1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://www.codesourcery.com/public/cxx-abi/abi.html
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/ErrorHandling.h"
32 
33 #define MANGLE_CHECKER 0
34 
35 #if MANGLE_CHECKER
36 #include <cxxabi.h>
37 #endif
38 
39 using namespace clang;
40 
41 namespace {
42 
43 /// \brief Retrieve the declaration context that should be used when mangling
44 /// the given declaration.
45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46   // The ABI assumes that lambda closure types that occur within
47   // default arguments live in the context of the function. However, due to
48   // the way in which Clang parses and creates function declarations, this is
49   // not the case: the lambda closure type ends up living in the context
50   // where the function itself resides, because the function declaration itself
51   // had not yet been created. Fix the context here.
52   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53     if (RD->isLambda())
54       if (ParmVarDecl *ContextParam
55             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56         return ContextParam->getDeclContext();
57   }
58 
59   return D->getDeclContext();
60 }
61 
62 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63   return getEffectiveDeclContext(cast<Decl>(DC));
64 }
65 
66 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67   const DeclContext *DC = dyn_cast<DeclContext>(ND);
68   if (!DC)
69     DC = getEffectiveDeclContext(ND);
70   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71     const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72     if (isa<FunctionDecl>(Parent))
73       return dyn_cast<CXXRecordDecl>(DC);
74     DC = Parent;
75   }
76   return 0;
77 }
78 
79 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81     return ftd->getTemplatedDecl();
82 
83   return fn;
84 }
85 
86 static const NamedDecl *getStructor(const NamedDecl *decl) {
87   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88   return (fn ? getStructor(fn) : decl);
89 }
90 
91 static const unsigned UnknownArity = ~0U;
92 
93 class ItaniumMangleContext : public MangleContext {
94   llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95   unsigned Discriminator;
96   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97 
98 public:
99   explicit ItaniumMangleContext(ASTContext &Context,
100                                 DiagnosticsEngine &Diags)
101     : MangleContext(Context, Diags) { }
102 
103   uint64_t getAnonymousStructId(const TagDecl *TD) {
104     std::pair<llvm::DenseMap<const TagDecl *,
105       uint64_t>::iterator, bool> Result =
106       AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107     return Result.first->second;
108   }
109 
110   void startNewFunction() {
111     MangleContext::startNewFunction();
112     mangleInitDiscriminator();
113   }
114 
115   /// @name Mangler Entry Points
116   /// @{
117 
118   bool shouldMangleDeclName(const NamedDecl *D);
119   void mangleName(const NamedDecl *D, raw_ostream &);
120   void mangleThunk(const CXXMethodDecl *MD,
121                    const ThunkInfo &Thunk,
122                    raw_ostream &);
123   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124                           const ThisAdjustment &ThisAdjustment,
125                           raw_ostream &);
126   void mangleReferenceTemporary(const VarDecl *D,
127                                 raw_ostream &);
128   void mangleCXXVTable(const CXXRecordDecl *RD,
129                        raw_ostream &);
130   void mangleCXXVTT(const CXXRecordDecl *RD,
131                     raw_ostream &);
132   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133                            const CXXRecordDecl *Type,
134                            raw_ostream &);
135   void mangleCXXRTTI(QualType T, raw_ostream &);
136   void mangleCXXRTTIName(QualType T, raw_ostream &);
137   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138                      raw_ostream &);
139   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140                      raw_ostream &);
141 
142   void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143 
144   void mangleInitDiscriminator() {
145     Discriminator = 0;
146   }
147 
148   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149     // Lambda closure types with external linkage (indicated by a
150     // non-zero lambda mangling number) have their own numbering scheme, so
151     // they do not need a discriminator.
152     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153       if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154         return false;
155 
156     unsigned &discriminator = Uniquifier[ND];
157     if (!discriminator)
158       discriminator = ++Discriminator;
159     if (discriminator == 1)
160       return false;
161     disc = discriminator-2;
162     return true;
163   }
164   /// @}
165 };
166 
167 /// CXXNameMangler - Manage the mangling of a single name.
168 class CXXNameMangler {
169   ItaniumMangleContext &Context;
170   raw_ostream &Out;
171 
172   /// The "structor" is the top-level declaration being mangled, if
173   /// that's not a template specialization; otherwise it's the pattern
174   /// for that specialization.
175   const NamedDecl *Structor;
176   unsigned StructorType;
177 
178   /// SeqID - The next subsitution sequence number.
179   unsigned SeqID;
180 
181   class FunctionTypeDepthState {
182     unsigned Bits;
183 
184     enum { InResultTypeMask = 1 };
185 
186   public:
187     FunctionTypeDepthState() : Bits(0) {}
188 
189     /// The number of function types we're inside.
190     unsigned getDepth() const {
191       return Bits >> 1;
192     }
193 
194     /// True if we're in the return type of the innermost function type.
195     bool isInResultType() const {
196       return Bits & InResultTypeMask;
197     }
198 
199     FunctionTypeDepthState push() {
200       FunctionTypeDepthState tmp = *this;
201       Bits = (Bits & ~InResultTypeMask) + 2;
202       return tmp;
203     }
204 
205     void enterResultType() {
206       Bits |= InResultTypeMask;
207     }
208 
209     void leaveResultType() {
210       Bits &= ~InResultTypeMask;
211     }
212 
213     void pop(FunctionTypeDepthState saved) {
214       assert(getDepth() == saved.getDepth() + 1);
215       Bits = saved.Bits;
216     }
217 
218   } FunctionTypeDepth;
219 
220   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221 
222   ASTContext &getASTContext() const { return Context.getASTContext(); }
223 
224 public:
225   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226                  const NamedDecl *D = 0)
227     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228       SeqID(0) {
229     // These can't be mangled without a ctor type or dtor type.
230     assert(!D || (!isa<CXXDestructorDecl>(D) &&
231                   !isa<CXXConstructorDecl>(D)));
232   }
233   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234                  const CXXConstructorDecl *D, CXXCtorType Type)
235     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236       SeqID(0) { }
237   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238                  const CXXDestructorDecl *D, CXXDtorType Type)
239     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240       SeqID(0) { }
241 
242 #if MANGLE_CHECKER
243   ~CXXNameMangler() {
244     if (Out.str()[0] == '\01')
245       return;
246 
247     int status = 0;
248     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249     assert(status == 0 && "Could not demangle mangled name!");
250     free(result);
251   }
252 #endif
253   raw_ostream &getStream() { return Out; }
254 
255   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257   void mangleNumber(const llvm::APSInt &I);
258   void mangleNumber(int64_t Number);
259   void mangleFloat(const llvm::APFloat &F);
260   void mangleFunctionEncoding(const FunctionDecl *FD);
261   void mangleName(const NamedDecl *ND);
262   void mangleType(QualType T);
263   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264 
265 private:
266   bool mangleSubstitution(const NamedDecl *ND);
267   bool mangleSubstitution(QualType T);
268   bool mangleSubstitution(TemplateName Template);
269   bool mangleSubstitution(uintptr_t Ptr);
270 
271   void mangleExistingSubstitution(QualType type);
272   void mangleExistingSubstitution(TemplateName name);
273 
274   bool mangleStandardSubstitution(const NamedDecl *ND);
275 
276   void addSubstitution(const NamedDecl *ND) {
277     ND = cast<NamedDecl>(ND->getCanonicalDecl());
278 
279     addSubstitution(reinterpret_cast<uintptr_t>(ND));
280   }
281   void addSubstitution(QualType T);
282   void addSubstitution(TemplateName Template);
283   void addSubstitution(uintptr_t Ptr);
284 
285   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286                               NamedDecl *firstQualifierLookup,
287                               bool recursive = false);
288   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289                             NamedDecl *firstQualifierLookup,
290                             DeclarationName name,
291                             unsigned KnownArity = UnknownArity);
292 
293   void mangleName(const TemplateDecl *TD,
294                   const TemplateArgument *TemplateArgs,
295                   unsigned NumTemplateArgs);
296   void mangleUnqualifiedName(const NamedDecl *ND) {
297     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298   }
299   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300                              unsigned KnownArity);
301   void mangleUnscopedName(const NamedDecl *ND);
302   void mangleUnscopedTemplateName(const TemplateDecl *ND);
303   void mangleUnscopedTemplateName(TemplateName);
304   void mangleSourceName(const IdentifierInfo *II);
305   void mangleLocalName(const NamedDecl *ND);
306   void mangleLambda(const CXXRecordDecl *Lambda);
307   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308                         bool NoFunction=false);
309   void mangleNestedName(const TemplateDecl *TD,
310                         const TemplateArgument *TemplateArgs,
311                         unsigned NumTemplateArgs);
312   void manglePrefix(NestedNameSpecifier *qualifier);
313   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314   void manglePrefix(QualType type);
315   void mangleTemplatePrefix(const TemplateDecl *ND);
316   void mangleTemplatePrefix(TemplateName Template);
317   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318   void mangleQualifiers(Qualifiers Quals);
319   void mangleRefQualifier(RefQualifierKind RefQualifier);
320 
321   void mangleObjCMethodName(const ObjCMethodDecl *MD);
322 
323   // Declare manglers for every type class.
324 #define ABSTRACT_TYPE(CLASS, PARENT)
325 #define NON_CANONICAL_TYPE(CLASS, PARENT)
326 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327 #include "clang/AST/TypeNodes.def"
328 
329   void mangleType(const TagType*);
330   void mangleType(TemplateName);
331   void mangleBareFunctionType(const FunctionType *T,
332                               bool MangleReturnType);
333   void mangleNeonVectorType(const VectorType *T);
334 
335   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336   void mangleMemberExpr(const Expr *base, bool isArrow,
337                         NestedNameSpecifier *qualifier,
338                         NamedDecl *firstQualifierLookup,
339                         DeclarationName name,
340                         unsigned knownArity);
341   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342   void mangleCXXCtorType(CXXCtorType T);
343   void mangleCXXDtorType(CXXDtorType T);
344 
345   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346   void mangleTemplateArgs(TemplateName Template,
347                           const TemplateArgument *TemplateArgs,
348                           unsigned NumTemplateArgs);
349   void mangleTemplateArgs(const TemplateParameterList &PL,
350                           const TemplateArgument *TemplateArgs,
351                           unsigned NumTemplateArgs);
352   void mangleTemplateArgs(const TemplateParameterList &PL,
353                           const TemplateArgumentList &AL);
354   void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355   void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356                                     unsigned numArgs);
357 
358   void mangleTemplateParameter(unsigned Index);
359 
360   void mangleFunctionParam(const ParmVarDecl *parm);
361 };
362 
363 }
364 
365 static bool isInCLinkageSpecification(const Decl *D) {
366   D = D->getCanonicalDecl();
367   for (const DeclContext *DC = getEffectiveDeclContext(D);
368        !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370       return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371   }
372 
373   return false;
374 }
375 
376 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377   // In C, functions with no attributes never need to be mangled. Fastpath them.
378   if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
379     return false;
380 
381   // Any decl can be declared with __asm("foo") on it, and this takes precedence
382   // over all other naming in the .o file.
383   if (D->hasAttr<AsmLabelAttr>())
384     return true;
385 
386   // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387   // (always) as does passing a C++ member function and a function
388   // whose name is not a simple identifier.
389   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390   if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391              !FD->getDeclName().isIdentifier()))
392     return true;
393 
394   // Otherwise, no mangling is done outside C++ mode.
395   if (!getASTContext().getLangOptions().CPlusPlus)
396     return false;
397 
398   // Variables at global scope with non-internal linkage are not mangled
399   if (!FD) {
400     const DeclContext *DC = getEffectiveDeclContext(D);
401     // Check for extern variable declared locally.
402     if (DC->isFunctionOrMethod() && D->hasLinkage())
403       while (!DC->isNamespace() && !DC->isTranslationUnit())
404         DC = getEffectiveParentContext(DC);
405     if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406       return false;
407   }
408 
409   // Class members are always mangled.
410   if (getEffectiveDeclContext(D)->isRecord())
411     return true;
412 
413   // C functions and "main" are not mangled.
414   if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415     return false;
416 
417   return true;
418 }
419 
420 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421   // Any decl can be declared with __asm("foo") on it, and this takes precedence
422   // over all other naming in the .o file.
423   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424     // If we have an asm name, then we use it as the mangling.
425 
426     // Adding the prefix can cause problems when one file has a "foo" and
427     // another has a "\01foo". That is known to happen on ELF with the
428     // tricks normally used for producing aliases (PR9177). Fortunately the
429     // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430     // marker.  We also avoid adding the marker if this is an alias for an
431     // LLVM intrinsic.
432     StringRef UserLabelPrefix =
433       getASTContext().getTargetInfo().getUserLabelPrefix();
434     if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435       Out << '\01';  // LLVM IR Marker for __asm("foo")
436 
437     Out << ALA->getLabel();
438     return;
439   }
440 
441   // <mangled-name> ::= _Z <encoding>
442   //            ::= <data name>
443   //            ::= <special-name>
444   Out << Prefix;
445   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446     mangleFunctionEncoding(FD);
447   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448     mangleName(VD);
449   else
450     mangleName(cast<FieldDecl>(D));
451 }
452 
453 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454   // <encoding> ::= <function name> <bare-function-type>
455   mangleName(FD);
456 
457   // Don't mangle in the type if this isn't a decl we should typically mangle.
458   if (!Context.shouldMangleDeclName(FD))
459     return;
460 
461   // Whether the mangling of a function type includes the return type depends on
462   // the context and the nature of the function. The rules for deciding whether
463   // the return type is included are:
464   //
465   //   1. Template functions (names or types) have return types encoded, with
466   //   the exceptions listed below.
467   //   2. Function types not appearing as part of a function name mangling,
468   //   e.g. parameters, pointer types, etc., have return type encoded, with the
469   //   exceptions listed below.
470   //   3. Non-template function names do not have return types encoded.
471   //
472   // The exceptions mentioned in (1) and (2) above, for which the return type is
473   // never included, are
474   //   1. Constructors.
475   //   2. Destructors.
476   //   3. Conversion operator functions, e.g. operator int.
477   bool MangleReturnType = false;
478   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480           isa<CXXConversionDecl>(FD)))
481       MangleReturnType = true;
482 
483     // Mangle the type of the primary template.
484     FD = PrimaryTemplate->getTemplatedDecl();
485   }
486 
487   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488                          MangleReturnType);
489 }
490 
491 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492   while (isa<LinkageSpecDecl>(DC)) {
493     DC = getEffectiveParentContext(DC);
494   }
495 
496   return DC;
497 }
498 
499 /// isStd - Return whether a given namespace is the 'std' namespace.
500 static bool isStd(const NamespaceDecl *NS) {
501   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502                                 ->isTranslationUnit())
503     return false;
504 
505   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506   return II && II->isStr("std");
507 }
508 
509 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
510 // namespace.
511 static bool isStdNamespace(const DeclContext *DC) {
512   if (!DC->isNamespace())
513     return false;
514 
515   return isStd(cast<NamespaceDecl>(DC));
516 }
517 
518 static const TemplateDecl *
519 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520   // Check if we have a function template.
521   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523       TemplateArgs = FD->getTemplateSpecializationArgs();
524       return TD;
525     }
526   }
527 
528   // Check if we have a class template.
529   if (const ClassTemplateSpecializationDecl *Spec =
530         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531     TemplateArgs = &Spec->getTemplateArgs();
532     return Spec->getSpecializedTemplate();
533   }
534 
535   return 0;
536 }
537 
538 void CXXNameMangler::mangleName(const NamedDecl *ND) {
539   //  <name> ::= <nested-name>
540   //         ::= <unscoped-name>
541   //         ::= <unscoped-template-name> <template-args>
542   //         ::= <local-name>
543   //
544   const DeclContext *DC = getEffectiveDeclContext(ND);
545 
546   // If this is an extern variable declared locally, the relevant DeclContext
547   // is that of the containing namespace, or the translation unit.
548   if (isa<FunctionDecl>(DC) && ND->hasLinkage())
549     while (!DC->isNamespace() && !DC->isTranslationUnit())
550       DC = getEffectiveParentContext(DC);
551   else if (GetLocalClassDecl(ND)) {
552     mangleLocalName(ND);
553     return;
554   }
555 
556   while (isa<LinkageSpecDecl>(DC))
557     DC = getEffectiveParentContext(DC);
558 
559   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
560     // Check if we have a template.
561     const TemplateArgumentList *TemplateArgs = 0;
562     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
563       mangleUnscopedTemplateName(TD);
564       TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
565       mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
566       return;
567     }
568 
569     mangleUnscopedName(ND);
570     return;
571   }
572 
573   if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
574     mangleLocalName(ND);
575     return;
576   }
577 
578   mangleNestedName(ND, DC);
579 }
580 void CXXNameMangler::mangleName(const TemplateDecl *TD,
581                                 const TemplateArgument *TemplateArgs,
582                                 unsigned NumTemplateArgs) {
583   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
584 
585   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
586     mangleUnscopedTemplateName(TD);
587     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
588     mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
589   } else {
590     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
591   }
592 }
593 
594 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
595   //  <unscoped-name> ::= <unqualified-name>
596   //                  ::= St <unqualified-name>   # ::std::
597   if (isStdNamespace(getEffectiveDeclContext(ND)))
598     Out << "St";
599 
600   mangleUnqualifiedName(ND);
601 }
602 
603 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
604   //     <unscoped-template-name> ::= <unscoped-name>
605   //                              ::= <substitution>
606   if (mangleSubstitution(ND))
607     return;
608 
609   // <template-template-param> ::= <template-param>
610   if (const TemplateTemplateParmDecl *TTP
611                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
612     mangleTemplateParameter(TTP->getIndex());
613     return;
614   }
615 
616   mangleUnscopedName(ND->getTemplatedDecl());
617   addSubstitution(ND);
618 }
619 
620 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
621   //     <unscoped-template-name> ::= <unscoped-name>
622   //                              ::= <substitution>
623   if (TemplateDecl *TD = Template.getAsTemplateDecl())
624     return mangleUnscopedTemplateName(TD);
625 
626   if (mangleSubstitution(Template))
627     return;
628 
629   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
630   assert(Dependent && "Not a dependent template name?");
631   if (const IdentifierInfo *Id = Dependent->getIdentifier())
632     mangleSourceName(Id);
633   else
634     mangleOperatorName(Dependent->getOperator(), UnknownArity);
635 
636   addSubstitution(Template);
637 }
638 
639 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
640   // ABI:
641   //   Floating-point literals are encoded using a fixed-length
642   //   lowercase hexadecimal string corresponding to the internal
643   //   representation (IEEE on Itanium), high-order bytes first,
644   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
645   //   on Itanium.
646   // The 'without leading zeroes' thing seems to be an editorial
647   // mistake; see the discussion on cxx-abi-dev beginning on
648   // 2012-01-16.
649 
650   // Our requirements here are just barely wierd enough to justify
651   // using a custom algorithm instead of post-processing APInt::toString().
652 
653   llvm::APInt valueBits = f.bitcastToAPInt();
654   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
655   assert(numCharacters != 0);
656 
657   // Allocate a buffer of the right number of characters.
658   llvm::SmallVector<char, 20> buffer;
659   buffer.set_size(numCharacters);
660 
661   // Fill the buffer left-to-right.
662   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
663     // The bit-index of the next hex digit.
664     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
665 
666     // Project out 4 bits starting at 'digitIndex'.
667     llvm::integerPart hexDigit
668       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
669     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
670     hexDigit &= 0xF;
671 
672     // Map that over to a lowercase hex digit.
673     static const char charForHex[16] = {
674       '0', '1', '2', '3', '4', '5', '6', '7',
675       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
676     };
677     buffer[stringIndex] = charForHex[hexDigit];
678   }
679 
680   Out.write(buffer.data(), numCharacters);
681 }
682 
683 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
684   if (Value.isSigned() && Value.isNegative()) {
685     Out << 'n';
686     Value.abs().print(Out, true);
687   } else
688     Value.print(Out, Value.isSigned());
689 }
690 
691 void CXXNameMangler::mangleNumber(int64_t Number) {
692   //  <number> ::= [n] <non-negative decimal integer>
693   if (Number < 0) {
694     Out << 'n';
695     Number = -Number;
696   }
697 
698   Out << Number;
699 }
700 
701 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
702   //  <call-offset>  ::= h <nv-offset> _
703   //                 ::= v <v-offset> _
704   //  <nv-offset>    ::= <offset number>        # non-virtual base override
705   //  <v-offset>     ::= <offset number> _ <virtual offset number>
706   //                      # virtual base override, with vcall offset
707   if (!Virtual) {
708     Out << 'h';
709     mangleNumber(NonVirtual);
710     Out << '_';
711     return;
712   }
713 
714   Out << 'v';
715   mangleNumber(NonVirtual);
716   Out << '_';
717   mangleNumber(Virtual);
718   Out << '_';
719 }
720 
721 void CXXNameMangler::manglePrefix(QualType type) {
722   if (const TemplateSpecializationType *TST =
723         type->getAs<TemplateSpecializationType>()) {
724     if (!mangleSubstitution(QualType(TST, 0))) {
725       mangleTemplatePrefix(TST->getTemplateName());
726 
727       // FIXME: GCC does not appear to mangle the template arguments when
728       // the template in question is a dependent template name. Should we
729       // emulate that badness?
730       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
731                          TST->getNumArgs());
732       addSubstitution(QualType(TST, 0));
733     }
734   } else if (const DependentTemplateSpecializationType *DTST
735                = type->getAs<DependentTemplateSpecializationType>()) {
736     TemplateName Template
737       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
738                                                  DTST->getIdentifier());
739     mangleTemplatePrefix(Template);
740 
741     // FIXME: GCC does not appear to mangle the template arguments when
742     // the template in question is a dependent template name. Should we
743     // emulate that badness?
744     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
745   } else {
746     // We use the QualType mangle type variant here because it handles
747     // substitutions.
748     mangleType(type);
749   }
750 }
751 
752 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
753 ///
754 /// \param firstQualifierLookup - the entity found by unqualified lookup
755 ///   for the first name in the qualifier, if this is for a member expression
756 /// \param recursive - true if this is being called recursively,
757 ///   i.e. if there is more prefix "to the right".
758 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
759                                             NamedDecl *firstQualifierLookup,
760                                             bool recursive) {
761 
762   // x, ::x
763   // <unresolved-name> ::= [gs] <base-unresolved-name>
764 
765   // T::x / decltype(p)::x
766   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
767 
768   // T::N::x /decltype(p)::N::x
769   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
770   //                       <base-unresolved-name>
771 
772   // A::x, N::y, A<T>::z; "gs" means leading "::"
773   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
774   //                       <base-unresolved-name>
775 
776   switch (qualifier->getKind()) {
777   case NestedNameSpecifier::Global:
778     Out << "gs";
779 
780     // We want an 'sr' unless this is the entire NNS.
781     if (recursive)
782       Out << "sr";
783 
784     // We never want an 'E' here.
785     return;
786 
787   case NestedNameSpecifier::Namespace:
788     if (qualifier->getPrefix())
789       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
790                              /*recursive*/ true);
791     else
792       Out << "sr";
793     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
794     break;
795   case NestedNameSpecifier::NamespaceAlias:
796     if (qualifier->getPrefix())
797       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
798                              /*recursive*/ true);
799     else
800       Out << "sr";
801     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
802     break;
803 
804   case NestedNameSpecifier::TypeSpec:
805   case NestedNameSpecifier::TypeSpecWithTemplate: {
806     const Type *type = qualifier->getAsType();
807 
808     // We only want to use an unresolved-type encoding if this is one of:
809     //   - a decltype
810     //   - a template type parameter
811     //   - a template template parameter with arguments
812     // In all of these cases, we should have no prefix.
813     if (qualifier->getPrefix()) {
814       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
815                              /*recursive*/ true);
816     } else {
817       // Otherwise, all the cases want this.
818       Out << "sr";
819     }
820 
821     // Only certain other types are valid as prefixes;  enumerate them.
822     switch (type->getTypeClass()) {
823     case Type::Builtin:
824     case Type::Complex:
825     case Type::Pointer:
826     case Type::BlockPointer:
827     case Type::LValueReference:
828     case Type::RValueReference:
829     case Type::MemberPointer:
830     case Type::ConstantArray:
831     case Type::IncompleteArray:
832     case Type::VariableArray:
833     case Type::DependentSizedArray:
834     case Type::DependentSizedExtVector:
835     case Type::Vector:
836     case Type::ExtVector:
837     case Type::FunctionProto:
838     case Type::FunctionNoProto:
839     case Type::Enum:
840     case Type::Paren:
841     case Type::Elaborated:
842     case Type::Attributed:
843     case Type::Auto:
844     case Type::PackExpansion:
845     case Type::ObjCObject:
846     case Type::ObjCInterface:
847     case Type::ObjCObjectPointer:
848     case Type::Atomic:
849       llvm_unreachable("type is illegal as a nested name specifier");
850 
851     case Type::SubstTemplateTypeParmPack:
852       // FIXME: not clear how to mangle this!
853       // template <class T...> class A {
854       //   template <class U...> void foo(decltype(T::foo(U())) x...);
855       // };
856       Out << "_SUBSTPACK_";
857       break;
858 
859     // <unresolved-type> ::= <template-param>
860     //                   ::= <decltype>
861     //                   ::= <template-template-param> <template-args>
862     // (this last is not official yet)
863     case Type::TypeOfExpr:
864     case Type::TypeOf:
865     case Type::Decltype:
866     case Type::TemplateTypeParm:
867     case Type::UnaryTransform:
868     case Type::SubstTemplateTypeParm:
869     unresolvedType:
870       assert(!qualifier->getPrefix());
871 
872       // We only get here recursively if we're followed by identifiers.
873       if (recursive) Out << 'N';
874 
875       // This seems to do everything we want.  It's not really
876       // sanctioned for a substituted template parameter, though.
877       mangleType(QualType(type, 0));
878 
879       // We never want to print 'E' directly after an unresolved-type,
880       // so we return directly.
881       return;
882 
883     case Type::Typedef:
884       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
885       break;
886 
887     case Type::UnresolvedUsing:
888       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
889                          ->getIdentifier());
890       break;
891 
892     case Type::Record:
893       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
894       break;
895 
896     case Type::TemplateSpecialization: {
897       const TemplateSpecializationType *tst
898         = cast<TemplateSpecializationType>(type);
899       TemplateName name = tst->getTemplateName();
900       switch (name.getKind()) {
901       case TemplateName::Template:
902       case TemplateName::QualifiedTemplate: {
903         TemplateDecl *temp = name.getAsTemplateDecl();
904 
905         // If the base is a template template parameter, this is an
906         // unresolved type.
907         assert(temp && "no template for template specialization type");
908         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
909 
910         mangleSourceName(temp->getIdentifier());
911         break;
912       }
913 
914       case TemplateName::OverloadedTemplate:
915       case TemplateName::DependentTemplate:
916         llvm_unreachable("invalid base for a template specialization type");
917 
918       case TemplateName::SubstTemplateTemplateParm: {
919         SubstTemplateTemplateParmStorage *subst
920           = name.getAsSubstTemplateTemplateParm();
921         mangleExistingSubstitution(subst->getReplacement());
922         break;
923       }
924 
925       case TemplateName::SubstTemplateTemplateParmPack: {
926         // FIXME: not clear how to mangle this!
927         // template <template <class U> class T...> class A {
928         //   template <class U...> void foo(decltype(T<U>::foo) x...);
929         // };
930         Out << "_SUBSTPACK_";
931         break;
932       }
933       }
934 
935       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
936       break;
937     }
938 
939     case Type::InjectedClassName:
940       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
941                          ->getIdentifier());
942       break;
943 
944     case Type::DependentName:
945       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
946       break;
947 
948     case Type::DependentTemplateSpecialization: {
949       const DependentTemplateSpecializationType *tst
950         = cast<DependentTemplateSpecializationType>(type);
951       mangleSourceName(tst->getIdentifier());
952       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
953       break;
954     }
955     }
956     break;
957   }
958 
959   case NestedNameSpecifier::Identifier:
960     // Member expressions can have these without prefixes.
961     if (qualifier->getPrefix()) {
962       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
963                              /*recursive*/ true);
964     } else if (firstQualifierLookup) {
965 
966       // Try to make a proper qualifier out of the lookup result, and
967       // then just recurse on that.
968       NestedNameSpecifier *newQualifier;
969       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
970         QualType type = getASTContext().getTypeDeclType(typeDecl);
971 
972         // Pretend we had a different nested name specifier.
973         newQualifier = NestedNameSpecifier::Create(getASTContext(),
974                                                    /*prefix*/ 0,
975                                                    /*template*/ false,
976                                                    type.getTypePtr());
977       } else if (NamespaceDecl *nspace =
978                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
979         newQualifier = NestedNameSpecifier::Create(getASTContext(),
980                                                    /*prefix*/ 0,
981                                                    nspace);
982       } else if (NamespaceAliasDecl *alias =
983                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
984         newQualifier = NestedNameSpecifier::Create(getASTContext(),
985                                                    /*prefix*/ 0,
986                                                    alias);
987       } else {
988         // No sensible mangling to do here.
989         newQualifier = 0;
990       }
991 
992       if (newQualifier)
993         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
994 
995     } else {
996       Out << "sr";
997     }
998 
999     mangleSourceName(qualifier->getAsIdentifier());
1000     break;
1001   }
1002 
1003   // If this was the innermost part of the NNS, and we fell out to
1004   // here, append an 'E'.
1005   if (!recursive)
1006     Out << 'E';
1007 }
1008 
1009 /// Mangle an unresolved-name, which is generally used for names which
1010 /// weren't resolved to specific entities.
1011 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1012                                           NamedDecl *firstQualifierLookup,
1013                                           DeclarationName name,
1014                                           unsigned knownArity) {
1015   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1016   mangleUnqualifiedName(0, name, knownArity);
1017 }
1018 
1019 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1020   assert(RD->isAnonymousStructOrUnion() &&
1021          "Expected anonymous struct or union!");
1022 
1023   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1024        I != E; ++I) {
1025     const FieldDecl *FD = *I;
1026 
1027     if (FD->getIdentifier())
1028       return FD;
1029 
1030     if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
1031       if (const FieldDecl *NamedDataMember =
1032           FindFirstNamedDataMember(RT->getDecl()))
1033         return NamedDataMember;
1034     }
1035   }
1036 
1037   // We didn't find a named data member.
1038   return 0;
1039 }
1040 
1041 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1042                                            DeclarationName Name,
1043                                            unsigned KnownArity) {
1044   //  <unqualified-name> ::= <operator-name>
1045   //                     ::= <ctor-dtor-name>
1046   //                     ::= <source-name>
1047   switch (Name.getNameKind()) {
1048   case DeclarationName::Identifier: {
1049     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1050       // We must avoid conflicts between internally- and externally-
1051       // linked variable and function declaration names in the same TU:
1052       //   void test() { extern void foo(); }
1053       //   static void foo();
1054       // This naming convention is the same as that followed by GCC,
1055       // though it shouldn't actually matter.
1056       if (ND && ND->getLinkage() == InternalLinkage &&
1057           getEffectiveDeclContext(ND)->isFileContext())
1058         Out << 'L';
1059 
1060       mangleSourceName(II);
1061       break;
1062     }
1063 
1064     // Otherwise, an anonymous entity.  We must have a declaration.
1065     assert(ND && "mangling empty name without declaration");
1066 
1067     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1068       if (NS->isAnonymousNamespace()) {
1069         // This is how gcc mangles these names.
1070         Out << "12_GLOBAL__N_1";
1071         break;
1072       }
1073     }
1074 
1075     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1076       // We must have an anonymous union or struct declaration.
1077       const RecordDecl *RD =
1078         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1079 
1080       // Itanium C++ ABI 5.1.2:
1081       //
1082       //   For the purposes of mangling, the name of an anonymous union is
1083       //   considered to be the name of the first named data member found by a
1084       //   pre-order, depth-first, declaration-order walk of the data members of
1085       //   the anonymous union. If there is no such data member (i.e., if all of
1086       //   the data members in the union are unnamed), then there is no way for
1087       //   a program to refer to the anonymous union, and there is therefore no
1088       //   need to mangle its name.
1089       const FieldDecl *FD = FindFirstNamedDataMember(RD);
1090 
1091       // It's actually possible for various reasons for us to get here
1092       // with an empty anonymous struct / union.  Fortunately, it
1093       // doesn't really matter what name we generate.
1094       if (!FD) break;
1095       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1096 
1097       mangleSourceName(FD->getIdentifier());
1098       break;
1099     }
1100 
1101     // We must have an anonymous struct.
1102     const TagDecl *TD = cast<TagDecl>(ND);
1103     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1104       assert(TD->getDeclContext() == D->getDeclContext() &&
1105              "Typedef should not be in another decl context!");
1106       assert(D->getDeclName().getAsIdentifierInfo() &&
1107              "Typedef was not named!");
1108       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1109       break;
1110     }
1111 
1112     // <unnamed-type-name> ::= <closure-type-name>
1113     //
1114     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1115     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1116     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1117       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1118         mangleLambda(Record);
1119         break;
1120       }
1121     }
1122 
1123     // Get a unique id for the anonymous struct.
1124     uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1125 
1126     // Mangle it as a source name in the form
1127     // [n] $_<id>
1128     // where n is the length of the string.
1129     SmallString<8> Str;
1130     Str += "$_";
1131     Str += llvm::utostr(AnonStructId);
1132 
1133     Out << Str.size();
1134     Out << Str.str();
1135     break;
1136   }
1137 
1138   case DeclarationName::ObjCZeroArgSelector:
1139   case DeclarationName::ObjCOneArgSelector:
1140   case DeclarationName::ObjCMultiArgSelector:
1141     llvm_unreachable("Can't mangle Objective-C selector names here!");
1142 
1143   case DeclarationName::CXXConstructorName:
1144     if (ND == Structor)
1145       // If the named decl is the C++ constructor we're mangling, use the type
1146       // we were given.
1147       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1148     else
1149       // Otherwise, use the complete constructor name. This is relevant if a
1150       // class with a constructor is declared within a constructor.
1151       mangleCXXCtorType(Ctor_Complete);
1152     break;
1153 
1154   case DeclarationName::CXXDestructorName:
1155     if (ND == Structor)
1156       // If the named decl is the C++ destructor we're mangling, use the type we
1157       // were given.
1158       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1159     else
1160       // Otherwise, use the complete destructor name. This is relevant if a
1161       // class with a destructor is declared within a destructor.
1162       mangleCXXDtorType(Dtor_Complete);
1163     break;
1164 
1165   case DeclarationName::CXXConversionFunctionName:
1166     // <operator-name> ::= cv <type>    # (cast)
1167     Out << "cv";
1168     mangleType(Name.getCXXNameType());
1169     break;
1170 
1171   case DeclarationName::CXXOperatorName: {
1172     unsigned Arity;
1173     if (ND) {
1174       Arity = cast<FunctionDecl>(ND)->getNumParams();
1175 
1176       // If we have a C++ member function, we need to include the 'this' pointer.
1177       // FIXME: This does not make sense for operators that are static, but their
1178       // names stay the same regardless of the arity (operator new for instance).
1179       if (isa<CXXMethodDecl>(ND))
1180         Arity++;
1181     } else
1182       Arity = KnownArity;
1183 
1184     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1185     break;
1186   }
1187 
1188   case DeclarationName::CXXLiteralOperatorName:
1189     // FIXME: This mangling is not yet official.
1190     Out << "li";
1191     mangleSourceName(Name.getCXXLiteralIdentifier());
1192     break;
1193 
1194   case DeclarationName::CXXUsingDirective:
1195     llvm_unreachable("Can't mangle a using directive name!");
1196   }
1197 }
1198 
1199 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1200   // <source-name> ::= <positive length number> <identifier>
1201   // <number> ::= [n] <non-negative decimal integer>
1202   // <identifier> ::= <unqualified source code identifier>
1203   Out << II->getLength() << II->getName();
1204 }
1205 
1206 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1207                                       const DeclContext *DC,
1208                                       bool NoFunction) {
1209   // <nested-name>
1210   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1211   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1212   //       <template-args> E
1213 
1214   Out << 'N';
1215   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1216     mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1217     mangleRefQualifier(Method->getRefQualifier());
1218   }
1219 
1220   // Check if we have a template.
1221   const TemplateArgumentList *TemplateArgs = 0;
1222   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1223     mangleTemplatePrefix(TD);
1224     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1225     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1226   }
1227   else {
1228     manglePrefix(DC, NoFunction);
1229     mangleUnqualifiedName(ND);
1230   }
1231 
1232   Out << 'E';
1233 }
1234 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1235                                       const TemplateArgument *TemplateArgs,
1236                                       unsigned NumTemplateArgs) {
1237   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1238 
1239   Out << 'N';
1240 
1241   mangleTemplatePrefix(TD);
1242   TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1243   mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1244 
1245   Out << 'E';
1246 }
1247 
1248 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1249   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1250   //              := Z <function encoding> E s [<discriminator>]
1251   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1252   //                 _ <entity name>
1253   // <discriminator> := _ <non-negative number>
1254   const DeclContext *DC = getEffectiveDeclContext(ND);
1255   if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1256     // Don't add objc method name mangling to locally declared function
1257     mangleUnqualifiedName(ND);
1258     return;
1259   }
1260 
1261   Out << 'Z';
1262 
1263   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1264    mangleObjCMethodName(MD);
1265   } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1266     mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1267     Out << 'E';
1268 
1269     // The parameter number is omitted for the last parameter, 0 for the
1270     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1271     // <entity name> will of course contain a <closure-type-name>: Its
1272     // numbering will be local to the particular argument in which it appears
1273     // -- other default arguments do not affect its encoding.
1274     bool SkipDiscriminator = false;
1275     if (RD->isLambda()) {
1276       if (const ParmVarDecl *Parm
1277                  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1278         if (const FunctionDecl *Func
1279               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1280           Out << 'd';
1281           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1282           if (Num > 1)
1283             mangleNumber(Num - 2);
1284           Out << '_';
1285           SkipDiscriminator = true;
1286         }
1287       }
1288     }
1289 
1290     // Mangle the name relative to the closest enclosing function.
1291     if (ND == RD) // equality ok because RD derived from ND above
1292       mangleUnqualifiedName(ND);
1293     else
1294       mangleNestedName(ND, DC, true /*NoFunction*/);
1295 
1296     if (!SkipDiscriminator) {
1297       unsigned disc;
1298       if (Context.getNextDiscriminator(RD, disc)) {
1299         if (disc < 10)
1300           Out << '_' << disc;
1301         else
1302           Out << "__" << disc << '_';
1303       }
1304     }
1305 
1306     return;
1307   }
1308   else
1309     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1310 
1311   Out << 'E';
1312   mangleUnqualifiedName(ND);
1313 }
1314 
1315 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1316   // If the context of a closure type is an initializer for a class member
1317   // (static or nonstatic), it is encoded in a qualified name with a final
1318   // <prefix> of the form:
1319   //
1320   //   <data-member-prefix> := <member source-name> M
1321   //
1322   // Technically, the data-member-prefix is part of the <prefix>. However,
1323   // since a closure type will always be mangled with a prefix, it's easier
1324   // to emit that last part of the prefix here.
1325   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1326     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1327         Context->getDeclContext()->isRecord()) {
1328       if (const IdentifierInfo *Name
1329             = cast<NamedDecl>(Context)->getIdentifier()) {
1330         mangleSourceName(Name);
1331         Out << 'M';
1332       }
1333     }
1334   }
1335 
1336   Out << "Ul";
1337   DeclarationName Name
1338     = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1339   const FunctionProtoType *Proto
1340     = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1341         getAs<FunctionProtoType>();
1342   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1343   Out << "E";
1344 
1345   // The number is omitted for the first closure type with a given
1346   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1347   // (in lexical order) with that same <lambda-sig> and context.
1348   //
1349   // The AST keeps track of the number for us.
1350   unsigned Number = Lambda->getLambdaManglingNumber();
1351   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1352   if (Number > 1)
1353     mangleNumber(Number - 2);
1354   Out << '_';
1355 }
1356 
1357 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1358   switch (qualifier->getKind()) {
1359   case NestedNameSpecifier::Global:
1360     // nothing
1361     return;
1362 
1363   case NestedNameSpecifier::Namespace:
1364     mangleName(qualifier->getAsNamespace());
1365     return;
1366 
1367   case NestedNameSpecifier::NamespaceAlias:
1368     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1369     return;
1370 
1371   case NestedNameSpecifier::TypeSpec:
1372   case NestedNameSpecifier::TypeSpecWithTemplate:
1373     manglePrefix(QualType(qualifier->getAsType(), 0));
1374     return;
1375 
1376   case NestedNameSpecifier::Identifier:
1377     // Member expressions can have these without prefixes, but that
1378     // should end up in mangleUnresolvedPrefix instead.
1379     assert(qualifier->getPrefix());
1380     manglePrefix(qualifier->getPrefix());
1381 
1382     mangleSourceName(qualifier->getAsIdentifier());
1383     return;
1384   }
1385 
1386   llvm_unreachable("unexpected nested name specifier");
1387 }
1388 
1389 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1390   //  <prefix> ::= <prefix> <unqualified-name>
1391   //           ::= <template-prefix> <template-args>
1392   //           ::= <template-param>
1393   //           ::= # empty
1394   //           ::= <substitution>
1395 
1396   while (isa<LinkageSpecDecl>(DC))
1397     DC = getEffectiveParentContext(DC);
1398 
1399   if (DC->isTranslationUnit())
1400     return;
1401 
1402   if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1403     manglePrefix(getEffectiveParentContext(DC), NoFunction);
1404     SmallString<64> Name;
1405     llvm::raw_svector_ostream NameStream(Name);
1406     Context.mangleBlock(Block, NameStream);
1407     NameStream.flush();
1408     Out << Name.size() << Name;
1409     return;
1410   }
1411 
1412   const NamedDecl *ND = cast<NamedDecl>(DC);
1413   if (mangleSubstitution(ND))
1414     return;
1415 
1416   // Check if we have a template.
1417   const TemplateArgumentList *TemplateArgs = 0;
1418   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1419     mangleTemplatePrefix(TD);
1420     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1421     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1422   }
1423   else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1424     return;
1425   else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1426     mangleObjCMethodName(Method);
1427   else {
1428     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1429     mangleUnqualifiedName(ND);
1430   }
1431 
1432   addSubstitution(ND);
1433 }
1434 
1435 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1436   // <template-prefix> ::= <prefix> <template unqualified-name>
1437   //                   ::= <template-param>
1438   //                   ::= <substitution>
1439   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1440     return mangleTemplatePrefix(TD);
1441 
1442   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1443     manglePrefix(Qualified->getQualifier());
1444 
1445   if (OverloadedTemplateStorage *Overloaded
1446                                       = Template.getAsOverloadedTemplate()) {
1447     mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1448                           UnknownArity);
1449     return;
1450   }
1451 
1452   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1453   assert(Dependent && "Unknown template name kind?");
1454   manglePrefix(Dependent->getQualifier());
1455   mangleUnscopedTemplateName(Template);
1456 }
1457 
1458 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1459   // <template-prefix> ::= <prefix> <template unqualified-name>
1460   //                   ::= <template-param>
1461   //                   ::= <substitution>
1462   // <template-template-param> ::= <template-param>
1463   //                               <substitution>
1464 
1465   if (mangleSubstitution(ND))
1466     return;
1467 
1468   // <template-template-param> ::= <template-param>
1469   if (const TemplateTemplateParmDecl *TTP
1470                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1471     mangleTemplateParameter(TTP->getIndex());
1472     return;
1473   }
1474 
1475   manglePrefix(getEffectiveDeclContext(ND));
1476   mangleUnqualifiedName(ND->getTemplatedDecl());
1477   addSubstitution(ND);
1478 }
1479 
1480 /// Mangles a template name under the production <type>.  Required for
1481 /// template template arguments.
1482 ///   <type> ::= <class-enum-type>
1483 ///          ::= <template-param>
1484 ///          ::= <substitution>
1485 void CXXNameMangler::mangleType(TemplateName TN) {
1486   if (mangleSubstitution(TN))
1487     return;
1488 
1489   TemplateDecl *TD = 0;
1490 
1491   switch (TN.getKind()) {
1492   case TemplateName::QualifiedTemplate:
1493     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1494     goto HaveDecl;
1495 
1496   case TemplateName::Template:
1497     TD = TN.getAsTemplateDecl();
1498     goto HaveDecl;
1499 
1500   HaveDecl:
1501     if (isa<TemplateTemplateParmDecl>(TD))
1502       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1503     else
1504       mangleName(TD);
1505     break;
1506 
1507   case TemplateName::OverloadedTemplate:
1508     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1509 
1510   case TemplateName::DependentTemplate: {
1511     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1512     assert(Dependent->isIdentifier());
1513 
1514     // <class-enum-type> ::= <name>
1515     // <name> ::= <nested-name>
1516     mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1517     mangleSourceName(Dependent->getIdentifier());
1518     break;
1519   }
1520 
1521   case TemplateName::SubstTemplateTemplateParm: {
1522     // Substituted template parameters are mangled as the substituted
1523     // template.  This will check for the substitution twice, which is
1524     // fine, but we have to return early so that we don't try to *add*
1525     // the substitution twice.
1526     SubstTemplateTemplateParmStorage *subst
1527       = TN.getAsSubstTemplateTemplateParm();
1528     mangleType(subst->getReplacement());
1529     return;
1530   }
1531 
1532   case TemplateName::SubstTemplateTemplateParmPack: {
1533     // FIXME: not clear how to mangle this!
1534     // template <template <class> class T...> class A {
1535     //   template <template <class> class U...> void foo(B<T,U> x...);
1536     // };
1537     Out << "_SUBSTPACK_";
1538     break;
1539   }
1540   }
1541 
1542   addSubstitution(TN);
1543 }
1544 
1545 void
1546 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1547   switch (OO) {
1548   // <operator-name> ::= nw     # new
1549   case OO_New: Out << "nw"; break;
1550   //              ::= na        # new[]
1551   case OO_Array_New: Out << "na"; break;
1552   //              ::= dl        # delete
1553   case OO_Delete: Out << "dl"; break;
1554   //              ::= da        # delete[]
1555   case OO_Array_Delete: Out << "da"; break;
1556   //              ::= ps        # + (unary)
1557   //              ::= pl        # + (binary or unknown)
1558   case OO_Plus:
1559     Out << (Arity == 1? "ps" : "pl"); break;
1560   //              ::= ng        # - (unary)
1561   //              ::= mi        # - (binary or unknown)
1562   case OO_Minus:
1563     Out << (Arity == 1? "ng" : "mi"); break;
1564   //              ::= ad        # & (unary)
1565   //              ::= an        # & (binary or unknown)
1566   case OO_Amp:
1567     Out << (Arity == 1? "ad" : "an"); break;
1568   //              ::= de        # * (unary)
1569   //              ::= ml        # * (binary or unknown)
1570   case OO_Star:
1571     // Use binary when unknown.
1572     Out << (Arity == 1? "de" : "ml"); break;
1573   //              ::= co        # ~
1574   case OO_Tilde: Out << "co"; break;
1575   //              ::= dv        # /
1576   case OO_Slash: Out << "dv"; break;
1577   //              ::= rm        # %
1578   case OO_Percent: Out << "rm"; break;
1579   //              ::= or        # |
1580   case OO_Pipe: Out << "or"; break;
1581   //              ::= eo        # ^
1582   case OO_Caret: Out << "eo"; break;
1583   //              ::= aS        # =
1584   case OO_Equal: Out << "aS"; break;
1585   //              ::= pL        # +=
1586   case OO_PlusEqual: Out << "pL"; break;
1587   //              ::= mI        # -=
1588   case OO_MinusEqual: Out << "mI"; break;
1589   //              ::= mL        # *=
1590   case OO_StarEqual: Out << "mL"; break;
1591   //              ::= dV        # /=
1592   case OO_SlashEqual: Out << "dV"; break;
1593   //              ::= rM        # %=
1594   case OO_PercentEqual: Out << "rM"; break;
1595   //              ::= aN        # &=
1596   case OO_AmpEqual: Out << "aN"; break;
1597   //              ::= oR        # |=
1598   case OO_PipeEqual: Out << "oR"; break;
1599   //              ::= eO        # ^=
1600   case OO_CaretEqual: Out << "eO"; break;
1601   //              ::= ls        # <<
1602   case OO_LessLess: Out << "ls"; break;
1603   //              ::= rs        # >>
1604   case OO_GreaterGreater: Out << "rs"; break;
1605   //              ::= lS        # <<=
1606   case OO_LessLessEqual: Out << "lS"; break;
1607   //              ::= rS        # >>=
1608   case OO_GreaterGreaterEqual: Out << "rS"; break;
1609   //              ::= eq        # ==
1610   case OO_EqualEqual: Out << "eq"; break;
1611   //              ::= ne        # !=
1612   case OO_ExclaimEqual: Out << "ne"; break;
1613   //              ::= lt        # <
1614   case OO_Less: Out << "lt"; break;
1615   //              ::= gt        # >
1616   case OO_Greater: Out << "gt"; break;
1617   //              ::= le        # <=
1618   case OO_LessEqual: Out << "le"; break;
1619   //              ::= ge        # >=
1620   case OO_GreaterEqual: Out << "ge"; break;
1621   //              ::= nt        # !
1622   case OO_Exclaim: Out << "nt"; break;
1623   //              ::= aa        # &&
1624   case OO_AmpAmp: Out << "aa"; break;
1625   //              ::= oo        # ||
1626   case OO_PipePipe: Out << "oo"; break;
1627   //              ::= pp        # ++
1628   case OO_PlusPlus: Out << "pp"; break;
1629   //              ::= mm        # --
1630   case OO_MinusMinus: Out << "mm"; break;
1631   //              ::= cm        # ,
1632   case OO_Comma: Out << "cm"; break;
1633   //              ::= pm        # ->*
1634   case OO_ArrowStar: Out << "pm"; break;
1635   //              ::= pt        # ->
1636   case OO_Arrow: Out << "pt"; break;
1637   //              ::= cl        # ()
1638   case OO_Call: Out << "cl"; break;
1639   //              ::= ix        # []
1640   case OO_Subscript: Out << "ix"; break;
1641 
1642   //              ::= qu        # ?
1643   // The conditional operator can't be overloaded, but we still handle it when
1644   // mangling expressions.
1645   case OO_Conditional: Out << "qu"; break;
1646 
1647   case OO_None:
1648   case NUM_OVERLOADED_OPERATORS:
1649     llvm_unreachable("Not an overloaded operator");
1650   }
1651 }
1652 
1653 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1654   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1655   if (Quals.hasRestrict())
1656     Out << 'r';
1657   if (Quals.hasVolatile())
1658     Out << 'V';
1659   if (Quals.hasConst())
1660     Out << 'K';
1661 
1662   if (Quals.hasAddressSpace()) {
1663     // Extension:
1664     //
1665     //   <type> ::= U <address-space-number>
1666     //
1667     // where <address-space-number> is a source name consisting of 'AS'
1668     // followed by the address space <number>.
1669     SmallString<64> ASString;
1670     ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1671     Out << 'U' << ASString.size() << ASString;
1672   }
1673 
1674   StringRef LifetimeName;
1675   switch (Quals.getObjCLifetime()) {
1676   // Objective-C ARC Extension:
1677   //
1678   //   <type> ::= U "__strong"
1679   //   <type> ::= U "__weak"
1680   //   <type> ::= U "__autoreleasing"
1681   case Qualifiers::OCL_None:
1682     break;
1683 
1684   case Qualifiers::OCL_Weak:
1685     LifetimeName = "__weak";
1686     break;
1687 
1688   case Qualifiers::OCL_Strong:
1689     LifetimeName = "__strong";
1690     break;
1691 
1692   case Qualifiers::OCL_Autoreleasing:
1693     LifetimeName = "__autoreleasing";
1694     break;
1695 
1696   case Qualifiers::OCL_ExplicitNone:
1697     // The __unsafe_unretained qualifier is *not* mangled, so that
1698     // __unsafe_unretained types in ARC produce the same manglings as the
1699     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1700     // better ABI compatibility.
1701     //
1702     // It's safe to do this because unqualified 'id' won't show up
1703     // in any type signatures that need to be mangled.
1704     break;
1705   }
1706   if (!LifetimeName.empty())
1707     Out << 'U' << LifetimeName.size() << LifetimeName;
1708 }
1709 
1710 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1711   // <ref-qualifier> ::= R                # lvalue reference
1712   //                 ::= O                # rvalue-reference
1713   // Proposal to Itanium C++ ABI list on 1/26/11
1714   switch (RefQualifier) {
1715   case RQ_None:
1716     break;
1717 
1718   case RQ_LValue:
1719     Out << 'R';
1720     break;
1721 
1722   case RQ_RValue:
1723     Out << 'O';
1724     break;
1725   }
1726 }
1727 
1728 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1729   Context.mangleObjCMethodName(MD, Out);
1730 }
1731 
1732 void CXXNameMangler::mangleType(QualType T) {
1733   // If our type is instantiation-dependent but not dependent, we mangle
1734   // it as it was written in the source, removing any top-level sugar.
1735   // Otherwise, use the canonical type.
1736   //
1737   // FIXME: This is an approximation of the instantiation-dependent name
1738   // mangling rules, since we should really be using the type as written and
1739   // augmented via semantic analysis (i.e., with implicit conversions and
1740   // default template arguments) for any instantiation-dependent type.
1741   // Unfortunately, that requires several changes to our AST:
1742   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1743   //     uniqued, so that we can handle substitutions properly
1744   //   - Default template arguments will need to be represented in the
1745   //     TemplateSpecializationType, since they need to be mangled even though
1746   //     they aren't written.
1747   //   - Conversions on non-type template arguments need to be expressed, since
1748   //     they can affect the mangling of sizeof/alignof.
1749   if (!T->isInstantiationDependentType() || T->isDependentType())
1750     T = T.getCanonicalType();
1751   else {
1752     // Desugar any types that are purely sugar.
1753     do {
1754       // Don't desugar through template specialization types that aren't
1755       // type aliases. We need to mangle the template arguments as written.
1756       if (const TemplateSpecializationType *TST
1757                                       = dyn_cast<TemplateSpecializationType>(T))
1758         if (!TST->isTypeAlias())
1759           break;
1760 
1761       QualType Desugared
1762         = T.getSingleStepDesugaredType(Context.getASTContext());
1763       if (Desugared == T)
1764         break;
1765 
1766       T = Desugared;
1767     } while (true);
1768   }
1769   SplitQualType split = T.split();
1770   Qualifiers quals = split.Quals;
1771   const Type *ty = split.Ty;
1772 
1773   bool isSubstitutable = quals || !isa<BuiltinType>(T);
1774   if (isSubstitutable && mangleSubstitution(T))
1775     return;
1776 
1777   // If we're mangling a qualified array type, push the qualifiers to
1778   // the element type.
1779   if (quals && isa<ArrayType>(T)) {
1780     ty = Context.getASTContext().getAsArrayType(T);
1781     quals = Qualifiers();
1782 
1783     // Note that we don't update T: we want to add the
1784     // substitution at the original type.
1785   }
1786 
1787   if (quals) {
1788     mangleQualifiers(quals);
1789     // Recurse:  even if the qualified type isn't yet substitutable,
1790     // the unqualified type might be.
1791     mangleType(QualType(ty, 0));
1792   } else {
1793     switch (ty->getTypeClass()) {
1794 #define ABSTRACT_TYPE(CLASS, PARENT)
1795 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1796     case Type::CLASS: \
1797       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1798       return;
1799 #define TYPE(CLASS, PARENT) \
1800     case Type::CLASS: \
1801       mangleType(static_cast<const CLASS##Type*>(ty)); \
1802       break;
1803 #include "clang/AST/TypeNodes.def"
1804     }
1805   }
1806 
1807   // Add the substitution.
1808   if (isSubstitutable)
1809     addSubstitution(T);
1810 }
1811 
1812 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1813   if (!mangleStandardSubstitution(ND))
1814     mangleName(ND);
1815 }
1816 
1817 void CXXNameMangler::mangleType(const BuiltinType *T) {
1818   //  <type>         ::= <builtin-type>
1819   //  <builtin-type> ::= v  # void
1820   //                 ::= w  # wchar_t
1821   //                 ::= b  # bool
1822   //                 ::= c  # char
1823   //                 ::= a  # signed char
1824   //                 ::= h  # unsigned char
1825   //                 ::= s  # short
1826   //                 ::= t  # unsigned short
1827   //                 ::= i  # int
1828   //                 ::= j  # unsigned int
1829   //                 ::= l  # long
1830   //                 ::= m  # unsigned long
1831   //                 ::= x  # long long, __int64
1832   //                 ::= y  # unsigned long long, __int64
1833   //                 ::= n  # __int128
1834   // UNSUPPORTED:    ::= o  # unsigned __int128
1835   //                 ::= f  # float
1836   //                 ::= d  # double
1837   //                 ::= e  # long double, __float80
1838   // UNSUPPORTED:    ::= g  # __float128
1839   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1840   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1841   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1842   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1843   //                 ::= Di # char32_t
1844   //                 ::= Ds # char16_t
1845   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1846   //                 ::= u <source-name>    # vendor extended type
1847   switch (T->getKind()) {
1848   case BuiltinType::Void: Out << 'v'; break;
1849   case BuiltinType::Bool: Out << 'b'; break;
1850   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1851   case BuiltinType::UChar: Out << 'h'; break;
1852   case BuiltinType::UShort: Out << 't'; break;
1853   case BuiltinType::UInt: Out << 'j'; break;
1854   case BuiltinType::ULong: Out << 'm'; break;
1855   case BuiltinType::ULongLong: Out << 'y'; break;
1856   case BuiltinType::UInt128: Out << 'o'; break;
1857   case BuiltinType::SChar: Out << 'a'; break;
1858   case BuiltinType::WChar_S:
1859   case BuiltinType::WChar_U: Out << 'w'; break;
1860   case BuiltinType::Char16: Out << "Ds"; break;
1861   case BuiltinType::Char32: Out << "Di"; break;
1862   case BuiltinType::Short: Out << 's'; break;
1863   case BuiltinType::Int: Out << 'i'; break;
1864   case BuiltinType::Long: Out << 'l'; break;
1865   case BuiltinType::LongLong: Out << 'x'; break;
1866   case BuiltinType::Int128: Out << 'n'; break;
1867   case BuiltinType::Half: Out << "Dh"; break;
1868   case BuiltinType::Float: Out << 'f'; break;
1869   case BuiltinType::Double: Out << 'd'; break;
1870   case BuiltinType::LongDouble: Out << 'e'; break;
1871   case BuiltinType::NullPtr: Out << "Dn"; break;
1872 
1873 #define BUILTIN_TYPE(Id, SingletonId)
1874 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1875   case BuiltinType::Id:
1876 #include "clang/AST/BuiltinTypes.def"
1877   case BuiltinType::Dependent:
1878     llvm_unreachable("mangling a placeholder type");
1879   case BuiltinType::ObjCId: Out << "11objc_object"; break;
1880   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1881   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1882   }
1883 }
1884 
1885 // <type>          ::= <function-type>
1886 // <function-type> ::= F [Y] <bare-function-type> E
1887 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1888   Out << 'F';
1889   // FIXME: We don't have enough information in the AST to produce the 'Y'
1890   // encoding for extern "C" function types.
1891   mangleBareFunctionType(T, /*MangleReturnType=*/true);
1892   Out << 'E';
1893 }
1894 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1895   llvm_unreachable("Can't mangle K&R function prototypes");
1896 }
1897 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1898                                             bool MangleReturnType) {
1899   // We should never be mangling something without a prototype.
1900   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1901 
1902   // Record that we're in a function type.  See mangleFunctionParam
1903   // for details on what we're trying to achieve here.
1904   FunctionTypeDepthState saved = FunctionTypeDepth.push();
1905 
1906   // <bare-function-type> ::= <signature type>+
1907   if (MangleReturnType) {
1908     FunctionTypeDepth.enterResultType();
1909     mangleType(Proto->getResultType());
1910     FunctionTypeDepth.leaveResultType();
1911   }
1912 
1913   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1914     //   <builtin-type> ::= v   # void
1915     Out << 'v';
1916 
1917     FunctionTypeDepth.pop(saved);
1918     return;
1919   }
1920 
1921   for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1922                                          ArgEnd = Proto->arg_type_end();
1923        Arg != ArgEnd; ++Arg)
1924     mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1925 
1926   FunctionTypeDepth.pop(saved);
1927 
1928   // <builtin-type>      ::= z  # ellipsis
1929   if (Proto->isVariadic())
1930     Out << 'z';
1931 }
1932 
1933 // <type>            ::= <class-enum-type>
1934 // <class-enum-type> ::= <name>
1935 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1936   mangleName(T->getDecl());
1937 }
1938 
1939 // <type>            ::= <class-enum-type>
1940 // <class-enum-type> ::= <name>
1941 void CXXNameMangler::mangleType(const EnumType *T) {
1942   mangleType(static_cast<const TagType*>(T));
1943 }
1944 void CXXNameMangler::mangleType(const RecordType *T) {
1945   mangleType(static_cast<const TagType*>(T));
1946 }
1947 void CXXNameMangler::mangleType(const TagType *T) {
1948   mangleName(T->getDecl());
1949 }
1950 
1951 // <type>       ::= <array-type>
1952 // <array-type> ::= A <positive dimension number> _ <element type>
1953 //              ::= A [<dimension expression>] _ <element type>
1954 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1955   Out << 'A' << T->getSize() << '_';
1956   mangleType(T->getElementType());
1957 }
1958 void CXXNameMangler::mangleType(const VariableArrayType *T) {
1959   Out << 'A';
1960   // decayed vla types (size 0) will just be skipped.
1961   if (T->getSizeExpr())
1962     mangleExpression(T->getSizeExpr());
1963   Out << '_';
1964   mangleType(T->getElementType());
1965 }
1966 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1967   Out << 'A';
1968   mangleExpression(T->getSizeExpr());
1969   Out << '_';
1970   mangleType(T->getElementType());
1971 }
1972 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1973   Out << "A_";
1974   mangleType(T->getElementType());
1975 }
1976 
1977 // <type>                   ::= <pointer-to-member-type>
1978 // <pointer-to-member-type> ::= M <class type> <member type>
1979 void CXXNameMangler::mangleType(const MemberPointerType *T) {
1980   Out << 'M';
1981   mangleType(QualType(T->getClass(), 0));
1982   QualType PointeeType = T->getPointeeType();
1983   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1984     mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1985     mangleRefQualifier(FPT->getRefQualifier());
1986     mangleType(FPT);
1987 
1988     // Itanium C++ ABI 5.1.8:
1989     //
1990     //   The type of a non-static member function is considered to be different,
1991     //   for the purposes of substitution, from the type of a namespace-scope or
1992     //   static member function whose type appears similar. The types of two
1993     //   non-static member functions are considered to be different, for the
1994     //   purposes of substitution, if the functions are members of different
1995     //   classes. In other words, for the purposes of substitution, the class of
1996     //   which the function is a member is considered part of the type of
1997     //   function.
1998 
1999     // We increment the SeqID here to emulate adding an entry to the
2000     // substitution table. We can't actually add it because we don't want this
2001     // particular function type to be substituted.
2002     ++SeqID;
2003   } else
2004     mangleType(PointeeType);
2005 }
2006 
2007 // <type>           ::= <template-param>
2008 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2009   mangleTemplateParameter(T->getIndex());
2010 }
2011 
2012 // <type>           ::= <template-param>
2013 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2014   // FIXME: not clear how to mangle this!
2015   // template <class T...> class A {
2016   //   template <class U...> void foo(T(*)(U) x...);
2017   // };
2018   Out << "_SUBSTPACK_";
2019 }
2020 
2021 // <type> ::= P <type>   # pointer-to
2022 void CXXNameMangler::mangleType(const PointerType *T) {
2023   Out << 'P';
2024   mangleType(T->getPointeeType());
2025 }
2026 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2027   Out << 'P';
2028   mangleType(T->getPointeeType());
2029 }
2030 
2031 // <type> ::= R <type>   # reference-to
2032 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2033   Out << 'R';
2034   mangleType(T->getPointeeType());
2035 }
2036 
2037 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2038 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2039   Out << 'O';
2040   mangleType(T->getPointeeType());
2041 }
2042 
2043 // <type> ::= C <type>   # complex pair (C 2000)
2044 void CXXNameMangler::mangleType(const ComplexType *T) {
2045   Out << 'C';
2046   mangleType(T->getElementType());
2047 }
2048 
2049 // ARM's ABI for Neon vector types specifies that they should be mangled as
2050 // if they are structs (to match ARM's initial implementation).  The
2051 // vector type must be one of the special types predefined by ARM.
2052 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2053   QualType EltType = T->getElementType();
2054   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2055   const char *EltName = 0;
2056   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2057     switch (cast<BuiltinType>(EltType)->getKind()) {
2058     case BuiltinType::SChar:     EltName = "poly8_t"; break;
2059     case BuiltinType::Short:     EltName = "poly16_t"; break;
2060     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2061     }
2062   } else {
2063     switch (cast<BuiltinType>(EltType)->getKind()) {
2064     case BuiltinType::SChar:     EltName = "int8_t"; break;
2065     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2066     case BuiltinType::Short:     EltName = "int16_t"; break;
2067     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2068     case BuiltinType::Int:       EltName = "int32_t"; break;
2069     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2070     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2071     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2072     case BuiltinType::Float:     EltName = "float32_t"; break;
2073     default: llvm_unreachable("unexpected Neon vector element type");
2074     }
2075   }
2076   const char *BaseName = 0;
2077   unsigned BitSize = (T->getNumElements() *
2078                       getASTContext().getTypeSize(EltType));
2079   if (BitSize == 64)
2080     BaseName = "__simd64_";
2081   else {
2082     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2083     BaseName = "__simd128_";
2084   }
2085   Out << strlen(BaseName) + strlen(EltName);
2086   Out << BaseName << EltName;
2087 }
2088 
2089 // GNU extension: vector types
2090 // <type>                  ::= <vector-type>
2091 // <vector-type>           ::= Dv <positive dimension number> _
2092 //                                    <extended element type>
2093 //                         ::= Dv [<dimension expression>] _ <element type>
2094 // <extended element type> ::= <element type>
2095 //                         ::= p # AltiVec vector pixel
2096 void CXXNameMangler::mangleType(const VectorType *T) {
2097   if ((T->getVectorKind() == VectorType::NeonVector ||
2098        T->getVectorKind() == VectorType::NeonPolyVector)) {
2099     mangleNeonVectorType(T);
2100     return;
2101   }
2102   Out << "Dv" << T->getNumElements() << '_';
2103   if (T->getVectorKind() == VectorType::AltiVecPixel)
2104     Out << 'p';
2105   else if (T->getVectorKind() == VectorType::AltiVecBool)
2106     Out << 'b';
2107   else
2108     mangleType(T->getElementType());
2109 }
2110 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2111   mangleType(static_cast<const VectorType*>(T));
2112 }
2113 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2114   Out << "Dv";
2115   mangleExpression(T->getSizeExpr());
2116   Out << '_';
2117   mangleType(T->getElementType());
2118 }
2119 
2120 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2121   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2122   Out << "Dp";
2123   mangleType(T->getPattern());
2124 }
2125 
2126 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2127   mangleSourceName(T->getDecl()->getIdentifier());
2128 }
2129 
2130 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2131   // We don't allow overloading by different protocol qualification,
2132   // so mangling them isn't necessary.
2133   mangleType(T->getBaseType());
2134 }
2135 
2136 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2137   Out << "U13block_pointer";
2138   mangleType(T->getPointeeType());
2139 }
2140 
2141 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2142   // Mangle injected class name types as if the user had written the
2143   // specialization out fully.  It may not actually be possible to see
2144   // this mangling, though.
2145   mangleType(T->getInjectedSpecializationType());
2146 }
2147 
2148 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2149   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2150     mangleName(TD, T->getArgs(), T->getNumArgs());
2151   } else {
2152     if (mangleSubstitution(QualType(T, 0)))
2153       return;
2154 
2155     mangleTemplatePrefix(T->getTemplateName());
2156 
2157     // FIXME: GCC does not appear to mangle the template arguments when
2158     // the template in question is a dependent template name. Should we
2159     // emulate that badness?
2160     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2161     addSubstitution(QualType(T, 0));
2162   }
2163 }
2164 
2165 void CXXNameMangler::mangleType(const DependentNameType *T) {
2166   // Typename types are always nested
2167   Out << 'N';
2168   manglePrefix(T->getQualifier());
2169   mangleSourceName(T->getIdentifier());
2170   Out << 'E';
2171 }
2172 
2173 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2174   // Dependently-scoped template types are nested if they have a prefix.
2175   Out << 'N';
2176 
2177   // TODO: avoid making this TemplateName.
2178   TemplateName Prefix =
2179     getASTContext().getDependentTemplateName(T->getQualifier(),
2180                                              T->getIdentifier());
2181   mangleTemplatePrefix(Prefix);
2182 
2183   // FIXME: GCC does not appear to mangle the template arguments when
2184   // the template in question is a dependent template name. Should we
2185   // emulate that badness?
2186   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2187   Out << 'E';
2188 }
2189 
2190 void CXXNameMangler::mangleType(const TypeOfType *T) {
2191   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2192   // "extension with parameters" mangling.
2193   Out << "u6typeof";
2194 }
2195 
2196 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2197   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2198   // "extension with parameters" mangling.
2199   Out << "u6typeof";
2200 }
2201 
2202 void CXXNameMangler::mangleType(const DecltypeType *T) {
2203   Expr *E = T->getUnderlyingExpr();
2204 
2205   // type ::= Dt <expression> E  # decltype of an id-expression
2206   //                             #   or class member access
2207   //      ::= DT <expression> E  # decltype of an expression
2208 
2209   // This purports to be an exhaustive list of id-expressions and
2210   // class member accesses.  Note that we do not ignore parentheses;
2211   // parentheses change the semantics of decltype for these
2212   // expressions (and cause the mangler to use the other form).
2213   if (isa<DeclRefExpr>(E) ||
2214       isa<MemberExpr>(E) ||
2215       isa<UnresolvedLookupExpr>(E) ||
2216       isa<DependentScopeDeclRefExpr>(E) ||
2217       isa<CXXDependentScopeMemberExpr>(E) ||
2218       isa<UnresolvedMemberExpr>(E))
2219     Out << "Dt";
2220   else
2221     Out << "DT";
2222   mangleExpression(E);
2223   Out << 'E';
2224 }
2225 
2226 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2227   // If this is dependent, we need to record that. If not, we simply
2228   // mangle it as the underlying type since they are equivalent.
2229   if (T->isDependentType()) {
2230     Out << 'U';
2231 
2232     switch (T->getUTTKind()) {
2233       case UnaryTransformType::EnumUnderlyingType:
2234         Out << "3eut";
2235         break;
2236     }
2237   }
2238 
2239   mangleType(T->getUnderlyingType());
2240 }
2241 
2242 void CXXNameMangler::mangleType(const AutoType *T) {
2243   QualType D = T->getDeducedType();
2244   // <builtin-type> ::= Da  # dependent auto
2245   if (D.isNull())
2246     Out << "Da";
2247   else
2248     mangleType(D);
2249 }
2250 
2251 void CXXNameMangler::mangleType(const AtomicType *T) {
2252   // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2253   // (Until there's a standardized mangling...)
2254   Out << "U7_Atomic";
2255   mangleType(T->getValueType());
2256 }
2257 
2258 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2259                                           const llvm::APSInt &Value) {
2260   //  <expr-primary> ::= L <type> <value number> E # integer literal
2261   Out << 'L';
2262 
2263   mangleType(T);
2264   if (T->isBooleanType()) {
2265     // Boolean values are encoded as 0/1.
2266     Out << (Value.getBoolValue() ? '1' : '0');
2267   } else {
2268     mangleNumber(Value);
2269   }
2270   Out << 'E';
2271 
2272 }
2273 
2274 /// Mangles a member expression.  Implicit accesses are not handled,
2275 /// but that should be okay, because you shouldn't be able to
2276 /// make an implicit access in a function template declaration.
2277 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2278                                       bool isArrow,
2279                                       NestedNameSpecifier *qualifier,
2280                                       NamedDecl *firstQualifierLookup,
2281                                       DeclarationName member,
2282                                       unsigned arity) {
2283   // <expression> ::= dt <expression> <unresolved-name>
2284   //              ::= pt <expression> <unresolved-name>
2285   Out << (isArrow ? "pt" : "dt");
2286   mangleExpression(base);
2287   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2288 }
2289 
2290 /// Look at the callee of the given call expression and determine if
2291 /// it's a parenthesized id-expression which would have triggered ADL
2292 /// otherwise.
2293 static bool isParenthesizedADLCallee(const CallExpr *call) {
2294   const Expr *callee = call->getCallee();
2295   const Expr *fn = callee->IgnoreParens();
2296 
2297   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2298   // too, but for those to appear in the callee, it would have to be
2299   // parenthesized.
2300   if (callee == fn) return false;
2301 
2302   // Must be an unresolved lookup.
2303   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2304   if (!lookup) return false;
2305 
2306   assert(!lookup->requiresADL());
2307 
2308   // Must be an unqualified lookup.
2309   if (lookup->getQualifier()) return false;
2310 
2311   // Must not have found a class member.  Note that if one is a class
2312   // member, they're all class members.
2313   if (lookup->getNumDecls() > 0 &&
2314       (*lookup->decls_begin())->isCXXClassMember())
2315     return false;
2316 
2317   // Otherwise, ADL would have been triggered.
2318   return true;
2319 }
2320 
2321 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2322   // <expression> ::= <unary operator-name> <expression>
2323   //              ::= <binary operator-name> <expression> <expression>
2324   //              ::= <trinary operator-name> <expression> <expression> <expression>
2325   //              ::= cv <type> expression           # conversion with one argument
2326   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2327   //              ::= st <type>                      # sizeof (a type)
2328   //              ::= at <type>                      # alignof (a type)
2329   //              ::= <template-param>
2330   //              ::= <function-param>
2331   //              ::= sr <type> <unqualified-name>                   # dependent name
2332   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2333   //              ::= ds <expression> <expression>                   # expr.*expr
2334   //              ::= sZ <template-param>                            # size of a parameter pack
2335   //              ::= sZ <function-param>    # size of a function parameter pack
2336   //              ::= <expr-primary>
2337   // <expr-primary> ::= L <type> <value number> E    # integer literal
2338   //                ::= L <type <value float> E      # floating literal
2339   //                ::= L <mangled-name> E           # external name
2340   QualType ImplicitlyConvertedToType;
2341 
2342 recurse:
2343   switch (E->getStmtClass()) {
2344   case Expr::NoStmtClass:
2345 #define ABSTRACT_STMT(Type)
2346 #define EXPR(Type, Base)
2347 #define STMT(Type, Base) \
2348   case Expr::Type##Class:
2349 #include "clang/AST/StmtNodes.inc"
2350     // fallthrough
2351 
2352   // These all can only appear in local or variable-initialization
2353   // contexts and so should never appear in a mangling.
2354   case Expr::AddrLabelExprClass:
2355   case Expr::BlockDeclRefExprClass:
2356   case Expr::CXXThisExprClass:
2357   case Expr::DesignatedInitExprClass:
2358   case Expr::ImplicitValueInitExprClass:
2359   case Expr::InitListExprClass:
2360   case Expr::ParenListExprClass:
2361   case Expr::LambdaExprClass:
2362     llvm_unreachable("unexpected statement kind");
2363 
2364   // FIXME: invent manglings for all these.
2365   case Expr::BlockExprClass:
2366   case Expr::CXXPseudoDestructorExprClass:
2367   case Expr::ChooseExprClass:
2368   case Expr::CompoundLiteralExprClass:
2369   case Expr::ExtVectorElementExprClass:
2370   case Expr::GenericSelectionExprClass:
2371   case Expr::ObjCEncodeExprClass:
2372   case Expr::ObjCIsaExprClass:
2373   case Expr::ObjCIvarRefExprClass:
2374   case Expr::ObjCMessageExprClass:
2375   case Expr::ObjCPropertyRefExprClass:
2376   case Expr::ObjCProtocolExprClass:
2377   case Expr::ObjCSelectorExprClass:
2378   case Expr::ObjCStringLiteralClass:
2379   case Expr::ObjCIndirectCopyRestoreExprClass:
2380   case Expr::OffsetOfExprClass:
2381   case Expr::PredefinedExprClass:
2382   case Expr::ShuffleVectorExprClass:
2383   case Expr::StmtExprClass:
2384   case Expr::UnaryTypeTraitExprClass:
2385   case Expr::BinaryTypeTraitExprClass:
2386   case Expr::ArrayTypeTraitExprClass:
2387   case Expr::ExpressionTraitExprClass:
2388   case Expr::VAArgExprClass:
2389   case Expr::CXXUuidofExprClass:
2390   case Expr::CXXNoexceptExprClass:
2391   case Expr::CUDAKernelCallExprClass:
2392   case Expr::AsTypeExprClass:
2393   case Expr::PseudoObjectExprClass:
2394   case Expr::AtomicExprClass:
2395   {
2396     // As bad as this diagnostic is, it's better than crashing.
2397     DiagnosticsEngine &Diags = Context.getDiags();
2398     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2399                                      "cannot yet mangle expression type %0");
2400     Diags.Report(E->getExprLoc(), DiagID)
2401       << E->getStmtClassName() << E->getSourceRange();
2402     break;
2403   }
2404 
2405   // Even gcc-4.5 doesn't mangle this.
2406   case Expr::BinaryConditionalOperatorClass: {
2407     DiagnosticsEngine &Diags = Context.getDiags();
2408     unsigned DiagID =
2409       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2410                 "?: operator with omitted middle operand cannot be mangled");
2411     Diags.Report(E->getExprLoc(), DiagID)
2412       << E->getStmtClassName() << E->getSourceRange();
2413     break;
2414   }
2415 
2416   // These are used for internal purposes and cannot be meaningfully mangled.
2417   case Expr::OpaqueValueExprClass:
2418     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2419 
2420   case Expr::CXXDefaultArgExprClass:
2421     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2422     break;
2423 
2424   case Expr::SubstNonTypeTemplateParmExprClass:
2425     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2426                      Arity);
2427     break;
2428 
2429   case Expr::CXXMemberCallExprClass: // fallthrough
2430   case Expr::CallExprClass: {
2431     const CallExpr *CE = cast<CallExpr>(E);
2432 
2433     // <expression> ::= cp <simple-id> <expression>* E
2434     // We use this mangling only when the call would use ADL except
2435     // for being parenthesized.  Per discussion with David
2436     // Vandervoorde, 2011.04.25.
2437     if (isParenthesizedADLCallee(CE)) {
2438       Out << "cp";
2439       // The callee here is a parenthesized UnresolvedLookupExpr with
2440       // no qualifier and should always get mangled as a <simple-id>
2441       // anyway.
2442 
2443     // <expression> ::= cl <expression>* E
2444     } else {
2445       Out << "cl";
2446     }
2447 
2448     mangleExpression(CE->getCallee(), CE->getNumArgs());
2449     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2450       mangleExpression(CE->getArg(I));
2451     Out << 'E';
2452     break;
2453   }
2454 
2455   case Expr::CXXNewExprClass: {
2456     // Proposal from David Vandervoorde, 2010.06.30
2457     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2458     if (New->isGlobalNew()) Out << "gs";
2459     Out << (New->isArray() ? "na" : "nw");
2460     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2461            E = New->placement_arg_end(); I != E; ++I)
2462       mangleExpression(*I);
2463     Out << '_';
2464     mangleType(New->getAllocatedType());
2465     if (New->hasInitializer()) {
2466       // FIXME: Does this mean "parenthesized initializer"?
2467       Out << "pi";
2468       const Expr *Init = New->getInitializer();
2469       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2470         // Directly inline the initializers.
2471         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2472                                                   E = CCE->arg_end();
2473              I != E; ++I)
2474           mangleExpression(*I);
2475       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2476         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2477           mangleExpression(PLE->getExpr(i));
2478       } else
2479         mangleExpression(Init);
2480     }
2481     Out << 'E';
2482     break;
2483   }
2484 
2485   case Expr::MemberExprClass: {
2486     const MemberExpr *ME = cast<MemberExpr>(E);
2487     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2488                      ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2489                      Arity);
2490     break;
2491   }
2492 
2493   case Expr::UnresolvedMemberExprClass: {
2494     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2495     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2496                      ME->getQualifier(), 0, ME->getMemberName(),
2497                      Arity);
2498     if (ME->hasExplicitTemplateArgs())
2499       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2500     break;
2501   }
2502 
2503   case Expr::CXXDependentScopeMemberExprClass: {
2504     const CXXDependentScopeMemberExpr *ME
2505       = cast<CXXDependentScopeMemberExpr>(E);
2506     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2507                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2508                      ME->getMember(), Arity);
2509     if (ME->hasExplicitTemplateArgs())
2510       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2511     break;
2512   }
2513 
2514   case Expr::UnresolvedLookupExprClass: {
2515     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2516     mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2517 
2518     // All the <unresolved-name> productions end in a
2519     // base-unresolved-name, where <template-args> are just tacked
2520     // onto the end.
2521     if (ULE->hasExplicitTemplateArgs())
2522       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2523     break;
2524   }
2525 
2526   case Expr::CXXUnresolvedConstructExprClass: {
2527     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2528     unsigned N = CE->arg_size();
2529 
2530     Out << "cv";
2531     mangleType(CE->getType());
2532     if (N != 1) Out << '_';
2533     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2534     if (N != 1) Out << 'E';
2535     break;
2536   }
2537 
2538   case Expr::CXXTemporaryObjectExprClass:
2539   case Expr::CXXConstructExprClass: {
2540     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2541     unsigned N = CE->getNumArgs();
2542 
2543     Out << "cv";
2544     mangleType(CE->getType());
2545     if (N != 1) Out << '_';
2546     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2547     if (N != 1) Out << 'E';
2548     break;
2549   }
2550 
2551   case Expr::CXXScalarValueInitExprClass:
2552     Out <<"cv";
2553     mangleType(E->getType());
2554     Out <<"_E";
2555     break;
2556 
2557   case Expr::UnaryExprOrTypeTraitExprClass: {
2558     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2559 
2560     if (!SAE->isInstantiationDependent()) {
2561       // Itanium C++ ABI:
2562       //   If the operand of a sizeof or alignof operator is not
2563       //   instantiation-dependent it is encoded as an integer literal
2564       //   reflecting the result of the operator.
2565       //
2566       //   If the result of the operator is implicitly converted to a known
2567       //   integer type, that type is used for the literal; otherwise, the type
2568       //   of std::size_t or std::ptrdiff_t is used.
2569       QualType T = (ImplicitlyConvertedToType.isNull() ||
2570                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2571                                                     : ImplicitlyConvertedToType;
2572       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2573       mangleIntegerLiteral(T, V);
2574       break;
2575     }
2576 
2577     switch(SAE->getKind()) {
2578     case UETT_SizeOf:
2579       Out << 's';
2580       break;
2581     case UETT_AlignOf:
2582       Out << 'a';
2583       break;
2584     case UETT_VecStep:
2585       DiagnosticsEngine &Diags = Context.getDiags();
2586       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2587                                      "cannot yet mangle vec_step expression");
2588       Diags.Report(DiagID);
2589       return;
2590     }
2591     if (SAE->isArgumentType()) {
2592       Out << 't';
2593       mangleType(SAE->getArgumentType());
2594     } else {
2595       Out << 'z';
2596       mangleExpression(SAE->getArgumentExpr());
2597     }
2598     break;
2599   }
2600 
2601   case Expr::CXXThrowExprClass: {
2602     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2603 
2604     // Proposal from David Vandervoorde, 2010.06.30
2605     if (TE->getSubExpr()) {
2606       Out << "tw";
2607       mangleExpression(TE->getSubExpr());
2608     } else {
2609       Out << "tr";
2610     }
2611     break;
2612   }
2613 
2614   case Expr::CXXTypeidExprClass: {
2615     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2616 
2617     // Proposal from David Vandervoorde, 2010.06.30
2618     if (TIE->isTypeOperand()) {
2619       Out << "ti";
2620       mangleType(TIE->getTypeOperand());
2621     } else {
2622       Out << "te";
2623       mangleExpression(TIE->getExprOperand());
2624     }
2625     break;
2626   }
2627 
2628   case Expr::CXXDeleteExprClass: {
2629     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2630 
2631     // Proposal from David Vandervoorde, 2010.06.30
2632     if (DE->isGlobalDelete()) Out << "gs";
2633     Out << (DE->isArrayForm() ? "da" : "dl");
2634     mangleExpression(DE->getArgument());
2635     break;
2636   }
2637 
2638   case Expr::UnaryOperatorClass: {
2639     const UnaryOperator *UO = cast<UnaryOperator>(E);
2640     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2641                        /*Arity=*/1);
2642     mangleExpression(UO->getSubExpr());
2643     break;
2644   }
2645 
2646   case Expr::ArraySubscriptExprClass: {
2647     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2648 
2649     // Array subscript is treated as a syntactically weird form of
2650     // binary operator.
2651     Out << "ix";
2652     mangleExpression(AE->getLHS());
2653     mangleExpression(AE->getRHS());
2654     break;
2655   }
2656 
2657   case Expr::CompoundAssignOperatorClass: // fallthrough
2658   case Expr::BinaryOperatorClass: {
2659     const BinaryOperator *BO = cast<BinaryOperator>(E);
2660     if (BO->getOpcode() == BO_PtrMemD)
2661       Out << "ds";
2662     else
2663       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2664                          /*Arity=*/2);
2665     mangleExpression(BO->getLHS());
2666     mangleExpression(BO->getRHS());
2667     break;
2668   }
2669 
2670   case Expr::ConditionalOperatorClass: {
2671     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2672     mangleOperatorName(OO_Conditional, /*Arity=*/3);
2673     mangleExpression(CO->getCond());
2674     mangleExpression(CO->getLHS(), Arity);
2675     mangleExpression(CO->getRHS(), Arity);
2676     break;
2677   }
2678 
2679   case Expr::ImplicitCastExprClass: {
2680     ImplicitlyConvertedToType = E->getType();
2681     E = cast<ImplicitCastExpr>(E)->getSubExpr();
2682     goto recurse;
2683   }
2684 
2685   case Expr::ObjCBridgedCastExprClass: {
2686     // Mangle ownership casts as a vendor extended operator __bridge,
2687     // __bridge_transfer, or __bridge_retain.
2688     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2689     Out << "v1U" << Kind.size() << Kind;
2690   }
2691   // Fall through to mangle the cast itself.
2692 
2693   case Expr::CStyleCastExprClass:
2694   case Expr::CXXStaticCastExprClass:
2695   case Expr::CXXDynamicCastExprClass:
2696   case Expr::CXXReinterpretCastExprClass:
2697   case Expr::CXXConstCastExprClass:
2698   case Expr::CXXFunctionalCastExprClass: {
2699     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2700     Out << "cv";
2701     mangleType(ECE->getType());
2702     mangleExpression(ECE->getSubExpr());
2703     break;
2704   }
2705 
2706   case Expr::CXXOperatorCallExprClass: {
2707     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2708     unsigned NumArgs = CE->getNumArgs();
2709     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2710     // Mangle the arguments.
2711     for (unsigned i = 0; i != NumArgs; ++i)
2712       mangleExpression(CE->getArg(i));
2713     break;
2714   }
2715 
2716   case Expr::ParenExprClass:
2717     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2718     break;
2719 
2720   case Expr::DeclRefExprClass: {
2721     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2722 
2723     switch (D->getKind()) {
2724     default:
2725       //  <expr-primary> ::= L <mangled-name> E # external name
2726       Out << 'L';
2727       mangle(D, "_Z");
2728       Out << 'E';
2729       break;
2730 
2731     case Decl::ParmVar:
2732       mangleFunctionParam(cast<ParmVarDecl>(D));
2733       break;
2734 
2735     case Decl::EnumConstant: {
2736       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2737       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2738       break;
2739     }
2740 
2741     case Decl::NonTypeTemplateParm: {
2742       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2743       mangleTemplateParameter(PD->getIndex());
2744       break;
2745     }
2746 
2747     }
2748 
2749     break;
2750   }
2751 
2752   case Expr::SubstNonTypeTemplateParmPackExprClass:
2753     // FIXME: not clear how to mangle this!
2754     // template <unsigned N...> class A {
2755     //   template <class U...> void foo(U (&x)[N]...);
2756     // };
2757     Out << "_SUBSTPACK_";
2758     break;
2759 
2760   case Expr::DependentScopeDeclRefExprClass: {
2761     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2762     mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2763 
2764     // All the <unresolved-name> productions end in a
2765     // base-unresolved-name, where <template-args> are just tacked
2766     // onto the end.
2767     if (DRE->hasExplicitTemplateArgs())
2768       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2769     break;
2770   }
2771 
2772   case Expr::CXXBindTemporaryExprClass:
2773     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2774     break;
2775 
2776   case Expr::ExprWithCleanupsClass:
2777     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2778     break;
2779 
2780   case Expr::FloatingLiteralClass: {
2781     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2782     Out << 'L';
2783     mangleType(FL->getType());
2784     mangleFloat(FL->getValue());
2785     Out << 'E';
2786     break;
2787   }
2788 
2789   case Expr::CharacterLiteralClass:
2790     Out << 'L';
2791     mangleType(E->getType());
2792     Out << cast<CharacterLiteral>(E)->getValue();
2793     Out << 'E';
2794     break;
2795 
2796   case Expr::CXXBoolLiteralExprClass:
2797     Out << "Lb";
2798     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2799     Out << 'E';
2800     break;
2801 
2802   case Expr::IntegerLiteralClass: {
2803     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2804     if (E->getType()->isSignedIntegerType())
2805       Value.setIsSigned(true);
2806     mangleIntegerLiteral(E->getType(), Value);
2807     break;
2808   }
2809 
2810   case Expr::ImaginaryLiteralClass: {
2811     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2812     // Mangle as if a complex literal.
2813     // Proposal from David Vandevoorde, 2010.06.30.
2814     Out << 'L';
2815     mangleType(E->getType());
2816     if (const FloatingLiteral *Imag =
2817           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2818       // Mangle a floating-point zero of the appropriate type.
2819       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2820       Out << '_';
2821       mangleFloat(Imag->getValue());
2822     } else {
2823       Out << "0_";
2824       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2825       if (IE->getSubExpr()->getType()->isSignedIntegerType())
2826         Value.setIsSigned(true);
2827       mangleNumber(Value);
2828     }
2829     Out << 'E';
2830     break;
2831   }
2832 
2833   case Expr::StringLiteralClass: {
2834     // Revised proposal from David Vandervoorde, 2010.07.15.
2835     Out << 'L';
2836     assert(isa<ConstantArrayType>(E->getType()));
2837     mangleType(E->getType());
2838     Out << 'E';
2839     break;
2840   }
2841 
2842   case Expr::GNUNullExprClass:
2843     // FIXME: should this really be mangled the same as nullptr?
2844     // fallthrough
2845 
2846   case Expr::CXXNullPtrLiteralExprClass: {
2847     // Proposal from David Vandervoorde, 2010.06.30, as
2848     // modified by ABI list discussion.
2849     Out << "LDnE";
2850     break;
2851   }
2852 
2853   case Expr::PackExpansionExprClass:
2854     Out << "sp";
2855     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2856     break;
2857 
2858   case Expr::SizeOfPackExprClass: {
2859     Out << "sZ";
2860     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2861     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2862       mangleTemplateParameter(TTP->getIndex());
2863     else if (const NonTypeTemplateParmDecl *NTTP
2864                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2865       mangleTemplateParameter(NTTP->getIndex());
2866     else if (const TemplateTemplateParmDecl *TempTP
2867                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
2868       mangleTemplateParameter(TempTP->getIndex());
2869     else
2870       mangleFunctionParam(cast<ParmVarDecl>(Pack));
2871     break;
2872   }
2873 
2874   case Expr::MaterializeTemporaryExprClass: {
2875     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2876     break;
2877   }
2878   }
2879 }
2880 
2881 /// Mangle an expression which refers to a parameter variable.
2882 ///
2883 /// <expression>     ::= <function-param>
2884 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2885 /// <function-param> ::= fp <top-level CV-qualifiers>
2886 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2887 /// <function-param> ::= fL <L-1 non-negative number>
2888 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2889 /// <function-param> ::= fL <L-1 non-negative number>
2890 ///                      p <top-level CV-qualifiers>
2891 ///                      <I-1 non-negative number> _         # L > 0, I > 0
2892 ///
2893 /// L is the nesting depth of the parameter, defined as 1 if the
2894 /// parameter comes from the innermost function prototype scope
2895 /// enclosing the current context, 2 if from the next enclosing
2896 /// function prototype scope, and so on, with one special case: if
2897 /// we've processed the full parameter clause for the innermost
2898 /// function type, then L is one less.  This definition conveniently
2899 /// makes it irrelevant whether a function's result type was written
2900 /// trailing or leading, but is otherwise overly complicated; the
2901 /// numbering was first designed without considering references to
2902 /// parameter in locations other than return types, and then the
2903 /// mangling had to be generalized without changing the existing
2904 /// manglings.
2905 ///
2906 /// I is the zero-based index of the parameter within its parameter
2907 /// declaration clause.  Note that the original ABI document describes
2908 /// this using 1-based ordinals.
2909 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2910   unsigned parmDepth = parm->getFunctionScopeDepth();
2911   unsigned parmIndex = parm->getFunctionScopeIndex();
2912 
2913   // Compute 'L'.
2914   // parmDepth does not include the declaring function prototype.
2915   // FunctionTypeDepth does account for that.
2916   assert(parmDepth < FunctionTypeDepth.getDepth());
2917   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2918   if (FunctionTypeDepth.isInResultType())
2919     nestingDepth--;
2920 
2921   if (nestingDepth == 0) {
2922     Out << "fp";
2923   } else {
2924     Out << "fL" << (nestingDepth - 1) << 'p';
2925   }
2926 
2927   // Top-level qualifiers.  We don't have to worry about arrays here,
2928   // because parameters declared as arrays should already have been
2929   // tranformed to have pointer type. FIXME: apparently these don't
2930   // get mangled if used as an rvalue of a known non-class type?
2931   assert(!parm->getType()->isArrayType()
2932          && "parameter's type is still an array type?");
2933   mangleQualifiers(parm->getType().getQualifiers());
2934 
2935   // Parameter index.
2936   if (parmIndex != 0) {
2937     Out << (parmIndex - 1);
2938   }
2939   Out << '_';
2940 }
2941 
2942 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2943   // <ctor-dtor-name> ::= C1  # complete object constructor
2944   //                  ::= C2  # base object constructor
2945   //                  ::= C3  # complete object allocating constructor
2946   //
2947   switch (T) {
2948   case Ctor_Complete:
2949     Out << "C1";
2950     break;
2951   case Ctor_Base:
2952     Out << "C2";
2953     break;
2954   case Ctor_CompleteAllocating:
2955     Out << "C3";
2956     break;
2957   }
2958 }
2959 
2960 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2961   // <ctor-dtor-name> ::= D0  # deleting destructor
2962   //                  ::= D1  # complete object destructor
2963   //                  ::= D2  # base object destructor
2964   //
2965   switch (T) {
2966   case Dtor_Deleting:
2967     Out << "D0";
2968     break;
2969   case Dtor_Complete:
2970     Out << "D1";
2971     break;
2972   case Dtor_Base:
2973     Out << "D2";
2974     break;
2975   }
2976 }
2977 
2978 void CXXNameMangler::mangleTemplateArgs(
2979                           const ASTTemplateArgumentListInfo &TemplateArgs) {
2980   // <template-args> ::= I <template-arg>+ E
2981   Out << 'I';
2982   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
2983     mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
2984   Out << 'E';
2985 }
2986 
2987 void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2988                                         const TemplateArgument *TemplateArgs,
2989                                         unsigned NumTemplateArgs) {
2990   if (TemplateDecl *TD = Template.getAsTemplateDecl())
2991     return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2992                               NumTemplateArgs);
2993 
2994   mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
2995 }
2996 
2997 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
2998                                                   unsigned numArgs) {
2999   // <template-args> ::= I <template-arg>+ E
3000   Out << 'I';
3001   for (unsigned i = 0; i != numArgs; ++i)
3002     mangleTemplateArg(0, args[i]);
3003   Out << 'E';
3004 }
3005 
3006 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3007                                         const TemplateArgumentList &AL) {
3008   // <template-args> ::= I <template-arg>+ E
3009   Out << 'I';
3010   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3011     mangleTemplateArg(PL.getParam(i), AL[i]);
3012   Out << 'E';
3013 }
3014 
3015 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3016                                         const TemplateArgument *TemplateArgs,
3017                                         unsigned NumTemplateArgs) {
3018   // <template-args> ::= I <template-arg>+ E
3019   Out << 'I';
3020   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3021     mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3022   Out << 'E';
3023 }
3024 
3025 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3026                                        TemplateArgument A) {
3027   // <template-arg> ::= <type>              # type or template
3028   //                ::= X <expression> E    # expression
3029   //                ::= <expr-primary>      # simple expressions
3030   //                ::= J <template-arg>* E # argument pack
3031   //                ::= sp <expression>     # pack expansion of (C++0x)
3032   if (!A.isInstantiationDependent() || A.isDependent())
3033     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3034 
3035   switch (A.getKind()) {
3036   case TemplateArgument::Null:
3037     llvm_unreachable("Cannot mangle NULL template argument");
3038 
3039   case TemplateArgument::Type:
3040     mangleType(A.getAsType());
3041     break;
3042   case TemplateArgument::Template:
3043     // This is mangled as <type>.
3044     mangleType(A.getAsTemplate());
3045     break;
3046   case TemplateArgument::TemplateExpansion:
3047     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3048     Out << "Dp";
3049     mangleType(A.getAsTemplateOrTemplatePattern());
3050     break;
3051   case TemplateArgument::Expression: {
3052     // It's possible to end up with a DeclRefExpr here in certain
3053     // dependent cases, in which case we should mangle as a
3054     // declaration.
3055     const Expr *E = A.getAsExpr()->IgnoreParens();
3056     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3057       const ValueDecl *D = DRE->getDecl();
3058       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3059         Out << "L";
3060         mangle(D, "_Z");
3061         Out << 'E';
3062         break;
3063       }
3064     }
3065 
3066     Out << 'X';
3067     mangleExpression(E);
3068     Out << 'E';
3069     break;
3070   }
3071   case TemplateArgument::Integral:
3072     mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
3073     break;
3074   case TemplateArgument::Declaration: {
3075     assert(P && "Missing template parameter for declaration argument");
3076     //  <expr-primary> ::= L <mangled-name> E # external name
3077 
3078     // Clang produces AST's where pointer-to-member-function expressions
3079     // and pointer-to-function expressions are represented as a declaration not
3080     // an expression. We compensate for it here to produce the correct mangling.
3081     NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3082     const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3083     bool compensateMangling = !Parameter->getType()->isReferenceType();
3084     if (compensateMangling) {
3085       Out << 'X';
3086       mangleOperatorName(OO_Amp, 1);
3087     }
3088 
3089     Out << 'L';
3090     // References to external entities use the mangled name; if the name would
3091     // not normally be manged then mangle it as unqualified.
3092     //
3093     // FIXME: The ABI specifies that external names here should have _Z, but
3094     // gcc leaves this off.
3095     if (compensateMangling)
3096       mangle(D, "_Z");
3097     else
3098       mangle(D, "Z");
3099     Out << 'E';
3100 
3101     if (compensateMangling)
3102       Out << 'E';
3103 
3104     break;
3105   }
3106 
3107   case TemplateArgument::Pack: {
3108     // Note: proposal by Mike Herrick on 12/20/10
3109     Out << 'J';
3110     for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3111                                       PAEnd = A.pack_end();
3112          PA != PAEnd; ++PA)
3113       mangleTemplateArg(P, *PA);
3114     Out << 'E';
3115   }
3116   }
3117 }
3118 
3119 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3120   // <template-param> ::= T_    # first template parameter
3121   //                  ::= T <parameter-2 non-negative number> _
3122   if (Index == 0)
3123     Out << "T_";
3124   else
3125     Out << 'T' << (Index - 1) << '_';
3126 }
3127 
3128 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3129   bool result = mangleSubstitution(type);
3130   assert(result && "no existing substitution for type");
3131   (void) result;
3132 }
3133 
3134 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3135   bool result = mangleSubstitution(tname);
3136   assert(result && "no existing substitution for template name");
3137   (void) result;
3138 }
3139 
3140 // <substitution> ::= S <seq-id> _
3141 //                ::= S_
3142 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3143   // Try one of the standard substitutions first.
3144   if (mangleStandardSubstitution(ND))
3145     return true;
3146 
3147   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3148   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3149 }
3150 
3151 /// \brief Determine whether the given type has any qualifiers that are
3152 /// relevant for substitutions.
3153 static bool hasMangledSubstitutionQualifiers(QualType T) {
3154   Qualifiers Qs = T.getQualifiers();
3155   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3156 }
3157 
3158 bool CXXNameMangler::mangleSubstitution(QualType T) {
3159   if (!hasMangledSubstitutionQualifiers(T)) {
3160     if (const RecordType *RT = T->getAs<RecordType>())
3161       return mangleSubstitution(RT->getDecl());
3162   }
3163 
3164   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3165 
3166   return mangleSubstitution(TypePtr);
3167 }
3168 
3169 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3170   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3171     return mangleSubstitution(TD);
3172 
3173   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3174   return mangleSubstitution(
3175                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3176 }
3177 
3178 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3179   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3180   if (I == Substitutions.end())
3181     return false;
3182 
3183   unsigned SeqID = I->second;
3184   if (SeqID == 0)
3185     Out << "S_";
3186   else {
3187     SeqID--;
3188 
3189     // <seq-id> is encoded in base-36, using digits and upper case letters.
3190     char Buffer[10];
3191     char *BufferPtr = llvm::array_endof(Buffer);
3192 
3193     if (SeqID == 0) *--BufferPtr = '0';
3194 
3195     while (SeqID) {
3196       assert(BufferPtr > Buffer && "Buffer overflow!");
3197 
3198       char c = static_cast<char>(SeqID % 36);
3199 
3200       *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3201       SeqID /= 36;
3202     }
3203 
3204     Out << 'S'
3205         << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3206         << '_';
3207   }
3208 
3209   return true;
3210 }
3211 
3212 static bool isCharType(QualType T) {
3213   if (T.isNull())
3214     return false;
3215 
3216   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3217     T->isSpecificBuiltinType(BuiltinType::Char_U);
3218 }
3219 
3220 /// isCharSpecialization - Returns whether a given type is a template
3221 /// specialization of a given name with a single argument of type char.
3222 static bool isCharSpecialization(QualType T, const char *Name) {
3223   if (T.isNull())
3224     return false;
3225 
3226   const RecordType *RT = T->getAs<RecordType>();
3227   if (!RT)
3228     return false;
3229 
3230   const ClassTemplateSpecializationDecl *SD =
3231     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3232   if (!SD)
3233     return false;
3234 
3235   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3236     return false;
3237 
3238   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3239   if (TemplateArgs.size() != 1)
3240     return false;
3241 
3242   if (!isCharType(TemplateArgs[0].getAsType()))
3243     return false;
3244 
3245   return SD->getIdentifier()->getName() == Name;
3246 }
3247 
3248 template <std::size_t StrLen>
3249 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3250                                        const char (&Str)[StrLen]) {
3251   if (!SD->getIdentifier()->isStr(Str))
3252     return false;
3253 
3254   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3255   if (TemplateArgs.size() != 2)
3256     return false;
3257 
3258   if (!isCharType(TemplateArgs[0].getAsType()))
3259     return false;
3260 
3261   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3262     return false;
3263 
3264   return true;
3265 }
3266 
3267 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3268   // <substitution> ::= St # ::std::
3269   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3270     if (isStd(NS)) {
3271       Out << "St";
3272       return true;
3273     }
3274   }
3275 
3276   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3277     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3278       return false;
3279 
3280     // <substitution> ::= Sa # ::std::allocator
3281     if (TD->getIdentifier()->isStr("allocator")) {
3282       Out << "Sa";
3283       return true;
3284     }
3285 
3286     // <<substitution> ::= Sb # ::std::basic_string
3287     if (TD->getIdentifier()->isStr("basic_string")) {
3288       Out << "Sb";
3289       return true;
3290     }
3291   }
3292 
3293   if (const ClassTemplateSpecializationDecl *SD =
3294         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3295     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3296       return false;
3297 
3298     //    <substitution> ::= Ss # ::std::basic_string<char,
3299     //                            ::std::char_traits<char>,
3300     //                            ::std::allocator<char> >
3301     if (SD->getIdentifier()->isStr("basic_string")) {
3302       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3303 
3304       if (TemplateArgs.size() != 3)
3305         return false;
3306 
3307       if (!isCharType(TemplateArgs[0].getAsType()))
3308         return false;
3309 
3310       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3311         return false;
3312 
3313       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3314         return false;
3315 
3316       Out << "Ss";
3317       return true;
3318     }
3319 
3320     //    <substitution> ::= Si # ::std::basic_istream<char,
3321     //                            ::std::char_traits<char> >
3322     if (isStreamCharSpecialization(SD, "basic_istream")) {
3323       Out << "Si";
3324       return true;
3325     }
3326 
3327     //    <substitution> ::= So # ::std::basic_ostream<char,
3328     //                            ::std::char_traits<char> >
3329     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3330       Out << "So";
3331       return true;
3332     }
3333 
3334     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3335     //                            ::std::char_traits<char> >
3336     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3337       Out << "Sd";
3338       return true;
3339     }
3340   }
3341   return false;
3342 }
3343 
3344 void CXXNameMangler::addSubstitution(QualType T) {
3345   if (!hasMangledSubstitutionQualifiers(T)) {
3346     if (const RecordType *RT = T->getAs<RecordType>()) {
3347       addSubstitution(RT->getDecl());
3348       return;
3349     }
3350   }
3351 
3352   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3353   addSubstitution(TypePtr);
3354 }
3355 
3356 void CXXNameMangler::addSubstitution(TemplateName Template) {
3357   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3358     return addSubstitution(TD);
3359 
3360   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3361   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3362 }
3363 
3364 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3365   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3366   Substitutions[Ptr] = SeqID++;
3367 }
3368 
3369 //
3370 
3371 /// \brief Mangles the name of the declaration D and emits that name to the
3372 /// given output stream.
3373 ///
3374 /// If the declaration D requires a mangled name, this routine will emit that
3375 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3376 /// and this routine will return false. In this case, the caller should just
3377 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3378 /// name.
3379 void ItaniumMangleContext::mangleName(const NamedDecl *D,
3380                                       raw_ostream &Out) {
3381   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3382           "Invalid mangleName() call, argument is not a variable or function!");
3383   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3384          "Invalid mangleName() call on 'structor decl!");
3385 
3386   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3387                                  getASTContext().getSourceManager(),
3388                                  "Mangling declaration");
3389 
3390   CXXNameMangler Mangler(*this, Out, D);
3391   return Mangler.mangle(D);
3392 }
3393 
3394 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3395                                          CXXCtorType Type,
3396                                          raw_ostream &Out) {
3397   CXXNameMangler Mangler(*this, Out, D, Type);
3398   Mangler.mangle(D);
3399 }
3400 
3401 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3402                                          CXXDtorType Type,
3403                                          raw_ostream &Out) {
3404   CXXNameMangler Mangler(*this, Out, D, Type);
3405   Mangler.mangle(D);
3406 }
3407 
3408 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3409                                        const ThunkInfo &Thunk,
3410                                        raw_ostream &Out) {
3411   //  <special-name> ::= T <call-offset> <base encoding>
3412   //                      # base is the nominal target function of thunk
3413   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3414   //                      # base is the nominal target function of thunk
3415   //                      # first call-offset is 'this' adjustment
3416   //                      # second call-offset is result adjustment
3417 
3418   assert(!isa<CXXDestructorDecl>(MD) &&
3419          "Use mangleCXXDtor for destructor decls!");
3420   CXXNameMangler Mangler(*this, Out);
3421   Mangler.getStream() << "_ZT";
3422   if (!Thunk.Return.isEmpty())
3423     Mangler.getStream() << 'c';
3424 
3425   // Mangle the 'this' pointer adjustment.
3426   Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3427 
3428   // Mangle the return pointer adjustment if there is one.
3429   if (!Thunk.Return.isEmpty())
3430     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3431                              Thunk.Return.VBaseOffsetOffset);
3432 
3433   Mangler.mangleFunctionEncoding(MD);
3434 }
3435 
3436 void
3437 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3438                                          CXXDtorType Type,
3439                                          const ThisAdjustment &ThisAdjustment,
3440                                          raw_ostream &Out) {
3441   //  <special-name> ::= T <call-offset> <base encoding>
3442   //                      # base is the nominal target function of thunk
3443   CXXNameMangler Mangler(*this, Out, DD, Type);
3444   Mangler.getStream() << "_ZT";
3445 
3446   // Mangle the 'this' pointer adjustment.
3447   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3448                            ThisAdjustment.VCallOffsetOffset);
3449 
3450   Mangler.mangleFunctionEncoding(DD);
3451 }
3452 
3453 /// mangleGuardVariable - Returns the mangled name for a guard variable
3454 /// for the passed in VarDecl.
3455 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3456                                                       raw_ostream &Out) {
3457   //  <special-name> ::= GV <object name>       # Guard variable for one-time
3458   //                                            # initialization
3459   CXXNameMangler Mangler(*this, Out);
3460   Mangler.getStream() << "_ZGV";
3461   Mangler.mangleName(D);
3462 }
3463 
3464 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3465                                                     raw_ostream &Out) {
3466   // We match the GCC mangling here.
3467   //  <special-name> ::= GR <object name>
3468   CXXNameMangler Mangler(*this, Out);
3469   Mangler.getStream() << "_ZGR";
3470   Mangler.mangleName(D);
3471 }
3472 
3473 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3474                                            raw_ostream &Out) {
3475   // <special-name> ::= TV <type>  # virtual table
3476   CXXNameMangler Mangler(*this, Out);
3477   Mangler.getStream() << "_ZTV";
3478   Mangler.mangleNameOrStandardSubstitution(RD);
3479 }
3480 
3481 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3482                                         raw_ostream &Out) {
3483   // <special-name> ::= TT <type>  # VTT structure
3484   CXXNameMangler Mangler(*this, Out);
3485   Mangler.getStream() << "_ZTT";
3486   Mangler.mangleNameOrStandardSubstitution(RD);
3487 }
3488 
3489 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3490                                                int64_t Offset,
3491                                                const CXXRecordDecl *Type,
3492                                                raw_ostream &Out) {
3493   // <special-name> ::= TC <type> <offset number> _ <base type>
3494   CXXNameMangler Mangler(*this, Out);
3495   Mangler.getStream() << "_ZTC";
3496   Mangler.mangleNameOrStandardSubstitution(RD);
3497   Mangler.getStream() << Offset;
3498   Mangler.getStream() << '_';
3499   Mangler.mangleNameOrStandardSubstitution(Type);
3500 }
3501 
3502 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3503                                          raw_ostream &Out) {
3504   // <special-name> ::= TI <type>  # typeinfo structure
3505   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3506   CXXNameMangler Mangler(*this, Out);
3507   Mangler.getStream() << "_ZTI";
3508   Mangler.mangleType(Ty);
3509 }
3510 
3511 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3512                                              raw_ostream &Out) {
3513   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3514   CXXNameMangler Mangler(*this, Out);
3515   Mangler.getStream() << "_ZTS";
3516   Mangler.mangleType(Ty);
3517 }
3518 
3519 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3520                                                  DiagnosticsEngine &Diags) {
3521   return new ItaniumMangleContext(Context, Diags);
3522 }
3523