat unsigned long _Accum";
3030   case BuiltinType::SatShortFract:
3031     return "_Sat short _Fract";
3032   case BuiltinType::SatFract:
3033     return "_Sat _Fract";
3034   case BuiltinType::SatLongFract:
3035     return "_Sat long _Fract";
3036   case BuiltinType::SatUShortFract:
3037     return "_Sat unsigned short _Fract";
3038   case BuiltinType::SatUFract:
3039     return "_Sat unsigned _Fract";
3040   case BuiltinType::SatULongFract:
3041     return "_Sat unsigned long _Fract";
3042   case Float16:
3043     return "_Float16";
3044   case Float128:
3045     return "__float128";
3046   case Ibm128:
3047     return "__ibm128";
3048   case WChar_S:
3049   case WChar_U:
3050     return Policy.MSWChar ? "__wchar_t" : "wchar_t";
3051   case Char8:
3052     return "char8_t";
3053   case Char16:
3054     return "char16_t";
3055   case Char32:
3056     return "char32_t";
3057   case NullPtr:
3058     return "std::nullptr_t";
3059   case Overload:
3060     return "<overloaded function type>";
3061   case BoundMember:
3062     return "<bound member function type>";
3063   case PseudoObject:
3064     return "<pseudo-object type>";
3065   case Dependent:
3066     return "<dependent type>";
3067   case UnknownAny:
3068     return "<unknown type>";
3069   case ARCUnbridgedCast:
3070     return "<ARC unbridged cast type>";
3071   case BuiltinFn:
3072     return "<builtin fn type>";
3073   case ObjCId:
3074     return "id";
3075   case ObjCClass:
3076     return "Class";
3077   case ObjCSel:
3078     return "SEL";
3079 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3080   case Id: \
3081     return "__" #Access " " #ImgType "_t";
3082 #include "clang/Basic/OpenCLImageTypes.def"
3083   case OCLSampler:
3084     return "sampler_t";
3085   case OCLEvent:
3086     return "event_t";
3087   case OCLClkEvent:
3088     return "clk_event_t";
3089   case OCLQueue:
3090     return "queue_t";
3091   case OCLReserveID:
3092     return "reserve_id_t";
3093   case IncompleteMatrixIdx:
3094     return "<incomplete matrix index type>";
3095   case OMPArraySection:
3096     return "<OpenMP array section type>";
3097   case OMPArrayShaping:
3098     return "<OpenMP array shaping type>";
3099   case OMPIterator:
3100     return "<OpenMP iterator type>";
3101 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3102   case Id: \
3103     return #ExtType;
3104 #include "clang/Basic/OpenCLExtensionTypes.def"
3105 #define SVE_TYPE(Name, Id, SingletonId) \
3106   case Id: \
3107     return Name;
3108 #include "clang/Basic/AArch64SVEACLETypes.def"
3109 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3110   case Id: \
3111     return #Name;
3112 #include "clang/Basic/PPCTypes.def"
3113 #define RVV_TYPE(Name, Id, SingletonId)                                        \
3114   case Id:                                                                     \
3115     return Name;
3116 #include "clang/Basic/RISCVVTypes.def"
3117   }
3118 
3119   llvm_unreachable("Invalid builtin type.");
3120 }
3121 
3122 QualType QualType::getNonPackExpansionType() const {
3123   // We never wrap type sugar around a PackExpansionType.
3124   if (auto *PET = dyn_cast<PackExpansionType>(getTypePtr()))
3125     return PET->getPattern();
3126   return *this;
3127 }
3128 
3129 QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
3130   if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
3131     return RefType->getPointeeType();
3132 
3133   // C++0x [basic.lval]:
3134   //   Class prvalues can have cv-qualified types; non-class prvalues always
3135   //   have cv-unqualified types.
3136   //
3137   // See also C99 6.3.2.1p2.
3138   if (!Context.getLangOpts().CPlusPlus ||
3139       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
3140     return getUnqualifiedType();
3141 
3142   return *this;
3143 }
3144 
3145 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
3146   switch (CC) {
3147   case CC_C: return "cdecl";
3148   case CC_X86StdCall: return "stdcall";
3149   case CC_X86FastCall: return "fastcall";
3150   case CC_X86ThisCall: return "thiscall";
3151   case CC_X86Pascal: return "pascal";
3152   case CC_X86VectorCall: return "vectorcall";
3153   case CC_Win64: return "ms_abi";
3154   case CC_X86_64SysV: return "sysv_abi";
3155   case CC_X86RegCall : return "regcall";
3156   case CC_AAPCS: return "aapcs";
3157   case CC_AAPCS_VFP: return "aapcs-vfp";
3158   case CC_AArch64VectorCall: return "aarch64_vector_pcs";
3159   case CC_IntelOclBicc: return "intel_ocl_bicc";
3160   case CC_SpirFunction: return "spir_function";
3161   case CC_OpenCLKernel: return "opencl_kernel";
3162   case CC_Swift: return "swiftcall";
3163   case CC_SwiftAsync: return "swiftasynccall";
3164   case CC_PreserveMost: return "preserve_most";
3165   case CC_PreserveAll: return "preserve_all";
3166   }
3167 
3168   llvm_unreachable("Invalid calling convention.");
3169 }
3170 
3171 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
3172                                      QualType canonical,
3173                                      const ExtProtoInfo &epi)
3174     : FunctionType(FunctionProto, result, canonical, result->getDependence(),
3175                    epi.ExtInfo) {
3176   FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
3177   FunctionTypeBits.RefQualifier = epi.RefQualifier;
3178   FunctionTypeBits.NumParams = params.size();
3179   assert(getNumParams() == params.size() && "NumParams overflow!");
3180   FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
3181   FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
3182   FunctionTypeBits.Variadic = epi.Variadic;
3183   FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
3184 
3185   // Fill in the extra trailing bitfields if present.
3186   if (hasExtraBitfields(epi.ExceptionSpec.Type)) {
3187     auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3188     ExtraBits.NumExceptionType = epi.ExceptionSpec.Exceptions.size();
3189   }
3190 
3191   // Fill in the trailing argument array.
3192   auto *argSlot = getTrailingObjects<QualType>();
3193   for (unsigned i = 0; i != getNumParams(); ++i) {
3194     addDependence(params[i]->getDependence() &
3195                   ~TypeDependence::VariablyModified);
3196     argSlot[i] = params[i];
3197   }
3198 
3199   // Fill in the exception type array if present.
3200   if (getExceptionSpecType() == EST_Dynamic) {
3201     assert(hasExtraBitfields() && "missing trailing extra bitfields!");
3202     auto *exnSlot =
3203         reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
3204     unsigned I = 0;
3205     for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
3206       // Note that, before C++17, a dependent exception specification does
3207       // *not* make a type dependent; it's not even part of the C++ type
3208       // system.
3209       addDependence(
3210           ExceptionType->getDependence() &
3211           (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3212 
3213       exnSlot[I++] = ExceptionType;
3214     }
3215   }
3216   // Fill in the Expr * in the exception specification if present.
3217   else if (isComputedNoexcept(getExceptionSpecType())) {
3218     assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
3219     assert((getExceptionSpecType() == EST_DependentNoexcept) ==
3220            epi.ExceptionSpec.NoexceptExpr->isValueDependent());
3221 
3222     // Store the noexcept expression and context.
3223     *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
3224 
3225     addDependence(
3226         toTypeDependence(epi.ExceptionSpec.NoexceptExpr->getDependence()) &
3227         (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3228   }
3229   // Fill in the FunctionDecl * in the exception specification if present.
3230   else if (getExceptionSpecType() == EST_Uninstantiated) {
3231     // Store the function decl from which we will resolve our
3232     // exception specification.
3233     auto **slot = getTrailingObjects<FunctionDecl *>();
3234     slot[0] = epi.ExceptionSpec.SourceDecl;
3235     slot[1] = epi.ExceptionSpec.SourceTemplate;
3236     // This exception specification doesn't make the type dependent, because
3237     // it's not instantiated as part of instantiating the type.
3238   } else if (getExceptionSpecType() == EST_Unevaluated) {
3239     // Store the function decl from which we will resolve our
3240     // exception specification.
3241     auto **slot = getTrailingObjects<FunctionDecl *>();
3242     slot[0] = epi.ExceptionSpec.SourceDecl;
3243   }
3244 
3245   // If this is a canonical type, and its exception specification is dependent,
3246   // then it's a dependent type. This only happens in C++17 onwards.
3247   if (isCanonicalUnqualified()) {
3248     if (getExceptionSpecType() == EST_Dynamic ||
3249         getExceptionSpecType() == EST_DependentNoexcept) {
3250       assert(hasDependentExceptionSpec() && "type should not be canonical");
3251       addDependence(TypeDependence::DependentInstantiation);
3252     }
3253   } else if (getCanonicalTypeInternal()->isDependentType()) {
3254     // Ask our canonical type whether our exception specification was dependent.
3255     addDependence(TypeDependence::DependentInstantiation);
3256   }
3257 
3258   // Fill in the extra parameter info if present.
3259   if (epi.ExtParameterInfos) {
3260     auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3261     for (unsigned i = 0; i != getNumParams(); ++i)
3262       extParamInfos[i] = epi.ExtParameterInfos[i];
3263   }
3264 
3265   if (epi.TypeQuals.hasNonFastQualifiers()) {
3266     FunctionTypeBits.HasExtQuals = 1;
3267     *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3268   } else {
3269     FunctionTypeBits.HasExtQuals = 0;
3270   }
3271 
3272   // Fill in the Ellipsis location info if present.
3273   if (epi.Variadic) {
3274     auto &EllipsisLoc = *getTrailingObjects<SourceLocation>();
3275     EllipsisLoc = epi.EllipsisLoc;
3276   }
3277 }
3278 
3279 bool FunctionProtoType::hasDependentExceptionSpec() const {
3280   if (Expr *NE = getNoexceptExpr())
3281     return NE->isValueDependent();
3282   for (QualType ET : exceptions())
3283     // A pack expansion with a non-dependent pattern is still dependent,
3284     // because we don't know whether the pattern is in the exception spec
3285     // or not (that depends on whether the pack has 0 expansions).
3286     if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3287       return true;
3288   return false;
3289 }
3290 
3291 bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const {
3292   if (Expr *NE = getNoexceptExpr())
3293     return NE->isInstantiationDependent();
3294   for (QualType ET : exceptions())
3295     if (ET->isInstantiationDependentType())
3296       return true;
3297   return false;
3298 }
3299 
3300 CanThrowResult FunctionProtoType::canThrow() const {
3301   switch (getExceptionSpecType()) {
3302   case EST_Unparsed:
3303   case EST_Unevaluated:
3304   case EST_Uninstantiated:
3305     llvm_unreachable("should not call this with unresolved exception specs");
3306 
3307   case EST_DynamicNone:
3308   case EST_BasicNoexcept:
3309   case EST_NoexceptTrue:
3310   case EST_NoThrow:
3311     return CT_Cannot;
3312 
3313   case EST_None:
3314   case EST_MSAny:
3315   case EST_NoexceptFalse:
3316     return CT_Can;
3317 
3318   case EST_Dynamic:
3319     // A dynamic exception specification is throwing unless every exception
3320     // type is an (unexpanded) pack expansion type.
3321     for (unsigned I = 0; I != getNumExceptions(); ++I)
3322       if (!getExceptionType(I)->getAs<PackExpansionType>())
3323         return CT_Can;
3324     return CT_Dependent;
3325 
3326   case EST_DependentNoexcept:
3327     return CT_Dependent;
3328   }
3329 
3330   llvm_unreachable("unexpected exception specification kind");
3331 }
3332 
3333 bool FunctionProtoType::isTemplateVariadic() const {
3334   for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3335     if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
3336       return true;
3337 
3338   return false;
3339 }
3340 
3341 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3342                                 const QualType *ArgTys, unsigned NumParams,
3343                                 const ExtProtoInfo &epi,
3344                                 const ASTContext &Context, bool Canonical) {
3345   // We have to be careful not to get ambiguous profile encodings.
3346   // Note that valid type pointers are never ambiguous with anything else.
3347   //
3348   // The encoding grammar begins:
3349   //      type type* bool int bool
3350   // If that final bool is true, then there is a section for the EH spec:
3351   //      bool type*
3352   // This is followed by an optional "consumed argument" section of the
3353   // same length as the first type sequence:
3354   //      bool*
3355   // Finally, we have the ext info and trailing return type flag:
3356   //      int bool
3357   //
3358   // There is no ambiguity between the consumed arguments and an empty EH
3359   // spec because of the leading 'bool' which unambiguously indicates
3360   // whether the following bool is the EH spec or part of the arguments.
3361 
3362   ID.AddPointer(Result.getAsOpaquePtr());
3363   for (unsigned i = 0; i != NumParams; ++i)
3364     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
3365   // This method is relatively performance sensitive, so as a performance
3366   // shortcut, use one AddInteger call instead of four for the next four
3367   // fields.
3368   assert(!(unsigned(epi.Variadic) & ~1) &&
3369          !(unsigned(epi.RefQualifier) & ~3) &&
3370          !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3371          "Values larger than expected.");
3372   ID.AddInteger(unsigned(epi.Variadic) +
3373                 (epi.RefQualifier << 1) +
3374                 (epi.ExceptionSpec.Type << 3));
3375   ID.Add(epi.TypeQuals);
3376   if (epi.ExceptionSpec.Type == EST_Dynamic) {
3377     for (QualType Ex : epi.ExceptionSpec.Exceptions)
3378       ID.AddPointer(Ex.getAsOpaquePtr());
3379   } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) {
3380     epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3381   } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3382              epi.ExceptionSpec.Type == EST_Unevaluated) {
3383     ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3384   }
3385   if (epi.ExtParameterInfos) {
3386     for (unsigned i = 0; i != NumParams; ++i)
3387       ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
3388   }
3389   epi.ExtInfo.Profile(ID);
3390   ID.AddBoolean(epi.HasTrailingReturn);
3391 }
3392 
3393 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3394                                 const ASTContext &Ctx) {
3395   Profile(ID, getReturnType(), param_type_begin(), getNumParams(),
3396           getExtProtoInfo(), Ctx, isCanonicalUnqualified());
3397 }
3398 
3399 TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D,
3400                          QualType underlying, QualType can)
3401     : Type(tc, can, underlying->getDependence()),
3402       Decl(const_cast<TypedefNameDecl *>(D)) {
3403   assert(!isa<TypedefType>(can) && "Invalid canonical type");
3404 }
3405 
3406 QualType TypedefType::desugar() const {
3407   return getDecl()->getUnderlyingType();
3408 }
3409 
3410 QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); }
3411 
3412 QualType MacroQualifiedType::getModifiedType() const {
3413   // Step over MacroQualifiedTypes from the same macro to find the type
3414   // ultimately qualified by the macro qualifier.
3415   QualType Inner = cast<AttributedType>(getUnderlyingType())->getModifiedType();
3416   while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Inner)) {
3417     if (InnerMQT->getMacroIdentifier() != getMacroIdentifier())
3418       break;
3419     Inner = InnerMQT->getModifiedType();
3420   }
3421   return Inner;
3422 }
3423 
3424 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
3425     : Type(TypeOfExpr, can,
3426            toTypeDependence(E->getDependence()) |
3427                (E->getType()->getDependence() &
3428                 TypeDependence::VariablyModified)),
3429       TOExpr(E) {}
3430 
3431 bool TypeOfExprType::isSugared() const {
3432   return !TOExpr->isTypeDependent();
3433 }
3434 
3435 QualType TypeOfExprType::desugar() const {
3436   if (isSugared())
3437     return getUnderlyingExpr()->getType();
3438 
3439   return QualType(this, 0);
3440 }
3441 
3442 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3443                                       const ASTContext &Context, Expr *E) {
3444   E->Profile(ID, Context, true);
3445 }
3446 
3447 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
3448     // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3449     // decltype(e) denotes a unique dependent type." Hence a decltype type is
3450     // type-dependent even if its expression is only instantiation-dependent.
3451     : Type(Decltype, can,
3452            toTypeDependence(E->getDependence()) |
3453                (E->isInstantiationDependent() ? TypeDependence::Dependent
3454                                               : TypeDependence::None) |
3455                (E->getType()->getDependence() &
3456                 TypeDependence::VariablyModified)),
3457       E(E), UnderlyingType(underlyingType) {}
3458 
3459 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
3460 
3461 QualType DecltypeType::desugar() const {
3462   if (isSugared())
3463     return getUnderlyingType();
3464 
3465   return QualType(this, 0);
3466 }
3467 
3468 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
3469     : DecltypeType(E, Context.DependentTy), Context(Context) {}
3470 
3471 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3472                                     const ASTContext &Context, Expr *E) {
3473   E->Profile(ID, Context, true);
3474 }
3475 
3476 UnaryTransformType::UnaryTransformType(QualType BaseType,
3477                                        QualType UnderlyingType, UTTKind UKind,
3478                                        QualType CanonicalType)
3479     : Type(UnaryTransform, CanonicalType, BaseType->getDependence()),
3480       BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
3481 
3482 DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C,
3483                                                          QualType BaseType,
3484                                                          UTTKind UKind)
3485      : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
3486 
3487 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
3488     : Type(TC, can,
3489            D->isDependentType() ? TypeDependence::DependentInstantiation
3490                                 : TypeDependence::None),
3491       decl(const_cast<TagDecl *>(D)) {}
3492 
3493 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
3494   for (auto I : decl->redecls()) {
3495     if (I->isCompleteDefinition() || I->isBeingDefined())
3496       return I;
3497   }
3498   // If there's no definition (not even in progress), return what we have.
3499   return decl;
3500 }
3501 
3502 TagDecl *TagType::getDecl() const {
3503   return getInterestingTagDecl(decl);
3504 }
3505 
3506 bool TagType::isBeingDefined() const {
3507   return getDecl()->isBeingDefined();
3508 }
3509 
3510 bool RecordType::hasConstFields() const {
3511   std::vector<const RecordType*> RecordTypeList;
3512   RecordTypeList.push_back(this);
3513   unsigned NextToCheckIndex = 0;
3514 
3515   while (RecordTypeList.size() > NextToCheckIndex) {
3516     for (FieldDecl *FD :
3517          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
3518       QualType FieldTy = FD->getType();
3519       if (FieldTy.isConstQualified())
3520         return true;
3521       FieldTy = FieldTy.getCanonicalType();
3522       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
3523         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
3524           RecordTypeList.push_back(FieldRecTy);
3525       }
3526     }
3527     ++NextToCheckIndex;
3528   }
3529   return false;
3530 }
3531 
3532 bool AttributedType::isQualifier() const {
3533   // FIXME: Generate this with TableGen.
3534   switch (getAttrKind()) {
3535   // These are type qualifiers in the traditional C sense: they annotate
3536   // something about a specific value/variable of a type.  (They aren't
3537   // always part of the canonical type, though.)
3538   case attr::ObjCGC:
3539   case attr::ObjCOwnership:
3540   case attr::ObjCInertUnsafeUnretained:
3541   case attr::TypeNonNull:
3542   case attr::TypeNullable:
3543   case attr::TypeNullableResult:
3544   case attr::TypeNullUnspecified:
3545   case attr::LifetimeBound:
3546   case attr::AddressSpace:
3547     return true;
3548 
3549   // All other type attributes aren't qualifiers; they rewrite the modified
3550   // type to be a semantically different type.
3551   default:
3552     return false;
3553   }
3554 }
3555 
3556 bool AttributedType::isMSTypeSpec() const {
3557   // FIXME: Generate this with TableGen?
3558   switch (getAttrKind()) {
3559   default: return false;
3560   case attr::Ptr32:
3561   case attr::Ptr64:
3562   case attr::SPtr:
3563   case attr::UPtr:
3564     return true;
3565   }
3566   llvm_unreachable("invalid attr kind");
3567 }
3568 
3569 bool AttributedType::isCallingConv() const {
3570   // FIXME: Generate this with TableGen.
3571   switch (getAttrKind()) {
3572   default: return false;
3573   case attr::Pcs:
3574   case attr::CDecl:
3575   case attr::FastCall:
3576   case attr::StdCall:
3577   case attr::ThisCall:
3578   case attr::RegCall:
3579   case attr::SwiftCall:
3580   case attr::SwiftAsyncCall:
3581   case attr::VectorCall:
3582   case attr::AArch64VectorPcs:
3583   case attr::Pascal:
3584   case attr::MSABI:
3585   case attr::SysVABI:
3586   case attr::IntelOclBicc:
3587   case attr::PreserveMost:
3588   case attr::PreserveAll:
3589     return true;
3590   }
3591   llvm_unreachable("invalid attr kind");
3592 }
3593 
3594 CXXRecordDecl *InjectedClassNameType::getDecl() const {
3595   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3596 }
3597 
3598 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
3599   return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3600 }
3601 
3602 SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType(
3603     const TemplateTypeParmType *Param, QualType Canon,
3604     const TemplateArgument &ArgPack)
3605     : Type(SubstTemplateTypeParmPack, Canon,
3606            TypeDependence::DependentInstantiation |
3607                TypeDependence::UnexpandedPack),
3608       Replaced(Param), Arguments(ArgPack.pack_begin()) {
3609   SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
3610 }
3611 
3612 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
3613   return TemplateArgument(llvm::makeArrayRef(Arguments, getNumArgs()));
3614 }
3615 
3616 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3617   Profile(ID, getReplacedParameter(), getArgumentPack());
3618 }
3619 
3620 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3621                                            const TemplateTypeParmType *Replaced,
3622                                             const TemplateArgument &ArgPack) {
3623   ID.AddPointer(Replaced);
3624   ID.AddInteger(ArgPack.pack_size());
3625   for (const auto &P : ArgPack.pack_elements())
3626     ID.AddPointer(P.getAsType().getAsOpaquePtr());
3627 }
3628 
3629 bool TemplateSpecializationType::anyDependentTemplateArguments(
3630     const TemplateArgumentListInfo &Args, ArrayRef<TemplateArgument> Converted) {
3631   return anyDependentTemplateArguments(Args.arguments(), Converted);
3632 }
3633 
3634 bool TemplateSpecializationType::anyDependentTemplateArguments(
3635     ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) {
3636   for (const TemplateArgument &Arg : Converted)
3637     if (Arg.isDependent())
3638       return true;
3639   return false;
3640 }
3641 
3642 bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
3643       ArrayRef<TemplateArgumentLoc> Args) {
3644   for (const TemplateArgumentLoc &ArgLoc : Args) {
3645     if (ArgLoc.getArgument().isInstantiationDependent())
3646       return true;
3647   }
3648   return false;
3649 }
3650 
3651 TemplateSpecializationType::TemplateSpecializationType(
3652     TemplateName T, ArrayRef<TemplateArgument> Args, QualType Canon,
3653     QualType AliasedType)
3654     : Type(TemplateSpecialization, Canon.isNull() ? QualType(this, 0) : Canon,
3655            (Canon.isNull()
3656                 ? TypeDependence::DependentInstantiation
3657                 : Canon->getDependence() & ~(TypeDependence::VariablyModified |
3658                                              TypeDependence::UnexpandedPack)) |
3659                (toTypeDependence(T.getDependence()) &
3660                 TypeDependence::UnexpandedPack)),
3661       Template(T) {
3662   TemplateSpecializationTypeBits.NumArgs = Args.size();
3663   TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
3664 
3665   assert(!T.getAsDependentTemplateName() &&
3666          "Use DependentTemplateSpecializationType for dependent template-name");
3667   assert((T.getKind() == TemplateName::Template ||
3668           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
3669           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
3670          "Unexpected template name for TemplateSpecializationType");
3671 
3672   auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
3673   for (const TemplateArgument &Arg : Args) {
3674     // Update instantiation-dependent, variably-modified, and error bits.
3675     // If the canonical type exists and is non-dependent, the template
3676     // specialization type can be non-dependent even if one of the type
3677     // arguments is. Given:
3678     //   template<typename T> using U = int;
3679     // U<T> is always non-dependent, irrespective of the type T.
3680     // However, U<Ts> contains an unexpanded parameter pack, even though
3681     // its expansion (and thus its desugared type) doesn't.
3682     addDependence(toTypeDependence(Arg.getDependence()) &
3683                   ~TypeDependence::Dependent);
3684     if (Arg.getKind() == TemplateArgument::Type)
3685       addDependence(Arg.getAsType()->getDependence() &
3686                     TypeDependence::VariablyModified);
3687     new (TemplateArgs++) TemplateArgument(Arg);
3688   }
3689 
3690   // Store the aliased type if this is a type alias template specialization.
3691   if (isTypeAlias()) {
3692     auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3693     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3694   }
3695 }
3696 
3697 void
3698 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3699                                     TemplateName T,
3700                                     ArrayRef<TemplateArgument> Args,
3701                                     const ASTContext &Context) {
3702   T.Profile(ID);
3703   for (const TemplateArgument &Arg : Args)
3704     Arg.Profile(ID, Context);
3705 }
3706 
3707 QualType
3708 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3709   if (!hasNonFastQualifiers())
3710     return QT.withFastQualifiers(getFastQualifiers());
3711 
3712   return Context.getQualifiedType(QT, *this);
3713 }
3714 
3715 QualType
3716 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3717   if (!hasNonFastQualifiers())
3718     return QualType(T, getFastQualifiers());
3719 
3720   return Context.getQualifiedType(T, *this);
3721 }
3722 
3723 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3724                                  QualType BaseType,
3725                                  ArrayRef<QualType> typeArgs,
3726                                  ArrayRef<ObjCProtocolDecl *> protocols,
3727                                  bool isKindOf) {
3728   ID.AddPointer(BaseType.getAsOpaquePtr());
3729   ID.AddInteger(typeArgs.size());
3730   for (auto typeArg : typeArgs)
3731     ID.AddPointer(typeArg.getAsOpaquePtr());
3732   ID.AddInteger(protocols.size());
3733   for (auto proto : protocols)
3734     ID.AddPointer(proto);
3735   ID.AddBoolean(isKindOf);
3736 }
3737 
3738 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3739   Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3740           llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3741           isKindOfTypeAsWritten());
3742 }
3743 
3744 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
3745                                 const ObjCTypeParamDecl *OTPDecl,
3746                                 QualType CanonicalType,
3747                                 ArrayRef<ObjCProtocolDecl *> protocols) {
3748   ID.AddPointer(OTPDecl);
3749   ID.AddPointer(CanonicalType.getAsOpaquePtr());
3750   ID.AddInteger(protocols.size());
3751   for (auto proto : protocols)
3752     ID.AddPointer(proto);
3753 }
3754 
3755 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
3756   Profile(ID, getDecl(), getCanonicalTypeInternal(),
3757           llvm::makeArrayRef(qual_begin(), getNumProtocols()));
3758 }
3759 
3760 namespace {
3761 
3762 /// The cached properties of a type.
3763 class CachedProperties {
3764   Linkage L;
3765   bool local;
3766 
3767 public:
3768   CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3769 
3770   Linkage getLinkage() const { return L; }
3771   bool hasLocalOrUnnamedType() const { return local; }
3772 
3773   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3774     Linkage MergedLinkage = minLinkage(L.L, R.L);
3775     return CachedProperties(MergedLinkage, L.hasLocalOrUnnamedType() ||
3776                                                R.hasLocalOrUnnamedType());
3777   }
3778 };
3779 
3780 } // namespace
3781 
3782 static CachedProperties computeCachedProperties(const Type *T);
3783 
3784 namespace clang {
3785 
3786 /// The type-property cache.  This is templated so as to be
3787 /// instantiated at an internal type to prevent unnecessary symbol
3788 /// leakage.
3789 template <class Private> class TypePropertyCache {
3790 public:
3791   static CachedProperties get(QualType T) {
3792     return get(T.getTypePtr());
3793   }
3794 
3795   static CachedProperties get(const Type *T) {
3796     ensure(T);
3797     return CachedProperties(T->TypeBits.getLinkage(),
3798                             T->TypeBits.hasLocalOrUnnamedType());
3799   }
3800 
3801   static void ensure(const Type *T) {
3802     // If the cache is valid, we're okay.
3803     if (T->TypeBits.isCacheValid()) return;
3804 
3805     // If this type is non-canonical, ask its canonical type for the
3806     // relevant information.
3807     if (!T->isCanonicalUnqualified()) {
3808       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3809       ensure(CT);
3810       T->TypeBits.CacheValid = true;
3811       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3812       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3813       return;
3814     }
3815 
3816     // Compute the cached properties and then set the cache.
3817     CachedProperties Result = computeCachedProperties(T);
3818     T->TypeBits.CacheValid = true;
3819     T->TypeBits.CachedLinkage = Result.getLinkage();
3820     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3821   }
3822 };
3823 
3824 } // namespace clang
3825 
3826 // Instantiate the friend template at a private class.  In a
3827 // reasonable implementation, these symbols will be internal.
3828 // It is terrible that this is the best way to accomplish this.
3829 namespace {
3830 
3831 class Private {};
3832 
3833 } // namespace
3834 
3835 using Cache = TypePropertyCache<Private>;
3836 
3837 static CachedProperties computeCachedProperties(const Type *T) {
3838   switch (T->getTypeClass()) {
3839 #define TYPE(Class,Base)
3840 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3841 #include "clang/AST/TypeNodes.inc"
3842     llvm_unreachable("didn't expect a non-canonical type here");
3843 
3844 #define TYPE(Class,Base)
3845 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3846 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3847 #include "clang/AST/TypeNodes.inc"
3848     // Treat instantiation-dependent types as external.
3849     if (!T->isInstantiationDependentType()) T->dump();
3850     assert(T->isInstantiationDependentType());
3851     return CachedProperties(ExternalLinkage, false);
3852 
3853   case Type::Auto:
3854   case Type::DeducedTemplateSpecialization:
3855     // Give non-deduced 'auto' types external linkage. We should only see them
3856     // here in error recovery.
3857     return CachedProperties(ExternalLinkage, false);
3858 
3859   case Type::BitInt:
3860   case Type::Builtin:
3861     // C++ [basic.link]p8:
3862     //   A type is said to have linkage if and only if:
3863     //     - it is a fundamental type (3.9.1); or
3864     return CachedProperties(ExternalLinkage, false);
3865 
3866   case Type::Record:
3867   case Type::Enum: {
3868     const TagDecl *Tag = cast<TagType>(T)->getDecl();
3869 
3870     // C++ [basic.link]p8:
3871     //     - it is a class or enumeration type that is named (or has a name
3872     //       for linkage purposes (7.1.3)) and the name has linkage; or
3873     //     -  it is a specialization of a class template (14); or
3874     Linkage L = Tag->getLinkageInternal();
3875     bool IsLocalOrUnnamed =
3876       Tag->getDeclContext()->isFunctionOrMethod() ||
3877       !Tag->hasNameForLinkage();
3878     return CachedProperties(L, IsLocalOrUnnamed);
3879   }
3880 
3881     // C++ [basic.link]p8:
3882     //   - it is a compound type (3.9.2) other than a class or enumeration,
3883     //     compounded exclusively from types that have linkage; or
3884   case Type::Complex:
3885     return Cache::get(cast<ComplexType>(T)->getElementType());
3886   case Type::Pointer:
3887     return Cache::get(cast<PointerType>(T)->getPointeeType());
3888   case Type::BlockPointer:
3889     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3890   case Type::LValueReference:
3891   case Type::RValueReference:
3892     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3893   case Type::MemberPointer: {
3894     const auto *MPT = cast<MemberPointerType>(T);
3895     return merge(Cache::get(MPT->getClass()),
3896                  Cache::get(MPT->getPointeeType()));
3897   }
3898   case Type::ConstantArray:
3899   case Type::IncompleteArray:
3900   case Type::VariableArray:
3901     return Cache::get(cast<ArrayType>(T)->getElementType());
3902   case Type::Vector:
3903   case Type::ExtVector:
3904     return Cache::get(cast<VectorType>(T)->getElementType());
3905   case Type::ConstantMatrix:
3906     return Cache::get(cast<ConstantMatrixType>(T)->getElementType());
3907   case Type::FunctionNoProto:
3908     return Cache::get(cast<FunctionType>(T)->getReturnType());
3909   case Type::FunctionProto: {
3910     const auto *FPT = cast<FunctionProtoType>(T);
3911     CachedProperties result = Cache::get(FPT->getReturnType());
3912     for (const auto &ai : FPT->param_types())
3913       result = merge(result, Cache::get(ai));
3914     return result;
3915   }
3916   case Type::ObjCInterface: {
3917     Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3918     return CachedProperties(L, false);
3919   }
3920   case Type::ObjCObject:
3921     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3922   case Type::ObjCObjectPointer:
3923     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3924   case Type::Atomic:
3925     return Cache::get(cast<AtomicType>(T)->getValueType());
3926   case Type::Pipe:
3927     return Cache::get(cast<PipeType>(T)->getElementType());
3928   }
3929 
3930   llvm_unreachable("unhandled type class");
3931 }
3932 
3933 /// Determine the linkage of this type.
3934 Linkage Type::getLinkage() const {
3935   Cache::ensure(this);
3936   return TypeBits.getLinkage();
3937 }
3938 
3939 bool Type::hasUnnamedOrLocalType() const {
3940   Cache::ensure(this);
3941   return TypeBits.hasLocalOrUnnamedType();
3942 }
3943 
3944 LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) {
3945   switch (T->getTypeClass()) {
3946 #define TYPE(Class,Base)
3947 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3948 #include "clang/AST/TypeNodes.inc"
3949     llvm_unreachable("didn't expect a non-canonical type here");
3950 
3951 #define TYPE(Class,Base)
3952 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3953 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3954 #include "clang/AST/TypeNodes.inc"
3955     // Treat instantiation-dependent types as external.
3956     assert(T->isInstantiationDependentType());
3957     return LinkageInfo::external();
3958 
3959   case Type::BitInt:
3960   case Type::Builtin:
3961     return LinkageInfo::external();
3962 
3963   case Type::Auto:
3964   case Type::DeducedTemplateSpecialization:
3965     return LinkageInfo::external();
3966 
3967   case Type::Record:
3968   case Type::Enum:
3969     return getDeclLinkageAndVisibility(cast<TagType>(T)->getDecl());
3970 
3971   case Type::Complex:
3972     return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType());
3973   case Type::Pointer:
3974     return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3975   case Type::BlockPointer:
3976     return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3977   case Type::LValueReference:
3978   case Type::RValueReference:
3979     return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3980   case Type::MemberPointer: {
3981     const auto *MPT = cast<MemberPointerType>(T);
3982     LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass());
3983     LV.merge(computeTypeLinkageInfo(MPT->getPointeeType()));
3984     return LV;
3985   }
3986   case Type::ConstantArray:
3987   case Type::IncompleteArray:
3988   case Type::VariableArray:
3989     return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType());
3990   case Type::Vector:
3991   case Type::ExtVector:
3992     return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType());
3993   case Type::ConstantMatrix:
3994     return computeTypeLinkageInfo(
3995         cast<ConstantMatrixType>(T)->getElementType());
3996   case Type::FunctionNoProto:
3997     return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3998   case Type::FunctionProto: {
3999     const auto *FPT = cast<FunctionProtoType>(T);
4000     LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType());
4001     for (const auto &ai : FPT->param_types())
4002       LV.merge(computeTypeLinkageInfo(ai));
4003     return LV;
4004   }
4005   case Type::ObjCInterface:
4006     return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl());
4007   case Type::ObjCObject:
4008     return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
4009   case Type::ObjCObjectPointer:
4010     return computeTypeLinkageInfo(
4011         cast<ObjCObjectPointerType>(T)->getPointeeType());
4012   case Type::Atomic:
4013     return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType());
4014   case Type::Pipe:
4015     return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType());
4016   }
4017 
4018   llvm_unreachable("unhandled type class");
4019 }
4020 
4021 bool Type::isLinkageValid() const {
4022   if (!TypeBits.isCacheValid())
4023     return true;
4024 
4025   Linkage L = LinkageComputer{}
4026                   .computeTypeLinkageInfo(getCanonicalTypeInternal())
4027                   .getLinkage();
4028   return L == TypeBits.getLinkage();
4029 }
4030 
4031 LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) {
4032   if (!T->isCanonicalUnqualified())
4033     return computeTypeLinkageInfo(T->getCanonicalTypeInternal());
4034 
4035   LinkageInfo LV = computeTypeLinkageInfo(T);
4036   assert(LV.getLinkage() == T->getLinkage());
4037   return LV;
4038 }
4039 
4040 LinkageInfo Type::getLinkageAndVisibility() const {
4041   return LinkageComputer{}.getTypeLinkageAndVisibility(this);
4042 }
4043 
4044 Optional<NullabilityKind>
4045 Type::getNullability(const ASTContext &Context) const {
4046   QualType Type(this, 0);
4047   while (const auto *AT = Type->getAs<AttributedType>()) {
4048     // Check whether this is an attributed type with nullability
4049     // information.
4050     if (auto Nullability = AT->getImmediateNullability())
4051       return Nullability;
4052 
4053     Type = AT->getEquivalentType();
4054   }
4055   return None;
4056 }
4057 
4058 bool Type::canHaveNullability(bool ResultIfUnknown) const {
4059   QualType type = getCanonicalTypeInternal();
4060 
4061   switch (type->getTypeClass()) {
4062   // We'll only see canonical types here.
4063 #define NON_CANONICAL_TYPE(Class, Parent)       \
4064   case Type::Class:                             \
4065     llvm_unreachable("non-canonical type");
4066 #define TYPE(Class, Parent)
4067 #include "clang/AST/TypeNodes.inc"
4068 
4069   // Pointer types.
4070   case Type::Pointer:
4071   case Type::BlockPointer:
4072   case Type::MemberPointer:
4073   case Type::ObjCObjectPointer:
4074     return true;
4075 
4076   // Dependent types that could instantiate to pointer types.
4077   case Type::UnresolvedUsing:
4078   case Type::TypeOfExpr:
4079   case Type::TypeOf:
4080   case Type::Decltype:
4081   case Type::UnaryTransform:
4082   case Type::TemplateTypeParm:
4083   case Type::SubstTemplateTypeParmPack:
4084   case Type::DependentName:
4085   case Type::DependentTemplateSpecialization:
4086   case Type::Auto:
4087     return ResultIfUnknown;
4088 
4089   // Dependent template specializations can instantiate to pointer
4090   // types unless they're known to be specializations of a class
4091   // template.
4092   case Type::TemplateSpecialization:
4093     if (TemplateDecl *templateDecl
4094           = cast<TemplateSpecializationType>(type.getTypePtr())
4095               ->getTemplateName().getAsTemplateDecl()) {
4096       if (isa<ClassTemplateDecl>(templateDecl))
4097         return false;
4098     }
4099     return ResultIfUnknown;
4100 
4101   case Type::Builtin:
4102     switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
4103       // Signed, unsigned, and floating-point types cannot have nullability.
4104 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4105 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4106 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
4107 #define BUILTIN_TYPE(Id, SingletonId)
4108 #include "clang/AST/BuiltinTypes.def"
4109       return false;
4110 
4111     // Dependent types that could instantiate to a pointer type.
4112     case BuiltinType::Dependent:
4113     case BuiltinType::Overload:
4114     case BuiltinType::BoundMember:
4115     case BuiltinType::PseudoObject:
4116     case BuiltinType::UnknownAny:
4117     case BuiltinType::ARCUnbridgedCast:
4118       return ResultIfUnknown;
4119 
4120     case BuiltinType::Void:
4121     case BuiltinType::ObjCId:
4122     case BuiltinType::ObjCClass:
4123     case BuiltinType::ObjCSel:
4124 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
4125     case BuiltinType::Id:
4126 #include "clang/Basic/OpenCLImageTypes.def"
4127 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
4128     case BuiltinType::Id:
4129 #include "clang/Basic/OpenCLExtensionTypes.def"
4130     case BuiltinType::OCLSampler:
4131     case BuiltinType::OCLEvent:
4132     case BuiltinType::OCLClkEvent:
4133     case BuiltinType::OCLQueue:
4134     case BuiltinType::OCLReserveID:
4135 #define SVE_TYPE(Name, Id, SingletonId) \
4136     case BuiltinType::Id:
4137 #include "clang/Basic/AArch64SVEACLETypes.def"
4138 #define PPC_VECTOR_TYPE(Name, Id, Size) \
4139     case BuiltinType::Id:
4140 #include "clang/Basic/PPCTypes.def"
4141 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
4142 #include "clang/Basic/RISCVVTypes.def"
4143     case BuiltinType::BuiltinFn:
4144     case BuiltinType::NullPtr:
4145     case BuiltinType::IncompleteMatrixIdx:
4146     case BuiltinType::OMPArraySection:
4147     case BuiltinType::OMPArrayShaping:
4148     case BuiltinType::OMPIterator:
4149       return false;
4150     }
4151     llvm_unreachable("unknown builtin type");
4152 
4153   // Non-pointer types.
4154   case Type::Complex:
4155   case Type::LValueReference:
4156   case Type::RValueReference:
4157   case Type::ConstantArray:
4158   case Type::IncompleteArray:
4159   case Type::VariableArray:
4160   case Type::DependentSizedArray:
4161   case Type::DependentVector:
4162   case Type::DependentSizedExtVector:
4163   case Type::Vector:
4164   case Type::ExtVector:
4165   case Type::ConstantMatrix:
4166   case Type::DependentSizedMatrix:
4167   case Type::DependentAddressSpace:
4168   case Type::FunctionProto:
4169   case Type::FunctionNoProto:
4170   case Type::Record:
4171   case Type::DeducedTemplateSpecialization:
4172   case Type::Enum:
4173   case Type::InjectedClassName:
4174   case Type::PackExpansion:
4175   case Type::ObjCObject:
4176   case Type::ObjCInterface:
4177   case Type::Atomic:
4178   case Type::Pipe:
4179   case Type::BitInt:
4180   case Type::DependentBitInt:
4181     return false;
4182   }
4183   llvm_unreachable("bad type kind!");
4184 }
4185 
4186 llvm::Optional<NullabilityKind>
4187 AttributedType::getImmediateNullability() const {
4188   if (getAttrKind() == attr::TypeNonNull)
4189     return NullabilityKind::NonNull;
4190   if (getAttrKind() == attr::TypeNullable)
4191     return NullabilityKind::Nullable;
4192   if (getAttrKind() == attr::TypeNullUnspecified)
4193     return NullabilityKind::Unspecified;
4194   if (getAttrKind() == attr::TypeNullableResult)
4195     return NullabilityKind::NullableResult;
4196   return None;
4197 }
4198 
4199 Optional<NullabilityKind> AttributedType::stripOuterNullability(QualType &T) {
4200   QualType AttrTy = T;
4201   if (auto MacroTy = dyn_cast<MacroQualifiedType>(T))
4202     AttrTy = MacroTy->getUnderlyingType();
4203 
4204   if (auto attributed = dyn_cast<AttributedType>(AttrTy)) {
4205     if (auto nullability = attributed->getImmediateNullability()) {
4206       T = attributed->getModifiedType();
4207       return nullability;
4208     }
4209   }
4210 
4211   return None;
4212 }
4213 
4214 bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
4215   const auto *objcPtr = getAs<ObjCObjectPointerType>();
4216   if (!objcPtr)
4217     return false;
4218 
4219   if (objcPtr->isObjCIdType()) {
4220     // id is always okay.
4221     return true;
4222   }
4223 
4224   // Blocks are NSObjects.
4225   if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
4226     if (iface->getIdentifier() != ctx.getNSObjectName())
4227       return false;
4228 
4229     // Continue to check qualifiers, below.
4230   } else if (objcPtr->isObjCQualifiedIdType()) {
4231     // Continue to check qualifiers, below.
4232   } else {
4233     return false;
4234   }
4235 
4236   // Check protocol qualifiers.
4237   for (ObjCProtocolDecl *proto : objcPtr->quals()) {
4238     // Blocks conform to NSObject and NSCopying.
4239     if (proto->getIdentifier() != ctx.getNSObjectName() &&
4240         proto->getIdentifier() != ctx.getNSCopyingName())
4241       return false;
4242   }
4243 
4244   return true;
4245 }
4246 
4247 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
4248   if (isObjCARCImplicitlyUnretainedType())
4249     return Qualifiers::OCL_ExplicitNone;
4250   return Qualifiers::OCL_Strong;
4251 }
4252 
4253 bool Type::isObjCARCImplicitlyUnretainedType() const {
4254   assert(isObjCLifetimeType() &&
4255          "cannot query implicit lifetime for non-inferrable type");
4256 
4257   const Type *canon = getCanonicalTypeInternal().getTypePtr();
4258 
4259   // Walk down to the base type.  We don't care about qualifiers for this.
4260   while (const auto *array = dyn_cast<ArrayType>(canon))
4261     canon = array->getElementType().getTypePtr();
4262 
4263   if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) {
4264     // Class and Class<Protocol> don't require retention.
4265     if (opt->getObjectType()->isObjCClass())
4266       return true;
4267   }
4268 
4269   return false;
4270 }
4271 
4272 bool Type::isObjCNSObjectType() const {
4273   const Type *cur = this;
4274   while (true) {
4275     if (const auto *typedefType = dyn_cast<TypedefType>(cur))
4276       return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
4277 
4278     // Single-step desugar until we run out of sugar.
4279     QualType next = cur->getLocallyUnqualifiedSingleStepDesugaredType();
4280     if (next.getTypePtr() == cur) return false;
4281     cur = next.getTypePtr();
4282   }
4283 }
4284 
4285 bool Type::isObjCIndependentClassType() const {
4286   if (const auto *typedefType = dyn_cast<TypedefType>(this))
4287     return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
4288   return false;
4289 }
4290 
4291 bool Type::isObjCRetainableType() const {
4292   return isObjCObjectPointerType() ||
4293          isBlockPointerType() ||
4294          isObjCNSObjectType();
4295 }
4296 
4297 bool Type::isObjCIndirectLifetimeType() const {
4298   if (isObjCLifetimeType())
4299     return true;
4300   if (const auto *OPT = getAs<PointerType>())
4301     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4302   if (const auto *Ref = getAs<ReferenceType>())
4303     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4304   if (const auto *MemPtr = getAs<MemberPointerType>())
4305     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4306   return false;
4307 }
4308 
4309 /// Returns true if objects of this type have lifetime semantics under
4310 /// ARC.
4311 bool Type::isObjCLifetimeType() const {
4312   const Type *type = this;
4313   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4314     type = array->getElementType().getTypePtr();
4315   return type->isObjCRetainableType();
4316 }
4317 
4318 /// Determine whether the given type T is a "bridgable" Objective-C type,
4319 /// which is either an Objective-C object pointer type or an
4320 bool Type::isObjCARCBridgableType() const {
4321   return isObjCObjectPointerType() || isBlockPointerType();
4322 }
4323 
4324 /// Determine whether the given type T is a "bridgeable" C type.
4325 bool Type::isCARCBridgableType() const {
4326   const auto *Pointer = getAs<PointerType>();
4327   if (!Pointer)
4328     return false;
4329 
4330   QualType Pointee = Pointer->getPointeeType();
4331   return Pointee->isVoidType() || Pointee->isRecordType();
4332 }
4333 
4334 /// Check if the specified type is the CUDA device builtin surface type.
4335 bool Type::isCUDADeviceBuiltinSurfaceType() const {
4336   if (const auto *RT = getAs<RecordType>())
4337     return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>();
4338   return false;
4339 }
4340 
4341 /// Check if the specified type is the CUDA device builtin texture type.
4342 bool Type::isCUDADeviceBuiltinTextureType() const {
4343   if (const auto *RT = getAs<RecordType>())
4344     return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>();
4345   return false;
4346 }
4347 
4348 bool Type::hasSizedVLAType() const {
4349   if (!isVariablyModifiedType()) return false;
4350 
4351   if (const auto *ptr = getAs<PointerType>())
4352     return ptr->getPointeeType()->hasSizedVLAType();
4353   if (const auto *ref = getAs<ReferenceType>())
4354     return ref->getPointeeType()->hasSizedVLAType();
4355   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
4356     if (isa<VariableArrayType>(arr) &&
4357         cast<VariableArrayType>(arr)->getSizeExpr())
4358       return true;
4359 
4360     return arr->getElementType()->hasSizedVLAType();
4361   }
4362 
4363   return false;
4364 }
4365 
4366 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
4367   switch (type.getObjCLifetime()) {
4368   case Qualifiers::OCL_None:
4369   case Qualifiers::OCL_ExplicitNone:
4370   case Qualifiers::OCL_Autoreleasing:
4371     break;
4372 
4373   case Qualifiers::OCL_Strong:
4374     return DK_objc_strong_lifetime;
4375   case Qualifiers::OCL_Weak:
4376     return DK_objc_weak_lifetime;
4377   }
4378 
4379   if (const auto *RT =
4380           type->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
4381     const RecordDecl *RD = RT->getDecl();
4382     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4383       /// Check if this is a C++ object with a non-trivial destructor.
4384       if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
4385         return DK_cxx_destructor;
4386     } else {
4387       /// Check if this is a C struct that is non-trivial to destroy or an array
4388       /// that contains such a struct.
4389       if (RD->isNonTrivialToPrimitiveDestroy())
4390         return DK_nontrivial_c_struct;
4391     }
4392   }
4393 
4394   return DK_none;
4395 }
4396 
4397 CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
4398   return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
4399 }
4400 
4401 void clang::FixedPointValueToString(SmallVectorImpl<char> &Str,
4402                                     llvm::APSInt Val, unsigned Scale) {
4403   llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
4404                                    /*IsSaturated=*/false,
4405                                    /*HasUnsignedPadding=*/false);
4406   llvm::APFixedPoint(Val, FXSema).toString(Str);
4407 }
4408 
4409 AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4410                    TypeDependence ExtraDependence, QualType Canon,
4411                    ConceptDecl *TypeConstraintConcept,
4412                    ArrayRef<TemplateArgument> TypeConstraintArgs)
4413     : DeducedType(Auto, DeducedAsType, ExtraDependence, Canon) {
4414   AutoTypeBits.Keyword = (unsigned)Keyword;
4415   AutoTypeBits.NumArgs = TypeConstraintArgs.size();
4416   this->TypeConstraintConcept = TypeConstraintConcept;
4417   if (TypeConstraintConcept) {
4418     TemplateArgument *ArgBuffer = getArgBuffer();
4419     for (const TemplateArgument &Arg : TypeConstraintArgs) {
4420       addDependence(
4421           toSyntacticDependence(toTypeDependence(Arg.getDependence())));
4422 
4423       new (ArgBuffer++) TemplateArgument(Arg);
4424     }
4425   }
4426 }
4427 
4428 void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4429                       QualType Deduced, AutoTypeKeyword Keyword,
4430                       bool IsDependent, ConceptDecl *CD,
4431                       ArrayRef<TemplateArgument> Arguments) {
4432   ID.AddPointer(Deduced.getAsOpaquePtr());
4433   ID.AddInteger((unsigned)Keyword);
4434   ID.AddBoolean(IsDependent);
4435   ID.AddPointer(CD);
4436   for (const TemplateArgument &Arg : Arguments)
4437     Arg.Profile(ID, Context);
4438 }
4439