1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implements C++ name mangling according to the Itanium C++ ABI, 10 // which is used in GCC 3.2 and newer (and many compilers that are 11 // ABI-compatible with GCC): 12 // 13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 14 // 15 //===----------------------------------------------------------------------===// 16 #include "clang/AST/Mangle.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclOpenMP.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/Basic/ABI.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 using namespace clang; 36 37 namespace { 38 39 /// Retrieve the declaration context that should be used when mangling the given 40 /// declaration. 41 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 42 // The ABI assumes that lambda closure types that occur within 43 // default arguments live in the context of the function. However, due to 44 // the way in which Clang parses and creates function declarations, this is 45 // not the case: the lambda closure type ends up living in the context 46 // where the function itself resides, because the function declaration itself 47 // had not yet been created. Fix the context here. 48 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 49 if (RD->isLambda()) 50 if (ParmVarDecl *ContextParam 51 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 52 return ContextParam->getDeclContext(); 53 } 54 55 // Perform the same check for block literals. 56 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 57 if (ParmVarDecl *ContextParam 58 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 59 return ContextParam->getDeclContext(); 60 } 61 62 const DeclContext *DC = D->getDeclContext(); 63 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 64 isa<OMPDeclareMapperDecl>(DC)) { 65 return getEffectiveDeclContext(cast<Decl>(DC)); 66 } 67 68 if (const auto *VD = dyn_cast<VarDecl>(D)) 69 if (VD->isExternC()) 70 return VD->getASTContext().getTranslationUnitDecl(); 71 72 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 73 if (FD->isExternC()) 74 return FD->getASTContext().getTranslationUnitDecl(); 75 76 return DC->getRedeclContext(); 77 } 78 79 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 80 return getEffectiveDeclContext(cast<Decl>(DC)); 81 } 82 83 static bool isLocalContainerContext(const DeclContext *DC) { 84 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 85 } 86 87 static const RecordDecl *GetLocalClassDecl(const Decl *D) { 88 const DeclContext *DC = getEffectiveDeclContext(D); 89 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 90 if (isLocalContainerContext(DC)) 91 return dyn_cast<RecordDecl>(D); 92 D = cast<Decl>(DC); 93 DC = getEffectiveDeclContext(D); 94 } 95 return nullptr; 96 } 97 98 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 99 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 100 return ftd->getTemplatedDecl(); 101 102 return fn; 103 } 104 105 static const NamedDecl *getStructor(const NamedDecl *decl) { 106 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 107 return (fn ? getStructor(fn) : decl); 108 } 109 110 static bool isLambda(const NamedDecl *ND) { 111 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 112 if (!Record) 113 return false; 114 115 return Record->isLambda(); 116 } 117 118 static const unsigned UnknownArity = ~0U; 119 120 class ItaniumMangleContextImpl : public ItaniumMangleContext { 121 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 122 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 123 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 124 125 public: 126 explicit ItaniumMangleContextImpl(ASTContext &Context, 127 DiagnosticsEngine &Diags) 128 : ItaniumMangleContext(Context, Diags) {} 129 130 /// @name Mangler Entry Points 131 /// @{ 132 133 bool shouldMangleCXXName(const NamedDecl *D) override; 134 bool shouldMangleStringLiteral(const StringLiteral *) override { 135 return false; 136 } 137 void mangleCXXName(const NamedDecl *D, raw_ostream &) override; 138 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 139 raw_ostream &) override; 140 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 141 const ThisAdjustment &ThisAdjustment, 142 raw_ostream &) override; 143 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 144 raw_ostream &) override; 145 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 146 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 147 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 148 const CXXRecordDecl *Type, raw_ostream &) override; 149 void mangleCXXRTTI(QualType T, raw_ostream &) override; 150 void mangleCXXRTTIName(QualType T, raw_ostream &) override; 151 void mangleTypeName(QualType T, raw_ostream &) override; 152 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 153 raw_ostream &) override; 154 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 155 raw_ostream &) override; 156 157 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 158 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 159 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 160 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 161 void mangleDynamicAtExitDestructor(const VarDecl *D, 162 raw_ostream &Out) override; 163 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 164 raw_ostream &Out) override; 165 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 166 raw_ostream &Out) override; 167 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 168 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 169 raw_ostream &) override; 170 171 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 172 173 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 174 // Lambda closure types are already numbered. 175 if (isLambda(ND)) 176 return false; 177 178 // Anonymous tags are already numbered. 179 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 180 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 181 return false; 182 } 183 184 // Use the canonical number for externally visible decls. 185 if (ND->isExternallyVisible()) { 186 unsigned discriminator = getASTContext().getManglingNumber(ND); 187 if (discriminator == 1) 188 return false; 189 disc = discriminator - 2; 190 return true; 191 } 192 193 // Make up a reasonable number for internal decls. 194 unsigned &discriminator = Uniquifier[ND]; 195 if (!discriminator) { 196 const DeclContext *DC = getEffectiveDeclContext(ND); 197 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 198 } 199 if (discriminator == 1) 200 return false; 201 disc = discriminator-2; 202 return true; 203 } 204 /// @} 205 }; 206 207 /// Manage the mangling of a single name. 208 class CXXNameMangler { 209 ItaniumMangleContextImpl &Context; 210 raw_ostream &Out; 211 bool NullOut = false; 212 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 213 /// This mode is used when mangler creates another mangler recursively to 214 /// calculate ABI tags for the function return value or the variable type. 215 /// Also it is required to avoid infinite recursion in some cases. 216 bool DisableDerivedAbiTags = false; 217 218 /// The "structor" is the top-level declaration being mangled, if 219 /// that's not a template specialization; otherwise it's the pattern 220 /// for that specialization. 221 const NamedDecl *Structor; 222 unsigned StructorType; 223 224 /// The next substitution sequence number. 225 unsigned SeqID; 226 227 class FunctionTypeDepthState { 228 unsigned Bits; 229 230 enum { InResultTypeMask = 1 }; 231 232 public: 233 FunctionTypeDepthState() : Bits(0) {} 234 235 /// The number of function types we're inside. 236 unsigned getDepth() const { 237 return Bits >> 1; 238 } 239 240 /// True if we're in the return type of the innermost function type. 241 bool isInResultType() const { 242 return Bits & InResultTypeMask; 243 } 244 245 FunctionTypeDepthState push() { 246 FunctionTypeDepthState tmp = *this; 247 Bits = (Bits & ~InResultTypeMask) + 2; 248 return tmp; 249 } 250 251 void enterResultType() { 252 Bits |= InResultTypeMask; 253 } 254 255 void leaveResultType() { 256 Bits &= ~InResultTypeMask; 257 } 258 259 void pop(FunctionTypeDepthState saved) { 260 assert(getDepth() == saved.getDepth() + 1); 261 Bits = saved.Bits; 262 } 263 264 } FunctionTypeDepth; 265 266 // abi_tag is a gcc attribute, taking one or more strings called "tags". 267 // The goal is to annotate against which version of a library an object was 268 // built and to be able to provide backwards compatibility ("dual abi"). 269 // For more information see docs/ItaniumMangleAbiTags.rst. 270 typedef SmallVector<StringRef, 4> AbiTagList; 271 272 // State to gather all implicit and explicit tags used in a mangled name. 273 // Must always have an instance of this while emitting any name to keep 274 // track. 275 class AbiTagState final { 276 public: 277 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 278 Parent = LinkHead; 279 LinkHead = this; 280 } 281 282 // No copy, no move. 283 AbiTagState(const AbiTagState &) = delete; 284 AbiTagState &operator=(const AbiTagState &) = delete; 285 286 ~AbiTagState() { pop(); } 287 288 void write(raw_ostream &Out, const NamedDecl *ND, 289 const AbiTagList *AdditionalAbiTags) { 290 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 291 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 292 assert( 293 !AdditionalAbiTags && 294 "only function and variables need a list of additional abi tags"); 295 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 296 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 297 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 298 AbiTag->tags().end()); 299 } 300 // Don't emit abi tags for namespaces. 301 return; 302 } 303 } 304 305 AbiTagList TagList; 306 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 307 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 308 AbiTag->tags().end()); 309 TagList.insert(TagList.end(), AbiTag->tags().begin(), 310 AbiTag->tags().end()); 311 } 312 313 if (AdditionalAbiTags) { 314 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 315 AdditionalAbiTags->end()); 316 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 317 AdditionalAbiTags->end()); 318 } 319 320 llvm::sort(TagList); 321 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 322 323 writeSortedUniqueAbiTags(Out, TagList); 324 } 325 326 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 327 void setUsedAbiTags(const AbiTagList &AbiTags) { 328 UsedAbiTags = AbiTags; 329 } 330 331 const AbiTagList &getEmittedAbiTags() const { 332 return EmittedAbiTags; 333 } 334 335 const AbiTagList &getSortedUniqueUsedAbiTags() { 336 llvm::sort(UsedAbiTags); 337 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 338 UsedAbiTags.end()); 339 return UsedAbiTags; 340 } 341 342 private: 343 //! All abi tags used implicitly or explicitly. 344 AbiTagList UsedAbiTags; 345 //! All explicit abi tags (i.e. not from namespace). 346 AbiTagList EmittedAbiTags; 347 348 AbiTagState *&LinkHead; 349 AbiTagState *Parent = nullptr; 350 351 void pop() { 352 assert(LinkHead == this && 353 "abi tag link head must point to us on destruction"); 354 if (Parent) { 355 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 356 UsedAbiTags.begin(), UsedAbiTags.end()); 357 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 358 EmittedAbiTags.begin(), 359 EmittedAbiTags.end()); 360 } 361 LinkHead = Parent; 362 } 363 364 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 365 for (const auto &Tag : AbiTags) { 366 EmittedAbiTags.push_back(Tag); 367 Out << "B"; 368 Out << Tag.size(); 369 Out << Tag; 370 } 371 } 372 }; 373 374 AbiTagState *AbiTags = nullptr; 375 AbiTagState AbiTagsRoot; 376 377 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 378 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 379 380 ASTContext &getASTContext() const { return Context.getASTContext(); } 381 382 public: 383 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 384 const NamedDecl *D = nullptr, bool NullOut_ = false) 385 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 386 StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { 387 // These can't be mangled without a ctor type or dtor type. 388 assert(!D || (!isa<CXXDestructorDecl>(D) && 389 !isa<CXXConstructorDecl>(D))); 390 } 391 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 392 const CXXConstructorDecl *D, CXXCtorType Type) 393 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 394 SeqID(0), AbiTagsRoot(AbiTags) { } 395 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 396 const CXXDestructorDecl *D, CXXDtorType Type) 397 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 398 SeqID(0), AbiTagsRoot(AbiTags) { } 399 400 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 401 : Context(Outer.Context), Out(Out_), NullOut(false), 402 Structor(Outer.Structor), StructorType(Outer.StructorType), 403 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 404 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 405 406 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 407 : Context(Outer.Context), Out(Out_), NullOut(true), 408 Structor(Outer.Structor), StructorType(Outer.StructorType), 409 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 410 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 411 412 raw_ostream &getStream() { return Out; } 413 414 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 415 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 416 417 void mangle(const NamedDecl *D); 418 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 419 void mangleNumber(const llvm::APSInt &I); 420 void mangleNumber(int64_t Number); 421 void mangleFloat(const llvm::APFloat &F); 422 void mangleFunctionEncoding(const FunctionDecl *FD); 423 void mangleSeqID(unsigned SeqID); 424 void mangleName(const NamedDecl *ND); 425 void mangleType(QualType T); 426 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 427 428 private: 429 430 bool mangleSubstitution(const NamedDecl *ND); 431 bool mangleSubstitution(QualType T); 432 bool mangleSubstitution(TemplateName Template); 433 bool mangleSubstitution(uintptr_t Ptr); 434 435 void mangleExistingSubstitution(TemplateName name); 436 437 bool mangleStandardSubstitution(const NamedDecl *ND); 438 439 void addSubstitution(const NamedDecl *ND) { 440 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 441 442 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 443 } 444 void addSubstitution(QualType T); 445 void addSubstitution(TemplateName Template); 446 void addSubstitution(uintptr_t Ptr); 447 // Destructive copy substitutions from other mangler. 448 void extendSubstitutions(CXXNameMangler* Other); 449 450 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 451 bool recursive = false); 452 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 453 DeclarationName name, 454 const TemplateArgumentLoc *TemplateArgs, 455 unsigned NumTemplateArgs, 456 unsigned KnownArity = UnknownArity); 457 458 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 459 460 void mangleNameWithAbiTags(const NamedDecl *ND, 461 const AbiTagList *AdditionalAbiTags); 462 void mangleModuleName(const Module *M); 463 void mangleModuleNamePrefix(StringRef Name); 464 void mangleTemplateName(const TemplateDecl *TD, 465 const TemplateArgument *TemplateArgs, 466 unsigned NumTemplateArgs); 467 void mangleUnqualifiedName(const NamedDecl *ND, 468 const AbiTagList *AdditionalAbiTags) { 469 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity, 470 AdditionalAbiTags); 471 } 472 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, 473 unsigned KnownArity, 474 const AbiTagList *AdditionalAbiTags); 475 void mangleUnscopedName(const NamedDecl *ND, 476 const AbiTagList *AdditionalAbiTags); 477 void mangleUnscopedTemplateName(const TemplateDecl *ND, 478 const AbiTagList *AdditionalAbiTags); 479 void mangleUnscopedTemplateName(TemplateName, 480 const AbiTagList *AdditionalAbiTags); 481 void mangleSourceName(const IdentifierInfo *II); 482 void mangleRegCallName(const IdentifierInfo *II); 483 void mangleSourceNameWithAbiTags( 484 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 485 void mangleLocalName(const Decl *D, 486 const AbiTagList *AdditionalAbiTags); 487 void mangleBlockForPrefix(const BlockDecl *Block); 488 void mangleUnqualifiedBlock(const BlockDecl *Block); 489 void mangleTemplateParamDecl(const NamedDecl *Decl); 490 void mangleLambda(const CXXRecordDecl *Lambda); 491 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, 492 const AbiTagList *AdditionalAbiTags, 493 bool NoFunction=false); 494 void mangleNestedName(const TemplateDecl *TD, 495 const TemplateArgument *TemplateArgs, 496 unsigned NumTemplateArgs); 497 void manglePrefix(NestedNameSpecifier *qualifier); 498 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 499 void manglePrefix(QualType type); 500 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false); 501 void mangleTemplatePrefix(TemplateName Template); 502 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 503 StringRef Prefix = ""); 504 void mangleOperatorName(DeclarationName Name, unsigned Arity); 505 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 506 void mangleVendorQualifier(StringRef qualifier); 507 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 508 void mangleRefQualifier(RefQualifierKind RefQualifier); 509 510 void mangleObjCMethodName(const ObjCMethodDecl *MD); 511 512 // Declare manglers for every type class. 513 #define ABSTRACT_TYPE(CLASS, PARENT) 514 #define NON_CANONICAL_TYPE(CLASS, PARENT) 515 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 516 #include "clang/AST/TypeNodes.def" 517 518 void mangleType(const TagType*); 519 void mangleType(TemplateName); 520 static StringRef getCallingConvQualifierName(CallingConv CC); 521 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 522 void mangleExtFunctionInfo(const FunctionType *T); 523 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 524 const FunctionDecl *FD = nullptr); 525 void mangleNeonVectorType(const VectorType *T); 526 void mangleNeonVectorType(const DependentVectorType *T); 527 void mangleAArch64NeonVectorType(const VectorType *T); 528 void mangleAArch64NeonVectorType(const DependentVectorType *T); 529 530 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 531 void mangleMemberExprBase(const Expr *base, bool isArrow); 532 void mangleMemberExpr(const Expr *base, bool isArrow, 533 NestedNameSpecifier *qualifier, 534 NamedDecl *firstQualifierLookup, 535 DeclarationName name, 536 const TemplateArgumentLoc *TemplateArgs, 537 unsigned NumTemplateArgs, 538 unsigned knownArity); 539 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 540 void mangleInitListElements(const InitListExpr *InitList); 541 void mangleDeclRefExpr(const NamedDecl *D); 542 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); 543 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 544 void mangleCXXDtorType(CXXDtorType T); 545 546 void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, 547 unsigned NumTemplateArgs); 548 void mangleTemplateArgs(const TemplateArgument *TemplateArgs, 549 unsigned NumTemplateArgs); 550 void mangleTemplateArgs(const TemplateArgumentList &AL); 551 void mangleTemplateArg(TemplateArgument A); 552 553 void mangleTemplateParameter(unsigned Index); 554 555 void mangleFunctionParam(const ParmVarDecl *parm); 556 557 void writeAbiTags(const NamedDecl *ND, 558 const AbiTagList *AdditionalAbiTags); 559 560 // Returns sorted unique list of ABI tags. 561 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 562 // Returns sorted unique list of ABI tags. 563 AbiTagList makeVariableTypeTags(const VarDecl *VD); 564 }; 565 566 } 567 568 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 569 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 570 if (FD) { 571 LanguageLinkage L = FD->getLanguageLinkage(); 572 // Overloadable functions need mangling. 573 if (FD->hasAttr<OverloadableAttr>()) 574 return true; 575 576 // "main" is not mangled. 577 if (FD->isMain()) 578 return false; 579 580 // The Windows ABI expects that we would never mangle "typical" 581 // user-defined entry points regardless of visibility or freestanding-ness. 582 // 583 // N.B. This is distinct from asking about "main". "main" has a lot of 584 // special rules associated with it in the standard while these 585 // user-defined entry points are outside of the purview of the standard. 586 // For example, there can be only one definition for "main" in a standards 587 // compliant program; however nothing forbids the existence of wmain and 588 // WinMain in the same translation unit. 589 if (FD->isMSVCRTEntryPoint()) 590 return false; 591 592 // C++ functions and those whose names are not a simple identifier need 593 // mangling. 594 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 595 return true; 596 597 // C functions are not mangled. 598 if (L == CLanguageLinkage) 599 return false; 600 } 601 602 // Otherwise, no mangling is done outside C++ mode. 603 if (!getASTContext().getLangOpts().CPlusPlus) 604 return false; 605 606 const VarDecl *VD = dyn_cast<VarDecl>(D); 607 if (VD && !isa<DecompositionDecl>(D)) { 608 // C variables are not mangled. 609 if (VD->isExternC()) 610 return false; 611 612 // Variables at global scope with non-internal linkage are not mangled 613 const DeclContext *DC = getEffectiveDeclContext(D); 614 // Check for extern variable declared locally. 615 if (DC->isFunctionOrMethod() && D->hasLinkage()) 616 while (!DC->isNamespace() && !DC->isTranslationUnit()) 617 DC = getEffectiveParentContext(DC); 618 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && 619 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 620 !isa<VarTemplateSpecializationDecl>(D)) 621 return false; 622 } 623 624 return true; 625 } 626 627 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 628 const AbiTagList *AdditionalAbiTags) { 629 assert(AbiTags && "require AbiTagState"); 630 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 631 } 632 633 void CXXNameMangler::mangleSourceNameWithAbiTags( 634 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 635 mangleSourceName(ND->getIdentifier()); 636 writeAbiTags(ND, AdditionalAbiTags); 637 } 638 639 void CXXNameMangler::mangle(const NamedDecl *D) { 640 // <mangled-name> ::= _Z <encoding> 641 // ::= <data name> 642 // ::= <special-name> 643 Out << "_Z"; 644 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 645 mangleFunctionEncoding(FD); 646 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 647 mangleName(VD); 648 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) 649 mangleName(IFD->getAnonField()); 650 else 651 mangleName(cast<FieldDecl>(D)); 652 } 653 654 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { 655 // <encoding> ::= <function name> <bare-function-type> 656 657 // Don't mangle in the type if this isn't a decl we should typically mangle. 658 if (!Context.shouldMangleDeclName(FD)) { 659 mangleName(FD); 660 return; 661 } 662 663 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 664 if (ReturnTypeAbiTags.empty()) { 665 // There are no tags for return type, the simplest case. 666 mangleName(FD); 667 mangleFunctionEncodingBareType(FD); 668 return; 669 } 670 671 // Mangle function name and encoding to temporary buffer. 672 // We have to output name and encoding to the same mangler to get the same 673 // substitution as it will be in final mangling. 674 SmallString<256> FunctionEncodingBuf; 675 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 676 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 677 // Output name of the function. 678 FunctionEncodingMangler.disableDerivedAbiTags(); 679 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 680 681 // Remember length of the function name in the buffer. 682 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 683 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 684 685 // Get tags from return type that are not present in function name or 686 // encoding. 687 const AbiTagList &UsedAbiTags = 688 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 689 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 690 AdditionalAbiTags.erase( 691 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 692 UsedAbiTags.begin(), UsedAbiTags.end(), 693 AdditionalAbiTags.begin()), 694 AdditionalAbiTags.end()); 695 696 // Output name with implicit tags and function encoding from temporary buffer. 697 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 698 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 699 700 // Function encoding could create new substitutions so we have to add 701 // temp mangled substitutions to main mangler. 702 extendSubstitutions(&FunctionEncodingMangler); 703 } 704 705 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 706 if (FD->hasAttr<EnableIfAttr>()) { 707 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 708 Out << "Ua9enable_ifI"; 709 for (AttrVec::const_iterator I = FD->getAttrs().begin(), 710 E = FD->getAttrs().end(); 711 I != E; ++I) { 712 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 713 if (!EIA) 714 continue; 715 Out << 'X'; 716 mangleExpression(EIA->getCond()); 717 Out << 'E'; 718 } 719 Out << 'E'; 720 FunctionTypeDepth.pop(Saved); 721 } 722 723 // When mangling an inheriting constructor, the bare function type used is 724 // that of the inherited constructor. 725 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 726 if (auto Inherited = CD->getInheritedConstructor()) 727 FD = Inherited.getConstructor(); 728 729 // Whether the mangling of a function type includes the return type depends on 730 // the context and the nature of the function. The rules for deciding whether 731 // the return type is included are: 732 // 733 // 1. Template functions (names or types) have return types encoded, with 734 // the exceptions listed below. 735 // 2. Function types not appearing as part of a function name mangling, 736 // e.g. parameters, pointer types, etc., have return type encoded, with the 737 // exceptions listed below. 738 // 3. Non-template function names do not have return types encoded. 739 // 740 // The exceptions mentioned in (1) and (2) above, for which the return type is 741 // never included, are 742 // 1. Constructors. 743 // 2. Destructors. 744 // 3. Conversion operator functions, e.g. operator int. 745 bool MangleReturnType = false; 746 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 747 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 748 isa<CXXConversionDecl>(FD))) 749 MangleReturnType = true; 750 751 // Mangle the type of the primary template. 752 FD = PrimaryTemplate->getTemplatedDecl(); 753 } 754 755 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 756 MangleReturnType, FD); 757 } 758 759 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { 760 while (isa<LinkageSpecDecl>(DC)) { 761 DC = getEffectiveParentContext(DC); 762 } 763 764 return DC; 765 } 766 767 /// Return whether a given namespace is the 'std' namespace. 768 static bool isStd(const NamespaceDecl *NS) { 769 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) 770 ->isTranslationUnit()) 771 return false; 772 773 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 774 return II && II->isStr("std"); 775 } 776 777 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 778 // namespace. 779 static bool isStdNamespace(const DeclContext *DC) { 780 if (!DC->isNamespace()) 781 return false; 782 783 return isStd(cast<NamespaceDecl>(DC)); 784 } 785 786 static const TemplateDecl * 787 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 788 // Check if we have a function template. 789 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 790 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 791 TemplateArgs = FD->getTemplateSpecializationArgs(); 792 return TD; 793 } 794 } 795 796 // Check if we have a class template. 797 if (const ClassTemplateSpecializationDecl *Spec = 798 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 799 TemplateArgs = &Spec->getTemplateArgs(); 800 return Spec->getSpecializedTemplate(); 801 } 802 803 // Check if we have a variable template. 804 if (const VarTemplateSpecializationDecl *Spec = 805 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 806 TemplateArgs = &Spec->getTemplateArgs(); 807 return Spec->getSpecializedTemplate(); 808 } 809 810 return nullptr; 811 } 812 813 void CXXNameMangler::mangleName(const NamedDecl *ND) { 814 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 815 // Variables should have implicit tags from its type. 816 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 817 if (VariableTypeAbiTags.empty()) { 818 // Simple case no variable type tags. 819 mangleNameWithAbiTags(VD, nullptr); 820 return; 821 } 822 823 // Mangle variable name to null stream to collect tags. 824 llvm::raw_null_ostream NullOutStream; 825 CXXNameMangler VariableNameMangler(*this, NullOutStream); 826 VariableNameMangler.disableDerivedAbiTags(); 827 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 828 829 // Get tags from variable type that are not present in its name. 830 const AbiTagList &UsedAbiTags = 831 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 832 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 833 AdditionalAbiTags.erase( 834 std::set_difference(VariableTypeAbiTags.begin(), 835 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 836 UsedAbiTags.end(), AdditionalAbiTags.begin()), 837 AdditionalAbiTags.end()); 838 839 // Output name with implicit tags. 840 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 841 } else { 842 mangleNameWithAbiTags(ND, nullptr); 843 } 844 } 845 846 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND, 847 const AbiTagList *AdditionalAbiTags) { 848 // <name> ::= [<module-name>] <nested-name> 849 // ::= [<module-name>] <unscoped-name> 850 // ::= [<module-name>] <unscoped-template-name> <template-args> 851 // ::= <local-name> 852 // 853 const DeclContext *DC = getEffectiveDeclContext(ND); 854 855 // If this is an extern variable declared locally, the relevant DeclContext 856 // is that of the containing namespace, or the translation unit. 857 // FIXME: This is a hack; extern variables declared locally should have 858 // a proper semantic declaration context! 859 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) 860 while (!DC->isNamespace() && !DC->isTranslationUnit()) 861 DC = getEffectiveParentContext(DC); 862 else if (GetLocalClassDecl(ND)) { 863 mangleLocalName(ND, AdditionalAbiTags); 864 return; 865 } 866 867 DC = IgnoreLinkageSpecDecls(DC); 868 869 if (isLocalContainerContext(DC)) { 870 mangleLocalName(ND, AdditionalAbiTags); 871 return; 872 } 873 874 // Do not mangle the owning module for an external linkage declaration. 875 // This enables backwards-compatibility with non-modular code, and is 876 // a valid choice since conflicts are not permitted by C++ Modules TS 877 // [basic.def.odr]/6.2. 878 if (!ND->hasExternalFormalLinkage()) 879 if (Module *M = ND->getOwningModuleForLinkage()) 880 mangleModuleName(M); 881 882 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 883 // Check if we have a template. 884 const TemplateArgumentList *TemplateArgs = nullptr; 885 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 886 mangleUnscopedTemplateName(TD, AdditionalAbiTags); 887 mangleTemplateArgs(*TemplateArgs); 888 return; 889 } 890 891 mangleUnscopedName(ND, AdditionalAbiTags); 892 return; 893 } 894 895 mangleNestedName(ND, DC, AdditionalAbiTags); 896 } 897 898 void CXXNameMangler::mangleModuleName(const Module *M) { 899 // Implement the C++ Modules TS name mangling proposal; see 900 // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile 901 // 902 // <module-name> ::= W <unscoped-name>+ E 903 // ::= W <module-subst> <unscoped-name>* E 904 Out << 'W'; 905 mangleModuleNamePrefix(M->Name); 906 Out << 'E'; 907 } 908 909 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { 910 // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 911 // ::= W <seq-id - 10> _ # otherwise 912 auto It = ModuleSubstitutions.find(Name); 913 if (It != ModuleSubstitutions.end()) { 914 if (It->second < 10) 915 Out << '_' << static_cast<char>('0' + It->second); 916 else 917 Out << 'W' << (It->second - 10) << '_'; 918 return; 919 } 920 921 // FIXME: Preserve hierarchy in module names rather than flattening 922 // them to strings; use Module*s as substitution keys. 923 auto Parts = Name.rsplit('.'); 924 if (Parts.second.empty()) 925 Parts.second = Parts.first; 926 else 927 mangleModuleNamePrefix(Parts.first); 928 929 Out << Parts.second.size() << Parts.second; 930 ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); 931 } 932 933 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 934 const TemplateArgument *TemplateArgs, 935 unsigned NumTemplateArgs) { 936 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); 937 938 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 939 mangleUnscopedTemplateName(TD, nullptr); 940 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 941 } else { 942 mangleNestedName(TD, TemplateArgs, NumTemplateArgs); 943 } 944 } 945 946 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND, 947 const AbiTagList *AdditionalAbiTags) { 948 // <unscoped-name> ::= <unqualified-name> 949 // ::= St <unqualified-name> # ::std:: 950 951 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) 952 Out << "St"; 953 954 mangleUnqualifiedName(ND, AdditionalAbiTags); 955 } 956 957 void CXXNameMangler::mangleUnscopedTemplateName( 958 const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) { 959 // <unscoped-template-name> ::= <unscoped-name> 960 // ::= <substitution> 961 if (mangleSubstitution(ND)) 962 return; 963 964 // <template-template-param> ::= <template-param> 965 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 966 assert(!AdditionalAbiTags && 967 "template template param cannot have abi tags"); 968 mangleTemplateParameter(TTP->getIndex()); 969 } else if (isa<BuiltinTemplateDecl>(ND)) { 970 mangleUnscopedName(ND, AdditionalAbiTags); 971 } else { 972 mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags); 973 } 974 975 addSubstitution(ND); 976 } 977 978 void CXXNameMangler::mangleUnscopedTemplateName( 979 TemplateName Template, const AbiTagList *AdditionalAbiTags) { 980 // <unscoped-template-name> ::= <unscoped-name> 981 // ::= <substitution> 982 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 983 return mangleUnscopedTemplateName(TD, AdditionalAbiTags); 984 985 if (mangleSubstitution(Template)) 986 return; 987 988 assert(!AdditionalAbiTags && 989 "dependent template name cannot have abi tags"); 990 991 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 992 assert(Dependent && "Not a dependent template name?"); 993 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 994 mangleSourceName(Id); 995 else 996 mangleOperatorName(Dependent->getOperator(), UnknownArity); 997 998 addSubstitution(Template); 999 } 1000 1001 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1002 // ABI: 1003 // Floating-point literals are encoded using a fixed-length 1004 // lowercase hexadecimal string corresponding to the internal 1005 // representation (IEEE on Itanium), high-order bytes first, 1006 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1007 // on Itanium. 1008 // The 'without leading zeroes' thing seems to be an editorial 1009 // mistake; see the discussion on cxx-abi-dev beginning on 1010 // 2012-01-16. 1011 1012 // Our requirements here are just barely weird enough to justify 1013 // using a custom algorithm instead of post-processing APInt::toString(). 1014 1015 llvm::APInt valueBits = f.bitcastToAPInt(); 1016 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1017 assert(numCharacters != 0); 1018 1019 // Allocate a buffer of the right number of characters. 1020 SmallVector<char, 20> buffer(numCharacters); 1021 1022 // Fill the buffer left-to-right. 1023 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1024 // The bit-index of the next hex digit. 1025 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1026 1027 // Project out 4 bits starting at 'digitIndex'. 1028 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1029 hexDigit >>= (digitBitIndex % 64); 1030 hexDigit &= 0xF; 1031 1032 // Map that over to a lowercase hex digit. 1033 static const char charForHex[16] = { 1034 '0', '1', '2', '3', '4', '5', '6', '7', 1035 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1036 }; 1037 buffer[stringIndex] = charForHex[hexDigit]; 1038 } 1039 1040 Out.write(buffer.data(), numCharacters); 1041 } 1042 1043 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1044 if (Value.isSigned() && Value.isNegative()) { 1045 Out << 'n'; 1046 Value.abs().print(Out, /*signed*/ false); 1047 } else { 1048 Value.print(Out, /*signed*/ false); 1049 } 1050 } 1051 1052 void CXXNameMangler::mangleNumber(int64_t Number) { 1053 // <number> ::= [n] <non-negative decimal integer> 1054 if (Number < 0) { 1055 Out << 'n'; 1056 Number = -Number; 1057 } 1058 1059 Out << Number; 1060 } 1061 1062 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1063 // <call-offset> ::= h <nv-offset> _ 1064 // ::= v <v-offset> _ 1065 // <nv-offset> ::= <offset number> # non-virtual base override 1066 // <v-offset> ::= <offset number> _ <virtual offset number> 1067 // # virtual base override, with vcall offset 1068 if (!Virtual) { 1069 Out << 'h'; 1070 mangleNumber(NonVirtual); 1071 Out << '_'; 1072 return; 1073 } 1074 1075 Out << 'v'; 1076 mangleNumber(NonVirtual); 1077 Out << '_'; 1078 mangleNumber(Virtual); 1079 Out << '_'; 1080 } 1081 1082 void CXXNameMangler::manglePrefix(QualType type) { 1083 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1084 if (!mangleSubstitution(QualType(TST, 0))) { 1085 mangleTemplatePrefix(TST->getTemplateName()); 1086 1087 // FIXME: GCC does not appear to mangle the template arguments when 1088 // the template in question is a dependent template name. Should we 1089 // emulate that badness? 1090 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); 1091 addSubstitution(QualType(TST, 0)); 1092 } 1093 } else if (const auto *DTST = 1094 type->getAs<DependentTemplateSpecializationType>()) { 1095 if (!mangleSubstitution(QualType(DTST, 0))) { 1096 TemplateName Template = getASTContext().getDependentTemplateName( 1097 DTST->getQualifier(), DTST->getIdentifier()); 1098 mangleTemplatePrefix(Template); 1099 1100 // FIXME: GCC does not appear to mangle the template arguments when 1101 // the template in question is a dependent template name. Should we 1102 // emulate that badness? 1103 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); 1104 addSubstitution(QualType(DTST, 0)); 1105 } 1106 } else { 1107 // We use the QualType mangle type variant here because it handles 1108 // substitutions. 1109 mangleType(type); 1110 } 1111 } 1112 1113 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1114 /// 1115 /// \param recursive - true if this is being called recursively, 1116 /// i.e. if there is more prefix "to the right". 1117 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1118 bool recursive) { 1119 1120 // x, ::x 1121 // <unresolved-name> ::= [gs] <base-unresolved-name> 1122 1123 // T::x / decltype(p)::x 1124 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1125 1126 // T::N::x /decltype(p)::N::x 1127 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1128 // <base-unresolved-name> 1129 1130 // A::x, N::y, A<T>::z; "gs" means leading "::" 1131 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1132 // <base-unresolved-name> 1133 1134 switch (qualifier->getKind()) { 1135 case NestedNameSpecifier::Global: 1136 Out << "gs"; 1137 1138 // We want an 'sr' unless this is the entire NNS. 1139 if (recursive) 1140 Out << "sr"; 1141 1142 // We never want an 'E' here. 1143 return; 1144 1145 case NestedNameSpecifier::Super: 1146 llvm_unreachable("Can't mangle __super specifier"); 1147 1148 case NestedNameSpecifier::Namespace: 1149 if (qualifier->getPrefix()) 1150 mangleUnresolvedPrefix(qualifier->getPrefix(), 1151 /*recursive*/ true); 1152 else 1153 Out << "sr"; 1154 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1155 break; 1156 case NestedNameSpecifier::NamespaceAlias: 1157 if (qualifier->getPrefix()) 1158 mangleUnresolvedPrefix(qualifier->getPrefix(), 1159 /*recursive*/ true); 1160 else 1161 Out << "sr"; 1162 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1163 break; 1164 1165 case NestedNameSpecifier::TypeSpec: 1166 case NestedNameSpecifier::TypeSpecWithTemplate: { 1167 const Type *type = qualifier->getAsType(); 1168 1169 // We only want to use an unresolved-type encoding if this is one of: 1170 // - a decltype 1171 // - a template type parameter 1172 // - a template template parameter with arguments 1173 // In all of these cases, we should have no prefix. 1174 if (qualifier->getPrefix()) { 1175 mangleUnresolvedPrefix(qualifier->getPrefix(), 1176 /*recursive*/ true); 1177 } else { 1178 // Otherwise, all the cases want this. 1179 Out << "sr"; 1180 } 1181 1182 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1183 return; 1184 1185 break; 1186 } 1187 1188 case NestedNameSpecifier::Identifier: 1189 // Member expressions can have these without prefixes. 1190 if (qualifier->getPrefix()) 1191 mangleUnresolvedPrefix(qualifier->getPrefix(), 1192 /*recursive*/ true); 1193 else 1194 Out << "sr"; 1195 1196 mangleSourceName(qualifier->getAsIdentifier()); 1197 // An Identifier has no type information, so we can't emit abi tags for it. 1198 break; 1199 } 1200 1201 // If this was the innermost part of the NNS, and we fell out to 1202 // here, append an 'E'. 1203 if (!recursive) 1204 Out << 'E'; 1205 } 1206 1207 /// Mangle an unresolved-name, which is generally used for names which 1208 /// weren't resolved to specific entities. 1209 void CXXNameMangler::mangleUnresolvedName( 1210 NestedNameSpecifier *qualifier, DeclarationName name, 1211 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1212 unsigned knownArity) { 1213 if (qualifier) mangleUnresolvedPrefix(qualifier); 1214 switch (name.getNameKind()) { 1215 // <base-unresolved-name> ::= <simple-id> 1216 case DeclarationName::Identifier: 1217 mangleSourceName(name.getAsIdentifierInfo()); 1218 break; 1219 // <base-unresolved-name> ::= dn <destructor-name> 1220 case DeclarationName::CXXDestructorName: 1221 Out << "dn"; 1222 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1223 break; 1224 // <base-unresolved-name> ::= on <operator-name> 1225 case DeclarationName::CXXConversionFunctionName: 1226 case DeclarationName::CXXLiteralOperatorName: 1227 case DeclarationName::CXXOperatorName: 1228 Out << "on"; 1229 mangleOperatorName(name, knownArity); 1230 break; 1231 case DeclarationName::CXXConstructorName: 1232 llvm_unreachable("Can't mangle a constructor name!"); 1233 case DeclarationName::CXXUsingDirective: 1234 llvm_unreachable("Can't mangle a using directive name!"); 1235 case DeclarationName::CXXDeductionGuideName: 1236 llvm_unreachable("Can't mangle a deduction guide name!"); 1237 case DeclarationName::ObjCMultiArgSelector: 1238 case DeclarationName::ObjCOneArgSelector: 1239 case DeclarationName::ObjCZeroArgSelector: 1240 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1241 } 1242 1243 // The <simple-id> and on <operator-name> productions end in an optional 1244 // <template-args>. 1245 if (TemplateArgs) 1246 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 1247 } 1248 1249 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 1250 DeclarationName Name, 1251 unsigned KnownArity, 1252 const AbiTagList *AdditionalAbiTags) { 1253 unsigned Arity = KnownArity; 1254 // <unqualified-name> ::= <operator-name> 1255 // ::= <ctor-dtor-name> 1256 // ::= <source-name> 1257 switch (Name.getNameKind()) { 1258 case DeclarationName::Identifier: { 1259 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1260 1261 // We mangle decomposition declarations as the names of their bindings. 1262 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1263 // FIXME: Non-standard mangling for decomposition declarations: 1264 // 1265 // <unqualified-name> ::= DC <source-name>* E 1266 // 1267 // These can never be referenced across translation units, so we do 1268 // not need a cross-vendor mangling for anything other than demanglers. 1269 // Proposed on cxx-abi-dev on 2016-08-12 1270 Out << "DC"; 1271 for (auto *BD : DD->bindings()) 1272 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1273 Out << 'E'; 1274 writeAbiTags(ND, AdditionalAbiTags); 1275 break; 1276 } 1277 1278 if (II) { 1279 // Match GCC's naming convention for internal linkage symbols, for 1280 // symbols that are not actually visible outside of this TU. GCC 1281 // distinguishes between internal and external linkage symbols in 1282 // its mangling, to support cases like this that were valid C++ prior 1283 // to DR426: 1284 // 1285 // void test() { extern void foo(); } 1286 // static void foo(); 1287 // 1288 // Don't bother with the L marker for names in anonymous namespaces; the 1289 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1290 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1291 // implying internal linkage. 1292 if (ND && ND->getFormalLinkage() == InternalLinkage && 1293 !ND->isExternallyVisible() && 1294 getEffectiveDeclContext(ND)->isFileContext() && 1295 !ND->isInAnonymousNamespace()) 1296 Out << 'L'; 1297 1298 auto *FD = dyn_cast<FunctionDecl>(ND); 1299 bool IsRegCall = FD && 1300 FD->getType()->castAs<FunctionType>()->getCallConv() == 1301 clang::CC_X86RegCall; 1302 if (IsRegCall) 1303 mangleRegCallName(II); 1304 else 1305 mangleSourceName(II); 1306 1307 writeAbiTags(ND, AdditionalAbiTags); 1308 break; 1309 } 1310 1311 // Otherwise, an anonymous entity. We must have a declaration. 1312 assert(ND && "mangling empty name without declaration"); 1313 1314 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1315 if (NS->isAnonymousNamespace()) { 1316 // This is how gcc mangles these names. 1317 Out << "12_GLOBAL__N_1"; 1318 break; 1319 } 1320 } 1321 1322 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1323 // We must have an anonymous union or struct declaration. 1324 const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl(); 1325 1326 // Itanium C++ ABI 5.1.2: 1327 // 1328 // For the purposes of mangling, the name of an anonymous union is 1329 // considered to be the name of the first named data member found by a 1330 // pre-order, depth-first, declaration-order walk of the data members of 1331 // the anonymous union. If there is no such data member (i.e., if all of 1332 // the data members in the union are unnamed), then there is no way for 1333 // a program to refer to the anonymous union, and there is therefore no 1334 // need to mangle its name. 1335 assert(RD->isAnonymousStructOrUnion() 1336 && "Expected anonymous struct or union!"); 1337 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1338 1339 // It's actually possible for various reasons for us to get here 1340 // with an empty anonymous struct / union. Fortunately, it 1341 // doesn't really matter what name we generate. 1342 if (!FD) break; 1343 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1344 1345 mangleSourceName(FD->getIdentifier()); 1346 // Not emitting abi tags: internal name anyway. 1347 break; 1348 } 1349 1350 // Class extensions have no name as a category, and it's possible 1351 // for them to be the semantic parent of certain declarations 1352 // (primarily, tag decls defined within declarations). Such 1353 // declarations will always have internal linkage, so the name 1354 // doesn't really matter, but we shouldn't crash on them. For 1355 // safety, just handle all ObjC containers here. 1356 if (isa<ObjCContainerDecl>(ND)) 1357 break; 1358 1359 // We must have an anonymous struct. 1360 const TagDecl *TD = cast<TagDecl>(ND); 1361 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1362 assert(TD->getDeclContext() == D->getDeclContext() && 1363 "Typedef should not be in another decl context!"); 1364 assert(D->getDeclName().getAsIdentifierInfo() && 1365 "Typedef was not named!"); 1366 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1367 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1368 // Explicit abi tags are still possible; take from underlying type, not 1369 // from typedef. 1370 writeAbiTags(TD, nullptr); 1371 break; 1372 } 1373 1374 // <unnamed-type-name> ::= <closure-type-name> 1375 // 1376 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1377 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ 1378 // # Parameter types or 'v' for 'void'. 1379 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1380 if (Record->isLambda() && Record->getLambdaManglingNumber()) { 1381 assert(!AdditionalAbiTags && 1382 "Lambda type cannot have additional abi tags"); 1383 mangleLambda(Record); 1384 break; 1385 } 1386 } 1387 1388 if (TD->isExternallyVisible()) { 1389 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); 1390 Out << "Ut"; 1391 if (UnnamedMangle > 1) 1392 Out << UnnamedMangle - 2; 1393 Out << '_'; 1394 writeAbiTags(TD, AdditionalAbiTags); 1395 break; 1396 } 1397 1398 // Get a unique id for the anonymous struct. If it is not a real output 1399 // ID doesn't matter so use fake one. 1400 unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); 1401 1402 // Mangle it as a source name in the form 1403 // [n] $_<id> 1404 // where n is the length of the string. 1405 SmallString<8> Str; 1406 Str += "$_"; 1407 Str += llvm::utostr(AnonStructId); 1408 1409 Out << Str.size(); 1410 Out << Str; 1411 break; 1412 } 1413 1414 case DeclarationName::ObjCZeroArgSelector: 1415 case DeclarationName::ObjCOneArgSelector: 1416 case DeclarationName::ObjCMultiArgSelector: 1417 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1418 1419 case DeclarationName::CXXConstructorName: { 1420 const CXXRecordDecl *InheritedFrom = nullptr; 1421 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1422 if (auto Inherited = 1423 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1424 InheritedFrom = Inherited.getConstructor()->getParent(); 1425 InheritedTemplateArgs = 1426 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1427 } 1428 1429 if (ND == Structor) 1430 // If the named decl is the C++ constructor we're mangling, use the type 1431 // we were given. 1432 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1433 else 1434 // Otherwise, use the complete constructor name. This is relevant if a 1435 // class with a constructor is declared within a constructor. 1436 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1437 1438 // FIXME: The template arguments are part of the enclosing prefix or 1439 // nested-name, but it's more convenient to mangle them here. 1440 if (InheritedTemplateArgs) 1441 mangleTemplateArgs(*InheritedTemplateArgs); 1442 1443 writeAbiTags(ND, AdditionalAbiTags); 1444 break; 1445 } 1446 1447 case DeclarationName::CXXDestructorName: 1448 if (ND == Structor) 1449 // If the named decl is the C++ destructor we're mangling, use the type we 1450 // were given. 1451 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1452 else 1453 // Otherwise, use the complete destructor name. This is relevant if a 1454 // class with a destructor is declared within a destructor. 1455 mangleCXXDtorType(Dtor_Complete); 1456 writeAbiTags(ND, AdditionalAbiTags); 1457 break; 1458 1459 case DeclarationName::CXXOperatorName: 1460 if (ND && Arity == UnknownArity) { 1461 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1462 1463 // If we have a member function, we need to include the 'this' pointer. 1464 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1465 if (!MD->isStatic()) 1466 Arity++; 1467 } 1468 LLVM_FALLTHROUGH; 1469 case DeclarationName::CXXConversionFunctionName: 1470 case DeclarationName::CXXLiteralOperatorName: 1471 mangleOperatorName(Name, Arity); 1472 writeAbiTags(ND, AdditionalAbiTags); 1473 break; 1474 1475 case DeclarationName::CXXDeductionGuideName: 1476 llvm_unreachable("Can't mangle a deduction guide name!"); 1477 1478 case DeclarationName::CXXUsingDirective: 1479 llvm_unreachable("Can't mangle a using directive name!"); 1480 } 1481 } 1482 1483 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1484 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1485 // <number> ::= [n] <non-negative decimal integer> 1486 // <identifier> ::= <unqualified source code identifier> 1487 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1488 << II->getName(); 1489 } 1490 1491 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1492 // <source-name> ::= <positive length number> <identifier> 1493 // <number> ::= [n] <non-negative decimal integer> 1494 // <identifier> ::= <unqualified source code identifier> 1495 Out << II->getLength() << II->getName(); 1496 } 1497 1498 void CXXNameMangler::mangleNestedName(const NamedDecl *ND, 1499 const DeclContext *DC, 1500 const AbiTagList *AdditionalAbiTags, 1501 bool NoFunction) { 1502 // <nested-name> 1503 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1504 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1505 // <template-args> E 1506 1507 Out << 'N'; 1508 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1509 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1510 // We do not consider restrict a distinguishing attribute for overloading 1511 // purposes so we must not mangle it. 1512 MethodQuals.removeRestrict(); 1513 mangleQualifiers(MethodQuals); 1514 mangleRefQualifier(Method->getRefQualifier()); 1515 } 1516 1517 // Check if we have a template. 1518 const TemplateArgumentList *TemplateArgs = nullptr; 1519 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1520 mangleTemplatePrefix(TD, NoFunction); 1521 mangleTemplateArgs(*TemplateArgs); 1522 } 1523 else { 1524 manglePrefix(DC, NoFunction); 1525 mangleUnqualifiedName(ND, AdditionalAbiTags); 1526 } 1527 1528 Out << 'E'; 1529 } 1530 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1531 const TemplateArgument *TemplateArgs, 1532 unsigned NumTemplateArgs) { 1533 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1534 1535 Out << 'N'; 1536 1537 mangleTemplatePrefix(TD); 1538 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 1539 1540 Out << 'E'; 1541 } 1542 1543 void CXXNameMangler::mangleLocalName(const Decl *D, 1544 const AbiTagList *AdditionalAbiTags) { 1545 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1546 // := Z <function encoding> E s [<discriminator>] 1547 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1548 // _ <entity name> 1549 // <discriminator> := _ <non-negative number> 1550 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1551 const RecordDecl *RD = GetLocalClassDecl(D); 1552 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); 1553 1554 Out << 'Z'; 1555 1556 { 1557 AbiTagState LocalAbiTags(AbiTags); 1558 1559 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1560 mangleObjCMethodName(MD); 1561 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1562 mangleBlockForPrefix(BD); 1563 else 1564 mangleFunctionEncoding(cast<FunctionDecl>(DC)); 1565 1566 // Implicit ABI tags (from namespace) are not available in the following 1567 // entity; reset to actually emitted tags, which are available. 1568 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1569 } 1570 1571 Out << 'E'; 1572 1573 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1574 // be a bug that is fixed in trunk. 1575 1576 if (RD) { 1577 // The parameter number is omitted for the last parameter, 0 for the 1578 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1579 // <entity name> will of course contain a <closure-type-name>: Its 1580 // numbering will be local to the particular argument in which it appears 1581 // -- other default arguments do not affect its encoding. 1582 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1583 if (CXXRD && CXXRD->isLambda()) { 1584 if (const ParmVarDecl *Parm 1585 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1586 if (const FunctionDecl *Func 1587 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1588 Out << 'd'; 1589 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1590 if (Num > 1) 1591 mangleNumber(Num - 2); 1592 Out << '_'; 1593 } 1594 } 1595 } 1596 1597 // Mangle the name relative to the closest enclosing function. 1598 // equality ok because RD derived from ND above 1599 if (D == RD) { 1600 mangleUnqualifiedName(RD, AdditionalAbiTags); 1601 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1602 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); 1603 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1604 mangleUnqualifiedBlock(BD); 1605 } else { 1606 const NamedDecl *ND = cast<NamedDecl>(D); 1607 mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags, 1608 true /*NoFunction*/); 1609 } 1610 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1611 // Mangle a block in a default parameter; see above explanation for 1612 // lambdas. 1613 if (const ParmVarDecl *Parm 1614 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1615 if (const FunctionDecl *Func 1616 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1617 Out << 'd'; 1618 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1619 if (Num > 1) 1620 mangleNumber(Num - 2); 1621 Out << '_'; 1622 } 1623 } 1624 1625 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1626 mangleUnqualifiedBlock(BD); 1627 } else { 1628 mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags); 1629 } 1630 1631 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1632 unsigned disc; 1633 if (Context.getNextDiscriminator(ND, disc)) { 1634 if (disc < 10) 1635 Out << '_' << disc; 1636 else 1637 Out << "__" << disc << '_'; 1638 } 1639 } 1640 } 1641 1642 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1643 if (GetLocalClassDecl(Block)) { 1644 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1645 return; 1646 } 1647 const DeclContext *DC = getEffectiveDeclContext(Block); 1648 if (isLocalContainerContext(DC)) { 1649 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1650 return; 1651 } 1652 manglePrefix(getEffectiveDeclContext(Block)); 1653 mangleUnqualifiedBlock(Block); 1654 } 1655 1656 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1657 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1658 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1659 Context->getDeclContext()->isRecord()) { 1660 const auto *ND = cast<NamedDecl>(Context); 1661 if (ND->getIdentifier()) { 1662 mangleSourceNameWithAbiTags(ND); 1663 Out << 'M'; 1664 } 1665 } 1666 } 1667 1668 // If we have a block mangling number, use it. 1669 unsigned Number = Block->getBlockManglingNumber(); 1670 // Otherwise, just make up a number. It doesn't matter what it is because 1671 // the symbol in question isn't externally visible. 1672 if (!Number) 1673 Number = Context.getBlockId(Block, false); 1674 else { 1675 // Stored mangling numbers are 1-based. 1676 --Number; 1677 } 1678 Out << "Ub"; 1679 if (Number > 0) 1680 Out << Number - 1; 1681 Out << '_'; 1682 } 1683 1684 // <template-param-decl> 1685 // ::= Ty # template type parameter 1686 // ::= Tn <type> # template non-type parameter 1687 // ::= Tt <template-param-decl>* E # template template parameter 1688 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { 1689 if (isa<TemplateTypeParmDecl>(Decl)) { 1690 Out << "Ty"; 1691 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { 1692 Out << "Tn"; 1693 mangleType(Tn->getType()); 1694 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { 1695 Out << "Tt"; 1696 for (auto *Param : *Tt->getTemplateParameters()) 1697 mangleTemplateParamDecl(Param); 1698 Out << "E"; 1699 } 1700 } 1701 1702 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 1703 // If the context of a closure type is an initializer for a class member 1704 // (static or nonstatic), it is encoded in a qualified name with a final 1705 // <prefix> of the form: 1706 // 1707 // <data-member-prefix> := <member source-name> M 1708 // 1709 // Technically, the data-member-prefix is part of the <prefix>. However, 1710 // since a closure type will always be mangled with a prefix, it's easier 1711 // to emit that last part of the prefix here. 1712 if (Decl *Context = Lambda->getLambdaContextDecl()) { 1713 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1714 !isa<ParmVarDecl>(Context)) { 1715 // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a 1716 // reasonable mangling here. 1717 if (const IdentifierInfo *Name 1718 = cast<NamedDecl>(Context)->getIdentifier()) { 1719 mangleSourceName(Name); 1720 const TemplateArgumentList *TemplateArgs = nullptr; 1721 if (isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 1722 mangleTemplateArgs(*TemplateArgs); 1723 Out << 'M'; 1724 } 1725 } 1726 } 1727 1728 Out << "Ul"; 1729 for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) 1730 mangleTemplateParamDecl(D); 1731 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> 1732 getAs<FunctionProtoType>(); 1733 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 1734 Lambda->getLambdaStaticInvoker()); 1735 Out << "E"; 1736 1737 // The number is omitted for the first closure type with a given 1738 // <lambda-sig> in a given context; it is n-2 for the nth closure type 1739 // (in lexical order) with that same <lambda-sig> and context. 1740 // 1741 // The AST keeps track of the number for us. 1742 unsigned Number = Lambda->getLambdaManglingNumber(); 1743 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 1744 if (Number > 1) 1745 mangleNumber(Number - 2); 1746 Out << '_'; 1747 } 1748 1749 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 1750 switch (qualifier->getKind()) { 1751 case NestedNameSpecifier::Global: 1752 // nothing 1753 return; 1754 1755 case NestedNameSpecifier::Super: 1756 llvm_unreachable("Can't mangle __super specifier"); 1757 1758 case NestedNameSpecifier::Namespace: 1759 mangleName(qualifier->getAsNamespace()); 1760 return; 1761 1762 case NestedNameSpecifier::NamespaceAlias: 1763 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 1764 return; 1765 1766 case NestedNameSpecifier::TypeSpec: 1767 case NestedNameSpecifier::TypeSpecWithTemplate: 1768 manglePrefix(QualType(qualifier->getAsType(), 0)); 1769 return; 1770 1771 case NestedNameSpecifier::Identifier: 1772 // Member expressions can have these without prefixes, but that 1773 // should end up in mangleUnresolvedPrefix instead. 1774 assert(qualifier->getPrefix()); 1775 manglePrefix(qualifier->getPrefix()); 1776 1777 mangleSourceName(qualifier->getAsIdentifier()); 1778 return; 1779 } 1780 1781 llvm_unreachable("unexpected nested name specifier"); 1782 } 1783 1784 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 1785 // <prefix> ::= <prefix> <unqualified-name> 1786 // ::= <template-prefix> <template-args> 1787 // ::= <template-param> 1788 // ::= # empty 1789 // ::= <substitution> 1790 1791 DC = IgnoreLinkageSpecDecls(DC); 1792 1793 if (DC->isTranslationUnit()) 1794 return; 1795 1796 if (NoFunction && isLocalContainerContext(DC)) 1797 return; 1798 1799 assert(!isLocalContainerContext(DC)); 1800 1801 const NamedDecl *ND = cast<NamedDecl>(DC); 1802 if (mangleSubstitution(ND)) 1803 return; 1804 1805 // Check if we have a template. 1806 const TemplateArgumentList *TemplateArgs = nullptr; 1807 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1808 mangleTemplatePrefix(TD); 1809 mangleTemplateArgs(*TemplateArgs); 1810 } else { 1811 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 1812 mangleUnqualifiedName(ND, nullptr); 1813 } 1814 1815 addSubstitution(ND); 1816 } 1817 1818 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 1819 // <template-prefix> ::= <prefix> <template unqualified-name> 1820 // ::= <template-param> 1821 // ::= <substitution> 1822 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 1823 return mangleTemplatePrefix(TD); 1824 1825 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) 1826 manglePrefix(Qualified->getQualifier()); 1827 1828 if (OverloadedTemplateStorage *Overloaded 1829 = Template.getAsOverloadedTemplate()) { 1830 mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(), 1831 UnknownArity, nullptr); 1832 return; 1833 } 1834 1835 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 1836 assert(Dependent && "Unknown template name kind?"); 1837 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 1838 manglePrefix(Qualifier); 1839 mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr); 1840 } 1841 1842 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND, 1843 bool NoFunction) { 1844 // <template-prefix> ::= <prefix> <template unqualified-name> 1845 // ::= <template-param> 1846 // ::= <substitution> 1847 // <template-template-param> ::= <template-param> 1848 // <substitution> 1849 1850 if (mangleSubstitution(ND)) 1851 return; 1852 1853 // <template-template-param> ::= <template-param> 1854 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1855 mangleTemplateParameter(TTP->getIndex()); 1856 } else { 1857 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 1858 if (isa<BuiltinTemplateDecl>(ND)) 1859 mangleUnqualifiedName(ND, nullptr); 1860 else 1861 mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr); 1862 } 1863 1864 addSubstitution(ND); 1865 } 1866 1867 /// Mangles a template name under the production <type>. Required for 1868 /// template template arguments. 1869 /// <type> ::= <class-enum-type> 1870 /// ::= <template-param> 1871 /// ::= <substitution> 1872 void CXXNameMangler::mangleType(TemplateName TN) { 1873 if (mangleSubstitution(TN)) 1874 return; 1875 1876 TemplateDecl *TD = nullptr; 1877 1878 switch (TN.getKind()) { 1879 case TemplateName::QualifiedTemplate: 1880 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); 1881 goto HaveDecl; 1882 1883 case TemplateName::Template: 1884 TD = TN.getAsTemplateDecl(); 1885 goto HaveDecl; 1886 1887 HaveDecl: 1888 if (isa<TemplateTemplateParmDecl>(TD)) 1889 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); 1890 else 1891 mangleName(TD); 1892 break; 1893 1894 case TemplateName::OverloadedTemplate: 1895 case TemplateName::AssumedTemplate: 1896 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 1897 1898 case TemplateName::DependentTemplate: { 1899 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 1900 assert(Dependent->isIdentifier()); 1901 1902 // <class-enum-type> ::= <name> 1903 // <name> ::= <nested-name> 1904 mangleUnresolvedPrefix(Dependent->getQualifier()); 1905 mangleSourceName(Dependent->getIdentifier()); 1906 break; 1907 } 1908 1909 case TemplateName::SubstTemplateTemplateParm: { 1910 // Substituted template parameters are mangled as the substituted 1911 // template. This will check for the substitution twice, which is 1912 // fine, but we have to return early so that we don't try to *add* 1913 // the substitution twice. 1914 SubstTemplateTemplateParmStorage *subst 1915 = TN.getAsSubstTemplateTemplateParm(); 1916 mangleType(subst->getReplacement()); 1917 return; 1918 } 1919 1920 case TemplateName::SubstTemplateTemplateParmPack: { 1921 // FIXME: not clear how to mangle this! 1922 // template <template <class> class T...> class A { 1923 // template <template <class> class U...> void foo(B<T,U> x...); 1924 // }; 1925 Out << "_SUBSTPACK_"; 1926 break; 1927 } 1928 } 1929 1930 addSubstitution(TN); 1931 } 1932 1933 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 1934 StringRef Prefix) { 1935 // Only certain other types are valid as prefixes; enumerate them. 1936 switch (Ty->getTypeClass()) { 1937 case Type::Builtin: 1938 case Type::Complex: 1939 case Type::Adjusted: 1940 case Type::Decayed: 1941 case Type::Pointer: 1942 case Type::BlockPointer: 1943 case Type::LValueReference: 1944 case Type::RValueReference: 1945 case Type::MemberPointer: 1946 case Type::ConstantArray: 1947 case Type::IncompleteArray: 1948 case Type::VariableArray: 1949 case Type::DependentSizedArray: 1950 case Type::DependentAddressSpace: 1951 case Type::DependentVector: 1952 case Type::DependentSizedExtVector: 1953 case Type::Vector: 1954 case Type::ExtVector: 1955 case Type::FunctionProto: 1956 case Type::FunctionNoProto: 1957 case Type::Paren: 1958 case Type::Attributed: 1959 case Type::Auto: 1960 case Type::DeducedTemplateSpecialization: 1961 case Type::PackExpansion: 1962 case Type::ObjCObject: 1963 case Type::ObjCInterface: 1964 case Type::ObjCObjectPointer: 1965 case Type::ObjCTypeParam: 1966 case Type::Atomic: 1967 case Type::Pipe: 1968 case Type::MacroQualified: 1969 llvm_unreachable("type is illegal as a nested name specifier"); 1970 1971 case Type::SubstTemplateTypeParmPack: 1972 // FIXME: not clear how to mangle this! 1973 // template <class T...> class A { 1974 // template <class U...> void foo(decltype(T::foo(U())) x...); 1975 // }; 1976 Out << "_SUBSTPACK_"; 1977 break; 1978 1979 // <unresolved-type> ::= <template-param> 1980 // ::= <decltype> 1981 // ::= <template-template-param> <template-args> 1982 // (this last is not official yet) 1983 case Type::TypeOfExpr: 1984 case Type::TypeOf: 1985 case Type::Decltype: 1986 case Type::TemplateTypeParm: 1987 case Type::UnaryTransform: 1988 case Type::SubstTemplateTypeParm: 1989 unresolvedType: 1990 // Some callers want a prefix before the mangled type. 1991 Out << Prefix; 1992 1993 // This seems to do everything we want. It's not really 1994 // sanctioned for a substituted template parameter, though. 1995 mangleType(Ty); 1996 1997 // We never want to print 'E' directly after an unresolved-type, 1998 // so we return directly. 1999 return true; 2000 2001 case Type::Typedef: 2002 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 2003 break; 2004 2005 case Type::UnresolvedUsing: 2006 mangleSourceNameWithAbiTags( 2007 cast<UnresolvedUsingType>(Ty)->getDecl()); 2008 break; 2009 2010 case Type::Enum: 2011 case Type::Record: 2012 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 2013 break; 2014 2015 case Type::TemplateSpecialization: { 2016 const TemplateSpecializationType *TST = 2017 cast<TemplateSpecializationType>(Ty); 2018 TemplateName TN = TST->getTemplateName(); 2019 switch (TN.getKind()) { 2020 case TemplateName::Template: 2021 case TemplateName::QualifiedTemplate: { 2022 TemplateDecl *TD = TN.getAsTemplateDecl(); 2023 2024 // If the base is a template template parameter, this is an 2025 // unresolved type. 2026 assert(TD && "no template for template specialization type"); 2027 if (isa<TemplateTemplateParmDecl>(TD)) 2028 goto unresolvedType; 2029 2030 mangleSourceNameWithAbiTags(TD); 2031 break; 2032 } 2033 2034 case TemplateName::OverloadedTemplate: 2035 case TemplateName::AssumedTemplate: 2036 case TemplateName::DependentTemplate: 2037 llvm_unreachable("invalid base for a template specialization type"); 2038 2039 case TemplateName::SubstTemplateTemplateParm: { 2040 SubstTemplateTemplateParmStorage *subst = 2041 TN.getAsSubstTemplateTemplateParm(); 2042 mangleExistingSubstitution(subst->getReplacement()); 2043 break; 2044 } 2045 2046 case TemplateName::SubstTemplateTemplateParmPack: { 2047 // FIXME: not clear how to mangle this! 2048 // template <template <class U> class T...> class A { 2049 // template <class U...> void foo(decltype(T<U>::foo) x...); 2050 // }; 2051 Out << "_SUBSTPACK_"; 2052 break; 2053 } 2054 } 2055 2056 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); 2057 break; 2058 } 2059 2060 case Type::InjectedClassName: 2061 mangleSourceNameWithAbiTags( 2062 cast<InjectedClassNameType>(Ty)->getDecl()); 2063 break; 2064 2065 case Type::DependentName: 2066 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2067 break; 2068 2069 case Type::DependentTemplateSpecialization: { 2070 const DependentTemplateSpecializationType *DTST = 2071 cast<DependentTemplateSpecializationType>(Ty); 2072 mangleSourceName(DTST->getIdentifier()); 2073 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); 2074 break; 2075 } 2076 2077 case Type::Elaborated: 2078 return mangleUnresolvedTypeOrSimpleId( 2079 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2080 } 2081 2082 return false; 2083 } 2084 2085 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2086 switch (Name.getNameKind()) { 2087 case DeclarationName::CXXConstructorName: 2088 case DeclarationName::CXXDestructorName: 2089 case DeclarationName::CXXDeductionGuideName: 2090 case DeclarationName::CXXUsingDirective: 2091 case DeclarationName::Identifier: 2092 case DeclarationName::ObjCMultiArgSelector: 2093 case DeclarationName::ObjCOneArgSelector: 2094 case DeclarationName::ObjCZeroArgSelector: 2095 llvm_unreachable("Not an operator name"); 2096 2097 case DeclarationName::CXXConversionFunctionName: 2098 // <operator-name> ::= cv <type> # (cast) 2099 Out << "cv"; 2100 mangleType(Name.getCXXNameType()); 2101 break; 2102 2103 case DeclarationName::CXXLiteralOperatorName: 2104 Out << "li"; 2105 mangleSourceName(Name.getCXXLiteralIdentifier()); 2106 return; 2107 2108 case DeclarationName::CXXOperatorName: 2109 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2110 break; 2111 } 2112 } 2113 2114 void 2115 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2116 switch (OO) { 2117 // <operator-name> ::= nw # new 2118 case OO_New: Out << "nw"; break; 2119 // ::= na # new[] 2120 case OO_Array_New: Out << "na"; break; 2121 // ::= dl # delete 2122 case OO_Delete: Out << "dl"; break; 2123 // ::= da # delete[] 2124 case OO_Array_Delete: Out << "da"; break; 2125 // ::= ps # + (unary) 2126 // ::= pl # + (binary or unknown) 2127 case OO_Plus: 2128 Out << (Arity == 1? "ps" : "pl"); break; 2129 // ::= ng # - (unary) 2130 // ::= mi # - (binary or unknown) 2131 case OO_Minus: 2132 Out << (Arity == 1? "ng" : "mi"); break; 2133 // ::= ad # & (unary) 2134 // ::= an # & (binary or unknown) 2135 case OO_Amp: 2136 Out << (Arity == 1? "ad" : "an"); break; 2137 // ::= de # * (unary) 2138 // ::= ml # * (binary or unknown) 2139 case OO_Star: 2140 // Use binary when unknown. 2141 Out << (Arity == 1? "de" : "ml"); break; 2142 // ::= co # ~ 2143 case OO_Tilde: Out << "co"; break; 2144 // ::= dv # / 2145 case OO_Slash: Out << "dv"; break; 2146 // ::= rm # % 2147 case OO_Percent: Out << "rm"; break; 2148 // ::= or # | 2149 case OO_Pipe: Out << "or"; break; 2150 // ::= eo # ^ 2151 case OO_Caret: Out << "eo"; break; 2152 // ::= aS # = 2153 case OO_Equal: Out << "aS"; break; 2154 // ::= pL # += 2155 case OO_PlusEqual: Out << "pL"; break; 2156 // ::= mI # -= 2157 case OO_MinusEqual: Out << "mI"; break; 2158 // ::= mL # *= 2159 case OO_StarEqual: Out << "mL"; break; 2160 // ::= dV # /= 2161 case OO_SlashEqual: Out << "dV"; break; 2162 // ::= rM # %= 2163 case OO_PercentEqual: Out << "rM"; break; 2164 // ::= aN # &= 2165 case OO_AmpEqual: Out << "aN"; break; 2166 // ::= oR # |= 2167 case OO_PipeEqual: Out << "oR"; break; 2168 // ::= eO # ^= 2169 case OO_CaretEqual: Out << "eO"; break; 2170 // ::= ls # << 2171 case OO_LessLess: Out << "ls"; break; 2172 // ::= rs # >> 2173 case OO_GreaterGreater: Out << "rs"; break; 2174 // ::= lS # <<= 2175 case OO_LessLessEqual: Out << "lS"; break; 2176 // ::= rS # >>= 2177 case OO_GreaterGreaterEqual: Out << "rS"; break; 2178 // ::= eq # == 2179 case OO_EqualEqual: Out << "eq"; break; 2180 // ::= ne # != 2181 case OO_ExclaimEqual: Out << "ne"; break; 2182 // ::= lt # < 2183 case OO_Less: Out << "lt"; break; 2184 // ::= gt # > 2185 case OO_Greater: Out << "gt"; break; 2186 // ::= le # <= 2187 case OO_LessEqual: Out << "le"; break; 2188 // ::= ge # >= 2189 case OO_GreaterEqual: Out << "ge"; break; 2190 // ::= nt # ! 2191 case OO_Exclaim: Out << "nt"; break; 2192 // ::= aa # && 2193 case OO_AmpAmp: Out << "aa"; break; 2194 // ::= oo # || 2195 case OO_PipePipe: Out << "oo"; break; 2196 // ::= pp # ++ 2197 case OO_PlusPlus: Out << "pp"; break; 2198 // ::= mm # -- 2199 case OO_MinusMinus: Out << "mm"; break; 2200 // ::= cm # , 2201 case OO_Comma: Out << "cm"; break; 2202 // ::= pm # ->* 2203 case OO_ArrowStar: Out << "pm"; break; 2204 // ::= pt # -> 2205 case OO_Arrow: Out << "pt"; break; 2206 // ::= cl # () 2207 case OO_Call: Out << "cl"; break; 2208 // ::= ix # [] 2209 case OO_Subscript: Out << "ix"; break; 2210 2211 // ::= qu # ? 2212 // The conditional operator can't be overloaded, but we still handle it when 2213 // mangling expressions. 2214 case OO_Conditional: Out << "qu"; break; 2215 // Proposal on cxx-abi-dev, 2015-10-21. 2216 // ::= aw # co_await 2217 case OO_Coawait: Out << "aw"; break; 2218 // Proposed in cxx-abi github issue 43. 2219 // ::= ss # <=> 2220 case OO_Spaceship: Out << "ss"; break; 2221 2222 case OO_None: 2223 case NUM_OVERLOADED_OPERATORS: 2224 llvm_unreachable("Not an overloaded operator"); 2225 } 2226 } 2227 2228 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2229 // Vendor qualifiers come first and if they are order-insensitive they must 2230 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2231 2232 // <type> ::= U <addrspace-expr> 2233 if (DAST) { 2234 Out << "U2ASI"; 2235 mangleExpression(DAST->getAddrSpaceExpr()); 2236 Out << "E"; 2237 } 2238 2239 // Address space qualifiers start with an ordinary letter. 2240 if (Quals.hasAddressSpace()) { 2241 // Address space extension: 2242 // 2243 // <type> ::= U <target-addrspace> 2244 // <type> ::= U <OpenCL-addrspace> 2245 // <type> ::= U <CUDA-addrspace> 2246 2247 SmallString<64> ASString; 2248 LangAS AS = Quals.getAddressSpace(); 2249 2250 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2251 // <target-addrspace> ::= "AS" <address-space-number> 2252 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2253 if (TargetAS != 0) 2254 ASString = "AS" + llvm::utostr(TargetAS); 2255 } else { 2256 switch (AS) { 2257 default: llvm_unreachable("Not a language specific address space"); 2258 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2259 // "private"| "generic" ] 2260 case LangAS::opencl_global: ASString = "CLglobal"; break; 2261 case LangAS::opencl_local: ASString = "CLlocal"; break; 2262 case LangAS::opencl_constant: ASString = "CLconstant"; break; 2263 case LangAS::opencl_private: ASString = "CLprivate"; break; 2264 case LangAS::opencl_generic: ASString = "CLgeneric"; break; 2265 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2266 case LangAS::cuda_device: ASString = "CUdevice"; break; 2267 case LangAS::cuda_constant: ASString = "CUconstant"; break; 2268 case LangAS::cuda_shared: ASString = "CUshared"; break; 2269 } 2270 } 2271 if (!ASString.empty()) 2272 mangleVendorQualifier(ASString); 2273 } 2274 2275 // The ARC ownership qualifiers start with underscores. 2276 // Objective-C ARC Extension: 2277 // 2278 // <type> ::= U "__strong" 2279 // <type> ::= U "__weak" 2280 // <type> ::= U "__autoreleasing" 2281 // 2282 // Note: we emit __weak first to preserve the order as 2283 // required by the Itanium ABI. 2284 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2285 mangleVendorQualifier("__weak"); 2286 2287 // __unaligned (from -fms-extensions) 2288 if (Quals.hasUnaligned()) 2289 mangleVendorQualifier("__unaligned"); 2290 2291 // Remaining ARC ownership qualifiers. 2292 switch (Quals.getObjCLifetime()) { 2293 case Qualifiers::OCL_None: 2294 break; 2295 2296 case Qualifiers::OCL_Weak: 2297 // Do nothing as we already handled this case above. 2298 break; 2299 2300 case Qualifiers::OCL_Strong: 2301 mangleVendorQualifier("__strong"); 2302 break; 2303 2304 case Qualifiers::OCL_Autoreleasing: 2305 mangleVendorQualifier("__autoreleasing"); 2306 break; 2307 2308 case Qualifiers::OCL_ExplicitNone: 2309 // The __unsafe_unretained qualifier is *not* mangled, so that 2310 // __unsafe_unretained types in ARC produce the same manglings as the 2311 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2312 // better ABI compatibility. 2313 // 2314 // It's safe to do this because unqualified 'id' won't show up 2315 // in any type signatures that need to be mangled. 2316 break; 2317 } 2318 2319 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2320 if (Quals.hasRestrict()) 2321 Out << 'r'; 2322 if (Quals.hasVolatile()) 2323 Out << 'V'; 2324 if (Quals.hasConst()) 2325 Out << 'K'; 2326 } 2327 2328 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2329 Out << 'U' << name.size() << name; 2330 } 2331 2332 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2333 // <ref-qualifier> ::= R # lvalue reference 2334 // ::= O # rvalue-reference 2335 switch (RefQualifier) { 2336 case RQ_None: 2337 break; 2338 2339 case RQ_LValue: 2340 Out << 'R'; 2341 break; 2342 2343 case RQ_RValue: 2344 Out << 'O'; 2345 break; 2346 } 2347 } 2348 2349 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2350 Context.mangleObjCMethodName(MD, Out); 2351 } 2352 2353 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2354 ASTContext &Ctx) { 2355 if (Quals) 2356 return true; 2357 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2358 return true; 2359 if (Ty->isOpenCLSpecificType()) 2360 return true; 2361 if (Ty->isBuiltinType()) 2362 return false; 2363 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2364 // substitution candidates. 2365 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2366 isa<AutoType>(Ty)) 2367 return false; 2368 return true; 2369 } 2370 2371 void CXXNameMangler::mangleType(QualType T) { 2372 // If our type is instantiation-dependent but not dependent, we mangle 2373 // it as it was written in the source, removing any top-level sugar. 2374 // Otherwise, use the canonical type. 2375 // 2376 // FIXME: This is an approximation of the instantiation-dependent name 2377 // mangling rules, since we should really be using the type as written and 2378 // augmented via semantic analysis (i.e., with implicit conversions and 2379 // default template arguments) for any instantiation-dependent type. 2380 // Unfortunately, that requires several changes to our AST: 2381 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2382 // uniqued, so that we can handle substitutions properly 2383 // - Default template arguments will need to be represented in the 2384 // TemplateSpecializationType, since they need to be mangled even though 2385 // they aren't written. 2386 // - Conversions on non-type template arguments need to be expressed, since 2387 // they can affect the mangling of sizeof/alignof. 2388 // 2389 // FIXME: This is wrong when mapping to the canonical type for a dependent 2390 // type discards instantiation-dependent portions of the type, such as for: 2391 // 2392 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2393 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2394 // 2395 // It's also wrong in the opposite direction when instantiation-dependent, 2396 // canonically-equivalent types differ in some irrelevant portion of inner 2397 // type sugar. In such cases, we fail to form correct substitutions, eg: 2398 // 2399 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2400 // 2401 // We should instead canonicalize the non-instantiation-dependent parts, 2402 // regardless of whether the type as a whole is dependent or instantiation 2403 // dependent. 2404 if (!T->isInstantiationDependentType() || T->isDependentType()) 2405 T = T.getCanonicalType(); 2406 else { 2407 // Desugar any types that are purely sugar. 2408 do { 2409 // Don't desugar through template specialization types that aren't 2410 // type aliases. We need to mangle the template arguments as written. 2411 if (const TemplateSpecializationType *TST 2412 = dyn_cast<TemplateSpecializationType>(T)) 2413 if (!TST->isTypeAlias()) 2414 break; 2415 2416 QualType Desugared 2417 = T.getSingleStepDesugaredType(Context.getASTContext()); 2418 if (Desugared == T) 2419 break; 2420 2421 T = Desugared; 2422 } while (true); 2423 } 2424 SplitQualType split = T.split(); 2425 Qualifiers quals = split.Quals; 2426 const Type *ty = split.Ty; 2427 2428 bool isSubstitutable = 2429 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2430 if (isSubstitutable && mangleSubstitution(T)) 2431 return; 2432 2433 // If we're mangling a qualified array type, push the qualifiers to 2434 // the element type. 2435 if (quals && isa<ArrayType>(T)) { 2436 ty = Context.getASTContext().getAsArrayType(T); 2437 quals = Qualifiers(); 2438 2439 // Note that we don't update T: we want to add the 2440 // substitution at the original type. 2441 } 2442 2443 if (quals || ty->isDependentAddressSpaceType()) { 2444 if (const DependentAddressSpaceType *DAST = 2445 dyn_cast<DependentAddressSpaceType>(ty)) { 2446 SplitQualType splitDAST = DAST->getPointeeType().split(); 2447 mangleQualifiers(splitDAST.Quals, DAST); 2448 mangleType(QualType(splitDAST.Ty, 0)); 2449 } else { 2450 mangleQualifiers(quals); 2451 2452 // Recurse: even if the qualified type isn't yet substitutable, 2453 // the unqualified type might be. 2454 mangleType(QualType(ty, 0)); 2455 } 2456 } else { 2457 switch (ty->getTypeClass()) { 2458 #define ABSTRACT_TYPE(CLASS, PARENT) 2459 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2460 case Type::CLASS: \ 2461 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2462 return; 2463 #define TYPE(CLASS, PARENT) \ 2464 case Type::CLASS: \ 2465 mangleType(static_cast<const CLASS##Type*>(ty)); \ 2466 break; 2467 #include "clang/AST/TypeNodes.def" 2468 } 2469 } 2470 2471 // Add the substitution. 2472 if (isSubstitutable) 2473 addSubstitution(T); 2474 } 2475 2476 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 2477 if (!mangleStandardSubstitution(ND)) 2478 mangleName(ND); 2479 } 2480 2481 void CXXNameMangler::mangleType(const BuiltinType *T) { 2482 // <type> ::= <builtin-type> 2483 // <builtin-type> ::= v # void 2484 // ::= w # wchar_t 2485 // ::= b # bool 2486 // ::= c # char 2487 // ::= a # signed char 2488 // ::= h # unsigned char 2489 // ::= s # short 2490 // ::= t # unsigned short 2491 // ::= i # int 2492 // ::= j # unsigned int 2493 // ::= l # long 2494 // ::= m # unsigned long 2495 // ::= x # long long, __int64 2496 // ::= y # unsigned long long, __int64 2497 // ::= n # __int128 2498 // ::= o # unsigned __int128 2499 // ::= f # float 2500 // ::= d # double 2501 // ::= e # long double, __float80 2502 // ::= g # __float128 2503 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 2504 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 2505 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 2506 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 2507 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 2508 // ::= Di # char32_t 2509 // ::= Ds # char16_t 2510 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 2511 // ::= u <source-name> # vendor extended type 2512 std::string type_name; 2513 switch (T->getKind()) { 2514 case BuiltinType::Void: 2515 Out << 'v'; 2516 break; 2517 case BuiltinType::Bool: 2518 Out << 'b'; 2519 break; 2520 case BuiltinType::Char_U: 2521 case BuiltinType::Char_S: 2522 Out << 'c'; 2523 break; 2524 case BuiltinType::UChar: 2525 Out << 'h'; 2526 break; 2527 case BuiltinType::UShort: 2528 Out << 't'; 2529 break; 2530 case BuiltinType::UInt: 2531 Out << 'j'; 2532 break; 2533 case BuiltinType::ULong: 2534 Out << 'm'; 2535 break; 2536 case BuiltinType::ULongLong: 2537 Out << 'y'; 2538 break; 2539 case BuiltinType::UInt128: 2540 Out << 'o'; 2541 break; 2542 case BuiltinType::SChar: 2543 Out << 'a'; 2544 break; 2545 case BuiltinType::WChar_S: 2546 case BuiltinType::WChar_U: 2547 Out << 'w'; 2548 break; 2549 case BuiltinType::Char8: 2550 Out << "Du"; 2551 break; 2552 case BuiltinType::Char16: 2553 Out << "Ds"; 2554 break; 2555 case BuiltinType::Char32: 2556 Out << "Di"; 2557 break; 2558 case BuiltinType::Short: 2559 Out << 's'; 2560 break; 2561 case BuiltinType::Int: 2562 Out << 'i'; 2563 break; 2564 case BuiltinType::Long: 2565 Out << 'l'; 2566 break; 2567 case BuiltinType::LongLong: 2568 Out << 'x'; 2569 break; 2570 case BuiltinType::Int128: 2571 Out << 'n'; 2572 break; 2573 case BuiltinType::Float16: 2574 Out << "DF16_"; 2575 break; 2576 case BuiltinType::ShortAccum: 2577 case BuiltinType::Accum: 2578 case BuiltinType::LongAccum: 2579 case BuiltinType::UShortAccum: 2580 case BuiltinType::UAccum: 2581 case BuiltinType::ULongAccum: 2582 case BuiltinType::ShortFract: 2583 case BuiltinType::Fract: 2584 case BuiltinType::LongFract: 2585 case BuiltinType::UShortFract: 2586 case BuiltinType::UFract: 2587 case BuiltinType::ULongFract: 2588 case BuiltinType::SatShortAccum: 2589 case BuiltinType::SatAccum: 2590 case BuiltinType::SatLongAccum: 2591 case BuiltinType::SatUShortAccum: 2592 case BuiltinType::SatUAccum: 2593 case BuiltinType::SatULongAccum: 2594 case BuiltinType::SatShortFract: 2595 case BuiltinType::SatFract: 2596 case BuiltinType::SatLongFract: 2597 case BuiltinType::SatUShortFract: 2598 case BuiltinType::SatUFract: 2599 case BuiltinType::SatULongFract: 2600 llvm_unreachable("Fixed point types are disabled for c++"); 2601 case BuiltinType::Half: 2602 Out << "Dh"; 2603 break; 2604 case BuiltinType::Float: 2605 Out << 'f'; 2606 break; 2607 case BuiltinType::Double: 2608 Out << 'd'; 2609 break; 2610 case BuiltinType::LongDouble: 2611 Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble() 2612 ? 'g' 2613 : 'e'); 2614 break; 2615 case BuiltinType::Float128: 2616 if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()) 2617 Out << "U10__float128"; // Match the GCC mangling 2618 else 2619 Out << 'g'; 2620 break; 2621 case BuiltinType::NullPtr: 2622 Out << "Dn"; 2623 break; 2624 2625 #define BUILTIN_TYPE(Id, SingletonId) 2626 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2627 case BuiltinType::Id: 2628 #include "clang/AST/BuiltinTypes.def" 2629 case BuiltinType::Dependent: 2630 if (!NullOut) 2631 llvm_unreachable("mangling a placeholder type"); 2632 break; 2633 case BuiltinType::ObjCId: 2634 Out << "11objc_object"; 2635 break; 2636 case BuiltinType::ObjCClass: 2637 Out << "10objc_class"; 2638 break; 2639 case BuiltinType::ObjCSel: 2640 Out << "13objc_selector"; 2641 break; 2642 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2643 case BuiltinType::Id: \ 2644 type_name = "ocl_" #ImgType "_" #Suffix; \ 2645 Out << type_name.size() << type_name; \ 2646 break; 2647 #include "clang/Basic/OpenCLImageTypes.def" 2648 case BuiltinType::OCLSampler: 2649 Out << "11ocl_sampler"; 2650 break; 2651 case BuiltinType::OCLEvent: 2652 Out << "9ocl_event"; 2653 break; 2654 case BuiltinType::OCLClkEvent: 2655 Out << "12ocl_clkevent"; 2656 break; 2657 case BuiltinType::OCLQueue: 2658 Out << "9ocl_queue"; 2659 break; 2660 case BuiltinType::OCLReserveID: 2661 Out << "13ocl_reserveid"; 2662 break; 2663 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2664 case BuiltinType::Id: \ 2665 type_name = "ocl_" #ExtType; \ 2666 Out << type_name.size() << type_name; \ 2667 break; 2668 #include "clang/Basic/OpenCLExtensionTypes.def" 2669 } 2670 } 2671 2672 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 2673 switch (CC) { 2674 case CC_C: 2675 return ""; 2676 2677 case CC_X86VectorCall: 2678 case CC_X86Pascal: 2679 case CC_X86RegCall: 2680 case CC_AAPCS: 2681 case CC_AAPCS_VFP: 2682 case CC_AArch64VectorCall: 2683 case CC_IntelOclBicc: 2684 case CC_SpirFunction: 2685 case CC_OpenCLKernel: 2686 case CC_PreserveMost: 2687 case CC_PreserveAll: 2688 // FIXME: we should be mangling all of the above. 2689 return ""; 2690 2691 case CC_X86ThisCall: 2692 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is 2693 // used explicitly. At this point, we don't have that much information in 2694 // the AST, since clang tends to bake the convention into the canonical 2695 // function type. thiscall only rarely used explicitly, so don't mangle it 2696 // for now. 2697 return ""; 2698 2699 case CC_X86StdCall: 2700 return "stdcall"; 2701 case CC_X86FastCall: 2702 return "fastcall"; 2703 case CC_X86_64SysV: 2704 return "sysv_abi"; 2705 case CC_Win64: 2706 return "ms_abi"; 2707 case CC_Swift: 2708 return "swiftcall"; 2709 } 2710 llvm_unreachable("bad calling convention"); 2711 } 2712 2713 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 2714 // Fast path. 2715 if (T->getExtInfo() == FunctionType::ExtInfo()) 2716 return; 2717 2718 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 2719 // This will get more complicated in the future if we mangle other 2720 // things here; but for now, since we mangle ns_returns_retained as 2721 // a qualifier on the result type, we can get away with this: 2722 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 2723 if (!CCQualifier.empty()) 2724 mangleVendorQualifier(CCQualifier); 2725 2726 // FIXME: regparm 2727 // FIXME: noreturn 2728 } 2729 2730 void 2731 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 2732 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 2733 2734 // Note that these are *not* substitution candidates. Demanglers might 2735 // have trouble with this if the parameter type is fully substituted. 2736 2737 switch (PI.getABI()) { 2738 case ParameterABI::Ordinary: 2739 break; 2740 2741 // All of these start with "swift", so they come before "ns_consumed". 2742 case ParameterABI::SwiftContext: 2743 case ParameterABI::SwiftErrorResult: 2744 case ParameterABI::SwiftIndirectResult: 2745 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 2746 break; 2747 } 2748 2749 if (PI.isConsumed()) 2750 mangleVendorQualifier("ns_consumed"); 2751 2752 if (PI.isNoEscape()) 2753 mangleVendorQualifier("noescape"); 2754 } 2755 2756 // <type> ::= <function-type> 2757 // <function-type> ::= [<CV-qualifiers>] F [Y] 2758 // <bare-function-type> [<ref-qualifier>] E 2759 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 2760 mangleExtFunctionInfo(T); 2761 2762 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 2763 // e.g. "const" in "int (A::*)() const". 2764 mangleQualifiers(T->getMethodQuals()); 2765 2766 // Mangle instantiation-dependent exception-specification, if present, 2767 // per cxx-abi-dev proposal on 2016-10-11. 2768 if (T->hasInstantiationDependentExceptionSpec()) { 2769 if (isComputedNoexcept(T->getExceptionSpecType())) { 2770 Out << "DO"; 2771 mangleExpression(T->getNoexceptExpr()); 2772 Out << "E"; 2773 } else { 2774 assert(T->getExceptionSpecType() == EST_Dynamic); 2775 Out << "Dw"; 2776 for (auto ExceptTy : T->exceptions()) 2777 mangleType(ExceptTy); 2778 Out << "E"; 2779 } 2780 } else if (T->isNothrow()) { 2781 Out << "Do"; 2782 } 2783 2784 Out << 'F'; 2785 2786 // FIXME: We don't have enough information in the AST to produce the 'Y' 2787 // encoding for extern "C" function types. 2788 mangleBareFunctionType(T, /*MangleReturnType=*/true); 2789 2790 // Mangle the ref-qualifier, if present. 2791 mangleRefQualifier(T->getRefQualifier()); 2792 2793 Out << 'E'; 2794 } 2795 2796 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 2797 // Function types without prototypes can arise when mangling a function type 2798 // within an overloadable function in C. We mangle these as the absence of any 2799 // parameter types (not even an empty parameter list). 2800 Out << 'F'; 2801 2802 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 2803 2804 FunctionTypeDepth.enterResultType(); 2805 mangleType(T->getReturnType()); 2806 FunctionTypeDepth.leaveResultType(); 2807 2808 FunctionTypeDepth.pop(saved); 2809 Out << 'E'; 2810 } 2811 2812 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 2813 bool MangleReturnType, 2814 const FunctionDecl *FD) { 2815 // Record that we're in a function type. See mangleFunctionParam 2816 // for details on what we're trying to achieve here. 2817 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 2818 2819 // <bare-function-type> ::= <signature type>+ 2820 if (MangleReturnType) { 2821 FunctionTypeDepth.enterResultType(); 2822 2823 // Mangle ns_returns_retained as an order-sensitive qualifier here. 2824 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 2825 mangleVendorQualifier("ns_returns_retained"); 2826 2827 // Mangle the return type without any direct ARC ownership qualifiers. 2828 QualType ReturnTy = Proto->getReturnType(); 2829 if (ReturnTy.getObjCLifetime()) { 2830 auto SplitReturnTy = ReturnTy.split(); 2831 SplitReturnTy.Quals.removeObjCLifetime(); 2832 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 2833 } 2834 mangleType(ReturnTy); 2835 2836 FunctionTypeDepth.leaveResultType(); 2837 } 2838 2839 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2840 // <builtin-type> ::= v # void 2841 Out << 'v'; 2842 2843 FunctionTypeDepth.pop(saved); 2844 return; 2845 } 2846 2847 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 2848 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2849 // Mangle extended parameter info as order-sensitive qualifiers here. 2850 if (Proto->hasExtParameterInfos() && FD == nullptr) { 2851 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 2852 } 2853 2854 // Mangle the type. 2855 QualType ParamTy = Proto->getParamType(I); 2856 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 2857 2858 if (FD) { 2859 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 2860 // Attr can only take 1 character, so we can hardcode the length below. 2861 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 2862 if (Attr->isDynamic()) 2863 Out << "U25pass_dynamic_object_size" << Attr->getType(); 2864 else 2865 Out << "U17pass_object_size" << Attr->getType(); 2866 } 2867 } 2868 } 2869 2870 FunctionTypeDepth.pop(saved); 2871 2872 // <builtin-type> ::= z # ellipsis 2873 if (Proto->isVariadic()) 2874 Out << 'z'; 2875 } 2876 2877 // <type> ::= <class-enum-type> 2878 // <class-enum-type> ::= <name> 2879 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 2880 mangleName(T->getDecl()); 2881 } 2882 2883 // <type> ::= <class-enum-type> 2884 // <class-enum-type> ::= <name> 2885 void CXXNameMangler::mangleType(const EnumType *T) { 2886 mangleType(static_cast<const TagType*>(T)); 2887 } 2888 void CXXNameMangler::mangleType(const RecordType *T) { 2889 mangleType(static_cast<const TagType*>(T)); 2890 } 2891 void CXXNameMangler::mangleType(const TagType *T) { 2892 mangleName(T->getDecl()); 2893 } 2894 2895 // <type> ::= <array-type> 2896 // <array-type> ::= A <positive dimension number> _ <element type> 2897 // ::= A [<dimension expression>] _ <element type> 2898 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 2899 Out << 'A' << T->getSize() << '_'; 2900 mangleType(T->getElementType()); 2901 } 2902 void CXXNameMangler::mangleType(const VariableArrayType *T) { 2903 Out << 'A'; 2904 // decayed vla types (size 0) will just be skipped. 2905 if (T->getSizeExpr()) 2906 mangleExpression(T->getSizeExpr()); 2907 Out << '_'; 2908 mangleType(T->getElementType()); 2909 } 2910 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 2911 Out << 'A'; 2912 mangleExpression(T->getSizeExpr()); 2913 Out << '_'; 2914 mangleType(T->getElementType()); 2915 } 2916 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 2917 Out << "A_"; 2918 mangleType(T->getElementType()); 2919 } 2920 2921 // <type> ::= <pointer-to-member-type> 2922 // <pointer-to-member-type> ::= M <class type> <member type> 2923 void CXXNameMangler::mangleType(const MemberPointerType *T) { 2924 Out << 'M'; 2925 mangleType(QualType(T->getClass(), 0)); 2926 QualType PointeeType = T->getPointeeType(); 2927 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 2928 mangleType(FPT); 2929 2930 // Itanium C++ ABI 5.1.8: 2931 // 2932 // The type of a non-static member function is considered to be different, 2933 // for the purposes of substitution, from the type of a namespace-scope or 2934 // static member function whose type appears similar. The types of two 2935 // non-static member functions are considered to be different, for the 2936 // purposes of substitution, if the functions are members of different 2937 // classes. In other words, for the purposes of substitution, the class of 2938 // which the function is a member is considered part of the type of 2939 // function. 2940 2941 // Given that we already substitute member function pointers as a 2942 // whole, the net effect of this rule is just to unconditionally 2943 // suppress substitution on the function type in a member pointer. 2944 // We increment the SeqID here to emulate adding an entry to the 2945 // substitution table. 2946 ++SeqID; 2947 } else 2948 mangleType(PointeeType); 2949 } 2950 2951 // <type> ::= <template-param> 2952 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 2953 mangleTemplateParameter(T->getIndex()); 2954 } 2955 2956 // <type> ::= <template-param> 2957 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 2958 // FIXME: not clear how to mangle this! 2959 // template <class T...> class A { 2960 // template <class U...> void foo(T(*)(U) x...); 2961 // }; 2962 Out << "_SUBSTPACK_"; 2963 } 2964 2965 // <type> ::= P <type> # pointer-to 2966 void CXXNameMangler::mangleType(const PointerType *T) { 2967 Out << 'P'; 2968 mangleType(T->getPointeeType()); 2969 } 2970 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 2971 Out << 'P'; 2972 mangleType(T->getPointeeType()); 2973 } 2974 2975 // <type> ::= R <type> # reference-to 2976 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 2977 Out << 'R'; 2978 mangleType(T->getPointeeType()); 2979 } 2980 2981 // <type> ::= O <type> # rvalue reference-to (C++0x) 2982 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 2983 Out << 'O'; 2984 mangleType(T->getPointeeType()); 2985 } 2986 2987 // <type> ::= C <type> # complex pair (C 2000) 2988 void CXXNameMangler::mangleType(const ComplexType *T) { 2989 Out << 'C'; 2990 mangleType(T->getElementType()); 2991 } 2992 2993 // ARM's ABI for Neon vector types specifies that they should be mangled as 2994 // if they are structs (to match ARM's initial implementation). The 2995 // vector type must be one of the special types predefined by ARM. 2996 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 2997 QualType EltType = T->getElementType(); 2998 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 2999 const char *EltName = nullptr; 3000 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3001 switch (cast<BuiltinType>(EltType)->getKind()) { 3002 case BuiltinType::SChar: 3003 case BuiltinType::UChar: 3004 EltName = "poly8_t"; 3005 break; 3006 case BuiltinType::Short: 3007 case BuiltinType::UShort: 3008 EltName = "poly16_t"; 3009 break; 3010 case BuiltinType::ULongLong: 3011 EltName = "poly64_t"; 3012 break; 3013 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 3014 } 3015 } else { 3016 switch (cast<BuiltinType>(EltType)->getKind()) { 3017 case BuiltinType::SChar: EltName = "int8_t"; break; 3018 case BuiltinType::UChar: EltName = "uint8_t"; break; 3019 case BuiltinType::Short: EltName = "int16_t"; break; 3020 case BuiltinType::UShort: EltName = "uint16_t"; break; 3021 case BuiltinType::Int: EltName = "int32_t"; break; 3022 case BuiltinType::UInt: EltName = "uint32_t"; break; 3023 case BuiltinType::LongLong: EltName = "int64_t"; break; 3024 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 3025 case BuiltinType::Double: EltName = "float64_t"; break; 3026 case BuiltinType::Float: EltName = "float32_t"; break; 3027 case BuiltinType::Half: EltName = "float16_t";break; 3028 default: 3029 llvm_unreachable("unexpected Neon vector element type"); 3030 } 3031 } 3032 const char *BaseName = nullptr; 3033 unsigned BitSize = (T->getNumElements() * 3034 getASTContext().getTypeSize(EltType)); 3035 if (BitSize == 64) 3036 BaseName = "__simd64_"; 3037 else { 3038 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 3039 BaseName = "__simd128_"; 3040 } 3041 Out << strlen(BaseName) + strlen(EltName); 3042 Out << BaseName << EltName; 3043 } 3044 3045 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { 3046 DiagnosticsEngine &Diags = Context.getDiags(); 3047 unsigned DiagID = Diags.getCustomDiagID( 3048 DiagnosticsEngine::Error, 3049 "cannot mangle this dependent neon vector type yet"); 3050 Diags.Report(T->getAttributeLoc(), DiagID); 3051 } 3052 3053 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 3054 switch (EltType->getKind()) { 3055 case BuiltinType::SChar: 3056 return "Int8"; 3057 case BuiltinType::Short: 3058 return "Int16"; 3059 case BuiltinType::Int: 3060 return "Int32"; 3061 case BuiltinType::Long: 3062 case BuiltinType::LongLong: 3063 return "Int64"; 3064 case BuiltinType::UChar: 3065 return "Uint8"; 3066 case BuiltinType::UShort: 3067 return "Uint16"; 3068 case BuiltinType::UInt: 3069 return "Uint32"; 3070 case BuiltinType::ULong: 3071 case BuiltinType::ULongLong: 3072 return "Uint64"; 3073 case BuiltinType::Half: 3074 return "Float16"; 3075 case BuiltinType::Float: 3076 return "Float32"; 3077 case BuiltinType::Double: 3078 return "Float64"; 3079 default: 3080 llvm_unreachable("Unexpected vector element base type"); 3081 } 3082 } 3083 3084 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3085 // the equivalent internal name. The vector type must be one of the special 3086 // types predefined by ARM. 3087 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3088 QualType EltType = T->getElementType(); 3089 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3090 unsigned BitSize = 3091 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3092 (void)BitSize; // Silence warning. 3093 3094 assert((BitSize == 64 || BitSize == 128) && 3095 "Neon vector type not 64 or 128 bits"); 3096 3097 StringRef EltName; 3098 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3099 switch (cast<BuiltinType>(EltType)->getKind()) { 3100 case BuiltinType::UChar: 3101 EltName = "Poly8"; 3102 break; 3103 case BuiltinType::UShort: 3104 EltName = "Poly16"; 3105 break; 3106 case BuiltinType::ULong: 3107 case BuiltinType::ULongLong: 3108 EltName = "Poly64"; 3109 break; 3110 default: 3111 llvm_unreachable("unexpected Neon polynomial vector element type"); 3112 } 3113 } else 3114 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3115 3116 std::string TypeName = 3117 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3118 Out << TypeName.length() << TypeName; 3119 } 3120 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { 3121 DiagnosticsEngine &Diags = Context.getDiags(); 3122 unsigned DiagID = Diags.getCustomDiagID( 3123 DiagnosticsEngine::Error, 3124 "cannot mangle this dependent neon vector type yet"); 3125 Diags.Report(T->getAttributeLoc(), DiagID); 3126 } 3127 3128 // GNU extension: vector types 3129 // <type> ::= <vector-type> 3130 // <vector-type> ::= Dv <positive dimension number> _ 3131 // <extended element type> 3132 // ::= Dv [<dimension expression>] _ <element type> 3133 // <extended element type> ::= <element type> 3134 // ::= p # AltiVec vector pixel 3135 // ::= b # Altivec vector bool 3136 void CXXNameMangler::mangleType(const VectorType *T) { 3137 if ((T->getVectorKind() == VectorType::NeonVector || 3138 T->getVectorKind() == VectorType::NeonPolyVector)) { 3139 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3140 llvm::Triple::ArchType Arch = 3141 getASTContext().getTargetInfo().getTriple().getArch(); 3142 if ((Arch == llvm::Triple::aarch64 || 3143 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 3144 mangleAArch64NeonVectorType(T); 3145 else 3146 mangleNeonVectorType(T); 3147 return; 3148 } 3149 Out << "Dv" << T->getNumElements() << '_'; 3150 if (T->getVectorKind() == VectorType::AltiVecPixel) 3151 Out << 'p'; 3152 else if (T->getVectorKind() == VectorType::AltiVecBool) 3153 Out << 'b'; 3154 else 3155 mangleType(T->getElementType()); 3156 } 3157 3158 void CXXNameMangler::mangleType(const DependentVectorType *T) { 3159 if ((T->getVectorKind() == VectorType::NeonVector || 3160 T->getVectorKind() == VectorType::NeonPolyVector)) { 3161 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3162 llvm::Triple::ArchType Arch = 3163 getASTContext().getTargetInfo().getTriple().getArch(); 3164 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && 3165 !Target.isOSDarwin()) 3166 mangleAArch64NeonVectorType(T); 3167 else 3168 mangleNeonVectorType(T); 3169 return; 3170 } 3171 3172 Out << "Dv"; 3173 mangleExpression(T->getSizeExpr()); 3174 Out << '_'; 3175 if (T->getVectorKind() == VectorType::AltiVecPixel) 3176 Out << 'p'; 3177 else if (T->getVectorKind() == VectorType::AltiVecBool) 3178 Out << 'b'; 3179 else 3180 mangleType(T->getElementType()); 3181 } 3182 3183 void CXXNameMangler::mangleType(const ExtVectorType *T) { 3184 mangleType(static_cast<const VectorType*>(T)); 3185 } 3186 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 3187 Out << "Dv"; 3188 mangleExpression(T->getSizeExpr()); 3189 Out << '_'; 3190 mangleType(T->getElementType()); 3191 } 3192 3193 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 3194 SplitQualType split = T->getPointeeType().split(); 3195 mangleQualifiers(split.Quals, T); 3196 mangleType(QualType(split.Ty, 0)); 3197 } 3198 3199 void CXXNameMangler::mangleType(const PackExpansionType *T) { 3200 // <type> ::= Dp <type> # pack expansion (C++0x) 3201 Out << "Dp"; 3202 mangleType(T->getPattern()); 3203 } 3204 3205 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 3206 mangleSourceName(T->getDecl()->getIdentifier()); 3207 } 3208 3209 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 3210 // Treat __kindof as a vendor extended type qualifier. 3211 if (T->isKindOfType()) 3212 Out << "U8__kindof"; 3213 3214 if (!T->qual_empty()) { 3215 // Mangle protocol qualifiers. 3216 SmallString<64> QualStr; 3217 llvm::raw_svector_ostream QualOS(QualStr); 3218 QualOS << "objcproto"; 3219 for (const auto *I : T->quals()) { 3220 StringRef name = I->getName(); 3221 QualOS << name.size() << name; 3222 } 3223 Out << 'U' << QualStr.size() << QualStr; 3224 } 3225 3226 mangleType(T->getBaseType()); 3227 3228 if (T->isSpecialized()) { 3229 // Mangle type arguments as I <type>+ E 3230 Out << 'I'; 3231 for (auto typeArg : T->getTypeArgs()) 3232 mangleType(typeArg); 3233 Out << 'E'; 3234 } 3235 } 3236 3237 void CXXNameMangler::mangleType(const BlockPointerType *T) { 3238 Out << "U13block_pointer"; 3239 mangleType(T->getPointeeType()); 3240 } 3241 3242 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 3243 // Mangle injected class name types as if the user had written the 3244 // specialization out fully. It may not actually be possible to see 3245 // this mangling, though. 3246 mangleType(T->getInjectedSpecializationType()); 3247 } 3248 3249 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 3250 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 3251 mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); 3252 } else { 3253 if (mangleSubstitution(QualType(T, 0))) 3254 return; 3255 3256 mangleTemplatePrefix(T->getTemplateName()); 3257 3258 // FIXME: GCC does not appear to mangle the template arguments when 3259 // the template in question is a dependent template name. Should we 3260 // emulate that badness? 3261 mangleTemplateArgs(T->getArgs(), T->getNumArgs()); 3262 addSubstitution(QualType(T, 0)); 3263 } 3264 } 3265 3266 void CXXNameMangler::mangleType(const DependentNameType *T) { 3267 // Proposal by cxx-abi-dev, 2014-03-26 3268 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 3269 // # dependent elaborated type specifier using 3270 // # 'typename' 3271 // ::= Ts <name> # dependent elaborated type specifier using 3272 // # 'struct' or 'class' 3273 // ::= Tu <name> # dependent elaborated type specifier using 3274 // # 'union' 3275 // ::= Te <name> # dependent elaborated type specifier using 3276 // # 'enum' 3277 switch (T->getKeyword()) { 3278 case ETK_None: 3279 case ETK_Typename: 3280 break; 3281 case ETK_Struct: 3282 case ETK_Class: 3283 case ETK_Interface: 3284 Out << "Ts"; 3285 break; 3286 case ETK_Union: 3287 Out << "Tu"; 3288 break; 3289 case ETK_Enum: 3290 Out << "Te"; 3291 break; 3292 } 3293 // Typename types are always nested 3294 Out << 'N'; 3295 manglePrefix(T->getQualifier()); 3296 mangleSourceName(T->getIdentifier()); 3297 Out << 'E'; 3298 } 3299 3300 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 3301 // Dependently-scoped template types are nested if they have a prefix. 3302 Out << 'N'; 3303 3304 // TODO: avoid making this TemplateName. 3305 TemplateName Prefix = 3306 getASTContext().getDependentTemplateName(T->getQualifier(), 3307 T->getIdentifier()); 3308 mangleTemplatePrefix(Prefix); 3309 3310 // FIXME: GCC does not appear to mangle the template arguments when 3311 // the template in question is a dependent template name. Should we 3312 // emulate that badness? 3313 mangleTemplateArgs(T->getArgs(), T->getNumArgs()); 3314 Out << 'E'; 3315 } 3316 3317 void CXXNameMangler::mangleType(const TypeOfType *T) { 3318 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3319 // "extension with parameters" mangling. 3320 Out << "u6typeof"; 3321 } 3322 3323 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 3324 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3325 // "extension with parameters" mangling. 3326 Out << "u6typeof"; 3327 } 3328 3329 void CXXNameMangler::mangleType(const DecltypeType *T) { 3330 Expr *E = T->getUnderlyingExpr(); 3331 3332 // type ::= Dt <expression> E # decltype of an id-expression 3333 // # or class member access 3334 // ::= DT <expression> E # decltype of an expression 3335 3336 // This purports to be an exhaustive list of id-expressions and 3337 // class member accesses. Note that we do not ignore parentheses; 3338 // parentheses change the semantics of decltype for these 3339 // expressions (and cause the mangler to use the other form). 3340 if (isa<DeclRefExpr>(E) || 3341 isa<MemberExpr>(E) || 3342 isa<UnresolvedLookupExpr>(E) || 3343 isa<DependentScopeDeclRefExpr>(E) || 3344 isa<CXXDependentScopeMemberExpr>(E) || 3345 isa<UnresolvedMemberExpr>(E)) 3346 Out << "Dt"; 3347 else 3348 Out << "DT"; 3349 mangleExpression(E); 3350 Out << 'E'; 3351 } 3352 3353 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 3354 // If this is dependent, we need to record that. If not, we simply 3355 // mangle it as the underlying type since they are equivalent. 3356 if (T->isDependentType()) { 3357 Out << 'U'; 3358 3359 switch (T->getUTTKind()) { 3360 case UnaryTransformType::EnumUnderlyingType: 3361 Out << "3eut"; 3362 break; 3363 } 3364 } 3365 3366 mangleType(T->getBaseType()); 3367 } 3368 3369 void CXXNameMangler::mangleType(const AutoType *T) { 3370 assert(T->getDeducedType().isNull() && 3371 "Deduced AutoType shouldn't be handled here!"); 3372 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 3373 "shouldn't need to mangle __auto_type!"); 3374 // <builtin-type> ::= Da # auto 3375 // ::= Dc # decltype(auto) 3376 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 3377 } 3378 3379 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 3380 // FIXME: This is not the right mangling. We also need to include a scope 3381 // here in some cases. 3382 QualType D = T->getDeducedType(); 3383 if (D.isNull()) 3384 mangleUnscopedTemplateName(T->getTemplateName(), nullptr); 3385 else 3386 mangleType(D); 3387 } 3388 3389 void CXXNameMangler::mangleType(const AtomicType *T) { 3390 // <type> ::= U <source-name> <type> # vendor extended type qualifier 3391 // (Until there's a standardized mangling...) 3392 Out << "U7_Atomic"; 3393 mangleType(T->getValueType()); 3394 } 3395 3396 void CXXNameMangler::mangleType(const PipeType *T) { 3397 // Pipe type mangling rules are described in SPIR 2.0 specification 3398 // A.1 Data types and A.3 Summary of changes 3399 // <type> ::= 8ocl_pipe 3400 Out << "8ocl_pipe"; 3401 } 3402 3403 void CXXNameMangler::mangleIntegerLiteral(QualType T, 3404 const llvm::APSInt &Value) { 3405 // <expr-primary> ::= L <type> <value number> E # integer literal 3406 Out << 'L'; 3407 3408 mangleType(T); 3409 if (T->isBooleanType()) { 3410 // Boolean values are encoded as 0/1. 3411 Out << (Value.getBoolValue() ? '1' : '0'); 3412 } else { 3413 mangleNumber(Value); 3414 } 3415 Out << 'E'; 3416 3417 } 3418 3419 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 3420 // Ignore member expressions involving anonymous unions. 3421 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 3422 if (!RT->getDecl()->isAnonymousStructOrUnion()) 3423 break; 3424 const auto *ME = dyn_cast<MemberExpr>(Base); 3425 if (!ME) 3426 break; 3427 Base = ME->getBase(); 3428 IsArrow = ME->isArrow(); 3429 } 3430 3431 if (Base->isImplicitCXXThis()) { 3432 // Note: GCC mangles member expressions to the implicit 'this' as 3433 // *this., whereas we represent them as this->. The Itanium C++ ABI 3434 // does not specify anything here, so we follow GCC. 3435 Out << "dtdefpT"; 3436 } else { 3437 Out << (IsArrow ? "pt" : "dt"); 3438 mangleExpression(Base); 3439 } 3440 } 3441 3442 /// Mangles a member expression. 3443 void CXXNameMangler::mangleMemberExpr(const Expr *base, 3444 bool isArrow, 3445 NestedNameSpecifier *qualifier, 3446 NamedDecl *firstQualifierLookup, 3447 DeclarationName member, 3448 const TemplateArgumentLoc *TemplateArgs, 3449 unsigned NumTemplateArgs, 3450 unsigned arity) { 3451 // <expression> ::= dt <expression> <unresolved-name> 3452 // ::= pt <expression> <unresolved-name> 3453 if (base) 3454 mangleMemberExprBase(base, isArrow); 3455 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 3456 } 3457 3458 /// Look at the callee of the given call expression and determine if 3459 /// it's a parenthesized id-expression which would have triggered ADL 3460 /// otherwise. 3461 static bool isParenthesizedADLCallee(const CallExpr *call) { 3462 const Expr *callee = call->getCallee(); 3463 const Expr *fn = callee->IgnoreParens(); 3464 3465 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 3466 // too, but for those to appear in the callee, it would have to be 3467 // parenthesized. 3468 if (callee == fn) return false; 3469 3470 // Must be an unresolved lookup. 3471 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 3472 if (!lookup) return false; 3473 3474 assert(!lookup->requiresADL()); 3475 3476 // Must be an unqualified lookup. 3477 if (lookup->getQualifier()) return false; 3478 3479 // Must not have found a class member. Note that if one is a class 3480 // member, they're all class members. 3481 if (lookup->getNumDecls() > 0 && 3482 (*lookup->decls_begin())->isCXXClassMember()) 3483 return false; 3484 3485 // Otherwise, ADL would have been triggered. 3486 return true; 3487 } 3488 3489 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 3490 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 3491 Out << CastEncoding; 3492 mangleType(ECE->getType()); 3493 mangleExpression(ECE->getSubExpr()); 3494 } 3495 3496 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 3497 if (auto *Syntactic = InitList->getSyntacticForm()) 3498 InitList = Syntactic; 3499 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 3500 mangleExpression(InitList->getInit(i)); 3501 } 3502 3503 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) { 3504 switch (D->getKind()) { 3505 default: 3506 // <expr-primary> ::= L <mangled-name> E # external name 3507 Out << 'L'; 3508 mangle(D); 3509 Out << 'E'; 3510 break; 3511 3512 case Decl::ParmVar: 3513 mangleFunctionParam(cast<ParmVarDecl>(D)); 3514 break; 3515 3516 case Decl::EnumConstant: { 3517 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 3518 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 3519 break; 3520 } 3521 3522 case Decl::NonTypeTemplateParm: 3523 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 3524 mangleTemplateParameter(PD->getIndex()); 3525 break; 3526 } 3527 } 3528 3529 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { 3530 // <expression> ::= <unary operator-name> <expression> 3531 // ::= <binary operator-name> <expression> <expression> 3532 // ::= <trinary operator-name> <expression> <expression> <expression> 3533 // ::= cv <type> expression # conversion with one argument 3534 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 3535 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 3536 // ::= sc <type> <expression> # static_cast<type> (expression) 3537 // ::= cc <type> <expression> # const_cast<type> (expression) 3538 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 3539 // ::= st <type> # sizeof (a type) 3540 // ::= at <type> # alignof (a type) 3541 // ::= <template-param> 3542 // ::= <function-param> 3543 // ::= sr <type> <unqualified-name> # dependent name 3544 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 3545 // ::= ds <expression> <expression> # expr.*expr 3546 // ::= sZ <template-param> # size of a parameter pack 3547 // ::= sZ <function-param> # size of a function parameter pack 3548 // ::= <expr-primary> 3549 // <expr-primary> ::= L <type> <value number> E # integer literal 3550 // ::= L <type <value float> E # floating literal 3551 // ::= L <mangled-name> E # external name 3552 // ::= fpT # 'this' expression 3553 QualType ImplicitlyConvertedToType; 3554 3555 recurse: 3556 switch (E->getStmtClass()) { 3557 case Expr::NoStmtClass: 3558 #define ABSTRACT_STMT(Type) 3559 #define EXPR(Type, Base) 3560 #define STMT(Type, Base) \ 3561 case Expr::Type##Class: 3562 #include "clang/AST/StmtNodes.inc" 3563 // fallthrough 3564 3565 // These all can only appear in local or variable-initialization 3566 // contexts and so should never appear in a mangling. 3567 case Expr::AddrLabelExprClass: 3568 case Expr::DesignatedInitUpdateExprClass: 3569 case Expr::ImplicitValueInitExprClass: 3570 case Expr::ArrayInitLoopExprClass: 3571 case Expr::ArrayInitIndexExprClass: 3572 case Expr::NoInitExprClass: 3573 case Expr::ParenListExprClass: 3574 case Expr::LambdaExprClass: 3575 case Expr::MSPropertyRefExprClass: 3576 case Expr::MSPropertySubscriptExprClass: 3577 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 3578 case Expr::OMPArraySectionExprClass: 3579 case Expr::CXXInheritedCtorInitExprClass: 3580 llvm_unreachable("unexpected statement kind"); 3581 3582 case Expr::ConstantExprClass: 3583 E = cast<ConstantExpr>(E)->getSubExpr(); 3584 goto recurse; 3585 3586 // FIXME: invent manglings for all these. 3587 case Expr::BlockExprClass: 3588 case Expr::ChooseExprClass: 3589 case Expr::CompoundLiteralExprClass: 3590 case Expr::ExtVectorElementExprClass: 3591 case Expr::GenericSelectionExprClass: 3592 case Expr::ObjCEncodeExprClass: 3593 case Expr::ObjCIsaExprClass: 3594 case Expr::ObjCIvarRefExprClass: 3595 case Expr::ObjCMessageExprClass: 3596 case Expr::ObjCPropertyRefExprClass: 3597 case Expr::ObjCProtocolExprClass: 3598 case Expr::ObjCSelectorExprClass: 3599 case Expr::ObjCStringLiteralClass: 3600 case Expr::ObjCBoxedExprClass: 3601 case Expr::ObjCArrayLiteralClass: 3602 case Expr::ObjCDictionaryLiteralClass: 3603 case Expr::ObjCSubscriptRefExprClass: 3604 case Expr::ObjCIndirectCopyRestoreExprClass: 3605 case Expr::ObjCAvailabilityCheckExprClass: 3606 case Expr::OffsetOfExprClass: 3607 case Expr::PredefinedExprClass: 3608 case Expr::ShuffleVectorExprClass: 3609 case Expr::ConvertVectorExprClass: 3610 case Expr::StmtExprClass: 3611 case Expr::TypeTraitExprClass: 3612 case Expr::ArrayTypeTraitExprClass: 3613 case Expr::ExpressionTraitExprClass: 3614 case Expr::VAArgExprClass: 3615 case Expr::CUDAKernelCallExprClass: 3616 case Expr::AsTypeExprClass: 3617 case Expr::PseudoObjectExprClass: 3618 case Expr::AtomicExprClass: 3619 case Expr::SourceLocExprClass: 3620 case Expr::FixedPointLiteralClass: 3621 { 3622 if (!NullOut) { 3623 // As bad as this diagnostic is, it's better than crashing. 3624 DiagnosticsEngine &Diags = Context.getDiags(); 3625 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3626 "cannot yet mangle expression type %0"); 3627 Diags.Report(E->getExprLoc(), DiagID) 3628 << E->getStmtClassName() << E->getSourceRange(); 3629 } 3630 break; 3631 } 3632 3633 case Expr::CXXUuidofExprClass: { 3634 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 3635 if (UE->isTypeOperand()) { 3636 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 3637 Out << "u8__uuidoft"; 3638 mangleType(UuidT); 3639 } else { 3640 Expr *UuidExp = UE->getExprOperand(); 3641 Out << "u8__uuidofz"; 3642 mangleExpression(UuidExp, Arity); 3643 } 3644 break; 3645 } 3646 3647 // Even gcc-4.5 doesn't mangle this. 3648 case Expr::BinaryConditionalOperatorClass: { 3649 DiagnosticsEngine &Diags = Context.getDiags(); 3650 unsigned DiagID = 3651 Diags.getCustomDiagID(DiagnosticsEngine::Error, 3652 "?: operator with omitted middle operand cannot be mangled"); 3653 Diags.Report(E->getExprLoc(), DiagID) 3654 << E->getStmtClassName() << E->getSourceRange(); 3655 break; 3656 } 3657 3658 // These are used for internal purposes and cannot be meaningfully mangled. 3659 case Expr::OpaqueValueExprClass: 3660 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 3661 3662 case Expr::InitListExprClass: { 3663 Out << "il"; 3664 mangleInitListElements(cast<InitListExpr>(E)); 3665 Out << "E"; 3666 break; 3667 } 3668 3669 case Expr::DesignatedInitExprClass: { 3670 auto *DIE = cast<DesignatedInitExpr>(E); 3671 for (const auto &Designator : DIE->designators()) { 3672 if (Designator.isFieldDesignator()) { 3673 Out << "di"; 3674 mangleSourceName(Designator.getFieldName()); 3675 } else if (Designator.isArrayDesignator()) { 3676 Out << "dx"; 3677 mangleExpression(DIE->getArrayIndex(Designator)); 3678 } else { 3679 assert(Designator.isArrayRangeDesignator() && 3680 "unknown designator kind"); 3681 Out << "dX"; 3682 mangleExpression(DIE->getArrayRangeStart(Designator)); 3683 mangleExpression(DIE->getArrayRangeEnd(Designator)); 3684 } 3685 } 3686 mangleExpression(DIE->getInit()); 3687 break; 3688 } 3689 3690 case Expr::CXXDefaultArgExprClass: 3691 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); 3692 break; 3693 3694 case Expr::CXXDefaultInitExprClass: 3695 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity); 3696 break; 3697 3698 case Expr::CXXStdInitializerListExprClass: 3699 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity); 3700 break; 3701 3702 case Expr::SubstNonTypeTemplateParmExprClass: 3703 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), 3704 Arity); 3705 break; 3706 3707 case Expr::UserDefinedLiteralClass: 3708 // We follow g++'s approach of mangling a UDL as a call to the literal 3709 // operator. 3710 case Expr::CXXMemberCallExprClass: // fallthrough 3711 case Expr::CallExprClass: { 3712 const CallExpr *CE = cast<CallExpr>(E); 3713 3714 // <expression> ::= cp <simple-id> <expression>* E 3715 // We use this mangling only when the call would use ADL except 3716 // for being parenthesized. Per discussion with David 3717 // Vandervoorde, 2011.04.25. 3718 if (isParenthesizedADLCallee(CE)) { 3719 Out << "cp"; 3720 // The callee here is a parenthesized UnresolvedLookupExpr with 3721 // no qualifier and should always get mangled as a <simple-id> 3722 // anyway. 3723 3724 // <expression> ::= cl <expression>* E 3725 } else { 3726 Out << "cl"; 3727 } 3728 3729 unsigned CallArity = CE->getNumArgs(); 3730 for (const Expr *Arg : CE->arguments()) 3731 if (isa<PackExpansionExpr>(Arg)) 3732 CallArity = UnknownArity; 3733 3734 mangleExpression(CE->getCallee(), CallArity); 3735 for (const Expr *Arg : CE->arguments()) 3736 mangleExpression(Arg); 3737 Out << 'E'; 3738 break; 3739 } 3740 3741 case Expr::CXXNewExprClass: { 3742 const CXXNewExpr *New = cast<CXXNewExpr>(E); 3743 if (New->isGlobalNew()) Out << "gs"; 3744 Out << (New->isArray() ? "na" : "nw"); 3745 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 3746 E = New->placement_arg_end(); I != E; ++I) 3747 mangleExpression(*I); 3748 Out << '_'; 3749 mangleType(New->getAllocatedType()); 3750 if (New->hasInitializer()) { 3751 if (New->getInitializationStyle() == CXXNewExpr::ListInit) 3752 Out << "il"; 3753 else 3754 Out << "pi"; 3755 const Expr *Init = New->getInitializer(); 3756 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 3757 // Directly inline the initializers. 3758 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 3759 E = CCE->arg_end(); 3760 I != E; ++I) 3761 mangleExpression(*I); 3762 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 3763 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 3764 mangleExpression(PLE->getExpr(i)); 3765 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && 3766 isa<InitListExpr>(Init)) { 3767 // Only take InitListExprs apart for list-initialization. 3768 mangleInitListElements(cast<InitListExpr>(Init)); 3769 } else 3770 mangleExpression(Init); 3771 } 3772 Out << 'E'; 3773 break; 3774 } 3775 3776 case Expr::CXXPseudoDestructorExprClass: { 3777 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 3778 if (const Expr *Base = PDE->getBase()) 3779 mangleMemberExprBase(Base, PDE->isArrow()); 3780 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 3781 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 3782 if (Qualifier) { 3783 mangleUnresolvedPrefix(Qualifier, 3784 /*Recursive=*/true); 3785 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 3786 Out << 'E'; 3787 } else { 3788 Out << "sr"; 3789 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 3790 Out << 'E'; 3791 } 3792 } else if (Qualifier) { 3793 mangleUnresolvedPrefix(Qualifier); 3794 } 3795 // <base-unresolved-name> ::= dn <destructor-name> 3796 Out << "dn"; 3797 QualType DestroyedType = PDE->getDestroyedType(); 3798 mangleUnresolvedTypeOrSimpleId(DestroyedType); 3799 break; 3800 } 3801 3802 case Expr::MemberExprClass: { 3803 const MemberExpr *ME = cast<MemberExpr>(E); 3804 mangleMemberExpr(ME->getBase(), ME->isArrow(), 3805 ME->getQualifier(), nullptr, 3806 ME->getMemberDecl()->getDeclName(), 3807 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3808 Arity); 3809 break; 3810 } 3811 3812 case Expr::UnresolvedMemberExprClass: { 3813 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 3814 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 3815 ME->isArrow(), ME->getQualifier(), nullptr, 3816 ME->getMemberName(), 3817 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3818 Arity); 3819 break; 3820 } 3821 3822 case Expr::CXXDependentScopeMemberExprClass: { 3823 const CXXDependentScopeMemberExpr *ME 3824 = cast<CXXDependentScopeMemberExpr>(E); 3825 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 3826 ME->isArrow(), ME->getQualifier(), 3827 ME->getFirstQualifierFoundInScope(), 3828 ME->getMember(), 3829 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3830 Arity); 3831 break; 3832 } 3833 3834 case Expr::UnresolvedLookupExprClass: { 3835 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 3836 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 3837 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 3838 Arity); 3839 break; 3840 } 3841 3842 case Expr::CXXUnresolvedConstructExprClass: { 3843 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 3844 unsigned N = CE->arg_size(); 3845 3846 if (CE->isListInitialization()) { 3847 assert(N == 1 && "unexpected form for list initialization"); 3848 auto *IL = cast<InitListExpr>(CE->getArg(0)); 3849 Out << "tl"; 3850 mangleType(CE->getType()); 3851 mangleInitListElements(IL); 3852 Out << "E"; 3853 return; 3854 } 3855 3856 Out << "cv"; 3857 mangleType(CE->getType()); 3858 if (N != 1) Out << '_'; 3859 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 3860 if (N != 1) Out << 'E'; 3861 break; 3862 } 3863 3864 case Expr::CXXConstructExprClass: { 3865 const auto *CE = cast<CXXConstructExpr>(E); 3866 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 3867 assert( 3868 CE->getNumArgs() >= 1 && 3869 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 3870 "implicit CXXConstructExpr must have one argument"); 3871 return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0)); 3872 } 3873 Out << "il"; 3874 for (auto *E : CE->arguments()) 3875 mangleExpression(E); 3876 Out << "E"; 3877 break; 3878 } 3879 3880 case Expr::CXXTemporaryObjectExprClass: { 3881 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 3882 unsigned N = CE->getNumArgs(); 3883 bool List = CE->isListInitialization(); 3884 3885 if (List) 3886 Out << "tl"; 3887 else 3888 Out << "cv"; 3889 mangleType(CE->getType()); 3890 if (!List && N != 1) 3891 Out << '_'; 3892 if (CE->isStdInitListInitialization()) { 3893 // We implicitly created a std::initializer_list<T> for the first argument 3894 // of a constructor of type U in an expression of the form U{a, b, c}. 3895 // Strip all the semantic gunk off the initializer list. 3896 auto *SILE = 3897 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 3898 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 3899 mangleInitListElements(ILE); 3900 } else { 3901 for (auto *E : CE->arguments()) 3902 mangleExpression(E); 3903 } 3904 if (List || N != 1) 3905 Out << 'E'; 3906 break; 3907 } 3908 3909 case Expr::CXXScalarValueInitExprClass: 3910 Out << "cv"; 3911 mangleType(E->getType()); 3912 Out << "_E"; 3913 break; 3914 3915 case Expr::CXXNoexceptExprClass: 3916 Out << "nx"; 3917 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 3918 break; 3919 3920 case Expr::UnaryExprOrTypeTraitExprClass: { 3921 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 3922 3923 if (!SAE->isInstantiationDependent()) { 3924 // Itanium C++ ABI: 3925 // If the operand of a sizeof or alignof operator is not 3926 // instantiation-dependent it is encoded as an integer literal 3927 // reflecting the result of the operator. 3928 // 3929 // If the result of the operator is implicitly converted to a known 3930 // integer type, that type is used for the literal; otherwise, the type 3931 // of std::size_t or std::ptrdiff_t is used. 3932 QualType T = (ImplicitlyConvertedToType.isNull() || 3933 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 3934 : ImplicitlyConvertedToType; 3935 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 3936 mangleIntegerLiteral(T, V); 3937 break; 3938 } 3939 3940 switch(SAE->getKind()) { 3941 case UETT_SizeOf: 3942 Out << 's'; 3943 break; 3944 case UETT_PreferredAlignOf: 3945 case UETT_AlignOf: 3946 Out << 'a'; 3947 break; 3948 case UETT_VecStep: { 3949 DiagnosticsEngine &Diags = Context.getDiags(); 3950 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3951 "cannot yet mangle vec_step expression"); 3952 Diags.Report(DiagID); 3953 return; 3954 } 3955 case UETT_OpenMPRequiredSimdAlign: 3956 DiagnosticsEngine &Diags = Context.getDiags(); 3957 unsigned DiagID = Diags.getCustomDiagID( 3958 DiagnosticsEngine::Error, 3959 "cannot yet mangle __builtin_omp_required_simd_align expression"); 3960 Diags.Report(DiagID); 3961 return; 3962 } 3963 if (SAE->isArgumentType()) { 3964 Out << 't'; 3965 mangleType(SAE->getArgumentType()); 3966 } else { 3967 Out << 'z'; 3968 mangleExpression(SAE->getArgumentExpr()); 3969 } 3970 break; 3971 } 3972 3973 case Expr::CXXThrowExprClass: { 3974 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 3975 // <expression> ::= tw <expression> # throw expression 3976 // ::= tr # rethrow 3977 if (TE->getSubExpr()) { 3978 Out << "tw"; 3979 mangleExpression(TE->getSubExpr()); 3980 } else { 3981 Out << "tr"; 3982 } 3983 break; 3984 } 3985 3986 case Expr::CXXTypeidExprClass: { 3987 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 3988 // <expression> ::= ti <type> # typeid (type) 3989 // ::= te <expression> # typeid (expression) 3990 if (TIE->isTypeOperand()) { 3991 Out << "ti"; 3992 mangleType(TIE->getTypeOperand(Context.getASTContext())); 3993 } else { 3994 Out << "te"; 3995 mangleExpression(TIE->getExprOperand()); 3996 } 3997 break; 3998 } 3999 4000 case Expr::CXXDeleteExprClass: { 4001 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 4002 // <expression> ::= [gs] dl <expression> # [::] delete expr 4003 // ::= [gs] da <expression> # [::] delete [] expr 4004 if (DE->isGlobalDelete()) Out << "gs"; 4005 Out << (DE->isArrayForm() ? "da" : "dl"); 4006 mangleExpression(DE->getArgument()); 4007 break; 4008 } 4009 4010 case Expr::UnaryOperatorClass: { 4011 const UnaryOperator *UO = cast<UnaryOperator>(E); 4012 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 4013 /*Arity=*/1); 4014 mangleExpression(UO->getSubExpr()); 4015 break; 4016 } 4017 4018 case Expr::ArraySubscriptExprClass: { 4019 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 4020 4021 // Array subscript is treated as a syntactically weird form of 4022 // binary operator. 4023 Out << "ix"; 4024 mangleExpression(AE->getLHS()); 4025 mangleExpression(AE->getRHS()); 4026 break; 4027 } 4028 4029 case Expr::CompoundAssignOperatorClass: // fallthrough 4030 case Expr::BinaryOperatorClass: { 4031 const BinaryOperator *BO = cast<BinaryOperator>(E); 4032 if (BO->getOpcode() == BO_PtrMemD) 4033 Out << "ds"; 4034 else 4035 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 4036 /*Arity=*/2); 4037 mangleExpression(BO->getLHS()); 4038 mangleExpression(BO->getRHS()); 4039 break; 4040 } 4041 4042 case Expr::ConditionalOperatorClass: { 4043 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 4044 mangleOperatorName(OO_Conditional, /*Arity=*/3); 4045 mangleExpression(CO->getCond()); 4046 mangleExpression(CO->getLHS(), Arity); 4047 mangleExpression(CO->getRHS(), Arity); 4048 break; 4049 } 4050 4051 case Expr::ImplicitCastExprClass: { 4052 ImplicitlyConvertedToType = E->getType(); 4053 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 4054 goto recurse; 4055 } 4056 4057 case Expr::ObjCBridgedCastExprClass: { 4058 // Mangle ownership casts as a vendor extended operator __bridge, 4059 // __bridge_transfer, or __bridge_retain. 4060 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 4061 Out << "v1U" << Kind.size() << Kind; 4062 } 4063 // Fall through to mangle the cast itself. 4064 LLVM_FALLTHROUGH; 4065 4066 case Expr::CStyleCastExprClass: 4067 mangleCastExpression(E, "cv"); 4068 break; 4069 4070 case Expr::CXXFunctionalCastExprClass: { 4071 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 4072 // FIXME: Add isImplicit to CXXConstructExpr. 4073 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 4074 if (CCE->getParenOrBraceRange().isInvalid()) 4075 Sub = CCE->getArg(0)->IgnoreImplicit(); 4076 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 4077 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 4078 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 4079 Out << "tl"; 4080 mangleType(E->getType()); 4081 mangleInitListElements(IL); 4082 Out << "E"; 4083 } else { 4084 mangleCastExpression(E, "cv"); 4085 } 4086 break; 4087 } 4088 4089 case Expr::CXXStaticCastExprClass: 4090 mangleCastExpression(E, "sc"); 4091 break; 4092 case Expr::CXXDynamicCastExprClass: 4093 mangleCastExpression(E, "dc"); 4094 break; 4095 case Expr::CXXReinterpretCastExprClass: 4096 mangleCastExpression(E, "rc"); 4097 break; 4098 case Expr::CXXConstCastExprClass: 4099 mangleCastExpression(E, "cc"); 4100 break; 4101 4102 case Expr::CXXOperatorCallExprClass: { 4103 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 4104 unsigned NumArgs = CE->getNumArgs(); 4105 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 4106 // (the enclosing MemberExpr covers the syntactic portion). 4107 if (CE->getOperator() != OO_Arrow) 4108 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 4109 // Mangle the arguments. 4110 for (unsigned i = 0; i != NumArgs; ++i) 4111 mangleExpression(CE->getArg(i)); 4112 break; 4113 } 4114 4115 case Expr::ParenExprClass: 4116 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); 4117 break; 4118 4119 case Expr::DeclRefExprClass: 4120 mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); 4121 break; 4122 4123 case Expr::SubstNonTypeTemplateParmPackExprClass: 4124 // FIXME: not clear how to mangle this! 4125 // template <unsigned N...> class A { 4126 // template <class U...> void foo(U (&x)[N]...); 4127 // }; 4128 Out << "_SUBSTPACK_"; 4129 break; 4130 4131 case Expr::FunctionParmPackExprClass: { 4132 // FIXME: not clear how to mangle this! 4133 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 4134 Out << "v110_SUBSTPACK"; 4135 mangleDeclRefExpr(FPPE->getParameterPack()); 4136 break; 4137 } 4138 4139 case Expr::DependentScopeDeclRefExprClass: { 4140 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 4141 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 4142 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 4143 Arity); 4144 break; 4145 } 4146 4147 case Expr::CXXBindTemporaryExprClass: 4148 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); 4149 break; 4150 4151 case Expr::ExprWithCleanupsClass: 4152 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); 4153 break; 4154 4155 case Expr::FloatingLiteralClass: { 4156 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 4157 Out << 'L'; 4158 mangleType(FL->getType()); 4159 mangleFloat(FL->getValue()); 4160 Out << 'E'; 4161 break; 4162 } 4163 4164 case Expr::CharacterLiteralClass: 4165 Out << 'L'; 4166 mangleType(E->getType()); 4167 Out << cast<CharacterLiteral>(E)->getValue(); 4168 Out << 'E'; 4169 break; 4170 4171 // FIXME. __objc_yes/__objc_no are mangled same as true/false 4172 case Expr::ObjCBoolLiteralExprClass: 4173 Out << "Lb"; 4174 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4175 Out << 'E'; 4176 break; 4177 4178 case Expr::CXXBoolLiteralExprClass: 4179 Out << "Lb"; 4180 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4181 Out << 'E'; 4182 break; 4183 4184 case Expr::IntegerLiteralClass: { 4185 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 4186 if (E->getType()->isSignedIntegerType()) 4187 Value.setIsSigned(true); 4188 mangleIntegerLiteral(E->getType(), Value); 4189 break; 4190 } 4191 4192 case Expr::ImaginaryLiteralClass: { 4193 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 4194 // Mangle as if a complex literal. 4195 // Proposal from David Vandevoorde, 2010.06.30. 4196 Out << 'L'; 4197 mangleType(E->getType()); 4198 if (const FloatingLiteral *Imag = 4199 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 4200 // Mangle a floating-point zero of the appropriate type. 4201 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 4202 Out << '_'; 4203 mangleFloat(Imag->getValue()); 4204 } else { 4205 Out << "0_"; 4206 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 4207 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 4208 Value.setIsSigned(true); 4209 mangleNumber(Value); 4210 } 4211 Out << 'E'; 4212 break; 4213 } 4214 4215 case Expr::StringLiteralClass: { 4216 // Revised proposal from David Vandervoorde, 2010.07.15. 4217 Out << 'L'; 4218 assert(isa<ConstantArrayType>(E->getType())); 4219 mangleType(E->getType()); 4220 Out << 'E'; 4221 break; 4222 } 4223 4224 case Expr::GNUNullExprClass: 4225 // FIXME: should this really be mangled the same as nullptr? 4226 // fallthrough 4227 4228 case Expr::CXXNullPtrLiteralExprClass: { 4229 Out << "LDnE"; 4230 break; 4231 } 4232 4233 case Expr::PackExpansionExprClass: 4234 Out << "sp"; 4235 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 4236 break; 4237 4238 case Expr::SizeOfPackExprClass: { 4239 auto *SPE = cast<SizeOfPackExpr>(E); 4240 if (SPE->isPartiallySubstituted()) { 4241 Out << "sP"; 4242 for (const auto &A : SPE->getPartialArguments()) 4243 mangleTemplateArg(A); 4244 Out << "E"; 4245 break; 4246 } 4247 4248 Out << "sZ"; 4249 const NamedDecl *Pack = SPE->getPack(); 4250 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 4251 mangleTemplateParameter(TTP->getIndex()); 4252 else if (const NonTypeTemplateParmDecl *NTTP 4253 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 4254 mangleTemplateParameter(NTTP->getIndex()); 4255 else if (const TemplateTemplateParmDecl *TempTP 4256 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 4257 mangleTemplateParameter(TempTP->getIndex()); 4258 else 4259 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 4260 break; 4261 } 4262 4263 case Expr::MaterializeTemporaryExprClass: { 4264 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()); 4265 break; 4266 } 4267 4268 case Expr::CXXFoldExprClass: { 4269 auto *FE = cast<CXXFoldExpr>(E); 4270 if (FE->isLeftFold()) 4271 Out << (FE->getInit() ? "fL" : "fl"); 4272 else 4273 Out << (FE->getInit() ? "fR" : "fr"); 4274 4275 if (FE->getOperator() == BO_PtrMemD) 4276 Out << "ds"; 4277 else 4278 mangleOperatorName( 4279 BinaryOperator::getOverloadedOperator(FE->getOperator()), 4280 /*Arity=*/2); 4281 4282 if (FE->getLHS()) 4283 mangleExpression(FE->getLHS()); 4284 if (FE->getRHS()) 4285 mangleExpression(FE->getRHS()); 4286 break; 4287 } 4288 4289 case Expr::CXXThisExprClass: 4290 Out << "fpT"; 4291 break; 4292 4293 case Expr::CoawaitExprClass: 4294 // FIXME: Propose a non-vendor mangling. 4295 Out << "v18co_await"; 4296 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 4297 break; 4298 4299 case Expr::DependentCoawaitExprClass: 4300 // FIXME: Propose a non-vendor mangling. 4301 Out << "v18co_await"; 4302 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 4303 break; 4304 4305 case Expr::CoyieldExprClass: 4306 // FIXME: Propose a non-vendor mangling. 4307 Out << "v18co_yield"; 4308 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 4309 break; 4310 } 4311 } 4312 4313 /// Mangle an expression which refers to a parameter variable. 4314 /// 4315 /// <expression> ::= <function-param> 4316 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 4317 /// <function-param> ::= fp <top-level CV-qualifiers> 4318 /// <parameter-2 non-negative number> _ # L == 0, I > 0 4319 /// <function-param> ::= fL <L-1 non-negative number> 4320 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 4321 /// <function-param> ::= fL <L-1 non-negative number> 4322 /// p <top-level CV-qualifiers> 4323 /// <I-1 non-negative number> _ # L > 0, I > 0 4324 /// 4325 /// L is the nesting depth of the parameter, defined as 1 if the 4326 /// parameter comes from the innermost function prototype scope 4327 /// enclosing the current context, 2 if from the next enclosing 4328 /// function prototype scope, and so on, with one special case: if 4329 /// we've processed the full parameter clause for the innermost 4330 /// function type, then L is one less. This definition conveniently 4331 /// makes it irrelevant whether a function's result type was written 4332 /// trailing or leading, but is otherwise overly complicated; the 4333 /// numbering was first designed without considering references to 4334 /// parameter in locations other than return types, and then the 4335 /// mangling had to be generalized without changing the existing 4336 /// manglings. 4337 /// 4338 /// I is the zero-based index of the parameter within its parameter 4339 /// declaration clause. Note that the original ABI document describes 4340 /// this using 1-based ordinals. 4341 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 4342 unsigned parmDepth = parm->getFunctionScopeDepth(); 4343 unsigned parmIndex = parm->getFunctionScopeIndex(); 4344 4345 // Compute 'L'. 4346 // parmDepth does not include the declaring function prototype. 4347 // FunctionTypeDepth does account for that. 4348 assert(parmDepth < FunctionTypeDepth.getDepth()); 4349 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 4350 if (FunctionTypeDepth.isInResultType()) 4351 nestingDepth--; 4352 4353 if (nestingDepth == 0) { 4354 Out << "fp"; 4355 } else { 4356 Out << "fL" << (nestingDepth - 1) << 'p'; 4357 } 4358 4359 // Top-level qualifiers. We don't have to worry about arrays here, 4360 // because parameters declared as arrays should already have been 4361 // transformed to have pointer type. FIXME: apparently these don't 4362 // get mangled if used as an rvalue of a known non-class type? 4363 assert(!parm->getType()->isArrayType() 4364 && "parameter's type is still an array type?"); 4365 4366 if (const DependentAddressSpaceType *DAST = 4367 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 4368 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 4369 } else { 4370 mangleQualifiers(parm->getType().getQualifiers()); 4371 } 4372 4373 // Parameter index. 4374 if (parmIndex != 0) { 4375 Out << (parmIndex - 1); 4376 } 4377 Out << '_'; 4378 } 4379 4380 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 4381 const CXXRecordDecl *InheritedFrom) { 4382 // <ctor-dtor-name> ::= C1 # complete object constructor 4383 // ::= C2 # base object constructor 4384 // ::= CI1 <type> # complete inheriting constructor 4385 // ::= CI2 <type> # base inheriting constructor 4386 // 4387 // In addition, C5 is a comdat name with C1 and C2 in it. 4388 Out << 'C'; 4389 if (InheritedFrom) 4390 Out << 'I'; 4391 switch (T) { 4392 case Ctor_Complete: 4393 Out << '1'; 4394 break; 4395 case Ctor_Base: 4396 Out << '2'; 4397 break; 4398 case Ctor_Comdat: 4399 Out << '5'; 4400 break; 4401 case Ctor_DefaultClosure: 4402 case Ctor_CopyingClosure: 4403 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 4404 } 4405 if (InheritedFrom) 4406 mangleName(InheritedFrom); 4407 } 4408 4409 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 4410 // <ctor-dtor-name> ::= D0 # deleting destructor 4411 // ::= D1 # complete object destructor 4412 // ::= D2 # base object destructor 4413 // 4414 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 4415 switch (T) { 4416 case Dtor_Deleting: 4417 Out << "D0"; 4418 break; 4419 case Dtor_Complete: 4420 Out << "D1"; 4421 break; 4422 case Dtor_Base: 4423 Out << "D2"; 4424 break; 4425 case Dtor_Comdat: 4426 Out << "D5"; 4427 break; 4428 } 4429 } 4430 4431 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, 4432 unsigned NumTemplateArgs) { 4433 // <template-args> ::= I <template-arg>+ E 4434 Out << 'I'; 4435 for (unsigned i = 0; i != NumTemplateArgs; ++i) 4436 mangleTemplateArg(TemplateArgs[i].getArgument()); 4437 Out << 'E'; 4438 } 4439 4440 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) { 4441 // <template-args> ::= I <template-arg>+ E 4442 Out << 'I'; 4443 for (unsigned i = 0, e = AL.size(); i != e; ++i) 4444 mangleTemplateArg(AL[i]); 4445 Out << 'E'; 4446 } 4447 4448 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs, 4449 unsigned NumTemplateArgs) { 4450 // <template-args> ::= I <template-arg>+ E 4451 Out << 'I'; 4452 for (unsigned i = 0; i != NumTemplateArgs; ++i) 4453 mangleTemplateArg(TemplateArgs[i]); 4454 Out << 'E'; 4455 } 4456 4457 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) { 4458 // <template-arg> ::= <type> # type or template 4459 // ::= X <expression> E # expression 4460 // ::= <expr-primary> # simple expressions 4461 // ::= J <template-arg>* E # argument pack 4462 if (!A.isInstantiationDependent() || A.isDependent()) 4463 A = Context.getASTContext().getCanonicalTemplateArgument(A); 4464 4465 switch (A.getKind()) { 4466 case TemplateArgument::Null: 4467 llvm_unreachable("Cannot mangle NULL template argument"); 4468 4469 case TemplateArgument::Type: 4470 mangleType(A.getAsType()); 4471 break; 4472 case TemplateArgument::Template: 4473 // This is mangled as <type>. 4474 mangleType(A.getAsTemplate()); 4475 break; 4476 case TemplateArgument::TemplateExpansion: 4477 // <type> ::= Dp <type> # pack expansion (C++0x) 4478 Out << "Dp"; 4479 mangleType(A.getAsTemplateOrTemplatePattern()); 4480 break; 4481 case TemplateArgument::Expression: { 4482 // It's possible to end up with a DeclRefExpr here in certain 4483 // dependent cases, in which case we should mangle as a 4484 // declaration. 4485 const Expr *E = A.getAsExpr()->IgnoreParens(); 4486 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 4487 const ValueDecl *D = DRE->getDecl(); 4488 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 4489 Out << 'L'; 4490 mangle(D); 4491 Out << 'E'; 4492 break; 4493 } 4494 } 4495 4496 Out << 'X'; 4497 mangleExpression(E); 4498 Out << 'E'; 4499 break; 4500 } 4501 case TemplateArgument::Integral: 4502 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 4503 break; 4504 case TemplateArgument::Declaration: { 4505 // <expr-primary> ::= L <mangled-name> E # external name 4506 // Clang produces AST's where pointer-to-member-function expressions 4507 // and pointer-to-function expressions are represented as a declaration not 4508 // an expression. We compensate for it here to produce the correct mangling. 4509 ValueDecl *D = A.getAsDecl(); 4510 bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType(); 4511 if (compensateMangling) { 4512 Out << 'X'; 4513 mangleOperatorName(OO_Amp, 1); 4514 } 4515 4516 Out << 'L'; 4517 // References to external entities use the mangled name; if the name would 4518 // not normally be mangled then mangle it as unqualified. 4519 mangle(D); 4520 Out << 'E'; 4521 4522 if (compensateMangling) 4523 Out << 'E'; 4524 4525 break; 4526 } 4527 case TemplateArgument::NullPtr: { 4528 // <expr-primary> ::= L <type> 0 E 4529 Out << 'L'; 4530 mangleType(A.getNullPtrType()); 4531 Out << "0E"; 4532 break; 4533 } 4534 case TemplateArgument::Pack: { 4535 // <template-arg> ::= J <template-arg>* E 4536 Out << 'J'; 4537 for (const auto &P : A.pack_elements()) 4538 mangleTemplateArg(P); 4539 Out << 'E'; 4540 } 4541 } 4542 } 4543 4544 void CXXNameMangler::mangleTemplateParameter(unsigned Index) { 4545 // <template-param> ::= T_ # first template parameter 4546 // ::= T <parameter-2 non-negative number> _ 4547 if (Index == 0) 4548 Out << "T_"; 4549 else 4550 Out << 'T' << (Index - 1) << '_'; 4551 } 4552 4553 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 4554 if (SeqID == 1) 4555 Out << '0'; 4556 else if (SeqID > 1) { 4557 SeqID--; 4558 4559 // <seq-id> is encoded in base-36, using digits and upper case letters. 4560 char Buffer[7]; // log(2**32) / log(36) ~= 7 4561 MutableArrayRef<char> BufferRef(Buffer); 4562 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 4563 4564 for (; SeqID != 0; SeqID /= 36) { 4565 unsigned C = SeqID % 36; 4566 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 4567 } 4568 4569 Out.write(I.base(), I - BufferRef.rbegin()); 4570 } 4571 Out << '_'; 4572 } 4573 4574 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 4575 bool result = mangleSubstitution(tname); 4576 assert(result && "no existing substitution for template name"); 4577 (void) result; 4578 } 4579 4580 // <substitution> ::= S <seq-id> _ 4581 // ::= S_ 4582 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 4583 // Try one of the standard substitutions first. 4584 if (mangleStandardSubstitution(ND)) 4585 return true; 4586 4587 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 4588 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 4589 } 4590 4591 /// Determine whether the given type has any qualifiers that are relevant for 4592 /// substitutions. 4593 static bool hasMangledSubstitutionQualifiers(QualType T) { 4594 Qualifiers Qs = T.getQualifiers(); 4595 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 4596 } 4597 4598 bool CXXNameMangler::mangleSubstitution(QualType T) { 4599 if (!hasMangledSubstitutionQualifiers(T)) { 4600 if (const RecordType *RT = T->getAs<RecordType>()) 4601 return mangleSubstitution(RT->getDecl()); 4602 } 4603 4604 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 4605 4606 return mangleSubstitution(TypePtr); 4607 } 4608 4609 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 4610 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 4611 return mangleSubstitution(TD); 4612 4613 Template = Context.getASTContext().getCanonicalTemplateName(Template); 4614 return mangleSubstitution( 4615 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 4616 } 4617 4618 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 4619 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 4620 if (I == Substitutions.end()) 4621 return false; 4622 4623 unsigned SeqID = I->second; 4624 Out << 'S'; 4625 mangleSeqID(SeqID); 4626 4627 return true; 4628 } 4629 4630 static bool isCharType(QualType T) { 4631 if (T.isNull()) 4632 return false; 4633 4634 return T->isSpecificBuiltinType(BuiltinType::Char_S) || 4635 T->isSpecificBuiltinType(BuiltinType::Char_U); 4636 } 4637 4638 /// Returns whether a given type is a template specialization of a given name 4639 /// with a single argument of type char. 4640 static bool isCharSpecialization(QualType T, const char *Name) { 4641 if (T.isNull()) 4642 return false; 4643 4644 const RecordType *RT = T->getAs<RecordType>(); 4645 if (!RT) 4646 return false; 4647 4648 const ClassTemplateSpecializationDecl *SD = 4649 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 4650 if (!SD) 4651 return false; 4652 4653 if (!isStdNamespace(getEffectiveDeclContext(SD))) 4654 return false; 4655 4656 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4657 if (TemplateArgs.size() != 1) 4658 return false; 4659 4660 if (!isCharType(TemplateArgs[0].getAsType())) 4661 return false; 4662 4663 return SD->getIdentifier()->getName() == Name; 4664 } 4665 4666 template <std::size_t StrLen> 4667 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, 4668 const char (&Str)[StrLen]) { 4669 if (!SD->getIdentifier()->isStr(Str)) 4670 return false; 4671 4672 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4673 if (TemplateArgs.size() != 2) 4674 return false; 4675 4676 if (!isCharType(TemplateArgs[0].getAsType())) 4677 return false; 4678 4679 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 4680 return false; 4681 4682 return true; 4683 } 4684 4685 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 4686 // <substitution> ::= St # ::std:: 4687 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 4688 if (isStd(NS)) { 4689 Out << "St"; 4690 return true; 4691 } 4692 } 4693 4694 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 4695 if (!isStdNamespace(getEffectiveDeclContext(TD))) 4696 return false; 4697 4698 // <substitution> ::= Sa # ::std::allocator 4699 if (TD->getIdentifier()->isStr("allocator")) { 4700 Out << "Sa"; 4701 return true; 4702 } 4703 4704 // <<substitution> ::= Sb # ::std::basic_string 4705 if (TD->getIdentifier()->isStr("basic_string")) { 4706 Out << "Sb"; 4707 return true; 4708 } 4709 } 4710 4711 if (const ClassTemplateSpecializationDecl *SD = 4712 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 4713 if (!isStdNamespace(getEffectiveDeclContext(SD))) 4714 return false; 4715 4716 // <substitution> ::= Ss # ::std::basic_string<char, 4717 // ::std::char_traits<char>, 4718 // ::std::allocator<char> > 4719 if (SD->getIdentifier()->isStr("basic_string")) { 4720 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4721 4722 if (TemplateArgs.size() != 3) 4723 return false; 4724 4725 if (!isCharType(TemplateArgs[0].getAsType())) 4726 return false; 4727 4728 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 4729 return false; 4730 4731 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) 4732 return false; 4733 4734 Out << "Ss"; 4735 return true; 4736 } 4737 4738 // <substitution> ::= Si # ::std::basic_istream<char, 4739 // ::std::char_traits<char> > 4740 if (isStreamCharSpecialization(SD, "basic_istream")) { 4741 Out << "Si"; 4742 return true; 4743 } 4744 4745 // <substitution> ::= So # ::std::basic_ostream<char, 4746 // ::std::char_traits<char> > 4747 if (isStreamCharSpecialization(SD, "basic_ostream")) { 4748 Out << "So"; 4749 return true; 4750 } 4751 4752 // <substitution> ::= Sd # ::std::basic_iostream<char, 4753 // ::std::char_traits<char> > 4754 if (isStreamCharSpecialization(SD, "basic_iostream")) { 4755 Out << "Sd"; 4756 return true; 4757 } 4758 } 4759 return false; 4760 } 4761 4762 void CXXNameMangler::addSubstitution(QualType T) { 4763 if (!hasMangledSubstitutionQualifiers(T)) { 4764 if (const RecordType *RT = T->getAs<RecordType>()) { 4765 addSubstitution(RT->getDecl()); 4766 return; 4767 } 4768 } 4769 4770 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 4771 addSubstitution(TypePtr); 4772 } 4773 4774 void CXXNameMangler::addSubstitution(TemplateName Template) { 4775 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 4776 return addSubstitution(TD); 4777 4778 Template = Context.getASTContext().getCanonicalTemplateName(Template); 4779 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 4780 } 4781 4782 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 4783 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 4784 Substitutions[Ptr] = SeqID++; 4785 } 4786 4787 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 4788 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 4789 if (Other->SeqID > SeqID) { 4790 Substitutions.swap(Other->Substitutions); 4791 SeqID = Other->SeqID; 4792 } 4793 } 4794 4795 CXXNameMangler::AbiTagList 4796 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 4797 // When derived abi tags are disabled there is no need to make any list. 4798 if (DisableDerivedAbiTags) 4799 return AbiTagList(); 4800 4801 llvm::raw_null_ostream NullOutStream; 4802 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 4803 TrackReturnTypeTags.disableDerivedAbiTags(); 4804 4805 const FunctionProtoType *Proto = 4806 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 4807 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 4808 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 4809 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 4810 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 4811 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 4812 4813 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 4814 } 4815 4816 CXXNameMangler::AbiTagList 4817 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 4818 // When derived abi tags are disabled there is no need to make any list. 4819 if (DisableDerivedAbiTags) 4820 return AbiTagList(); 4821 4822 llvm::raw_null_ostream NullOutStream; 4823 CXXNameMangler TrackVariableType(*this, NullOutStream); 4824 TrackVariableType.disableDerivedAbiTags(); 4825 4826 TrackVariableType.mangleType(VD->getType()); 4827 4828 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 4829 } 4830 4831 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 4832 const VarDecl *VD) { 4833 llvm::raw_null_ostream NullOutStream; 4834 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 4835 TrackAbiTags.mangle(VD); 4836 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 4837 } 4838 4839 // 4840 4841 /// Mangles the name of the declaration D and emits that name to the given 4842 /// output stream. 4843 /// 4844 /// If the declaration D requires a mangled name, this routine will emit that 4845 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 4846 /// and this routine will return false. In this case, the caller should just 4847 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 4848 /// name. 4849 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D, 4850 raw_ostream &Out) { 4851 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 4852 "Invalid mangleName() call, argument is not a variable or function!"); 4853 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 4854 "Invalid mangleName() call on 'structor decl!"); 4855 4856 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 4857 getASTContext().getSourceManager(), 4858 "Mangling declaration"); 4859 4860 CXXNameMangler Mangler(*this, Out, D); 4861 Mangler.mangle(D); 4862 } 4863 4864 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, 4865 CXXCtorType Type, 4866 raw_ostream &Out) { 4867 CXXNameMangler Mangler(*this, Out, D, Type); 4868 Mangler.mangle(D); 4869 } 4870 4871 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, 4872 CXXDtorType Type, 4873 raw_ostream &Out) { 4874 CXXNameMangler Mangler(*this, Out, D, Type); 4875 Mangler.mangle(D); 4876 } 4877 4878 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 4879 raw_ostream &Out) { 4880 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 4881 Mangler.mangle(D); 4882 } 4883 4884 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 4885 raw_ostream &Out) { 4886 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 4887 Mangler.mangle(D); 4888 } 4889 4890 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 4891 const ThunkInfo &Thunk, 4892 raw_ostream &Out) { 4893 // <special-name> ::= T <call-offset> <base encoding> 4894 // # base is the nominal target function of thunk 4895 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 4896 // # base is the nominal target function of thunk 4897 // # first call-offset is 'this' adjustment 4898 // # second call-offset is result adjustment 4899 4900 assert(!isa<CXXDestructorDecl>(MD) && 4901 "Use mangleCXXDtor for destructor decls!"); 4902 CXXNameMangler Mangler(*this, Out); 4903 Mangler.getStream() << "_ZT"; 4904 if (!Thunk.Return.isEmpty()) 4905 Mangler.getStream() << 'c'; 4906 4907 // Mangle the 'this' pointer adjustment. 4908 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 4909 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 4910 4911 // Mangle the return pointer adjustment if there is one. 4912 if (!Thunk.Return.isEmpty()) 4913 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 4914 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 4915 4916 Mangler.mangleFunctionEncoding(MD); 4917 } 4918 4919 void ItaniumMangleContextImpl::mangleCXXDtorThunk( 4920 const CXXDestructorDecl *DD, CXXDtorType Type, 4921 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { 4922 // <special-name> ::= T <call-offset> <base encoding> 4923 // # base is the nominal target function of thunk 4924 CXXNameMangler Mangler(*this, Out, DD, Type); 4925 Mangler.getStream() << "_ZT"; 4926 4927 // Mangle the 'this' pointer adjustment. 4928 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 4929 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 4930 4931 Mangler.mangleFunctionEncoding(DD); 4932 } 4933 4934 /// Returns the mangled name for a guard variable for the passed in VarDecl. 4935 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 4936 raw_ostream &Out) { 4937 // <special-name> ::= GV <object name> # Guard variable for one-time 4938 // # initialization 4939 CXXNameMangler Mangler(*this, Out); 4940 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 4941 // be a bug that is fixed in trunk. 4942 Mangler.getStream() << "_ZGV"; 4943 Mangler.mangleName(D); 4944 } 4945 4946 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 4947 raw_ostream &Out) { 4948 // These symbols are internal in the Itanium ABI, so the names don't matter. 4949 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 4950 // avoid duplicate symbols. 4951 Out << "__cxx_global_var_init"; 4952 } 4953 4954 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 4955 raw_ostream &Out) { 4956 // Prefix the mangling of D with __dtor_. 4957 CXXNameMangler Mangler(*this, Out); 4958 Mangler.getStream() << "__dtor_"; 4959 if (shouldMangleDeclName(D)) 4960 Mangler.mangle(D); 4961 else 4962 Mangler.getStream() << D->getName(); 4963 } 4964 4965 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 4966 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 4967 CXXNameMangler Mangler(*this, Out); 4968 Mangler.getStream() << "__filt_"; 4969 if (shouldMangleDeclName(EnclosingDecl)) 4970 Mangler.mangle(EnclosingDecl); 4971 else 4972 Mangler.getStream() << EnclosingDecl->getName(); 4973 } 4974 4975 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 4976 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 4977 CXXNameMangler Mangler(*this, Out); 4978 Mangler.getStream() << "__fin_"; 4979 if (shouldMangleDeclName(EnclosingDecl)) 4980 Mangler.mangle(EnclosingDecl); 4981 else 4982 Mangler.getStream() << EnclosingDecl->getName(); 4983 } 4984 4985 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 4986 raw_ostream &Out) { 4987 // <special-name> ::= TH <object name> 4988 CXXNameMangler Mangler(*this, Out); 4989 Mangler.getStream() << "_ZTH"; 4990 Mangler.mangleName(D); 4991 } 4992 4993 void 4994 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 4995 raw_ostream &Out) { 4996 // <special-name> ::= TW <object name> 4997 CXXNameMangler Mangler(*this, Out); 4998 Mangler.getStream() << "_ZTW"; 4999 Mangler.mangleName(D); 5000 } 5001 5002 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 5003 unsigned ManglingNumber, 5004 raw_ostream &Out) { 5005 // We match the GCC mangling here. 5006 // <special-name> ::= GR <object name> 5007 CXXNameMangler Mangler(*this, Out); 5008 Mangler.getStream() << "_ZGR"; 5009 Mangler.mangleName(D); 5010 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 5011 Mangler.mangleSeqID(ManglingNumber - 1); 5012 } 5013 5014 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 5015 raw_ostream &Out) { 5016 // <special-name> ::= TV <type> # virtual table 5017 CXXNameMangler Mangler(*this, Out); 5018 Mangler.getStream() << "_ZTV"; 5019 Mangler.mangleNameOrStandardSubstitution(RD); 5020 } 5021 5022 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 5023 raw_ostream &Out) { 5024 // <special-name> ::= TT <type> # VTT structure 5025 CXXNameMangler Mangler(*this, Out); 5026 Mangler.getStream() << "_ZTT"; 5027 Mangler.mangleNameOrStandardSubstitution(RD); 5028 } 5029 5030 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 5031 int64_t Offset, 5032 const CXXRecordDecl *Type, 5033 raw_ostream &Out) { 5034 // <special-name> ::= TC <type> <offset number> _ <base type> 5035 CXXNameMangler Mangler(*this, Out); 5036 Mangler.getStream() << "_ZTC"; 5037 Mangler.mangleNameOrStandardSubstitution(RD); 5038 Mangler.getStream() << Offset; 5039 Mangler.getStream() << '_'; 5040 Mangler.mangleNameOrStandardSubstitution(Type); 5041 } 5042 5043 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 5044 // <special-name> ::= TI <type> # typeinfo structure 5045 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 5046 CXXNameMangler Mangler(*this, Out); 5047 Mangler.getStream() << "_ZTI"; 5048 Mangler.mangleType(Ty); 5049 } 5050 5051 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, 5052 raw_ostream &Out) { 5053 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 5054 CXXNameMangler Mangler(*this, Out); 5055 Mangler.getStream() << "_ZTS"; 5056 Mangler.mangleType(Ty); 5057 } 5058 5059 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { 5060 mangleCXXRTTIName(Ty, Out); 5061 } 5062 5063 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 5064 llvm_unreachable("Can't mangle string literals"); 5065 } 5066 5067 ItaniumMangleContext * 5068 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 5069 return new ItaniumMangleContextImpl(Context, Diags); 5070 } 5071