1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 #define MANGLE_CHECKER 0
37 
38 #if MANGLE_CHECKER
39 #include <cxxabi.h>
40 #endif
41 
42 using namespace clang;
43 
44 namespace {
45 
46 /// Retrieve the declaration context that should be used when mangling the given
47 /// declaration.
48 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
49   // The ABI assumes that lambda closure types that occur within
50   // default arguments live in the context of the function. However, due to
51   // the way in which Clang parses and creates function declarations, this is
52   // not the case: the lambda closure type ends up living in the context
53   // where the function itself resides, because the function declaration itself
54   // had not yet been created. Fix the context here.
55   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
56     if (RD->isLambda())
57       if (ParmVarDecl *ContextParam
58             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
59         return ContextParam->getDeclContext();
60   }
61 
62   // Perform the same check for block literals.
63   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
64     if (ParmVarDecl *ContextParam
65           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
66       return ContextParam->getDeclContext();
67   }
68 
69   const DeclContext *DC = D->getDeclContext();
70   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
71     return getEffectiveDeclContext(cast<Decl>(DC));
72   }
73 
74   if (const auto *VD = dyn_cast<VarDecl>(D))
75     if (VD->isExternC())
76       return VD->getASTContext().getTranslationUnitDecl();
77 
78   if (const auto *FD = dyn_cast<FunctionDecl>(D))
79     if (FD->isExternC())
80       return FD->getASTContext().getTranslationUnitDecl();
81 
82   return DC->getRedeclContext();
83 }
84 
85 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
86   return getEffectiveDeclContext(cast<Decl>(DC));
87 }
88 
89 static bool isLocalContainerContext(const DeclContext *DC) {
90   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
91 }
92 
93 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
94   const DeclContext *DC = getEffectiveDeclContext(D);
95   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
96     if (isLocalContainerContext(DC))
97       return dyn_cast<RecordDecl>(D);
98     D = cast<Decl>(DC);
99     DC = getEffectiveDeclContext(D);
100   }
101   return nullptr;
102 }
103 
104 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
105   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
106     return ftd->getTemplatedDecl();
107 
108   return fn;
109 }
110 
111 static const NamedDecl *getStructor(const NamedDecl *decl) {
112   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
113   return (fn ? getStructor(fn) : decl);
114 }
115 
116 static bool isLambda(const NamedDecl *ND) {
117   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
118   if (!Record)
119     return false;
120 
121   return Record->isLambda();
122 }
123 
124 static const unsigned UnknownArity = ~0U;
125 
126 class ItaniumMangleContextImpl : public ItaniumMangleContext {
127   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
128   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
129   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
130 
131 public:
132   explicit ItaniumMangleContextImpl(ASTContext &Context,
133                                     DiagnosticsEngine &Diags)
134       : ItaniumMangleContext(Context, Diags) {}
135 
136   /// @name Mangler Entry Points
137   /// @{
138 
139   bool shouldMangleCXXName(const NamedDecl *D) override;
140   bool shouldMangleStringLiteral(const StringLiteral *) override {
141     return false;
142   }
143   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
144   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145                    raw_ostream &) override;
146   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
147                           const ThisAdjustment &ThisAdjustment,
148                           raw_ostream &) override;
149   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
150                                 raw_ostream &) override;
151   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
152   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
153   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
154                            const CXXRecordDecl *Type, raw_ostream &) override;
155   void mangleCXXRTTI(QualType T, raw_ostream &) override;
156   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
157   void mangleTypeName(QualType T, raw_ostream &) override;
158   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
159                      raw_ostream &) override;
160   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
161                      raw_ostream &) override;
162 
163   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
164   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
165   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
166   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
167   void mangleDynamicAtExitDestructor(const VarDecl *D,
168                                      raw_ostream &Out) override;
169   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
170                                  raw_ostream &Out) override;
171   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
172                              raw_ostream &Out) override;
173   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
174   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
175                                        raw_ostream &) override;
176 
177   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
178 
179   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180     // Lambda closure types are already numbered.
181     if (isLambda(ND))
182       return false;
183 
184     // Anonymous tags are already numbered.
185     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187         return false;
188     }
189 
190     // Use the canonical number for externally visible decls.
191     if (ND->isExternallyVisible()) {
192       unsigned discriminator = getASTContext().getManglingNumber(ND);
193       if (discriminator == 1)
194         return false;
195       disc = discriminator - 2;
196       return true;
197     }
198 
199     // Make up a reasonable number for internal decls.
200     unsigned &discriminator = Uniquifier[ND];
201     if (!discriminator) {
202       const DeclContext *DC = getEffectiveDeclContext(ND);
203       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204     }
205     if (discriminator == 1)
206       return false;
207     disc = discriminator-2;
208     return true;
209   }
210   /// @}
211 };
212 
213 /// Manage the mangling of a single name.
214 class CXXNameMangler {
215   ItaniumMangleContextImpl &Context;
216   raw_ostream &Out;
217   bool NullOut = false;
218   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219   /// This mode is used when mangler creates another mangler recursively to
220   /// calculate ABI tags for the function return value or the variable type.
221   /// Also it is required to avoid infinite recursion in some cases.
222   bool DisableDerivedAbiTags = false;
223 
224   /// The "structor" is the top-level declaration being mangled, if
225   /// that's not a template specialization; otherwise it's the pattern
226   /// for that specialization.
227   const NamedDecl *Structor;
228   unsigned StructorType;
229 
230   /// The next substitution sequence number.
231   unsigned SeqID;
232 
233   class FunctionTypeDepthState {
234     unsigned Bits;
235 
236     enum { InResultTypeMask = 1 };
237 
238   public:
239     FunctionTypeDepthState() : Bits(0) {}
240 
241     /// The number of function types we're inside.
242     unsigned getDepth() const {
243       return Bits >> 1;
244     }
245 
246     /// True if we're in the return type of the innermost function type.
247     bool isInResultType() const {
248       return Bits & InResultTypeMask;
249     }
250 
251     FunctionTypeDepthState push() {
252       FunctionTypeDepthState tmp = *this;
253       Bits = (Bits & ~InResultTypeMask) + 2;
254       return tmp;
255     }
256 
257     void enterResultType() {
258       Bits |= InResultTypeMask;
259     }
260 
261     void leaveResultType() {
262       Bits &= ~InResultTypeMask;
263     }
264 
265     void pop(FunctionTypeDepthState saved) {
266       assert(getDepth() == saved.getDepth() + 1);
267       Bits = saved.Bits;
268     }
269 
270   } FunctionTypeDepth;
271 
272   // abi_tag is a gcc attribute, taking one or more strings called "tags".
273   // The goal is to annotate against which version of a library an object was
274   // built and to be able to provide backwards compatibility ("dual abi").
275   // For more information see docs/ItaniumMangleAbiTags.rst.
276   typedef SmallVector<StringRef, 4> AbiTagList;
277 
278   // State to gather all implicit and explicit tags used in a mangled name.
279   // Must always have an instance of this while emitting any name to keep
280   // track.
281   class AbiTagState final {
282   public:
283     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284       Parent = LinkHead;
285       LinkHead = this;
286     }
287 
288     // No copy, no move.
289     AbiTagState(const AbiTagState &) = delete;
290     AbiTagState &operator=(const AbiTagState &) = delete;
291 
292     ~AbiTagState() { pop(); }
293 
294     void write(raw_ostream &Out, const NamedDecl *ND,
295                const AbiTagList *AdditionalAbiTags) {
296       ND = cast<NamedDecl>(ND->getCanonicalDecl());
297       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298         assert(
299             !AdditionalAbiTags &&
300             "only function and variables need a list of additional abi tags");
301         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304                                AbiTag->tags().end());
305           }
306           // Don't emit abi tags for namespaces.
307           return;
308         }
309       }
310 
311       AbiTagList TagList;
312       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314                            AbiTag->tags().end());
315         TagList.insert(TagList.end(), AbiTag->tags().begin(),
316                        AbiTag->tags().end());
317       }
318 
319       if (AdditionalAbiTags) {
320         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321                            AdditionalAbiTags->end());
322         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323                        AdditionalAbiTags->end());
324       }
325 
326       llvm::sort(TagList.begin(), TagList.end());
327       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328 
329       writeSortedUniqueAbiTags(Out, TagList);
330     }
331 
332     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333     void setUsedAbiTags(const AbiTagList &AbiTags) {
334       UsedAbiTags = AbiTags;
335     }
336 
337     const AbiTagList &getEmittedAbiTags() const {
338       return EmittedAbiTags;
339     }
340 
341     const AbiTagList &getSortedUniqueUsedAbiTags() {
342       llvm::sort(UsedAbiTags.begin(), UsedAbiTags.end());
343       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344                         UsedAbiTags.end());
345       return UsedAbiTags;
346     }
347 
348   private:
349     //! All abi tags used implicitly or explicitly.
350     AbiTagList UsedAbiTags;
351     //! All explicit abi tags (i.e. not from namespace).
352     AbiTagList EmittedAbiTags;
353 
354     AbiTagState *&LinkHead;
355     AbiTagState *Parent = nullptr;
356 
357     void pop() {
358       assert(LinkHead == this &&
359              "abi tag link head must point to us on destruction");
360       if (Parent) {
361         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362                                    UsedAbiTags.begin(), UsedAbiTags.end());
363         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364                                       EmittedAbiTags.begin(),
365                                       EmittedAbiTags.end());
366       }
367       LinkHead = Parent;
368     }
369 
370     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371       for (const auto &Tag : AbiTags) {
372         EmittedAbiTags.push_back(Tag);
373         Out << "B";
374         Out << Tag.size();
375         Out << Tag;
376       }
377     }
378   };
379 
380   AbiTagState *AbiTags = nullptr;
381   AbiTagState AbiTagsRoot;
382 
383   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
385 
386   ASTContext &getASTContext() const { return Context.getASTContext(); }
387 
388 public:
389   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
390                  const NamedDecl *D = nullptr, bool NullOut_ = false)
391     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
392       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
393     // These can't be mangled without a ctor type or dtor type.
394     assert(!D || (!isa<CXXDestructorDecl>(D) &&
395                   !isa<CXXConstructorDecl>(D)));
396   }
397   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
398                  const CXXConstructorDecl *D, CXXCtorType Type)
399     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
400       SeqID(0), AbiTagsRoot(AbiTags) { }
401   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
402                  const CXXDestructorDecl *D, CXXDtorType Type)
403     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
404       SeqID(0), AbiTagsRoot(AbiTags) { }
405 
406   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
407       : Context(Outer.Context), Out(Out_), NullOut(false),
408         Structor(Outer.Structor), StructorType(Outer.StructorType),
409         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
410         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
411 
412   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
413       : Context(Outer.Context), Out(Out_), NullOut(true),
414         Structor(Outer.Structor), StructorType(Outer.StructorType),
415         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
416         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
417 
418 #if MANGLE_CHECKER
419   ~CXXNameMangler() {
420     if (Out.str()[0] == '\01')
421       return;
422 
423     int status = 0;
424     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
425     assert(status == 0 && "Could not demangle mangled name!");
426     free(result);
427   }
428 #endif
429   raw_ostream &getStream() { return Out; }
430 
431   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
432   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
433 
434   void mangle(const NamedDecl *D);
435   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
436   void mangleNumber(const llvm::APSInt &I);
437   void mangleNumber(int64_t Number);
438   void mangleFloat(const llvm::APFloat &F);
439   void mangleFunctionEncoding(const FunctionDecl *FD);
440   void mangleSeqID(unsigned SeqID);
441   void mangleName(const NamedDecl *ND);
442   void mangleType(QualType T);
443   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
444 
445 private:
446 
447   bool mangleSubstitution(const NamedDecl *ND);
448   bool mangleSubstitution(QualType T);
449   bool mangleSubstitution(TemplateName Template);
450   bool mangleSubstitution(uintptr_t Ptr);
451 
452   void mangleExistingSubstitution(TemplateName name);
453 
454   bool mangleStandardSubstitution(const NamedDecl *ND);
455 
456   void addSubstitution(const NamedDecl *ND) {
457     ND = cast<NamedDecl>(ND->getCanonicalDecl());
458 
459     addSubstitution(reinterpret_cast<uintptr_t>(ND));
460   }
461   void addSubstitution(QualType T);
462   void addSubstitution(TemplateName Template);
463   void addSubstitution(uintptr_t Ptr);
464   // Destructive copy substitutions from other mangler.
465   void extendSubstitutions(CXXNameMangler* Other);
466 
467   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
468                               bool recursive = false);
469   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
470                             DeclarationName name,
471                             const TemplateArgumentLoc *TemplateArgs,
472                             unsigned NumTemplateArgs,
473                             unsigned KnownArity = UnknownArity);
474 
475   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
476 
477   void mangleNameWithAbiTags(const NamedDecl *ND,
478                              const AbiTagList *AdditionalAbiTags);
479   void mangleModuleName(const Module *M);
480   void mangleModuleNamePrefix(StringRef Name);
481   void mangleTemplateName(const TemplateDecl *TD,
482                           const TemplateArgument *TemplateArgs,
483                           unsigned NumTemplateArgs);
484   void mangleUnqualifiedName(const NamedDecl *ND,
485                              const AbiTagList *AdditionalAbiTags) {
486     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
487                           AdditionalAbiTags);
488   }
489   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
490                              unsigned KnownArity,
491                              const AbiTagList *AdditionalAbiTags);
492   void mangleUnscopedName(const NamedDecl *ND,
493                           const AbiTagList *AdditionalAbiTags);
494   void mangleUnscopedTemplateName(const TemplateDecl *ND,
495                                   const AbiTagList *AdditionalAbiTags);
496   void mangleUnscopedTemplateName(TemplateName,
497                                   const AbiTagList *AdditionalAbiTags);
498   void mangleSourceName(const IdentifierInfo *II);
499   void mangleRegCallName(const IdentifierInfo *II);
500   void mangleSourceNameWithAbiTags(
501       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
502   void mangleLocalName(const Decl *D,
503                        const AbiTagList *AdditionalAbiTags);
504   void mangleBlockForPrefix(const BlockDecl *Block);
505   void mangleUnqualifiedBlock(const BlockDecl *Block);
506   void mangleLambda(const CXXRecordDecl *Lambda);
507   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
508                         const AbiTagList *AdditionalAbiTags,
509                         bool NoFunction=false);
510   void mangleNestedName(const TemplateDecl *TD,
511                         const TemplateArgument *TemplateArgs,
512                         unsigned NumTemplateArgs);
513   void manglePrefix(NestedNameSpecifier *qualifier);
514   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
515   void manglePrefix(QualType type);
516   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
517   void mangleTemplatePrefix(TemplateName Template);
518   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
519                                       StringRef Prefix = "");
520   void mangleOperatorName(DeclarationName Name, unsigned Arity);
521   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
522   void mangleVendorQualifier(StringRef qualifier);
523   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
524   void mangleRefQualifier(RefQualifierKind RefQualifier);
525 
526   void mangleObjCMethodName(const ObjCMethodDecl *MD);
527 
528   // Declare manglers for every type class.
529 #define ABSTRACT_TYPE(CLASS, PARENT)
530 #define NON_CANONICAL_TYPE(CLASS, PARENT)
531 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
532 #include "clang/AST/TypeNodes.def"
533 
534   void mangleType(const TagType*);
535   void mangleType(TemplateName);
536   static StringRef getCallingConvQualifierName(CallingConv CC);
537   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
538   void mangleExtFunctionInfo(const FunctionType *T);
539   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
540                               const FunctionDecl *FD = nullptr);
541   void mangleNeonVectorType(const VectorType *T);
542   void mangleAArch64NeonVectorType(const VectorType *T);
543 
544   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
545   void mangleMemberExprBase(const Expr *base, bool isArrow);
546   void mangleMemberExpr(const Expr *base, bool isArrow,
547                         NestedNameSpecifier *qualifier,
548                         NamedDecl *firstQualifierLookup,
549                         DeclarationName name,
550                         const TemplateArgumentLoc *TemplateArgs,
551                         unsigned NumTemplateArgs,
552                         unsigned knownArity);
553   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
554   void mangleInitListElements(const InitListExpr *InitList);
555   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
556   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
557   void mangleCXXDtorType(CXXDtorType T);
558 
559   void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
560                           unsigned NumTemplateArgs);
561   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
562                           unsigned NumTemplateArgs);
563   void mangleTemplateArgs(const TemplateArgumentList &AL);
564   void mangleTemplateArg(TemplateArgument A);
565 
566   void mangleTemplateParameter(unsigned Index);
567 
568   void mangleFunctionParam(const ParmVarDecl *parm);
569 
570   void writeAbiTags(const NamedDecl *ND,
571                     const AbiTagList *AdditionalAbiTags);
572 
573   // Returns sorted unique list of ABI tags.
574   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
575   // Returns sorted unique list of ABI tags.
576   AbiTagList makeVariableTypeTags(const VarDecl *VD);
577 };
578 
579 }
580 
581 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
582   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
583   if (FD) {
584     LanguageLinkage L = FD->getLanguageLinkage();
585     // Overloadable functions need mangling.
586     if (FD->hasAttr<OverloadableAttr>())
587       return true;
588 
589     // "main" is not mangled.
590     if (FD->isMain())
591       return false;
592 
593     // C++ functions and those whose names are not a simple identifier need
594     // mangling.
595     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
596       return true;
597 
598     // C functions are not mangled.
599     if (L == CLanguageLinkage)
600       return false;
601   }
602 
603   // Otherwise, no mangling is done outside C++ mode.
604   if (!getASTContext().getLangOpts().CPlusPlus)
605     return false;
606 
607   const VarDecl *VD = dyn_cast<VarDecl>(D);
608   if (VD && !isa<DecompositionDecl>(D)) {
609     // C variables are not mangled.
610     if (VD->isExternC())
611       return false;
612 
613     // Variables at global scope with non-internal linkage are not mangled
614     const DeclContext *DC = getEffectiveDeclContext(D);
615     // Check for extern variable declared locally.
616     if (DC->isFunctionOrMethod() && D->hasLinkage())
617       while (!DC->isNamespace() && !DC->isTranslationUnit())
618         DC = getEffectiveParentContext(DC);
619     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
620         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
621         !isa<VarTemplateSpecializationDecl>(D))
622       return false;
623   }
624 
625   return true;
626 }
627 
628 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
629                                   const AbiTagList *AdditionalAbiTags) {
630   assert(AbiTags && "require AbiTagState");
631   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
632 }
633 
634 void CXXNameMangler::mangleSourceNameWithAbiTags(
635     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
636   mangleSourceName(ND->getIdentifier());
637   writeAbiTags(ND, AdditionalAbiTags);
638 }
639 
640 void CXXNameMangler::mangle(const NamedDecl *D) {
641   // <mangled-name> ::= _Z <encoding>
642   //            ::= <data name>
643   //            ::= <special-name>
644   Out << "_Z";
645   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
646     mangleFunctionEncoding(FD);
647   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
648     mangleName(VD);
649   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
650     mangleName(IFD->getAnonField());
651   else
652     mangleName(cast<FieldDecl>(D));
653 }
654 
655 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
656   // <encoding> ::= <function name> <bare-function-type>
657 
658   // Don't mangle in the type if this isn't a decl we should typically mangle.
659   if (!Context.shouldMangleDeclName(FD)) {
660     mangleName(FD);
661     return;
662   }
663 
664   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
665   if (ReturnTypeAbiTags.empty()) {
666     // There are no tags for return type, the simplest case.
667     mangleName(FD);
668     mangleFunctionEncodingBareType(FD);
669     return;
670   }
671 
672   // Mangle function name and encoding to temporary buffer.
673   // We have to output name and encoding to the same mangler to get the same
674   // substitution as it will be in final mangling.
675   SmallString<256> FunctionEncodingBuf;
676   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
677   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
678   // Output name of the function.
679   FunctionEncodingMangler.disableDerivedAbiTags();
680   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
681 
682   // Remember length of the function name in the buffer.
683   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
684   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
685 
686   // Get tags from return type that are not present in function name or
687   // encoding.
688   const AbiTagList &UsedAbiTags =
689       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
690   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
691   AdditionalAbiTags.erase(
692       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
693                           UsedAbiTags.begin(), UsedAbiTags.end(),
694                           AdditionalAbiTags.begin()),
695       AdditionalAbiTags.end());
696 
697   // Output name with implicit tags and function encoding from temporary buffer.
698   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
699   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
700 
701   // Function encoding could create new substitutions so we have to add
702   // temp mangled substitutions to main mangler.
703   extendSubstitutions(&FunctionEncodingMangler);
704 }
705 
706 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
707   if (FD->hasAttr<EnableIfAttr>()) {
708     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
709     Out << "Ua9enable_ifI";
710     // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
711     // it here.
712     for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
713                                          E = FD->getAttrs().rend();
714          I != E; ++I) {
715       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
716       if (!EIA)
717         continue;
718       Out << 'X';
719       mangleExpression(EIA->getCond());
720       Out << 'E';
721     }
722     Out << 'E';
723     FunctionTypeDepth.pop(Saved);
724   }
725 
726   // When mangling an inheriting constructor, the bare function type used is
727   // that of the inherited constructor.
728   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
729     if (auto Inherited = CD->getInheritedConstructor())
730       FD = Inherited.getConstructor();
731 
732   // Whether the mangling of a function type includes the return type depends on
733   // the context and the nature of the function. The rules for deciding whether
734   // the return type is included are:
735   //
736   //   1. Template functions (names or types) have return types encoded, with
737   //   the exceptions listed below.
738   //   2. Function types not appearing as part of a function name mangling,
739   //   e.g. parameters, pointer types, etc., have return type encoded, with the
740   //   exceptions listed below.
741   //   3. Non-template function names do not have return types encoded.
742   //
743   // The exceptions mentioned in (1) and (2) above, for which the return type is
744   // never included, are
745   //   1. Constructors.
746   //   2. Destructors.
747   //   3. Conversion operator functions, e.g. operator int.
748   bool MangleReturnType = false;
749   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
750     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
751           isa<CXXConversionDecl>(FD)))
752       MangleReturnType = true;
753 
754     // Mangle the type of the primary template.
755     FD = PrimaryTemplate->getTemplatedDecl();
756   }
757 
758   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
759                          MangleReturnType, FD);
760 }
761 
762 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
763   while (isa<LinkageSpecDecl>(DC)) {
764     DC = getEffectiveParentContext(DC);
765   }
766 
767   return DC;
768 }
769 
770 /// Return whether a given namespace is the 'std' namespace.
771 static bool isStd(const NamespaceDecl *NS) {
772   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
773                                 ->isTranslationUnit())
774     return false;
775 
776   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
777   return II && II->isStr("std");
778 }
779 
780 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
781 // namespace.
782 static bool isStdNamespace(const DeclContext *DC) {
783   if (!DC->isNamespace())
784     return false;
785 
786   return isStd(cast<NamespaceDecl>(DC));
787 }
788 
789 static const TemplateDecl *
790 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
791   // Check if we have a function template.
792   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
793     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
794       TemplateArgs = FD->getTemplateSpecializationArgs();
795       return TD;
796     }
797   }
798 
799   // Check if we have a class template.
800   if (const ClassTemplateSpecializationDecl *Spec =
801         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
802     TemplateArgs = &Spec->getTemplateArgs();
803     return Spec->getSpecializedTemplate();
804   }
805 
806   // Check if we have a variable template.
807   if (const VarTemplateSpecializationDecl *Spec =
808           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
809     TemplateArgs = &Spec->getTemplateArgs();
810     return Spec->getSpecializedTemplate();
811   }
812 
813   return nullptr;
814 }
815 
816 void CXXNameMangler::mangleName(const NamedDecl *ND) {
817   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
818     // Variables should have implicit tags from its type.
819     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
820     if (VariableTypeAbiTags.empty()) {
821       // Simple case no variable type tags.
822       mangleNameWithAbiTags(VD, nullptr);
823       return;
824     }
825 
826     // Mangle variable name to null stream to collect tags.
827     llvm::raw_null_ostream NullOutStream;
828     CXXNameMangler VariableNameMangler(*this, NullOutStream);
829     VariableNameMangler.disableDerivedAbiTags();
830     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
831 
832     // Get tags from variable type that are not present in its name.
833     const AbiTagList &UsedAbiTags =
834         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
835     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
836     AdditionalAbiTags.erase(
837         std::set_difference(VariableTypeAbiTags.begin(),
838                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
839                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
840         AdditionalAbiTags.end());
841 
842     // Output name with implicit tags.
843     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
844   } else {
845     mangleNameWithAbiTags(ND, nullptr);
846   }
847 }
848 
849 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
850                                            const AbiTagList *AdditionalAbiTags) {
851   //  <name> ::= [<module-name>] <nested-name>
852   //         ::= [<module-name>] <unscoped-name>
853   //         ::= [<module-name>] <unscoped-template-name> <template-args>
854   //         ::= <local-name>
855   //
856   const DeclContext *DC = getEffectiveDeclContext(ND);
857 
858   // If this is an extern variable declared locally, the relevant DeclContext
859   // is that of the containing namespace, or the translation unit.
860   // FIXME: This is a hack; extern variables declared locally should have
861   // a proper semantic declaration context!
862   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
863     while (!DC->isNamespace() && !DC->isTranslationUnit())
864       DC = getEffectiveParentContext(DC);
865   else if (GetLocalClassDecl(ND)) {
866     mangleLocalName(ND, AdditionalAbiTags);
867     return;
868   }
869 
870   DC = IgnoreLinkageSpecDecls(DC);
871 
872   if (isLocalContainerContext(DC)) {
873     mangleLocalName(ND, AdditionalAbiTags);
874     return;
875   }
876 
877   // Do not mangle the owning module for an external linkage declaration.
878   // This enables backwards-compatibility with non-modular code, and is
879   // a valid choice since conflicts are not permitted by C++ Modules TS
880   // [basic.def.odr]/6.2.
881   if (!ND->hasExternalFormalLinkage())
882     if (Module *M = ND->getOwningModuleForLinkage())
883       mangleModuleName(M);
884 
885   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
886     // Check if we have a template.
887     const TemplateArgumentList *TemplateArgs = nullptr;
888     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
889       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
890       mangleTemplateArgs(*TemplateArgs);
891       return;
892     }
893 
894     mangleUnscopedName(ND, AdditionalAbiTags);
895     return;
896   }
897 
898   mangleNestedName(ND, DC, AdditionalAbiTags);
899 }
900 
901 void CXXNameMangler::mangleModuleName(const Module *M) {
902   // Implement the C++ Modules TS name mangling proposal; see
903   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
904   //
905   //   <module-name> ::= W <unscoped-name>+ E
906   //                 ::= W <module-subst> <unscoped-name>* E
907   Out << 'W';
908   mangleModuleNamePrefix(M->Name);
909   Out << 'E';
910 }
911 
912 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
913   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
914   //                 ::= W <seq-id - 10> _   # otherwise
915   auto It = ModuleSubstitutions.find(Name);
916   if (It != ModuleSubstitutions.end()) {
917     if (It->second < 10)
918       Out << '_' << static_cast<char>('0' + It->second);
919     else
920       Out << 'W' << (It->second - 10) << '_';
921     return;
922   }
923 
924   // FIXME: Preserve hierarchy in module names rather than flattening
925   // them to strings; use Module*s as substitution keys.
926   auto Parts = Name.rsplit('.');
927   if (Parts.second.empty())
928     Parts.second = Parts.first;
929   else
930     mangleModuleNamePrefix(Parts.first);
931 
932   Out << Parts.second.size() << Parts.second;
933   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
934 }
935 
936 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
937                                         const TemplateArgument *TemplateArgs,
938                                         unsigned NumTemplateArgs) {
939   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
940 
941   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
942     mangleUnscopedTemplateName(TD, nullptr);
943     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
944   } else {
945     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
946   }
947 }
948 
949 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
950                                         const AbiTagList *AdditionalAbiTags) {
951   //  <unscoped-name> ::= <unqualified-name>
952   //                  ::= St <unqualified-name>   # ::std::
953 
954   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
955     Out << "St";
956 
957   mangleUnqualifiedName(ND, AdditionalAbiTags);
958 }
959 
960 void CXXNameMangler::mangleUnscopedTemplateName(
961     const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
962   //     <unscoped-template-name> ::= <unscoped-name>
963   //                              ::= <substitution>
964   if (mangleSubstitution(ND))
965     return;
966 
967   // <template-template-param> ::= <template-param>
968   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
969     assert(!AdditionalAbiTags &&
970            "template template param cannot have abi tags");
971     mangleTemplateParameter(TTP->getIndex());
972   } else if (isa<BuiltinTemplateDecl>(ND)) {
973     mangleUnscopedName(ND, AdditionalAbiTags);
974   } else {
975     mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
976   }
977 
978   addSubstitution(ND);
979 }
980 
981 void CXXNameMangler::mangleUnscopedTemplateName(
982     TemplateName Template, const AbiTagList *AdditionalAbiTags) {
983   //     <unscoped-template-name> ::= <unscoped-name>
984   //                              ::= <substitution>
985   if (TemplateDecl *TD = Template.getAsTemplateDecl())
986     return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
987 
988   if (mangleSubstitution(Template))
989     return;
990 
991   assert(!AdditionalAbiTags &&
992          "dependent template name cannot have abi tags");
993 
994   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
995   assert(Dependent && "Not a dependent template name?");
996   if (const IdentifierInfo *Id = Dependent->getIdentifier())
997     mangleSourceName(Id);
998   else
999     mangleOperatorName(Dependent->getOperator(), UnknownArity);
1000 
1001   addSubstitution(Template);
1002 }
1003 
1004 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1005   // ABI:
1006   //   Floating-point literals are encoded using a fixed-length
1007   //   lowercase hexadecimal string corresponding to the internal
1008   //   representation (IEEE on Itanium), high-order bytes first,
1009   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1010   //   on Itanium.
1011   // The 'without leading zeroes' thing seems to be an editorial
1012   // mistake; see the discussion on cxx-abi-dev beginning on
1013   // 2012-01-16.
1014 
1015   // Our requirements here are just barely weird enough to justify
1016   // using a custom algorithm instead of post-processing APInt::toString().
1017 
1018   llvm::APInt valueBits = f.bitcastToAPInt();
1019   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1020   assert(numCharacters != 0);
1021 
1022   // Allocate a buffer of the right number of characters.
1023   SmallVector<char, 20> buffer(numCharacters);
1024 
1025   // Fill the buffer left-to-right.
1026   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1027     // The bit-index of the next hex digit.
1028     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1029 
1030     // Project out 4 bits starting at 'digitIndex'.
1031     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1032     hexDigit >>= (digitBitIndex % 64);
1033     hexDigit &= 0xF;
1034 
1035     // Map that over to a lowercase hex digit.
1036     static const char charForHex[16] = {
1037       '0', '1', '2', '3', '4', '5', '6', '7',
1038       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1039     };
1040     buffer[stringIndex] = charForHex[hexDigit];
1041   }
1042 
1043   Out.write(buffer.data(), numCharacters);
1044 }
1045 
1046 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1047   if (Value.isSigned() && Value.isNegative()) {
1048     Out << 'n';
1049     Value.abs().print(Out, /*signed*/ false);
1050   } else {
1051     Value.print(Out, /*signed*/ false);
1052   }
1053 }
1054 
1055 void CXXNameMangler::mangleNumber(int64_t Number) {
1056   //  <number> ::= [n] <non-negative decimal integer>
1057   if (Number < 0) {
1058     Out << 'n';
1059     Number = -Number;
1060   }
1061 
1062   Out << Number;
1063 }
1064 
1065 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1066   //  <call-offset>  ::= h <nv-offset> _
1067   //                 ::= v <v-offset> _
1068   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1069   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1070   //                      # virtual base override, with vcall offset
1071   if (!Virtual) {
1072     Out << 'h';
1073     mangleNumber(NonVirtual);
1074     Out << '_';
1075     return;
1076   }
1077 
1078   Out << 'v';
1079   mangleNumber(NonVirtual);
1080   Out << '_';
1081   mangleNumber(Virtual);
1082   Out << '_';
1083 }
1084 
1085 void CXXNameMangler::manglePrefix(QualType type) {
1086   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1087     if (!mangleSubstitution(QualType(TST, 0))) {
1088       mangleTemplatePrefix(TST->getTemplateName());
1089 
1090       // FIXME: GCC does not appear to mangle the template arguments when
1091       // the template in question is a dependent template name. Should we
1092       // emulate that badness?
1093       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1094       addSubstitution(QualType(TST, 0));
1095     }
1096   } else if (const auto *DTST =
1097                  type->getAs<DependentTemplateSpecializationType>()) {
1098     if (!mangleSubstitution(QualType(DTST, 0))) {
1099       TemplateName Template = getASTContext().getDependentTemplateName(
1100           DTST->getQualifier(), DTST->getIdentifier());
1101       mangleTemplatePrefix(Template);
1102 
1103       // FIXME: GCC does not appear to mangle the template arguments when
1104       // the template in question is a dependent template name. Should we
1105       // emulate that badness?
1106       mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1107       addSubstitution(QualType(DTST, 0));
1108     }
1109   } else {
1110     // We use the QualType mangle type variant here because it handles
1111     // substitutions.
1112     mangleType(type);
1113   }
1114 }
1115 
1116 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1117 ///
1118 /// \param recursive - true if this is being called recursively,
1119 ///   i.e. if there is more prefix "to the right".
1120 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1121                                             bool recursive) {
1122 
1123   // x, ::x
1124   // <unresolved-name> ::= [gs] <base-unresolved-name>
1125 
1126   // T::x / decltype(p)::x
1127   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1128 
1129   // T::N::x /decltype(p)::N::x
1130   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1131   //                       <base-unresolved-name>
1132 
1133   // A::x, N::y, A<T>::z; "gs" means leading "::"
1134   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1135   //                       <base-unresolved-name>
1136 
1137   switch (qualifier->getKind()) {
1138   case NestedNameSpecifier::Global:
1139     Out << "gs";
1140 
1141     // We want an 'sr' unless this is the entire NNS.
1142     if (recursive)
1143       Out << "sr";
1144 
1145     // We never want an 'E' here.
1146     return;
1147 
1148   case NestedNameSpecifier::Super:
1149     llvm_unreachable("Can't mangle __super specifier");
1150 
1151   case NestedNameSpecifier::Namespace:
1152     if (qualifier->getPrefix())
1153       mangleUnresolvedPrefix(qualifier->getPrefix(),
1154                              /*recursive*/ true);
1155     else
1156       Out << "sr";
1157     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1158     break;
1159   case NestedNameSpecifier::NamespaceAlias:
1160     if (qualifier->getPrefix())
1161       mangleUnresolvedPrefix(qualifier->getPrefix(),
1162                              /*recursive*/ true);
1163     else
1164       Out << "sr";
1165     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1166     break;
1167 
1168   case NestedNameSpecifier::TypeSpec:
1169   case NestedNameSpecifier::TypeSpecWithTemplate: {
1170     const Type *type = qualifier->getAsType();
1171 
1172     // We only want to use an unresolved-type encoding if this is one of:
1173     //   - a decltype
1174     //   - a template type parameter
1175     //   - a template template parameter with arguments
1176     // In all of these cases, we should have no prefix.
1177     if (qualifier->getPrefix()) {
1178       mangleUnresolvedPrefix(qualifier->getPrefix(),
1179                              /*recursive*/ true);
1180     } else {
1181       // Otherwise, all the cases want this.
1182       Out << "sr";
1183     }
1184 
1185     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1186       return;
1187 
1188     break;
1189   }
1190 
1191   case NestedNameSpecifier::Identifier:
1192     // Member expressions can have these without prefixes.
1193     if (qualifier->getPrefix())
1194       mangleUnresolvedPrefix(qualifier->getPrefix(),
1195                              /*recursive*/ true);
1196     else
1197       Out << "sr";
1198 
1199     mangleSourceName(qualifier->getAsIdentifier());
1200     // An Identifier has no type information, so we can't emit abi tags for it.
1201     break;
1202   }
1203 
1204   // If this was the innermost part of the NNS, and we fell out to
1205   // here, append an 'E'.
1206   if (!recursive)
1207     Out << 'E';
1208 }
1209 
1210 /// Mangle an unresolved-name, which is generally used for names which
1211 /// weren't resolved to specific entities.
1212 void CXXNameMangler::mangleUnresolvedName(
1213     NestedNameSpecifier *qualifier, DeclarationName name,
1214     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1215     unsigned knownArity) {
1216   if (qualifier) mangleUnresolvedPrefix(qualifier);
1217   switch (name.getNameKind()) {
1218     // <base-unresolved-name> ::= <simple-id>
1219     case DeclarationName::Identifier:
1220       mangleSourceName(name.getAsIdentifierInfo());
1221       break;
1222     // <base-unresolved-name> ::= dn <destructor-name>
1223     case DeclarationName::CXXDestructorName:
1224       Out << "dn";
1225       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1226       break;
1227     // <base-unresolved-name> ::= on <operator-name>
1228     case DeclarationName::CXXConversionFunctionName:
1229     case DeclarationName::CXXLiteralOperatorName:
1230     case DeclarationName::CXXOperatorName:
1231       Out << "on";
1232       mangleOperatorName(name, knownArity);
1233       break;
1234     case DeclarationName::CXXConstructorName:
1235       llvm_unreachable("Can't mangle a constructor name!");
1236     case DeclarationName::CXXUsingDirective:
1237       llvm_unreachable("Can't mangle a using directive name!");
1238     case DeclarationName::CXXDeductionGuideName:
1239       llvm_unreachable("Can't mangle a deduction guide name!");
1240     case DeclarationName::ObjCMultiArgSelector:
1241     case DeclarationName::ObjCOneArgSelector:
1242     case DeclarationName::ObjCZeroArgSelector:
1243       llvm_unreachable("Can't mangle Objective-C selector names here!");
1244   }
1245 
1246   // The <simple-id> and on <operator-name> productions end in an optional
1247   // <template-args>.
1248   if (TemplateArgs)
1249     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1250 }
1251 
1252 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1253                                            DeclarationName Name,
1254                                            unsigned KnownArity,
1255                                            const AbiTagList *AdditionalAbiTags) {
1256   unsigned Arity = KnownArity;
1257   //  <unqualified-name> ::= <operator-name>
1258   //                     ::= <ctor-dtor-name>
1259   //                     ::= <source-name>
1260   switch (Name.getNameKind()) {
1261   case DeclarationName::Identifier: {
1262     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1263 
1264     // We mangle decomposition declarations as the names of their bindings.
1265     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1266       // FIXME: Non-standard mangling for decomposition declarations:
1267       //
1268       //  <unqualified-name> ::= DC <source-name>* E
1269       //
1270       // These can never be referenced across translation units, so we do
1271       // not need a cross-vendor mangling for anything other than demanglers.
1272       // Proposed on cxx-abi-dev on 2016-08-12
1273       Out << "DC";
1274       for (auto *BD : DD->bindings())
1275         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1276       Out << 'E';
1277       writeAbiTags(ND, AdditionalAbiTags);
1278       break;
1279     }
1280 
1281     if (II) {
1282       // Match GCC's naming convention for internal linkage symbols, for
1283       // symbols that are not actually visible outside of this TU. GCC
1284       // distinguishes between internal and external linkage symbols in
1285       // its mangling, to support cases like this that were valid C++ prior
1286       // to DR426:
1287       //
1288       //   void test() { extern void foo(); }
1289       //   static void foo();
1290       //
1291       // Don't bother with the L marker for names in anonymous namespaces; the
1292       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1293       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1294       // implying internal linkage.
1295       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1296           !ND->isExternallyVisible() &&
1297           getEffectiveDeclContext(ND)->isFileContext() &&
1298           !ND->isInAnonymousNamespace())
1299         Out << 'L';
1300 
1301       auto *FD = dyn_cast<FunctionDecl>(ND);
1302       bool IsRegCall = FD &&
1303                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1304                            clang::CC_X86RegCall;
1305       if (IsRegCall)
1306         mangleRegCallName(II);
1307       else
1308         mangleSourceName(II);
1309 
1310       writeAbiTags(ND, AdditionalAbiTags);
1311       break;
1312     }
1313 
1314     // Otherwise, an anonymous entity.  We must have a declaration.
1315     assert(ND && "mangling empty name without declaration");
1316 
1317     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1318       if (NS->isAnonymousNamespace()) {
1319         // This is how gcc mangles these names.
1320         Out << "12_GLOBAL__N_1";
1321         break;
1322       }
1323     }
1324 
1325     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1326       // We must have an anonymous union or struct declaration.
1327       const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
1328 
1329       // Itanium C++ ABI 5.1.2:
1330       //
1331       //   For the purposes of mangling, the name of an anonymous union is
1332       //   considered to be the name of the first named data member found by a
1333       //   pre-order, depth-first, declaration-order walk of the data members of
1334       //   the anonymous union. If there is no such data member (i.e., if all of
1335       //   the data members in the union are unnamed), then there is no way for
1336       //   a program to refer to the anonymous union, and there is therefore no
1337       //   need to mangle its name.
1338       assert(RD->isAnonymousStructOrUnion()
1339              && "Expected anonymous struct or union!");
1340       const FieldDecl *FD = RD->findFirstNamedDataMember();
1341 
1342       // It's actually possible for various reasons for us to get here
1343       // with an empty anonymous struct / union.  Fortunately, it
1344       // doesn't really matter what name we generate.
1345       if (!FD) break;
1346       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1347 
1348       mangleSourceName(FD->getIdentifier());
1349       // Not emitting abi tags: internal name anyway.
1350       break;
1351     }
1352 
1353     // Class extensions have no name as a category, and it's possible
1354     // for them to be the semantic parent of certain declarations
1355     // (primarily, tag decls defined within declarations).  Such
1356     // declarations will always have internal linkage, so the name
1357     // doesn't really matter, but we shouldn't crash on them.  For
1358     // safety, just handle all ObjC containers here.
1359     if (isa<ObjCContainerDecl>(ND))
1360       break;
1361 
1362     // We must have an anonymous struct.
1363     const TagDecl *TD = cast<TagDecl>(ND);
1364     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1365       assert(TD->getDeclContext() == D->getDeclContext() &&
1366              "Typedef should not be in another decl context!");
1367       assert(D->getDeclName().getAsIdentifierInfo() &&
1368              "Typedef was not named!");
1369       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1370       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1371       // Explicit abi tags are still possible; take from underlying type, not
1372       // from typedef.
1373       writeAbiTags(TD, nullptr);
1374       break;
1375     }
1376 
1377     // <unnamed-type-name> ::= <closure-type-name>
1378     //
1379     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1380     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1381     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1382       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1383         assert(!AdditionalAbiTags &&
1384                "Lambda type cannot have additional abi tags");
1385         mangleLambda(Record);
1386         break;
1387       }
1388     }
1389 
1390     if (TD->isExternallyVisible()) {
1391       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1392       Out << "Ut";
1393       if (UnnamedMangle > 1)
1394         Out << UnnamedMangle - 2;
1395       Out << '_';
1396       writeAbiTags(TD, AdditionalAbiTags);
1397       break;
1398     }
1399 
1400     // Get a unique id for the anonymous struct. If it is not a real output
1401     // ID doesn't matter so use fake one.
1402     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1403 
1404     // Mangle it as a source name in the form
1405     // [n] $_<id>
1406     // where n is the length of the string.
1407     SmallString<8> Str;
1408     Str += "$_";
1409     Str += llvm::utostr(AnonStructId);
1410 
1411     Out << Str.size();
1412     Out << Str;
1413     break;
1414   }
1415 
1416   case DeclarationName::ObjCZeroArgSelector:
1417   case DeclarationName::ObjCOneArgSelector:
1418   case DeclarationName::ObjCMultiArgSelector:
1419     llvm_unreachable("Can't mangle Objective-C selector names here!");
1420 
1421   case DeclarationName::CXXConstructorName: {
1422     const CXXRecordDecl *InheritedFrom = nullptr;
1423     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1424     if (auto Inherited =
1425             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1426       InheritedFrom = Inherited.getConstructor()->getParent();
1427       InheritedTemplateArgs =
1428           Inherited.getConstructor()->getTemplateSpecializationArgs();
1429     }
1430 
1431     if (ND == Structor)
1432       // If the named decl is the C++ constructor we're mangling, use the type
1433       // we were given.
1434       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1435     else
1436       // Otherwise, use the complete constructor name. This is relevant if a
1437       // class with a constructor is declared within a constructor.
1438       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1439 
1440     // FIXME: The template arguments are part of the enclosing prefix or
1441     // nested-name, but it's more convenient to mangle them here.
1442     if (InheritedTemplateArgs)
1443       mangleTemplateArgs(*InheritedTemplateArgs);
1444 
1445     writeAbiTags(ND, AdditionalAbiTags);
1446     break;
1447   }
1448 
1449   case DeclarationName::CXXDestructorName:
1450     if (ND == Structor)
1451       // If the named decl is the C++ destructor we're mangling, use the type we
1452       // were given.
1453       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1454     else
1455       // Otherwise, use the complete destructor name. This is relevant if a
1456       // class with a destructor is declared within a destructor.
1457       mangleCXXDtorType(Dtor_Complete);
1458     writeAbiTags(ND, AdditionalAbiTags);
1459     break;
1460 
1461   case DeclarationName::CXXOperatorName:
1462     if (ND && Arity == UnknownArity) {
1463       Arity = cast<FunctionDecl>(ND)->getNumParams();
1464 
1465       // If we have a member function, we need to include the 'this' pointer.
1466       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1467         if (!MD->isStatic())
1468           Arity++;
1469     }
1470     LLVM_FALLTHROUGH;
1471   case DeclarationName::CXXConversionFunctionName:
1472   case DeclarationName::CXXLiteralOperatorName:
1473     mangleOperatorName(Name, Arity);
1474     writeAbiTags(ND, AdditionalAbiTags);
1475     break;
1476 
1477   case DeclarationName::CXXDeductionGuideName:
1478     llvm_unreachable("Can't mangle a deduction guide name!");
1479 
1480   case DeclarationName::CXXUsingDirective:
1481     llvm_unreachable("Can't mangle a using directive name!");
1482   }
1483 }
1484 
1485 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1486   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1487   // <number> ::= [n] <non-negative decimal integer>
1488   // <identifier> ::= <unqualified source code identifier>
1489   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1490       << II->getName();
1491 }
1492 
1493 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1494   // <source-name> ::= <positive length number> <identifier>
1495   // <number> ::= [n] <non-negative decimal integer>
1496   // <identifier> ::= <unqualified source code identifier>
1497   Out << II->getLength() << II->getName();
1498 }
1499 
1500 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1501                                       const DeclContext *DC,
1502                                       const AbiTagList *AdditionalAbiTags,
1503                                       bool NoFunction) {
1504   // <nested-name>
1505   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1506   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1507   //       <template-args> E
1508 
1509   Out << 'N';
1510   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1511     Qualifiers MethodQuals =
1512         Qualifiers::fromCVRUMask(Method->getTypeQualifiers());
1513     // We do not consider restrict a distinguishing attribute for overloading
1514     // purposes so we must not mangle it.
1515     MethodQuals.removeRestrict();
1516     mangleQualifiers(MethodQuals);
1517     mangleRefQualifier(Method->getRefQualifier());
1518   }
1519 
1520   // Check if we have a template.
1521   const TemplateArgumentList *TemplateArgs = nullptr;
1522   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1523     mangleTemplatePrefix(TD, NoFunction);
1524     mangleTemplateArgs(*TemplateArgs);
1525   }
1526   else {
1527     manglePrefix(DC, NoFunction);
1528     mangleUnqualifiedName(ND, AdditionalAbiTags);
1529   }
1530 
1531   Out << 'E';
1532 }
1533 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1534                                       const TemplateArgument *TemplateArgs,
1535                                       unsigned NumTemplateArgs) {
1536   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1537 
1538   Out << 'N';
1539 
1540   mangleTemplatePrefix(TD);
1541   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1542 
1543   Out << 'E';
1544 }
1545 
1546 void CXXNameMangler::mangleLocalName(const Decl *D,
1547                                      const AbiTagList *AdditionalAbiTags) {
1548   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1549   //              := Z <function encoding> E s [<discriminator>]
1550   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1551   //                 _ <entity name>
1552   // <discriminator> := _ <non-negative number>
1553   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1554   const RecordDecl *RD = GetLocalClassDecl(D);
1555   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1556 
1557   Out << 'Z';
1558 
1559   {
1560     AbiTagState LocalAbiTags(AbiTags);
1561 
1562     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1563       mangleObjCMethodName(MD);
1564     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1565       mangleBlockForPrefix(BD);
1566     else
1567       mangleFunctionEncoding(cast<FunctionDecl>(DC));
1568 
1569     // Implicit ABI tags (from namespace) are not available in the following
1570     // entity; reset to actually emitted tags, which are available.
1571     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1572   }
1573 
1574   Out << 'E';
1575 
1576   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1577   // be a bug that is fixed in trunk.
1578 
1579   if (RD) {
1580     // The parameter number is omitted for the last parameter, 0 for the
1581     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1582     // <entity name> will of course contain a <closure-type-name>: Its
1583     // numbering will be local to the particular argument in which it appears
1584     // -- other default arguments do not affect its encoding.
1585     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1586     if (CXXRD && CXXRD->isLambda()) {
1587       if (const ParmVarDecl *Parm
1588               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1589         if (const FunctionDecl *Func
1590               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1591           Out << 'd';
1592           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1593           if (Num > 1)
1594             mangleNumber(Num - 2);
1595           Out << '_';
1596         }
1597       }
1598     }
1599 
1600     // Mangle the name relative to the closest enclosing function.
1601     // equality ok because RD derived from ND above
1602     if (D == RD)  {
1603       mangleUnqualifiedName(RD, AdditionalAbiTags);
1604     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1605       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1606       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1607       mangleUnqualifiedBlock(BD);
1608     } else {
1609       const NamedDecl *ND = cast<NamedDecl>(D);
1610       mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1611                        true /*NoFunction*/);
1612     }
1613   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1614     // Mangle a block in a default parameter; see above explanation for
1615     // lambdas.
1616     if (const ParmVarDecl *Parm
1617             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1618       if (const FunctionDecl *Func
1619             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1620         Out << 'd';
1621         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1622         if (Num > 1)
1623           mangleNumber(Num - 2);
1624         Out << '_';
1625       }
1626     }
1627 
1628     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1629     mangleUnqualifiedBlock(BD);
1630   } else {
1631     mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1632   }
1633 
1634   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1635     unsigned disc;
1636     if (Context.getNextDiscriminator(ND, disc)) {
1637       if (disc < 10)
1638         Out << '_' << disc;
1639       else
1640         Out << "__" << disc << '_';
1641     }
1642   }
1643 }
1644 
1645 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1646   if (GetLocalClassDecl(Block)) {
1647     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1648     return;
1649   }
1650   const DeclContext *DC = getEffectiveDeclContext(Block);
1651   if (isLocalContainerContext(DC)) {
1652     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1653     return;
1654   }
1655   manglePrefix(getEffectiveDeclContext(Block));
1656   mangleUnqualifiedBlock(Block);
1657 }
1658 
1659 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1660   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1661     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1662         Context->getDeclContext()->isRecord()) {
1663       const auto *ND = cast<NamedDecl>(Context);
1664       if (ND->getIdentifier()) {
1665         mangleSourceNameWithAbiTags(ND);
1666         Out << 'M';
1667       }
1668     }
1669   }
1670 
1671   // If we have a block mangling number, use it.
1672   unsigned Number = Block->getBlockManglingNumber();
1673   // Otherwise, just make up a number. It doesn't matter what it is because
1674   // the symbol in question isn't externally visible.
1675   if (!Number)
1676     Number = Context.getBlockId(Block, false);
1677   else {
1678     // Stored mangling numbers are 1-based.
1679     --Number;
1680   }
1681   Out << "Ub";
1682   if (Number > 0)
1683     Out << Number - 1;
1684   Out << '_';
1685 }
1686 
1687 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1688   // If the context of a closure type is an initializer for a class member
1689   // (static or nonstatic), it is encoded in a qualified name with a final
1690   // <prefix> of the form:
1691   //
1692   //   <data-member-prefix> := <member source-name> M
1693   //
1694   // Technically, the data-member-prefix is part of the <prefix>. However,
1695   // since a closure type will always be mangled with a prefix, it's easier
1696   // to emit that last part of the prefix here.
1697   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1698     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1699         !isa<ParmVarDecl>(Context)) {
1700       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1701       // reasonable mangling here.
1702       if (const IdentifierInfo *Name
1703             = cast<NamedDecl>(Context)->getIdentifier()) {
1704         mangleSourceName(Name);
1705         const TemplateArgumentList *TemplateArgs = nullptr;
1706         if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1707           mangleTemplateArgs(*TemplateArgs);
1708         Out << 'M';
1709       }
1710     }
1711   }
1712 
1713   Out << "Ul";
1714   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1715                                    getAs<FunctionProtoType>();
1716   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1717                          Lambda->getLambdaStaticInvoker());
1718   Out << "E";
1719 
1720   // The number is omitted for the first closure type with a given
1721   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1722   // (in lexical order) with that same <lambda-sig> and context.
1723   //
1724   // The AST keeps track of the number for us.
1725   unsigned Number = Lambda->getLambdaManglingNumber();
1726   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1727   if (Number > 1)
1728     mangleNumber(Number - 2);
1729   Out << '_';
1730 }
1731 
1732 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1733   switch (qualifier->getKind()) {
1734   case NestedNameSpecifier::Global:
1735     // nothing
1736     return;
1737 
1738   case NestedNameSpecifier::Super:
1739     llvm_unreachable("Can't mangle __super specifier");
1740 
1741   case NestedNameSpecifier::Namespace:
1742     mangleName(qualifier->getAsNamespace());
1743     return;
1744 
1745   case NestedNameSpecifier::NamespaceAlias:
1746     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1747     return;
1748 
1749   case NestedNameSpecifier::TypeSpec:
1750   case NestedNameSpecifier::TypeSpecWithTemplate:
1751     manglePrefix(QualType(qualifier->getAsType(), 0));
1752     return;
1753 
1754   case NestedNameSpecifier::Identifier:
1755     // Member expressions can have these without prefixes, but that
1756     // should end up in mangleUnresolvedPrefix instead.
1757     assert(qualifier->getPrefix());
1758     manglePrefix(qualifier->getPrefix());
1759 
1760     mangleSourceName(qualifier->getAsIdentifier());
1761     return;
1762   }
1763 
1764   llvm_unreachable("unexpected nested name specifier");
1765 }
1766 
1767 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1768   //  <prefix> ::= <prefix> <unqualified-name>
1769   //           ::= <template-prefix> <template-args>
1770   //           ::= <template-param>
1771   //           ::= # empty
1772   //           ::= <substitution>
1773 
1774   DC = IgnoreLinkageSpecDecls(DC);
1775 
1776   if (DC->isTranslationUnit())
1777     return;
1778 
1779   if (NoFunction && isLocalContainerContext(DC))
1780     return;
1781 
1782   assert(!isLocalContainerContext(DC));
1783 
1784   const NamedDecl *ND = cast<NamedDecl>(DC);
1785   if (mangleSubstitution(ND))
1786     return;
1787 
1788   // Check if we have a template.
1789   const TemplateArgumentList *TemplateArgs = nullptr;
1790   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1791     mangleTemplatePrefix(TD);
1792     mangleTemplateArgs(*TemplateArgs);
1793   } else {
1794     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1795     mangleUnqualifiedName(ND, nullptr);
1796   }
1797 
1798   addSubstitution(ND);
1799 }
1800 
1801 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1802   // <template-prefix> ::= <prefix> <template unqualified-name>
1803   //                   ::= <template-param>
1804   //                   ::= <substitution>
1805   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1806     return mangleTemplatePrefix(TD);
1807 
1808   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1809     manglePrefix(Qualified->getQualifier());
1810 
1811   if (OverloadedTemplateStorage *Overloaded
1812                                       = Template.getAsOverloadedTemplate()) {
1813     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1814                           UnknownArity, nullptr);
1815     return;
1816   }
1817 
1818   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1819   assert(Dependent && "Unknown template name kind?");
1820   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1821     manglePrefix(Qualifier);
1822   mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1823 }
1824 
1825 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1826                                           bool NoFunction) {
1827   // <template-prefix> ::= <prefix> <template unqualified-name>
1828   //                   ::= <template-param>
1829   //                   ::= <substitution>
1830   // <template-template-param> ::= <template-param>
1831   //                               <substitution>
1832 
1833   if (mangleSubstitution(ND))
1834     return;
1835 
1836   // <template-template-param> ::= <template-param>
1837   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1838     mangleTemplateParameter(TTP->getIndex());
1839   } else {
1840     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1841     if (isa<BuiltinTemplateDecl>(ND))
1842       mangleUnqualifiedName(ND, nullptr);
1843     else
1844       mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1845   }
1846 
1847   addSubstitution(ND);
1848 }
1849 
1850 /// Mangles a template name under the production <type>.  Required for
1851 /// template template arguments.
1852 ///   <type> ::= <class-enum-type>
1853 ///          ::= <template-param>
1854 ///          ::= <substitution>
1855 void CXXNameMangler::mangleType(TemplateName TN) {
1856   if (mangleSubstitution(TN))
1857     return;
1858 
1859   TemplateDecl *TD = nullptr;
1860 
1861   switch (TN.getKind()) {
1862   case TemplateName::QualifiedTemplate:
1863     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1864     goto HaveDecl;
1865 
1866   case TemplateName::Template:
1867     TD = TN.getAsTemplateDecl();
1868     goto HaveDecl;
1869 
1870   HaveDecl:
1871     if (isa<TemplateTemplateParmDecl>(TD))
1872       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1873     else
1874       mangleName(TD);
1875     break;
1876 
1877   case TemplateName::OverloadedTemplate:
1878     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1879 
1880   case TemplateName::DependentTemplate: {
1881     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1882     assert(Dependent->isIdentifier());
1883 
1884     // <class-enum-type> ::= <name>
1885     // <name> ::= <nested-name>
1886     mangleUnresolvedPrefix(Dependent->getQualifier());
1887     mangleSourceName(Dependent->getIdentifier());
1888     break;
1889   }
1890 
1891   case TemplateName::SubstTemplateTemplateParm: {
1892     // Substituted template parameters are mangled as the substituted
1893     // template.  This will check for the substitution twice, which is
1894     // fine, but we have to return early so that we don't try to *add*
1895     // the substitution twice.
1896     SubstTemplateTemplateParmStorage *subst
1897       = TN.getAsSubstTemplateTemplateParm();
1898     mangleType(subst->getReplacement());
1899     return;
1900   }
1901 
1902   case TemplateName::SubstTemplateTemplateParmPack: {
1903     // FIXME: not clear how to mangle this!
1904     // template <template <class> class T...> class A {
1905     //   template <template <class> class U...> void foo(B<T,U> x...);
1906     // };
1907     Out << "_SUBSTPACK_";
1908     break;
1909   }
1910   }
1911 
1912   addSubstitution(TN);
1913 }
1914 
1915 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1916                                                     StringRef Prefix) {
1917   // Only certain other types are valid as prefixes;  enumerate them.
1918   switch (Ty->getTypeClass()) {
1919   case Type::Builtin:
1920   case Type::Complex:
1921   case Type::Adjusted:
1922   case Type::Decayed:
1923   case Type::Pointer:
1924   case Type::BlockPointer:
1925   case Type::LValueReference:
1926   case Type::RValueReference:
1927   case Type::MemberPointer:
1928   case Type::ConstantArray:
1929   case Type::IncompleteArray:
1930   case Type::VariableArray:
1931   case Type::DependentSizedArray:
1932   case Type::DependentAddressSpace:
1933   case Type::DependentSizedExtVector:
1934   case Type::Vector:
1935   case Type::ExtVector:
1936   case Type::FunctionProto:
1937   case Type::FunctionNoProto:
1938   case Type::Paren:
1939   case Type::Attributed:
1940   case Type::Auto:
1941   case Type::DeducedTemplateSpecialization:
1942   case Type::PackExpansion:
1943   case Type::ObjCObject:
1944   case Type::ObjCInterface:
1945   case Type::ObjCObjectPointer:
1946   case Type::ObjCTypeParam:
1947   case Type::Atomic:
1948   case Type::Pipe:
1949     llvm_unreachable("type is illegal as a nested name specifier");
1950 
1951   case Type::SubstTemplateTypeParmPack:
1952     // FIXME: not clear how to mangle this!
1953     // template <class T...> class A {
1954     //   template <class U...> void foo(decltype(T::foo(U())) x...);
1955     // };
1956     Out << "_SUBSTPACK_";
1957     break;
1958 
1959   // <unresolved-type> ::= <template-param>
1960   //                   ::= <decltype>
1961   //                   ::= <template-template-param> <template-args>
1962   // (this last is not official yet)
1963   case Type::TypeOfExpr:
1964   case Type::TypeOf:
1965   case Type::Decltype:
1966   case Type::TemplateTypeParm:
1967   case Type::UnaryTransform:
1968   case Type::SubstTemplateTypeParm:
1969   unresolvedType:
1970     // Some callers want a prefix before the mangled type.
1971     Out << Prefix;
1972 
1973     // This seems to do everything we want.  It's not really
1974     // sanctioned for a substituted template parameter, though.
1975     mangleType(Ty);
1976 
1977     // We never want to print 'E' directly after an unresolved-type,
1978     // so we return directly.
1979     return true;
1980 
1981   case Type::Typedef:
1982     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
1983     break;
1984 
1985   case Type::UnresolvedUsing:
1986     mangleSourceNameWithAbiTags(
1987         cast<UnresolvedUsingType>(Ty)->getDecl());
1988     break;
1989 
1990   case Type::Enum:
1991   case Type::Record:
1992     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
1993     break;
1994 
1995   case Type::TemplateSpecialization: {
1996     const TemplateSpecializationType *TST =
1997         cast<TemplateSpecializationType>(Ty);
1998     TemplateName TN = TST->getTemplateName();
1999     switch (TN.getKind()) {
2000     case TemplateName::Template:
2001     case TemplateName::QualifiedTemplate: {
2002       TemplateDecl *TD = TN.getAsTemplateDecl();
2003 
2004       // If the base is a template template parameter, this is an
2005       // unresolved type.
2006       assert(TD && "no template for template specialization type");
2007       if (isa<TemplateTemplateParmDecl>(TD))
2008         goto unresolvedType;
2009 
2010       mangleSourceNameWithAbiTags(TD);
2011       break;
2012     }
2013 
2014     case TemplateName::OverloadedTemplate:
2015     case TemplateName::DependentTemplate:
2016       llvm_unreachable("invalid base for a template specialization type");
2017 
2018     case TemplateName::SubstTemplateTemplateParm: {
2019       SubstTemplateTemplateParmStorage *subst =
2020           TN.getAsSubstTemplateTemplateParm();
2021       mangleExistingSubstitution(subst->getReplacement());
2022       break;
2023     }
2024 
2025     case TemplateName::SubstTemplateTemplateParmPack: {
2026       // FIXME: not clear how to mangle this!
2027       // template <template <class U> class T...> class A {
2028       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2029       // };
2030       Out << "_SUBSTPACK_";
2031       break;
2032     }
2033     }
2034 
2035     mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2036     break;
2037   }
2038 
2039   case Type::InjectedClassName:
2040     mangleSourceNameWithAbiTags(
2041         cast<InjectedClassNameType>(Ty)->getDecl());
2042     break;
2043 
2044   case Type::DependentName:
2045     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2046     break;
2047 
2048   case Type::DependentTemplateSpecialization: {
2049     const DependentTemplateSpecializationType *DTST =
2050         cast<DependentTemplateSpecializationType>(Ty);
2051     mangleSourceName(DTST->getIdentifier());
2052     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2053     break;
2054   }
2055 
2056   case Type::Elaborated:
2057     return mangleUnresolvedTypeOrSimpleId(
2058         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2059   }
2060 
2061   return false;
2062 }
2063 
2064 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2065   switch (Name.getNameKind()) {
2066   case DeclarationName::CXXConstructorName:
2067   case DeclarationName::CXXDestructorName:
2068   case DeclarationName::CXXDeductionGuideName:
2069   case DeclarationName::CXXUsingDirective:
2070   case DeclarationName::Identifier:
2071   case DeclarationName::ObjCMultiArgSelector:
2072   case DeclarationName::ObjCOneArgSelector:
2073   case DeclarationName::ObjCZeroArgSelector:
2074     llvm_unreachable("Not an operator name");
2075 
2076   case DeclarationName::CXXConversionFunctionName:
2077     // <operator-name> ::= cv <type>    # (cast)
2078     Out << "cv";
2079     mangleType(Name.getCXXNameType());
2080     break;
2081 
2082   case DeclarationName::CXXLiteralOperatorName:
2083     Out << "li";
2084     mangleSourceName(Name.getCXXLiteralIdentifier());
2085     return;
2086 
2087   case DeclarationName::CXXOperatorName:
2088     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2089     break;
2090   }
2091 }
2092 
2093 void
2094 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2095   switch (OO) {
2096   // <operator-name> ::= nw     # new
2097   case OO_New: Out << "nw"; break;
2098   //              ::= na        # new[]
2099   case OO_Array_New: Out << "na"; break;
2100   //              ::= dl        # delete
2101   case OO_Delete: Out << "dl"; break;
2102   //              ::= da        # delete[]
2103   case OO_Array_Delete: Out << "da"; break;
2104   //              ::= ps        # + (unary)
2105   //              ::= pl        # + (binary or unknown)
2106   case OO_Plus:
2107     Out << (Arity == 1? "ps" : "pl"); break;
2108   //              ::= ng        # - (unary)
2109   //              ::= mi        # - (binary or unknown)
2110   case OO_Minus:
2111     Out << (Arity == 1? "ng" : "mi"); break;
2112   //              ::= ad        # & (unary)
2113   //              ::= an        # & (binary or unknown)
2114   case OO_Amp:
2115     Out << (Arity == 1? "ad" : "an"); break;
2116   //              ::= de        # * (unary)
2117   //              ::= ml        # * (binary or unknown)
2118   case OO_Star:
2119     // Use binary when unknown.
2120     Out << (Arity == 1? "de" : "ml"); break;
2121   //              ::= co        # ~
2122   case OO_Tilde: Out << "co"; break;
2123   //              ::= dv        # /
2124   case OO_Slash: Out << "dv"; break;
2125   //              ::= rm        # %
2126   case OO_Percent: Out << "rm"; break;
2127   //              ::= or        # |
2128   case OO_Pipe: Out << "or"; break;
2129   //              ::= eo        # ^
2130   case OO_Caret: Out << "eo"; break;
2131   //              ::= aS        # =
2132   case OO_Equal: Out << "aS"; break;
2133   //              ::= pL        # +=
2134   case OO_PlusEqual: Out << "pL"; break;
2135   //              ::= mI        # -=
2136   case OO_MinusEqual: Out << "mI"; break;
2137   //              ::= mL        # *=
2138   case OO_StarEqual: Out << "mL"; break;
2139   //              ::= dV        # /=
2140   case OO_SlashEqual: Out << "dV"; break;
2141   //              ::= rM        # %=
2142   case OO_PercentEqual: Out << "rM"; break;
2143   //              ::= aN        # &=
2144   case OO_AmpEqual: Out << "aN"; break;
2145   //              ::= oR        # |=
2146   case OO_PipeEqual: Out << "oR"; break;
2147   //              ::= eO        # ^=
2148   case OO_CaretEqual: Out << "eO"; break;
2149   //              ::= ls        # <<
2150   case OO_LessLess: Out << "ls"; break;
2151   //              ::= rs        # >>
2152   case OO_GreaterGreater: Out << "rs"; break;
2153   //              ::= lS        # <<=
2154   case OO_LessLessEqual: Out << "lS"; break;
2155   //              ::= rS        # >>=
2156   case OO_GreaterGreaterEqual: Out << "rS"; break;
2157   //              ::= eq        # ==
2158   case OO_EqualEqual: Out << "eq"; break;
2159   //              ::= ne        # !=
2160   case OO_ExclaimEqual: Out << "ne"; break;
2161   //              ::= lt        # <
2162   case OO_Less: Out << "lt"; break;
2163   //              ::= gt        # >
2164   case OO_Greater: Out << "gt"; break;
2165   //              ::= le        # <=
2166   case OO_LessEqual: Out << "le"; break;
2167   //              ::= ge        # >=
2168   case OO_GreaterEqual: Out << "ge"; break;
2169   //              ::= nt        # !
2170   case OO_Exclaim: Out << "nt"; break;
2171   //              ::= aa        # &&
2172   case OO_AmpAmp: Out << "aa"; break;
2173   //              ::= oo        # ||
2174   case OO_PipePipe: Out << "oo"; break;
2175   //              ::= pp        # ++
2176   case OO_PlusPlus: Out << "pp"; break;
2177   //              ::= mm        # --
2178   case OO_MinusMinus: Out << "mm"; break;
2179   //              ::= cm        # ,
2180   case OO_Comma: Out << "cm"; break;
2181   //              ::= pm        # ->*
2182   case OO_ArrowStar: Out << "pm"; break;
2183   //              ::= pt        # ->
2184   case OO_Arrow: Out << "pt"; break;
2185   //              ::= cl        # ()
2186   case OO_Call: Out << "cl"; break;
2187   //              ::= ix        # []
2188   case OO_Subscript: Out << "ix"; break;
2189 
2190   //              ::= qu        # ?
2191   // The conditional operator can't be overloaded, but we still handle it when
2192   // mangling expressions.
2193   case OO_Conditional: Out << "qu"; break;
2194   // Proposal on cxx-abi-dev, 2015-10-21.
2195   //              ::= aw        # co_await
2196   case OO_Coawait: Out << "aw"; break;
2197   // Proposed in cxx-abi github issue 43.
2198   //              ::= ss        # <=>
2199   case OO_Spaceship: Out << "ss"; break;
2200 
2201   case OO_None:
2202   case NUM_OVERLOADED_OPERATORS:
2203     llvm_unreachable("Not an overloaded operator");
2204   }
2205 }
2206 
2207 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2208   // Vendor qualifiers come first and if they are order-insensitive they must
2209   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2210 
2211   // <type> ::= U <addrspace-expr>
2212   if (DAST) {
2213     Out << "U2ASI";
2214     mangleExpression(DAST->getAddrSpaceExpr());
2215     Out << "E";
2216   }
2217 
2218   // Address space qualifiers start with an ordinary letter.
2219   if (Quals.hasAddressSpace()) {
2220     // Address space extension:
2221     //
2222     //   <type> ::= U <target-addrspace>
2223     //   <type> ::= U <OpenCL-addrspace>
2224     //   <type> ::= U <CUDA-addrspace>
2225 
2226     SmallString<64> ASString;
2227     LangAS AS = Quals.getAddressSpace();
2228 
2229     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2230       //  <target-addrspace> ::= "AS" <address-space-number>
2231       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2232       if (TargetAS != 0)
2233         ASString = "AS" + llvm::utostr(TargetAS);
2234     } else {
2235       switch (AS) {
2236       default: llvm_unreachable("Not a language specific address space");
2237       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2238       //                                "private"| "generic" ]
2239       case LangAS::opencl_global:   ASString = "CLglobal";   break;
2240       case LangAS::opencl_local:    ASString = "CLlocal";    break;
2241       case LangAS::opencl_constant: ASString = "CLconstant"; break;
2242       case LangAS::opencl_private:  ASString = "CLprivate";  break;
2243       case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
2244       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2245       case LangAS::cuda_device:     ASString = "CUdevice";   break;
2246       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2247       case LangAS::cuda_shared:     ASString = "CUshared";   break;
2248       }
2249     }
2250     if (!ASString.empty())
2251       mangleVendorQualifier(ASString);
2252   }
2253 
2254   // The ARC ownership qualifiers start with underscores.
2255   // Objective-C ARC Extension:
2256   //
2257   //   <type> ::= U "__strong"
2258   //   <type> ::= U "__weak"
2259   //   <type> ::= U "__autoreleasing"
2260   //
2261   // Note: we emit __weak first to preserve the order as
2262   // required by the Itanium ABI.
2263   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2264     mangleVendorQualifier("__weak");
2265 
2266   // __unaligned (from -fms-extensions)
2267   if (Quals.hasUnaligned())
2268     mangleVendorQualifier("__unaligned");
2269 
2270   // Remaining ARC ownership qualifiers.
2271   switch (Quals.getObjCLifetime()) {
2272   case Qualifiers::OCL_None:
2273     break;
2274 
2275   case Qualifiers::OCL_Weak:
2276     // Do nothing as we already handled this case above.
2277     break;
2278 
2279   case Qualifiers::OCL_Strong:
2280     mangleVendorQualifier("__strong");
2281     break;
2282 
2283   case Qualifiers::OCL_Autoreleasing:
2284     mangleVendorQualifier("__autoreleasing");
2285     break;
2286 
2287   case Qualifiers::OCL_ExplicitNone:
2288     // The __unsafe_unretained qualifier is *not* mangled, so that
2289     // __unsafe_unretained types in ARC produce the same manglings as the
2290     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2291     // better ABI compatibility.
2292     //
2293     // It's safe to do this because unqualified 'id' won't show up
2294     // in any type signatures that need to be mangled.
2295     break;
2296   }
2297 
2298   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2299   if (Quals.hasRestrict())
2300     Out << 'r';
2301   if (Quals.hasVolatile())
2302     Out << 'V';
2303   if (Quals.hasConst())
2304     Out << 'K';
2305 }
2306 
2307 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2308   Out << 'U' << name.size() << name;
2309 }
2310 
2311 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2312   // <ref-qualifier> ::= R                # lvalue reference
2313   //                 ::= O                # rvalue-reference
2314   switch (RefQualifier) {
2315   case RQ_None:
2316     break;
2317 
2318   case RQ_LValue:
2319     Out << 'R';
2320     break;
2321 
2322   case RQ_RValue:
2323     Out << 'O';
2324     break;
2325   }
2326 }
2327 
2328 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2329   Context.mangleObjCMethodName(MD, Out);
2330 }
2331 
2332 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2333                                 ASTContext &Ctx) {
2334   if (Quals)
2335     return true;
2336   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2337     return true;
2338   if (Ty->isOpenCLSpecificType())
2339     return true;
2340   if (Ty->isBuiltinType())
2341     return false;
2342   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2343   // substitution candidates.
2344   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2345       isa<AutoType>(Ty))
2346     return false;
2347   return true;
2348 }
2349 
2350 void CXXNameMangler::mangleType(QualType T) {
2351   // If our type is instantiation-dependent but not dependent, we mangle
2352   // it as it was written in the source, removing any top-level sugar.
2353   // Otherwise, use the canonical type.
2354   //
2355   // FIXME: This is an approximation of the instantiation-dependent name
2356   // mangling rules, since we should really be using the type as written and
2357   // augmented via semantic analysis (i.e., with implicit conversions and
2358   // default template arguments) for any instantiation-dependent type.
2359   // Unfortunately, that requires several changes to our AST:
2360   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2361   //     uniqued, so that we can handle substitutions properly
2362   //   - Default template arguments will need to be represented in the
2363   //     TemplateSpecializationType, since they need to be mangled even though
2364   //     they aren't written.
2365   //   - Conversions on non-type template arguments need to be expressed, since
2366   //     they can affect the mangling of sizeof/alignof.
2367   //
2368   // FIXME: This is wrong when mapping to the canonical type for a dependent
2369   // type discards instantiation-dependent portions of the type, such as for:
2370   //
2371   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2372   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2373   //
2374   // It's also wrong in the opposite direction when instantiation-dependent,
2375   // canonically-equivalent types differ in some irrelevant portion of inner
2376   // type sugar. In such cases, we fail to form correct substitutions, eg:
2377   //
2378   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2379   //
2380   // We should instead canonicalize the non-instantiation-dependent parts,
2381   // regardless of whether the type as a whole is dependent or instantiation
2382   // dependent.
2383   if (!T->isInstantiationDependentType() || T->isDependentType())
2384     T = T.getCanonicalType();
2385   else {
2386     // Desugar any types that are purely sugar.
2387     do {
2388       // Don't desugar through template specialization types that aren't
2389       // type aliases. We need to mangle the template arguments as written.
2390       if (const TemplateSpecializationType *TST
2391                                       = dyn_cast<TemplateSpecializationType>(T))
2392         if (!TST->isTypeAlias())
2393           break;
2394 
2395       QualType Desugared
2396         = T.getSingleStepDesugaredType(Context.getASTContext());
2397       if (Desugared == T)
2398         break;
2399 
2400       T = Desugared;
2401     } while (true);
2402   }
2403   SplitQualType split = T.split();
2404   Qualifiers quals = split.Quals;
2405   const Type *ty = split.Ty;
2406 
2407   bool isSubstitutable =
2408     isTypeSubstitutable(quals, ty, Context.getASTContext());
2409   if (isSubstitutable && mangleSubstitution(T))
2410     return;
2411 
2412   // If we're mangling a qualified array type, push the qualifiers to
2413   // the element type.
2414   if (quals && isa<ArrayType>(T)) {
2415     ty = Context.getASTContext().getAsArrayType(T);
2416     quals = Qualifiers();
2417 
2418     // Note that we don't update T: we want to add the
2419     // substitution at the original type.
2420   }
2421 
2422   if (quals || ty->isDependentAddressSpaceType()) {
2423     if (const DependentAddressSpaceType *DAST =
2424         dyn_cast<DependentAddressSpaceType>(ty)) {
2425       SplitQualType splitDAST = DAST->getPointeeType().split();
2426       mangleQualifiers(splitDAST.Quals, DAST);
2427       mangleType(QualType(splitDAST.Ty, 0));
2428     } else {
2429       mangleQualifiers(quals);
2430 
2431       // Recurse:  even if the qualified type isn't yet substitutable,
2432       // the unqualified type might be.
2433       mangleType(QualType(ty, 0));
2434     }
2435   } else {
2436     switch (ty->getTypeClass()) {
2437 #define ABSTRACT_TYPE(CLASS, PARENT)
2438 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2439     case Type::CLASS: \
2440       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2441       return;
2442 #define TYPE(CLASS, PARENT) \
2443     case Type::CLASS: \
2444       mangleType(static_cast<const CLASS##Type*>(ty)); \
2445       break;
2446 #include "clang/AST/TypeNodes.def"
2447     }
2448   }
2449 
2450   // Add the substitution.
2451   if (isSubstitutable)
2452     addSubstitution(T);
2453 }
2454 
2455 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2456   if (!mangleStandardSubstitution(ND))
2457     mangleName(ND);
2458 }
2459 
2460 void CXXNameMangler::mangleType(const BuiltinType *T) {
2461   //  <type>         ::= <builtin-type>
2462   //  <builtin-type> ::= v  # void
2463   //                 ::= w  # wchar_t
2464   //                 ::= b  # bool
2465   //                 ::= c  # char
2466   //                 ::= a  # signed char
2467   //                 ::= h  # unsigned char
2468   //                 ::= s  # short
2469   //                 ::= t  # unsigned short
2470   //                 ::= i  # int
2471   //                 ::= j  # unsigned int
2472   //                 ::= l  # long
2473   //                 ::= m  # unsigned long
2474   //                 ::= x  # long long, __int64
2475   //                 ::= y  # unsigned long long, __int64
2476   //                 ::= n  # __int128
2477   //                 ::= o  # unsigned __int128
2478   //                 ::= f  # float
2479   //                 ::= d  # double
2480   //                 ::= e  # long double, __float80
2481   //                 ::= g  # __float128
2482   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2483   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2484   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2485   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2486   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2487   //                 ::= Di # char32_t
2488   //                 ::= Ds # char16_t
2489   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2490   //                 ::= u <source-name>    # vendor extended type
2491   std::string type_name;
2492   switch (T->getKind()) {
2493   case BuiltinType::Void:
2494     Out << 'v';
2495     break;
2496   case BuiltinType::Bool:
2497     Out << 'b';
2498     break;
2499   case BuiltinType::Char_U:
2500   case BuiltinType::Char_S:
2501     Out << 'c';
2502     break;
2503   case BuiltinType::UChar:
2504     Out << 'h';
2505     break;
2506   case BuiltinType::UShort:
2507     Out << 't';
2508     break;
2509   case BuiltinType::UInt:
2510     Out << 'j';
2511     break;
2512   case BuiltinType::ULong:
2513     Out << 'm';
2514     break;
2515   case BuiltinType::ULongLong:
2516     Out << 'y';
2517     break;
2518   case BuiltinType::UInt128:
2519     Out << 'o';
2520     break;
2521   case BuiltinType::SChar:
2522     Out << 'a';
2523     break;
2524   case BuiltinType::WChar_S:
2525   case BuiltinType::WChar_U:
2526     Out << 'w';
2527     break;
2528   case BuiltinType::Char8:
2529     Out << "Du";
2530     break;
2531   case BuiltinType::Char16:
2532     Out << "Ds";
2533     break;
2534   case BuiltinType::Char32:
2535     Out << "Di";
2536     break;
2537   case BuiltinType::Short:
2538     Out << 's';
2539     break;
2540   case BuiltinType::Int:
2541     Out << 'i';
2542     break;
2543   case BuiltinType::Long:
2544     Out << 'l';
2545     break;
2546   case BuiltinType::LongLong:
2547     Out << 'x';
2548     break;
2549   case BuiltinType::Int128:
2550     Out << 'n';
2551     break;
2552   case BuiltinType::Float16:
2553     Out << "DF16_";
2554     break;
2555   case BuiltinType::Half:
2556     Out << "Dh";
2557     break;
2558   case BuiltinType::Float:
2559     Out << 'f';
2560     break;
2561   case BuiltinType::Double:
2562     Out << 'd';
2563     break;
2564   case BuiltinType::LongDouble:
2565     Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2566                 ? 'g'
2567                 : 'e');
2568     break;
2569   case BuiltinType::Float128:
2570     if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble())
2571       Out << "U10__float128"; // Match the GCC mangling
2572     else
2573       Out << 'g';
2574     break;
2575   case BuiltinType::NullPtr:
2576     Out << "Dn";
2577     break;
2578 
2579 #define BUILTIN_TYPE(Id, SingletonId)
2580 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2581   case BuiltinType::Id:
2582 #include "clang/AST/BuiltinTypes.def"
2583   case BuiltinType::Dependent:
2584     if (!NullOut)
2585       llvm_unreachable("mangling a placeholder type");
2586     break;
2587   case BuiltinType::ObjCId:
2588     Out << "11objc_object";
2589     break;
2590   case BuiltinType::ObjCClass:
2591     Out << "10objc_class";
2592     break;
2593   case BuiltinType::ObjCSel:
2594     Out << "13objc_selector";
2595     break;
2596 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2597   case BuiltinType::Id: \
2598     type_name = "ocl_" #ImgType "_" #Suffix; \
2599     Out << type_name.size() << type_name; \
2600     break;
2601 #include "clang/Basic/OpenCLImageTypes.def"
2602   case BuiltinType::OCLSampler:
2603     Out << "11ocl_sampler";
2604     break;
2605   case BuiltinType::OCLEvent:
2606     Out << "9ocl_event";
2607     break;
2608   case BuiltinType::OCLClkEvent:
2609     Out << "12ocl_clkevent";
2610     break;
2611   case BuiltinType::OCLQueue:
2612     Out << "9ocl_queue";
2613     break;
2614   case BuiltinType::OCLReserveID:
2615     Out << "13ocl_reserveid";
2616     break;
2617   }
2618 }
2619 
2620 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2621   switch (CC) {
2622   case CC_C:
2623     return "";
2624 
2625   case CC_X86StdCall:
2626   case CC_X86FastCall:
2627   case CC_X86ThisCall:
2628   case CC_X86VectorCall:
2629   case CC_X86Pascal:
2630   case CC_Win64:
2631   case CC_X86_64SysV:
2632   case CC_X86RegCall:
2633   case CC_AAPCS:
2634   case CC_AAPCS_VFP:
2635   case CC_IntelOclBicc:
2636   case CC_SpirFunction:
2637   case CC_OpenCLKernel:
2638   case CC_PreserveMost:
2639   case CC_PreserveAll:
2640     // FIXME: we should be mangling all of the above.
2641     return "";
2642 
2643   case CC_Swift:
2644     return "swiftcall";
2645   }
2646   llvm_unreachable("bad calling convention");
2647 }
2648 
2649 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2650   // Fast path.
2651   if (T->getExtInfo() == FunctionType::ExtInfo())
2652     return;
2653 
2654   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2655   // This will get more complicated in the future if we mangle other
2656   // things here; but for now, since we mangle ns_returns_retained as
2657   // a qualifier on the result type, we can get away with this:
2658   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2659   if (!CCQualifier.empty())
2660     mangleVendorQualifier(CCQualifier);
2661 
2662   // FIXME: regparm
2663   // FIXME: noreturn
2664 }
2665 
2666 void
2667 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2668   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2669 
2670   // Note that these are *not* substitution candidates.  Demanglers might
2671   // have trouble with this if the parameter type is fully substituted.
2672 
2673   switch (PI.getABI()) {
2674   case ParameterABI::Ordinary:
2675     break;
2676 
2677   // All of these start with "swift", so they come before "ns_consumed".
2678   case ParameterABI::SwiftContext:
2679   case ParameterABI::SwiftErrorResult:
2680   case ParameterABI::SwiftIndirectResult:
2681     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2682     break;
2683   }
2684 
2685   if (PI.isConsumed())
2686     mangleVendorQualifier("ns_consumed");
2687 
2688   if (PI.isNoEscape())
2689     mangleVendorQualifier("noescape");
2690 }
2691 
2692 // <type>          ::= <function-type>
2693 // <function-type> ::= [<CV-qualifiers>] F [Y]
2694 //                      <bare-function-type> [<ref-qualifier>] E
2695 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2696   mangleExtFunctionInfo(T);
2697 
2698   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2699   // e.g. "const" in "int (A::*)() const".
2700   mangleQualifiers(Qualifiers::fromCVRUMask(T->getTypeQuals()));
2701 
2702   // Mangle instantiation-dependent exception-specification, if present,
2703   // per cxx-abi-dev proposal on 2016-10-11.
2704   if (T->hasInstantiationDependentExceptionSpec()) {
2705     if (isComputedNoexcept(T->getExceptionSpecType())) {
2706       Out << "DO";
2707       mangleExpression(T->getNoexceptExpr());
2708       Out << "E";
2709     } else {
2710       assert(T->getExceptionSpecType() == EST_Dynamic);
2711       Out << "Dw";
2712       for (auto ExceptTy : T->exceptions())
2713         mangleType(ExceptTy);
2714       Out << "E";
2715     }
2716   } else if (T->isNothrow()) {
2717     Out << "Do";
2718   }
2719 
2720   Out << 'F';
2721 
2722   // FIXME: We don't have enough information in the AST to produce the 'Y'
2723   // encoding for extern "C" function types.
2724   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2725 
2726   // Mangle the ref-qualifier, if present.
2727   mangleRefQualifier(T->getRefQualifier());
2728 
2729   Out << 'E';
2730 }
2731 
2732 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2733   // Function types without prototypes can arise when mangling a function type
2734   // within an overloadable function in C. We mangle these as the absence of any
2735   // parameter types (not even an empty parameter list).
2736   Out << 'F';
2737 
2738   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2739 
2740   FunctionTypeDepth.enterResultType();
2741   mangleType(T->getReturnType());
2742   FunctionTypeDepth.leaveResultType();
2743 
2744   FunctionTypeDepth.pop(saved);
2745   Out << 'E';
2746 }
2747 
2748 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2749                                             bool MangleReturnType,
2750                                             const FunctionDecl *FD) {
2751   // Record that we're in a function type.  See mangleFunctionParam
2752   // for details on what we're trying to achieve here.
2753   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2754 
2755   // <bare-function-type> ::= <signature type>+
2756   if (MangleReturnType) {
2757     FunctionTypeDepth.enterResultType();
2758 
2759     // Mangle ns_returns_retained as an order-sensitive qualifier here.
2760     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2761       mangleVendorQualifier("ns_returns_retained");
2762 
2763     // Mangle the return type without any direct ARC ownership qualifiers.
2764     QualType ReturnTy = Proto->getReturnType();
2765     if (ReturnTy.getObjCLifetime()) {
2766       auto SplitReturnTy = ReturnTy.split();
2767       SplitReturnTy.Quals.removeObjCLifetime();
2768       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2769     }
2770     mangleType(ReturnTy);
2771 
2772     FunctionTypeDepth.leaveResultType();
2773   }
2774 
2775   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2776     //   <builtin-type> ::= v   # void
2777     Out << 'v';
2778 
2779     FunctionTypeDepth.pop(saved);
2780     return;
2781   }
2782 
2783   assert(!FD || FD->getNumParams() == Proto->getNumParams());
2784   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2785     // Mangle extended parameter info as order-sensitive qualifiers here.
2786     if (Proto->hasExtParameterInfos() && FD == nullptr) {
2787       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2788     }
2789 
2790     // Mangle the type.
2791     QualType ParamTy = Proto->getParamType(I);
2792     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2793 
2794     if (FD) {
2795       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2796         // Attr can only take 1 character, so we can hardcode the length below.
2797         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2798         Out << "U17pass_object_size" << Attr->getType();
2799       }
2800     }
2801   }
2802 
2803   FunctionTypeDepth.pop(saved);
2804 
2805   // <builtin-type>      ::= z  # ellipsis
2806   if (Proto->isVariadic())
2807     Out << 'z';
2808 }
2809 
2810 // <type>            ::= <class-enum-type>
2811 // <class-enum-type> ::= <name>
2812 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2813   mangleName(T->getDecl());
2814 }
2815 
2816 // <type>            ::= <class-enum-type>
2817 // <class-enum-type> ::= <name>
2818 void CXXNameMangler::mangleType(const EnumType *T) {
2819   mangleType(static_cast<const TagType*>(T));
2820 }
2821 void CXXNameMangler::mangleType(const RecordType *T) {
2822   mangleType(static_cast<const TagType*>(T));
2823 }
2824 void CXXNameMangler::mangleType(const TagType *T) {
2825   mangleName(T->getDecl());
2826 }
2827 
2828 // <type>       ::= <array-type>
2829 // <array-type> ::= A <positive dimension number> _ <element type>
2830 //              ::= A [<dimension expression>] _ <element type>
2831 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2832   Out << 'A' << T->getSize() << '_';
2833   mangleType(T->getElementType());
2834 }
2835 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2836   Out << 'A';
2837   // decayed vla types (size 0) will just be skipped.
2838   if (T->getSizeExpr())
2839     mangleExpression(T->getSizeExpr());
2840   Out << '_';
2841   mangleType(T->getElementType());
2842 }
2843 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2844   Out << 'A';
2845   mangleExpression(T->getSizeExpr());
2846   Out << '_';
2847   mangleType(T->getElementType());
2848 }
2849 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2850   Out << "A_";
2851   mangleType(T->getElementType());
2852 }
2853 
2854 // <type>                   ::= <pointer-to-member-type>
2855 // <pointer-to-member-type> ::= M <class type> <member type>
2856 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2857   Out << 'M';
2858   mangleType(QualType(T->getClass(), 0));
2859   QualType PointeeType = T->getPointeeType();
2860   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2861     mangleType(FPT);
2862 
2863     // Itanium C++ ABI 5.1.8:
2864     //
2865     //   The type of a non-static member function is considered to be different,
2866     //   for the purposes of substitution, from the type of a namespace-scope or
2867     //   static member function whose type appears similar. The types of two
2868     //   non-static member functions are considered to be different, for the
2869     //   purposes of substitution, if the functions are members of different
2870     //   classes. In other words, for the purposes of substitution, the class of
2871     //   which the function is a member is considered part of the type of
2872     //   function.
2873 
2874     // Given that we already substitute member function pointers as a
2875     // whole, the net effect of this rule is just to unconditionally
2876     // suppress substitution on the function type in a member pointer.
2877     // We increment the SeqID here to emulate adding an entry to the
2878     // substitution table.
2879     ++SeqID;
2880   } else
2881     mangleType(PointeeType);
2882 }
2883 
2884 // <type>           ::= <template-param>
2885 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2886   mangleTemplateParameter(T->getIndex());
2887 }
2888 
2889 // <type>           ::= <template-param>
2890 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2891   // FIXME: not clear how to mangle this!
2892   // template <class T...> class A {
2893   //   template <class U...> void foo(T(*)(U) x...);
2894   // };
2895   Out << "_SUBSTPACK_";
2896 }
2897 
2898 // <type> ::= P <type>   # pointer-to
2899 void CXXNameMangler::mangleType(const PointerType *T) {
2900   Out << 'P';
2901   mangleType(T->getPointeeType());
2902 }
2903 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2904   Out << 'P';
2905   mangleType(T->getPointeeType());
2906 }
2907 
2908 // <type> ::= R <type>   # reference-to
2909 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2910   Out << 'R';
2911   mangleType(T->getPointeeType());
2912 }
2913 
2914 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2915 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2916   Out << 'O';
2917   mangleType(T->getPointeeType());
2918 }
2919 
2920 // <type> ::= C <type>   # complex pair (C 2000)
2921 void CXXNameMangler::mangleType(const ComplexType *T) {
2922   Out << 'C';
2923   mangleType(T->getElementType());
2924 }
2925 
2926 // ARM's ABI for Neon vector types specifies that they should be mangled as
2927 // if they are structs (to match ARM's initial implementation).  The
2928 // vector type must be one of the special types predefined by ARM.
2929 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2930   QualType EltType = T->getElementType();
2931   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2932   const char *EltName = nullptr;
2933   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2934     switch (cast<BuiltinType>(EltType)->getKind()) {
2935     case BuiltinType::SChar:
2936     case BuiltinType::UChar:
2937       EltName = "poly8_t";
2938       break;
2939     case BuiltinType::Short:
2940     case BuiltinType::UShort:
2941       EltName = "poly16_t";
2942       break;
2943     case BuiltinType::ULongLong:
2944       EltName = "poly64_t";
2945       break;
2946     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2947     }
2948   } else {
2949     switch (cast<BuiltinType>(EltType)->getKind()) {
2950     case BuiltinType::SChar:     EltName = "int8_t"; break;
2951     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2952     case BuiltinType::Short:     EltName = "int16_t"; break;
2953     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2954     case BuiltinType::Int:       EltName = "int32_t"; break;
2955     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2956     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2957     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2958     case BuiltinType::Double:    EltName = "float64_t"; break;
2959     case BuiltinType::Float:     EltName = "float32_t"; break;
2960     case BuiltinType::Half:      EltName = "float16_t";break;
2961     default:
2962       llvm_unreachable("unexpected Neon vector element type");
2963     }
2964   }
2965   const char *BaseName = nullptr;
2966   unsigned BitSize = (T->getNumElements() *
2967                       getASTContext().getTypeSize(EltType));
2968   if (BitSize == 64)
2969     BaseName = "__simd64_";
2970   else {
2971     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2972     BaseName = "__simd128_";
2973   }
2974   Out << strlen(BaseName) + strlen(EltName);
2975   Out << BaseName << EltName;
2976 }
2977 
2978 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2979   switch (EltType->getKind()) {
2980   case BuiltinType::SChar:
2981     return "Int8";
2982   case BuiltinType::Short:
2983     return "Int16";
2984   case BuiltinType::Int:
2985     return "Int32";
2986   case BuiltinType::Long:
2987   case BuiltinType::LongLong:
2988     return "Int64";
2989   case BuiltinType::UChar:
2990     return "Uint8";
2991   case BuiltinType::UShort:
2992     return "Uint16";
2993   case BuiltinType::UInt:
2994     return "Uint32";
2995   case BuiltinType::ULong:
2996   case BuiltinType::ULongLong:
2997     return "Uint64";
2998   case BuiltinType::Half:
2999     return "Float16";
3000   case BuiltinType::Float:
3001     return "Float32";
3002   case BuiltinType::Double:
3003     return "Float64";
3004   default:
3005     llvm_unreachable("Unexpected vector element base type");
3006   }
3007 }
3008 
3009 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3010 // the equivalent internal name. The vector type must be one of the special
3011 // types predefined by ARM.
3012 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3013   QualType EltType = T->getElementType();
3014   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3015   unsigned BitSize =
3016       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3017   (void)BitSize; // Silence warning.
3018 
3019   assert((BitSize == 64 || BitSize == 128) &&
3020          "Neon vector type not 64 or 128 bits");
3021 
3022   StringRef EltName;
3023   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3024     switch (cast<BuiltinType>(EltType)->getKind()) {
3025     case BuiltinType::UChar:
3026       EltName = "Poly8";
3027       break;
3028     case BuiltinType::UShort:
3029       EltName = "Poly16";
3030       break;
3031     case BuiltinType::ULong:
3032     case BuiltinType::ULongLong:
3033       EltName = "Poly64";
3034       break;
3035     default:
3036       llvm_unreachable("unexpected Neon polynomial vector element type");
3037     }
3038   } else
3039     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3040 
3041   std::string TypeName =
3042       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3043   Out << TypeName.length() << TypeName;
3044 }
3045 
3046 // GNU extension: vector types
3047 // <type>                  ::= <vector-type>
3048 // <vector-type>           ::= Dv <positive dimension number> _
3049 //                                    <extended element type>
3050 //                         ::= Dv [<dimension expression>] _ <element type>
3051 // <extended element type> ::= <element type>
3052 //                         ::= p # AltiVec vector pixel
3053 //                         ::= b # Altivec vector bool
3054 void CXXNameMangler::mangleType(const VectorType *T) {
3055   if ((T->getVectorKind() == VectorType::NeonVector ||
3056        T->getVectorKind() == VectorType::NeonPolyVector)) {
3057     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3058     llvm::Triple::ArchType Arch =
3059         getASTContext().getTargetInfo().getTriple().getArch();
3060     if ((Arch == llvm::Triple::aarch64 ||
3061          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3062       mangleAArch64NeonVectorType(T);
3063     else
3064       mangleNeonVectorType(T);
3065     return;
3066   }
3067   Out << "Dv" << T->getNumElements() << '_';
3068   if (T->getVectorKind() == VectorType::AltiVecPixel)
3069     Out << 'p';
3070   else if (T->getVectorKind() == VectorType::AltiVecBool)
3071     Out << 'b';
3072   else
3073     mangleType(T->getElementType());
3074 }
3075 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3076   mangleType(static_cast<const VectorType*>(T));
3077 }
3078 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3079   Out << "Dv";
3080   mangleExpression(T->getSizeExpr());
3081   Out << '_';
3082   mangleType(T->getElementType());
3083 }
3084 
3085 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3086   SplitQualType split = T->getPointeeType().split();
3087   mangleQualifiers(split.Quals, T);
3088   mangleType(QualType(split.Ty, 0));
3089 }
3090 
3091 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3092   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3093   Out << "Dp";
3094   mangleType(T->getPattern());
3095 }
3096 
3097 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3098   mangleSourceName(T->getDecl()->getIdentifier());
3099 }
3100 
3101 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3102   // Treat __kindof as a vendor extended type qualifier.
3103   if (T->isKindOfType())
3104     Out << "U8__kindof";
3105 
3106   if (!T->qual_empty()) {
3107     // Mangle protocol qualifiers.
3108     SmallString<64> QualStr;
3109     llvm::raw_svector_ostream QualOS(QualStr);
3110     QualOS << "objcproto";
3111     for (const auto *I : T->quals()) {
3112       StringRef name = I->getName();
3113       QualOS << name.size() << name;
3114     }
3115     Out << 'U' << QualStr.size() << QualStr;
3116   }
3117 
3118   mangleType(T->getBaseType());
3119 
3120   if (T->isSpecialized()) {
3121     // Mangle type arguments as I <type>+ E
3122     Out << 'I';
3123     for (auto typeArg : T->getTypeArgs())
3124       mangleType(typeArg);
3125     Out << 'E';
3126   }
3127 }
3128 
3129 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3130   Out << "U13block_pointer";
3131   mangleType(T->getPointeeType());
3132 }
3133 
3134 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3135   // Mangle injected class name types as if the user had written the
3136   // specialization out fully.  It may not actually be possible to see
3137   // this mangling, though.
3138   mangleType(T->getInjectedSpecializationType());
3139 }
3140 
3141 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3142   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3143     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3144   } else {
3145     if (mangleSubstitution(QualType(T, 0)))
3146       return;
3147 
3148     mangleTemplatePrefix(T->getTemplateName());
3149 
3150     // FIXME: GCC does not appear to mangle the template arguments when
3151     // the template in question is a dependent template name. Should we
3152     // emulate that badness?
3153     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3154     addSubstitution(QualType(T, 0));
3155   }
3156 }
3157 
3158 void CXXNameMangler::mangleType(const DependentNameType *T) {
3159   // Proposal by cxx-abi-dev, 2014-03-26
3160   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3161   //                                 # dependent elaborated type specifier using
3162   //                                 # 'typename'
3163   //                   ::= Ts <name> # dependent elaborated type specifier using
3164   //                                 # 'struct' or 'class'
3165   //                   ::= Tu <name> # dependent elaborated type specifier using
3166   //                                 # 'union'
3167   //                   ::= Te <name> # dependent elaborated type specifier using
3168   //                                 # 'enum'
3169   switch (T->getKeyword()) {
3170     case ETK_None:
3171     case ETK_Typename:
3172       break;
3173     case ETK_Struct:
3174     case ETK_Class:
3175     case ETK_Interface:
3176       Out << "Ts";
3177       break;
3178     case ETK_Union:
3179       Out << "Tu";
3180       break;
3181     case ETK_Enum:
3182       Out << "Te";
3183       break;
3184   }
3185   // Typename types are always nested
3186   Out << 'N';
3187   manglePrefix(T->getQualifier());
3188   mangleSourceName(T->getIdentifier());
3189   Out << 'E';
3190 }
3191 
3192 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3193   // Dependently-scoped template types are nested if they have a prefix.
3194   Out << 'N';
3195 
3196   // TODO: avoid making this TemplateName.
3197   TemplateName Prefix =
3198     getASTContext().getDependentTemplateName(T->getQualifier(),
3199                                              T->getIdentifier());
3200   mangleTemplatePrefix(Prefix);
3201 
3202   // FIXME: GCC does not appear to mangle the template arguments when
3203   // the template in question is a dependent template name. Should we
3204   // emulate that badness?
3205   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3206   Out << 'E';
3207 }
3208 
3209 void CXXNameMangler::mangleType(const TypeOfType *T) {
3210   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3211   // "extension with parameters" mangling.
3212   Out << "u6typeof";
3213 }
3214 
3215 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3216   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3217   // "extension with parameters" mangling.
3218   Out << "u6typeof";
3219 }
3220 
3221 void CXXNameMangler::mangleType(const DecltypeType *T) {
3222   Expr *E = T->getUnderlyingExpr();
3223 
3224   // type ::= Dt <expression> E  # decltype of an id-expression
3225   //                             #   or class member access
3226   //      ::= DT <expression> E  # decltype of an expression
3227 
3228   // This purports to be an exhaustive list of id-expressions and
3229   // class member accesses.  Note that we do not ignore parentheses;
3230   // parentheses change the semantics of decltype for these
3231   // expressions (and cause the mangler to use the other form).
3232   if (isa<DeclRefExpr>(E) ||
3233       isa<MemberExpr>(E) ||
3234       isa<UnresolvedLookupExpr>(E) ||
3235       isa<DependentScopeDeclRefExpr>(E) ||
3236       isa<CXXDependentScopeMemberExpr>(E) ||
3237       isa<UnresolvedMemberExpr>(E))
3238     Out << "Dt";
3239   else
3240     Out << "DT";
3241   mangleExpression(E);
3242   Out << 'E';
3243 }
3244 
3245 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3246   // If this is dependent, we need to record that. If not, we simply
3247   // mangle it as the underlying type since they are equivalent.
3248   if (T->isDependentType()) {
3249     Out << 'U';
3250 
3251     switch (T->getUTTKind()) {
3252       case UnaryTransformType::EnumUnderlyingType:
3253         Out << "3eut";
3254         break;
3255     }
3256   }
3257 
3258   mangleType(T->getBaseType());
3259 }
3260 
3261 void CXXNameMangler::mangleType(const AutoType *T) {
3262   assert(T->getDeducedType().isNull() &&
3263          "Deduced AutoType shouldn't be handled here!");
3264   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3265          "shouldn't need to mangle __auto_type!");
3266   // <builtin-type> ::= Da # auto
3267   //                ::= Dc # decltype(auto)
3268   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3269 }
3270 
3271 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3272   // FIXME: This is not the right mangling. We also need to include a scope
3273   // here in some cases.
3274   QualType D = T->getDeducedType();
3275   if (D.isNull())
3276     mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3277   else
3278     mangleType(D);
3279 }
3280 
3281 void CXXNameMangler::mangleType(const AtomicType *T) {
3282   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3283   // (Until there's a standardized mangling...)
3284   Out << "U7_Atomic";
3285   mangleType(T->getValueType());
3286 }
3287 
3288 void CXXNameMangler::mangleType(const PipeType *T) {
3289   // Pipe type mangling rules are described in SPIR 2.0 specification
3290   // A.1 Data types and A.3 Summary of changes
3291   // <type> ::= 8ocl_pipe
3292   Out << "8ocl_pipe";
3293 }
3294 
3295 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3296                                           const llvm::APSInt &Value) {
3297   //  <expr-primary> ::= L <type> <value number> E # integer literal
3298   Out << 'L';
3299 
3300   mangleType(T);
3301   if (T->isBooleanType()) {
3302     // Boolean values are encoded as 0/1.
3303     Out << (Value.getBoolValue() ? '1' : '0');
3304   } else {
3305     mangleNumber(Value);
3306   }
3307   Out << 'E';
3308 
3309 }
3310 
3311 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3312   // Ignore member expressions involving anonymous unions.
3313   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3314     if (!RT->getDecl()->isAnonymousStructOrUnion())
3315       break;
3316     const auto *ME = dyn_cast<MemberExpr>(Base);
3317     if (!ME)
3318       break;
3319     Base = ME->getBase();
3320     IsArrow = ME->isArrow();
3321   }
3322 
3323   if (Base->isImplicitCXXThis()) {
3324     // Note: GCC mangles member expressions to the implicit 'this' as
3325     // *this., whereas we represent them as this->. The Itanium C++ ABI
3326     // does not specify anything here, so we follow GCC.
3327     Out << "dtdefpT";
3328   } else {
3329     Out << (IsArrow ? "pt" : "dt");
3330     mangleExpression(Base);
3331   }
3332 }
3333 
3334 /// Mangles a member expression.
3335 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3336                                       bool isArrow,
3337                                       NestedNameSpecifier *qualifier,
3338                                       NamedDecl *firstQualifierLookup,
3339                                       DeclarationName member,
3340                                       const TemplateArgumentLoc *TemplateArgs,
3341                                       unsigned NumTemplateArgs,
3342                                       unsigned arity) {
3343   // <expression> ::= dt <expression> <unresolved-name>
3344   //              ::= pt <expression> <unresolved-name>
3345   if (base)
3346     mangleMemberExprBase(base, isArrow);
3347   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3348 }
3349 
3350 /// Look at the callee of the given call expression and determine if
3351 /// it's a parenthesized id-expression which would have triggered ADL
3352 /// otherwise.
3353 static bool isParenthesizedADLCallee(const CallExpr *call) {
3354   const Expr *callee = call->getCallee();
3355   const Expr *fn = callee->IgnoreParens();
3356 
3357   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3358   // too, but for those to appear in the callee, it would have to be
3359   // parenthesized.
3360   if (callee == fn) return false;
3361 
3362   // Must be an unresolved lookup.
3363   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3364   if (!lookup) return false;
3365 
3366   assert(!lookup->requiresADL());
3367 
3368   // Must be an unqualified lookup.
3369   if (lookup->getQualifier()) return false;
3370 
3371   // Must not have found a class member.  Note that if one is a class
3372   // member, they're all class members.
3373   if (lookup->getNumDecls() > 0 &&
3374       (*lookup->decls_begin())->isCXXClassMember())
3375     return false;
3376 
3377   // Otherwise, ADL would have been triggered.
3378   return true;
3379 }
3380 
3381 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3382   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3383   Out << CastEncoding;
3384   mangleType(ECE->getType());
3385   mangleExpression(ECE->getSubExpr());
3386 }
3387 
3388 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3389   if (auto *Syntactic = InitList->getSyntacticForm())
3390     InitList = Syntactic;
3391   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3392     mangleExpression(InitList->getInit(i));
3393 }
3394 
3395 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3396   // <expression> ::= <unary operator-name> <expression>
3397   //              ::= <binary operator-name> <expression> <expression>
3398   //              ::= <trinary operator-name> <expression> <expression> <expression>
3399   //              ::= cv <type> expression           # conversion with one argument
3400   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3401   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3402   //              ::= sc <type> <expression>         # static_cast<type> (expression)
3403   //              ::= cc <type> <expression>         # const_cast<type> (expression)
3404   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3405   //              ::= st <type>                      # sizeof (a type)
3406   //              ::= at <type>                      # alignof (a type)
3407   //              ::= <template-param>
3408   //              ::= <function-param>
3409   //              ::= sr <type> <unqualified-name>                   # dependent name
3410   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3411   //              ::= ds <expression> <expression>                   # expr.*expr
3412   //              ::= sZ <template-param>                            # size of a parameter pack
3413   //              ::= sZ <function-param>    # size of a function parameter pack
3414   //              ::= <expr-primary>
3415   // <expr-primary> ::= L <type> <value number> E    # integer literal
3416   //                ::= L <type <value float> E      # floating literal
3417   //                ::= L <mangled-name> E           # external name
3418   //                ::= fpT                          # 'this' expression
3419   QualType ImplicitlyConvertedToType;
3420 
3421 recurse:
3422   switch (E->getStmtClass()) {
3423   case Expr::NoStmtClass:
3424 #define ABSTRACT_STMT(Type)
3425 #define EXPR(Type, Base)
3426 #define STMT(Type, Base) \
3427   case Expr::Type##Class:
3428 #include "clang/AST/StmtNodes.inc"
3429     // fallthrough
3430 
3431   // These all can only appear in local or variable-initialization
3432   // contexts and so should never appear in a mangling.
3433   case Expr::AddrLabelExprClass:
3434   case Expr::DesignatedInitUpdateExprClass:
3435   case Expr::ImplicitValueInitExprClass:
3436   case Expr::ArrayInitLoopExprClass:
3437   case Expr::ArrayInitIndexExprClass:
3438   case Expr::NoInitExprClass:
3439   case Expr::ParenListExprClass:
3440   case Expr::LambdaExprClass:
3441   case Expr::MSPropertyRefExprClass:
3442   case Expr::MSPropertySubscriptExprClass:
3443   case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
3444   case Expr::OMPArraySectionExprClass:
3445   case Expr::CXXInheritedCtorInitExprClass:
3446     llvm_unreachable("unexpected statement kind");
3447 
3448   // FIXME: invent manglings for all these.
3449   case Expr::BlockExprClass:
3450   case Expr::ChooseExprClass:
3451   case Expr::CompoundLiteralExprClass:
3452   case Expr::ExtVectorElementExprClass:
3453   case Expr::GenericSelectionExprClass:
3454   case Expr::ObjCEncodeExprClass:
3455   case Expr::ObjCIsaExprClass:
3456   case Expr::ObjCIvarRefExprClass:
3457   case Expr::ObjCMessageExprClass:
3458   case Expr::ObjCPropertyRefExprClass:
3459   case Expr::ObjCProtocolExprClass:
3460   case Expr::ObjCSelectorExprClass:
3461   case Expr::ObjCStringLiteralClass:
3462   case Expr::ObjCBoxedExprClass:
3463   case Expr::ObjCArrayLiteralClass:
3464   case Expr::ObjCDictionaryLiteralClass:
3465   case Expr::ObjCSubscriptRefExprClass:
3466   case Expr::ObjCIndirectCopyRestoreExprClass:
3467   case Expr::ObjCAvailabilityCheckExprClass:
3468   case Expr::OffsetOfExprClass:
3469   case Expr::PredefinedExprClass:
3470   case Expr::ShuffleVectorExprClass:
3471   case Expr::ConvertVectorExprClass:
3472   case Expr::StmtExprClass:
3473   case Expr::TypeTraitExprClass:
3474   case Expr::ArrayTypeTraitExprClass:
3475   case Expr::ExpressionTraitExprClass:
3476   case Expr::VAArgExprClass:
3477   case Expr::CUDAKernelCallExprClass:
3478   case Expr::AsTypeExprClass:
3479   case Expr::PseudoObjectExprClass:
3480   case Expr::AtomicExprClass:
3481   {
3482     if (!NullOut) {
3483       // As bad as this diagnostic is, it's better than crashing.
3484       DiagnosticsEngine &Diags = Context.getDiags();
3485       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3486                                        "cannot yet mangle expression type %0");
3487       Diags.Report(E->getExprLoc(), DiagID)
3488         << E->getStmtClassName() << E->getSourceRange();
3489     }
3490     break;
3491   }
3492 
3493   case Expr::CXXUuidofExprClass: {
3494     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3495     if (UE->isTypeOperand()) {
3496       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3497       Out << "u8__uuidoft";
3498       mangleType(UuidT);
3499     } else {
3500       Expr *UuidExp = UE->getExprOperand();
3501       Out << "u8__uuidofz";
3502       mangleExpression(UuidExp, Arity);
3503     }
3504     break;
3505   }
3506 
3507   // Even gcc-4.5 doesn't mangle this.
3508   case Expr::BinaryConditionalOperatorClass: {
3509     DiagnosticsEngine &Diags = Context.getDiags();
3510     unsigned DiagID =
3511       Diags.getCustomDiagID(DiagnosticsEngine::Error,
3512                 "?: operator with omitted middle operand cannot be mangled");
3513     Diags.Report(E->getExprLoc(), DiagID)
3514       << E->getStmtClassName() << E->getSourceRange();
3515     break;
3516   }
3517 
3518   // These are used for internal purposes and cannot be meaningfully mangled.
3519   case Expr::OpaqueValueExprClass:
3520     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3521 
3522   case Expr::InitListExprClass: {
3523     Out << "il";
3524     mangleInitListElements(cast<InitListExpr>(E));
3525     Out << "E";
3526     break;
3527   }
3528 
3529   case Expr::DesignatedInitExprClass: {
3530     auto *DIE = cast<DesignatedInitExpr>(E);
3531     for (const auto &Designator : DIE->designators()) {
3532       if (Designator.isFieldDesignator()) {
3533         Out << "di";
3534         mangleSourceName(Designator.getFieldName());
3535       } else if (Designator.isArrayDesignator()) {
3536         Out << "dx";
3537         mangleExpression(DIE->getArrayIndex(Designator));
3538       } else {
3539         assert(Designator.isArrayRangeDesignator() &&
3540                "unknown designator kind");
3541         Out << "dX";
3542         mangleExpression(DIE->getArrayRangeStart(Designator));
3543         mangleExpression(DIE->getArrayRangeEnd(Designator));
3544       }
3545     }
3546     mangleExpression(DIE->getInit());
3547     break;
3548   }
3549 
3550   case Expr::CXXDefaultArgExprClass:
3551     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3552     break;
3553 
3554   case Expr::CXXDefaultInitExprClass:
3555     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3556     break;
3557 
3558   case Expr::CXXStdInitializerListExprClass:
3559     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3560     break;
3561 
3562   case Expr::SubstNonTypeTemplateParmExprClass:
3563     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3564                      Arity);
3565     break;
3566 
3567   case Expr::UserDefinedLiteralClass:
3568     // We follow g++'s approach of mangling a UDL as a call to the literal
3569     // operator.
3570   case Expr::CXXMemberCallExprClass: // fallthrough
3571   case Expr::CallExprClass: {
3572     const CallExpr *CE = cast<CallExpr>(E);
3573 
3574     // <expression> ::= cp <simple-id> <expression>* E
3575     // We use this mangling only when the call would use ADL except
3576     // for being parenthesized.  Per discussion with David
3577     // Vandervoorde, 2011.04.25.
3578     if (isParenthesizedADLCallee(CE)) {
3579       Out << "cp";
3580       // The callee here is a parenthesized UnresolvedLookupExpr with
3581       // no qualifier and should always get mangled as a <simple-id>
3582       // anyway.
3583 
3584     // <expression> ::= cl <expression>* E
3585     } else {
3586       Out << "cl";
3587     }
3588 
3589     unsigned CallArity = CE->getNumArgs();
3590     for (const Expr *Arg : CE->arguments())
3591       if (isa<PackExpansionExpr>(Arg))
3592         CallArity = UnknownArity;
3593 
3594     mangleExpression(CE->getCallee(), CallArity);
3595     for (const Expr *Arg : CE->arguments())
3596       mangleExpression(Arg);
3597     Out << 'E';
3598     break;
3599   }
3600 
3601   case Expr::CXXNewExprClass: {
3602     const CXXNewExpr *New = cast<CXXNewExpr>(E);
3603     if (New->isGlobalNew()) Out << "gs";
3604     Out << (New->isArray() ? "na" : "nw");
3605     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3606            E = New->placement_arg_end(); I != E; ++I)
3607       mangleExpression(*I);
3608     Out << '_';
3609     mangleType(New->getAllocatedType());
3610     if (New->hasInitializer()) {
3611       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3612         Out << "il";
3613       else
3614         Out << "pi";
3615       const Expr *Init = New->getInitializer();
3616       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3617         // Directly inline the initializers.
3618         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3619                                                   E = CCE->arg_end();
3620              I != E; ++I)
3621           mangleExpression(*I);
3622       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3623         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3624           mangleExpression(PLE->getExpr(i));
3625       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3626                  isa<InitListExpr>(Init)) {
3627         // Only take InitListExprs apart for list-initialization.
3628         mangleInitListElements(cast<InitListExpr>(Init));
3629       } else
3630         mangleExpression(Init);
3631     }
3632     Out << 'E';
3633     break;
3634   }
3635 
3636   case Expr::CXXPseudoDestructorExprClass: {
3637     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3638     if (const Expr *Base = PDE->getBase())
3639       mangleMemberExprBase(Base, PDE->isArrow());
3640     NestedNameSpecifier *Qualifier = PDE->getQualifier();
3641     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3642       if (Qualifier) {
3643         mangleUnresolvedPrefix(Qualifier,
3644                                /*Recursive=*/true);
3645         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3646         Out << 'E';
3647       } else {
3648         Out << "sr";
3649         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3650           Out << 'E';
3651       }
3652     } else if (Qualifier) {
3653       mangleUnresolvedPrefix(Qualifier);
3654     }
3655     // <base-unresolved-name> ::= dn <destructor-name>
3656     Out << "dn";
3657     QualType DestroyedType = PDE->getDestroyedType();
3658     mangleUnresolvedTypeOrSimpleId(DestroyedType);
3659     break;
3660   }
3661 
3662   case Expr::MemberExprClass: {
3663     const MemberExpr *ME = cast<MemberExpr>(E);
3664     mangleMemberExpr(ME->getBase(), ME->isArrow(),
3665                      ME->getQualifier(), nullptr,
3666                      ME->getMemberDecl()->getDeclName(),
3667                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3668                      Arity);
3669     break;
3670   }
3671 
3672   case Expr::UnresolvedMemberExprClass: {
3673     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3674     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3675                      ME->isArrow(), ME->getQualifier(), nullptr,
3676                      ME->getMemberName(),
3677                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3678                      Arity);
3679     break;
3680   }
3681 
3682   case Expr::CXXDependentScopeMemberExprClass: {
3683     const CXXDependentScopeMemberExpr *ME
3684       = cast<CXXDependentScopeMemberExpr>(E);
3685     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3686                      ME->isArrow(), ME->getQualifier(),
3687                      ME->getFirstQualifierFoundInScope(),
3688                      ME->getMember(),
3689                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3690                      Arity);
3691     break;
3692   }
3693 
3694   case Expr::UnresolvedLookupExprClass: {
3695     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3696     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3697                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3698                          Arity);
3699     break;
3700   }
3701 
3702   case Expr::CXXUnresolvedConstructExprClass: {
3703     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3704     unsigned N = CE->arg_size();
3705 
3706     if (CE->isListInitialization()) {
3707       assert(N == 1 && "unexpected form for list initialization");
3708       auto *IL = cast<InitListExpr>(CE->getArg(0));
3709       Out << "tl";
3710       mangleType(CE->getType());
3711       mangleInitListElements(IL);
3712       Out << "E";
3713       return;
3714     }
3715 
3716     Out << "cv";
3717     mangleType(CE->getType());
3718     if (N != 1) Out << '_';
3719     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3720     if (N != 1) Out << 'E';
3721     break;
3722   }
3723 
3724   case Expr::CXXConstructExprClass: {
3725     const auto *CE = cast<CXXConstructExpr>(E);
3726     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3727       assert(
3728           CE->getNumArgs() >= 1 &&
3729           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3730           "implicit CXXConstructExpr must have one argument");
3731       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3732     }
3733     Out << "il";
3734     for (auto *E : CE->arguments())
3735       mangleExpression(E);
3736     Out << "E";
3737     break;
3738   }
3739 
3740   case Expr::CXXTemporaryObjectExprClass: {
3741     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3742     unsigned N = CE->getNumArgs();
3743     bool List = CE->isListInitialization();
3744 
3745     if (List)
3746       Out << "tl";
3747     else
3748       Out << "cv";
3749     mangleType(CE->getType());
3750     if (!List && N != 1)
3751       Out << '_';
3752     if (CE->isStdInitListInitialization()) {
3753       // We implicitly created a std::initializer_list<T> for the first argument
3754       // of a constructor of type U in an expression of the form U{a, b, c}.
3755       // Strip all the semantic gunk off the initializer list.
3756       auto *SILE =
3757           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3758       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3759       mangleInitListElements(ILE);
3760     } else {
3761       for (auto *E : CE->arguments())
3762         mangleExpression(E);
3763     }
3764     if (List || N != 1)
3765       Out << 'E';
3766     break;
3767   }
3768 
3769   case Expr::CXXScalarValueInitExprClass:
3770     Out << "cv";
3771     mangleType(E->getType());
3772     Out << "_E";
3773     break;
3774 
3775   case Expr::CXXNoexceptExprClass:
3776     Out << "nx";
3777     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3778     break;
3779 
3780   case Expr::UnaryExprOrTypeTraitExprClass: {
3781     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3782 
3783     if (!SAE->isInstantiationDependent()) {
3784       // Itanium C++ ABI:
3785       //   If the operand of a sizeof or alignof operator is not
3786       //   instantiation-dependent it is encoded as an integer literal
3787       //   reflecting the result of the operator.
3788       //
3789       //   If the result of the operator is implicitly converted to a known
3790       //   integer type, that type is used for the literal; otherwise, the type
3791       //   of std::size_t or std::ptrdiff_t is used.
3792       QualType T = (ImplicitlyConvertedToType.isNull() ||
3793                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3794                                                     : ImplicitlyConvertedToType;
3795       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3796       mangleIntegerLiteral(T, V);
3797       break;
3798     }
3799 
3800     switch(SAE->getKind()) {
3801     case UETT_SizeOf:
3802       Out << 's';
3803       break;
3804     case UETT_AlignOf:
3805       Out << 'a';
3806       break;
3807     case UETT_VecStep: {
3808       DiagnosticsEngine &Diags = Context.getDiags();
3809       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3810                                      "cannot yet mangle vec_step expression");
3811       Diags.Report(DiagID);
3812       return;
3813     }
3814     case UETT_OpenMPRequiredSimdAlign:
3815       DiagnosticsEngine &Diags = Context.getDiags();
3816       unsigned DiagID = Diags.getCustomDiagID(
3817           DiagnosticsEngine::Error,
3818           "cannot yet mangle __builtin_omp_required_simd_align expression");
3819       Diags.Report(DiagID);
3820       return;
3821     }
3822     if (SAE->isArgumentType()) {
3823       Out << 't';
3824       mangleType(SAE->getArgumentType());
3825     } else {
3826       Out << 'z';
3827       mangleExpression(SAE->getArgumentExpr());
3828     }
3829     break;
3830   }
3831 
3832   case Expr::CXXThrowExprClass: {
3833     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3834     //  <expression> ::= tw <expression>  # throw expression
3835     //               ::= tr               # rethrow
3836     if (TE->getSubExpr()) {
3837       Out << "tw";
3838       mangleExpression(TE->getSubExpr());
3839     } else {
3840       Out << "tr";
3841     }
3842     break;
3843   }
3844 
3845   case Expr::CXXTypeidExprClass: {
3846     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3847     //  <expression> ::= ti <type>        # typeid (type)
3848     //               ::= te <expression>  # typeid (expression)
3849     if (TIE->isTypeOperand()) {
3850       Out << "ti";
3851       mangleType(TIE->getTypeOperand(Context.getASTContext()));
3852     } else {
3853       Out << "te";
3854       mangleExpression(TIE->getExprOperand());
3855     }
3856     break;
3857   }
3858 
3859   case Expr::CXXDeleteExprClass: {
3860     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3861     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3862     //               ::= [gs] da <expression>  # [::] delete [] expr
3863     if (DE->isGlobalDelete()) Out << "gs";
3864     Out << (DE->isArrayForm() ? "da" : "dl");
3865     mangleExpression(DE->getArgument());
3866     break;
3867   }
3868 
3869   case Expr::UnaryOperatorClass: {
3870     const UnaryOperator *UO = cast<UnaryOperator>(E);
3871     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3872                        /*Arity=*/1);
3873     mangleExpression(UO->getSubExpr());
3874     break;
3875   }
3876 
3877   case Expr::ArraySubscriptExprClass: {
3878     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3879 
3880     // Array subscript is treated as a syntactically weird form of
3881     // binary operator.
3882     Out << "ix";
3883     mangleExpression(AE->getLHS());
3884     mangleExpression(AE->getRHS());
3885     break;
3886   }
3887 
3888   case Expr::CompoundAssignOperatorClass: // fallthrough
3889   case Expr::BinaryOperatorClass: {
3890     const BinaryOperator *BO = cast<BinaryOperator>(E);
3891     if (BO->getOpcode() == BO_PtrMemD)
3892       Out << "ds";
3893     else
3894       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3895                          /*Arity=*/2);
3896     mangleExpression(BO->getLHS());
3897     mangleExpression(BO->getRHS());
3898     break;
3899   }
3900 
3901   case Expr::ConditionalOperatorClass: {
3902     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3903     mangleOperatorName(OO_Conditional, /*Arity=*/3);
3904     mangleExpression(CO->getCond());
3905     mangleExpression(CO->getLHS(), Arity);
3906     mangleExpression(CO->getRHS(), Arity);
3907     break;
3908   }
3909 
3910   case Expr::ImplicitCastExprClass: {
3911     ImplicitlyConvertedToType = E->getType();
3912     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3913     goto recurse;
3914   }
3915 
3916   case Expr::ObjCBridgedCastExprClass: {
3917     // Mangle ownership casts as a vendor extended operator __bridge,
3918     // __bridge_transfer, or __bridge_retain.
3919     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3920     Out << "v1U" << Kind.size() << Kind;
3921   }
3922   // Fall through to mangle the cast itself.
3923   LLVM_FALLTHROUGH;
3924 
3925   case Expr::CStyleCastExprClass:
3926     mangleCastExpression(E, "cv");
3927     break;
3928 
3929   case Expr::CXXFunctionalCastExprClass: {
3930     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3931     // FIXME: Add isImplicit to CXXConstructExpr.
3932     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3933       if (CCE->getParenOrBraceRange().isInvalid())
3934         Sub = CCE->getArg(0)->IgnoreImplicit();
3935     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3936       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3937     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3938       Out << "tl";
3939       mangleType(E->getType());
3940       mangleInitListElements(IL);
3941       Out << "E";
3942     } else {
3943       mangleCastExpression(E, "cv");
3944     }
3945     break;
3946   }
3947 
3948   case Expr::CXXStaticCastExprClass:
3949     mangleCastExpression(E, "sc");
3950     break;
3951   case Expr::CXXDynamicCastExprClass:
3952     mangleCastExpression(E, "dc");
3953     break;
3954   case Expr::CXXReinterpretCastExprClass:
3955     mangleCastExpression(E, "rc");
3956     break;
3957   case Expr::CXXConstCastExprClass:
3958     mangleCastExpression(E, "cc");
3959     break;
3960 
3961   case Expr::CXXOperatorCallExprClass: {
3962     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3963     unsigned NumArgs = CE->getNumArgs();
3964     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
3965     // (the enclosing MemberExpr covers the syntactic portion).
3966     if (CE->getOperator() != OO_Arrow)
3967       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3968     // Mangle the arguments.
3969     for (unsigned i = 0; i != NumArgs; ++i)
3970       mangleExpression(CE->getArg(i));
3971     break;
3972   }
3973 
3974   case Expr::ParenExprClass:
3975     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3976     break;
3977 
3978   case Expr::DeclRefExprClass: {
3979     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3980 
3981     switch (D->getKind()) {
3982     default:
3983       //  <expr-primary> ::= L <mangled-name> E # external name
3984       Out << 'L';
3985       mangle(D);
3986       Out << 'E';
3987       break;
3988 
3989     case Decl::ParmVar:
3990       mangleFunctionParam(cast<ParmVarDecl>(D));
3991       break;
3992 
3993     case Decl::EnumConstant: {
3994       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3995       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3996       break;
3997     }
3998 
3999     case Decl::NonTypeTemplateParm: {
4000       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4001       mangleTemplateParameter(PD->getIndex());
4002       break;
4003     }
4004 
4005     }
4006 
4007     break;
4008   }
4009 
4010   case Expr::SubstNonTypeTemplateParmPackExprClass:
4011     // FIXME: not clear how to mangle this!
4012     // template <unsigned N...> class A {
4013     //   template <class U...> void foo(U (&x)[N]...);
4014     // };
4015     Out << "_SUBSTPACK_";
4016     break;
4017 
4018   case Expr::FunctionParmPackExprClass: {
4019     // FIXME: not clear how to mangle this!
4020     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4021     Out << "v110_SUBSTPACK";
4022     mangleFunctionParam(FPPE->getParameterPack());
4023     break;
4024   }
4025 
4026   case Expr::DependentScopeDeclRefExprClass: {
4027     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4028     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4029                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4030                          Arity);
4031     break;
4032   }
4033 
4034   case Expr::CXXBindTemporaryExprClass:
4035     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4036     break;
4037 
4038   case Expr::ExprWithCleanupsClass:
4039     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4040     break;
4041 
4042   case Expr::FloatingLiteralClass: {
4043     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4044     Out << 'L';
4045     mangleType(FL->getType());
4046     mangleFloat(FL->getValue());
4047     Out << 'E';
4048     break;
4049   }
4050 
4051   case Expr::CharacterLiteralClass:
4052     Out << 'L';
4053     mangleType(E->getType());
4054     Out << cast<CharacterLiteral>(E)->getValue();
4055     Out << 'E';
4056     break;
4057 
4058   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4059   case Expr::ObjCBoolLiteralExprClass:
4060     Out << "Lb";
4061     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4062     Out << 'E';
4063     break;
4064 
4065   case Expr::CXXBoolLiteralExprClass:
4066     Out << "Lb";
4067     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4068     Out << 'E';
4069     break;
4070 
4071   case Expr::IntegerLiteralClass: {
4072     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4073     if (E->getType()->isSignedIntegerType())
4074       Value.setIsSigned(true);
4075     mangleIntegerLiteral(E->getType(), Value);
4076     break;
4077   }
4078 
4079   case Expr::ImaginaryLiteralClass: {
4080     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4081     // Mangle as if a complex literal.
4082     // Proposal from David Vandevoorde, 2010.06.30.
4083     Out << 'L';
4084     mangleType(E->getType());
4085     if (const FloatingLiteral *Imag =
4086           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4087       // Mangle a floating-point zero of the appropriate type.
4088       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4089       Out << '_';
4090       mangleFloat(Imag->getValue());
4091     } else {
4092       Out << "0_";
4093       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4094       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4095         Value.setIsSigned(true);
4096       mangleNumber(Value);
4097     }
4098     Out << 'E';
4099     break;
4100   }
4101 
4102   case Expr::StringLiteralClass: {
4103     // Revised proposal from David Vandervoorde, 2010.07.15.
4104     Out << 'L';
4105     assert(isa<ConstantArrayType>(E->getType()));
4106     mangleType(E->getType());
4107     Out << 'E';
4108     break;
4109   }
4110 
4111   case Expr::GNUNullExprClass:
4112     // FIXME: should this really be mangled the same as nullptr?
4113     // fallthrough
4114 
4115   case Expr::CXXNullPtrLiteralExprClass: {
4116     Out << "LDnE";
4117     break;
4118   }
4119 
4120   case Expr::PackExpansionExprClass:
4121     Out << "sp";
4122     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4123     break;
4124 
4125   case Expr::SizeOfPackExprClass: {
4126     auto *SPE = cast<SizeOfPackExpr>(E);
4127     if (SPE->isPartiallySubstituted()) {
4128       Out << "sP";
4129       for (const auto &A : SPE->getPartialArguments())
4130         mangleTemplateArg(A);
4131       Out << "E";
4132       break;
4133     }
4134 
4135     Out << "sZ";
4136     const NamedDecl *Pack = SPE->getPack();
4137     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4138       mangleTemplateParameter(TTP->getIndex());
4139     else if (const NonTypeTemplateParmDecl *NTTP
4140                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4141       mangleTemplateParameter(NTTP->getIndex());
4142     else if (const TemplateTemplateParmDecl *TempTP
4143                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4144       mangleTemplateParameter(TempTP->getIndex());
4145     else
4146       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4147     break;
4148   }
4149 
4150   case Expr::MaterializeTemporaryExprClass: {
4151     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
4152     break;
4153   }
4154 
4155   case Expr::CXXFoldExprClass: {
4156     auto *FE = cast<CXXFoldExpr>(E);
4157     if (FE->isLeftFold())
4158       Out << (FE->getInit() ? "fL" : "fl");
4159     else
4160       Out << (FE->getInit() ? "fR" : "fr");
4161 
4162     if (FE->getOperator() == BO_PtrMemD)
4163       Out << "ds";
4164     else
4165       mangleOperatorName(
4166           BinaryOperator::getOverloadedOperator(FE->getOperator()),
4167           /*Arity=*/2);
4168 
4169     if (FE->getLHS())
4170       mangleExpression(FE->getLHS());
4171     if (FE->getRHS())
4172       mangleExpression(FE->getRHS());
4173     break;
4174   }
4175 
4176   case Expr::CXXThisExprClass:
4177     Out << "fpT";
4178     break;
4179 
4180   case Expr::CoawaitExprClass:
4181     // FIXME: Propose a non-vendor mangling.
4182     Out << "v18co_await";
4183     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4184     break;
4185 
4186   case Expr::DependentCoawaitExprClass:
4187     // FIXME: Propose a non-vendor mangling.
4188     Out << "v18co_await";
4189     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4190     break;
4191 
4192   case Expr::CoyieldExprClass:
4193     // FIXME: Propose a non-vendor mangling.
4194     Out << "v18co_yield";
4195     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4196     break;
4197   }
4198 }
4199 
4200 /// Mangle an expression which refers to a parameter variable.
4201 ///
4202 /// <expression>     ::= <function-param>
4203 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4204 /// <function-param> ::= fp <top-level CV-qualifiers>
4205 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4206 /// <function-param> ::= fL <L-1 non-negative number>
4207 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4208 /// <function-param> ::= fL <L-1 non-negative number>
4209 ///                      p <top-level CV-qualifiers>
4210 ///                      <I-1 non-negative number> _         # L > 0, I > 0
4211 ///
4212 /// L is the nesting depth of the parameter, defined as 1 if the
4213 /// parameter comes from the innermost function prototype scope
4214 /// enclosing the current context, 2 if from the next enclosing
4215 /// function prototype scope, and so on, with one special case: if
4216 /// we've processed the full parameter clause for the innermost
4217 /// function type, then L is one less.  This definition conveniently
4218 /// makes it irrelevant whether a function's result type was written
4219 /// trailing or leading, but is otherwise overly complicated; the
4220 /// numbering was first designed without considering references to
4221 /// parameter in locations other than return types, and then the
4222 /// mangling had to be generalized without changing the existing
4223 /// manglings.
4224 ///
4225 /// I is the zero-based index of the parameter within its parameter
4226 /// declaration clause.  Note that the original ABI document describes
4227 /// this using 1-based ordinals.
4228 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4229   unsigned parmDepth = parm->getFunctionScopeDepth();
4230   unsigned parmIndex = parm->getFunctionScopeIndex();
4231 
4232   // Compute 'L'.
4233   // parmDepth does not include the declaring function prototype.
4234   // FunctionTypeDepth does account for that.
4235   assert(parmDepth < FunctionTypeDepth.getDepth());
4236   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4237   if (FunctionTypeDepth.isInResultType())
4238     nestingDepth--;
4239 
4240   if (nestingDepth == 0) {
4241     Out << "fp";
4242   } else {
4243     Out << "fL" << (nestingDepth - 1) << 'p';
4244   }
4245 
4246   // Top-level qualifiers.  We don't have to worry about arrays here,
4247   // because parameters declared as arrays should already have been
4248   // transformed to have pointer type. FIXME: apparently these don't
4249   // get mangled if used as an rvalue of a known non-class type?
4250   assert(!parm->getType()->isArrayType()
4251          && "parameter's type is still an array type?");
4252 
4253   if (const DependentAddressSpaceType *DAST =
4254       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4255     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4256   } else {
4257     mangleQualifiers(parm->getType().getQualifiers());
4258   }
4259 
4260   // Parameter index.
4261   if (parmIndex != 0) {
4262     Out << (parmIndex - 1);
4263   }
4264   Out << '_';
4265 }
4266 
4267 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4268                                        const CXXRecordDecl *InheritedFrom) {
4269   // <ctor-dtor-name> ::= C1  # complete object constructor
4270   //                  ::= C2  # base object constructor
4271   //                  ::= CI1 <type> # complete inheriting constructor
4272   //                  ::= CI2 <type> # base inheriting constructor
4273   //
4274   // In addition, C5 is a comdat name with C1 and C2 in it.
4275   Out << 'C';
4276   if (InheritedFrom)
4277     Out << 'I';
4278   switch (T) {
4279   case Ctor_Complete:
4280     Out << '1';
4281     break;
4282   case Ctor_Base:
4283     Out << '2';
4284     break;
4285   case Ctor_Comdat:
4286     Out << '5';
4287     break;
4288   case Ctor_DefaultClosure:
4289   case Ctor_CopyingClosure:
4290     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4291   }
4292   if (InheritedFrom)
4293     mangleName(InheritedFrom);
4294 }
4295 
4296 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4297   // <ctor-dtor-name> ::= D0  # deleting destructor
4298   //                  ::= D1  # complete object destructor
4299   //                  ::= D2  # base object destructor
4300   //
4301   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4302   switch (T) {
4303   case Dtor_Deleting:
4304     Out << "D0";
4305     break;
4306   case Dtor_Complete:
4307     Out << "D1";
4308     break;
4309   case Dtor_Base:
4310     Out << "D2";
4311     break;
4312   case Dtor_Comdat:
4313     Out << "D5";
4314     break;
4315   }
4316 }
4317 
4318 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4319                                         unsigned NumTemplateArgs) {
4320   // <template-args> ::= I <template-arg>+ E
4321   Out << 'I';
4322   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4323     mangleTemplateArg(TemplateArgs[i].getArgument());
4324   Out << 'E';
4325 }
4326 
4327 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4328   // <template-args> ::= I <template-arg>+ E
4329   Out << 'I';
4330   for (unsigned i = 0, e = AL.size(); i != e; ++i)
4331     mangleTemplateArg(AL[i]);
4332   Out << 'E';
4333 }
4334 
4335 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4336                                         unsigned NumTemplateArgs) {
4337   // <template-args> ::= I <template-arg>+ E
4338   Out << 'I';
4339   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4340     mangleTemplateArg(TemplateArgs[i]);
4341   Out << 'E';
4342 }
4343 
4344 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4345   // <template-arg> ::= <type>              # type or template
4346   //                ::= X <expression> E    # expression
4347   //                ::= <expr-primary>      # simple expressions
4348   //                ::= J <template-arg>* E # argument pack
4349   if (!A.isInstantiationDependent() || A.isDependent())
4350     A = Context.getASTContext().getCanonicalTemplateArgument(A);
4351 
4352   switch (A.getKind()) {
4353   case TemplateArgument::Null:
4354     llvm_unreachable("Cannot mangle NULL template argument");
4355 
4356   case TemplateArgument::Type:
4357     mangleType(A.getAsType());
4358     break;
4359   case TemplateArgument::Template:
4360     // This is mangled as <type>.
4361     mangleType(A.getAsTemplate());
4362     break;
4363   case TemplateArgument::TemplateExpansion:
4364     // <type>  ::= Dp <type>          # pack expansion (C++0x)
4365     Out << "Dp";
4366     mangleType(A.getAsTemplateOrTemplatePattern());
4367     break;
4368   case TemplateArgument::Expression: {
4369     // It's possible to end up with a DeclRefExpr here in certain
4370     // dependent cases, in which case we should mangle as a
4371     // declaration.
4372     const Expr *E = A.getAsExpr()->IgnoreParens();
4373     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4374       const ValueDecl *D = DRE->getDecl();
4375       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4376         Out << 'L';
4377         mangle(D);
4378         Out << 'E';
4379         break;
4380       }
4381     }
4382 
4383     Out << 'X';
4384     mangleExpression(E);
4385     Out << 'E';
4386     break;
4387   }
4388   case TemplateArgument::Integral:
4389     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4390     break;
4391   case TemplateArgument::Declaration: {
4392     //  <expr-primary> ::= L <mangled-name> E # external name
4393     // Clang produces AST's where pointer-to-member-function expressions
4394     // and pointer-to-function expressions are represented as a declaration not
4395     // an expression. We compensate for it here to produce the correct mangling.
4396     ValueDecl *D = A.getAsDecl();
4397     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4398     if (compensateMangling) {
4399       Out << 'X';
4400       mangleOperatorName(OO_Amp, 1);
4401     }
4402 
4403     Out << 'L';
4404     // References to external entities use the mangled name; if the name would
4405     // not normally be mangled then mangle it as unqualified.
4406     mangle(D);
4407     Out << 'E';
4408 
4409     if (compensateMangling)
4410       Out << 'E';
4411 
4412     break;
4413   }
4414   case TemplateArgument::NullPtr: {
4415     //  <expr-primary> ::= L <type> 0 E
4416     Out << 'L';
4417     mangleType(A.getNullPtrType());
4418     Out << "0E";
4419     break;
4420   }
4421   case TemplateArgument::Pack: {
4422     //  <template-arg> ::= J <template-arg>* E
4423     Out << 'J';
4424     for (const auto &P : A.pack_elements())
4425       mangleTemplateArg(P);
4426     Out << 'E';
4427   }
4428   }
4429 }
4430 
4431 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4432   // <template-param> ::= T_    # first template parameter
4433   //                  ::= T <parameter-2 non-negative number> _
4434   if (Index == 0)
4435     Out << "T_";
4436   else
4437     Out << 'T' << (Index - 1) << '_';
4438 }
4439 
4440 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4441   if (SeqID == 1)
4442     Out << '0';
4443   else if (SeqID > 1) {
4444     SeqID--;
4445 
4446     // <seq-id> is encoded in base-36, using digits and upper case letters.
4447     char Buffer[7]; // log(2**32) / log(36) ~= 7
4448     MutableArrayRef<char> BufferRef(Buffer);
4449     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4450 
4451     for (; SeqID != 0; SeqID /= 36) {
4452       unsigned C = SeqID % 36;
4453       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4454     }
4455 
4456     Out.write(I.base(), I - BufferRef.rbegin());
4457   }
4458   Out << '_';
4459 }
4460 
4461 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4462   bool result = mangleSubstitution(tname);
4463   assert(result && "no existing substitution for template name");
4464   (void) result;
4465 }
4466 
4467 // <substitution> ::= S <seq-id> _
4468 //                ::= S_
4469 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4470   // Try one of the standard substitutions first.
4471   if (mangleStandardSubstitution(ND))
4472     return true;
4473 
4474   ND = cast<NamedDecl>(ND->getCanonicalDecl());
4475   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4476 }
4477 
4478 /// Determine whether the given type has any qualifiers that are relevant for
4479 /// substitutions.
4480 static bool hasMangledSubstitutionQualifiers(QualType T) {
4481   Qualifiers Qs = T.getQualifiers();
4482   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4483 }
4484 
4485 bool CXXNameMangler::mangleSubstitution(QualType T) {
4486   if (!hasMangledSubstitutionQualifiers(T)) {
4487     if (const RecordType *RT = T->getAs<RecordType>())
4488       return mangleSubstitution(RT->getDecl());
4489   }
4490 
4491   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4492 
4493   return mangleSubstitution(TypePtr);
4494 }
4495 
4496 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4497   if (TemplateDecl *TD = Template.getAsTemplateDecl())
4498     return mangleSubstitution(TD);
4499 
4500   Template = Context.getASTContext().getCanonicalTemplateName(Template);
4501   return mangleSubstitution(
4502                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4503 }
4504 
4505 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4506   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4507   if (I == Substitutions.end())
4508     return false;
4509 
4510   unsigned SeqID = I->second;
4511   Out << 'S';
4512   mangleSeqID(SeqID);
4513 
4514   return true;
4515 }
4516 
4517 static bool isCharType(QualType T) {
4518   if (T.isNull())
4519     return false;
4520 
4521   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4522     T->isSpecificBuiltinType(BuiltinType::Char_U);
4523 }
4524 
4525 /// Returns whether a given type is a template specialization of a given name
4526 /// with a single argument of type char.
4527 static bool isCharSpecialization(QualType T, const char *Name) {
4528   if (T.isNull())
4529     return false;
4530 
4531   const RecordType *RT = T->getAs<RecordType>();
4532   if (!RT)
4533     return false;
4534 
4535   const ClassTemplateSpecializationDecl *SD =
4536     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4537   if (!SD)
4538     return false;
4539 
4540   if (!isStdNamespace(getEffectiveDeclContext(SD)))
4541     return false;
4542 
4543   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4544   if (TemplateArgs.size() != 1)
4545     return false;
4546 
4547   if (!isCharType(TemplateArgs[0].getAsType()))
4548     return false;
4549 
4550   return SD->getIdentifier()->getName() == Name;
4551 }
4552 
4553 template <std::size_t StrLen>
4554 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4555                                        const char (&Str)[StrLen]) {
4556   if (!SD->getIdentifier()->isStr(Str))
4557     return false;
4558 
4559   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4560   if (TemplateArgs.size() != 2)
4561     return false;
4562 
4563   if (!isCharType(TemplateArgs[0].getAsType()))
4564     return false;
4565 
4566   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4567     return false;
4568 
4569   return true;
4570 }
4571 
4572 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4573   // <substitution> ::= St # ::std::
4574   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4575     if (isStd(NS)) {
4576       Out << "St";
4577       return true;
4578     }
4579   }
4580 
4581   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4582     if (!isStdNamespace(getEffectiveDeclContext(TD)))
4583       return false;
4584 
4585     // <substitution> ::= Sa # ::std::allocator
4586     if (TD->getIdentifier()->isStr("allocator")) {
4587       Out << "Sa";
4588       return true;
4589     }
4590 
4591     // <<substitution> ::= Sb # ::std::basic_string
4592     if (TD->getIdentifier()->isStr("basic_string")) {
4593       Out << "Sb";
4594       return true;
4595     }
4596   }
4597 
4598   if (const ClassTemplateSpecializationDecl *SD =
4599         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4600     if (!isStdNamespace(getEffectiveDeclContext(SD)))
4601       return false;
4602 
4603     //    <substitution> ::= Ss # ::std::basic_string<char,
4604     //                            ::std::char_traits<char>,
4605     //                            ::std::allocator<char> >
4606     if (SD->getIdentifier()->isStr("basic_string")) {
4607       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4608 
4609       if (TemplateArgs.size() != 3)
4610         return false;
4611 
4612       if (!isCharType(TemplateArgs[0].getAsType()))
4613         return false;
4614 
4615       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4616         return false;
4617 
4618       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4619         return false;
4620 
4621       Out << "Ss";
4622       return true;
4623     }
4624 
4625     //    <substitution> ::= Si # ::std::basic_istream<char,
4626     //                            ::std::char_traits<char> >
4627     if (isStreamCharSpecialization(SD, "basic_istream")) {
4628       Out << "Si";
4629       return true;
4630     }
4631 
4632     //    <substitution> ::= So # ::std::basic_ostream<char,
4633     //                            ::std::char_traits<char> >
4634     if (isStreamCharSpecialization(SD, "basic_ostream")) {
4635       Out << "So";
4636       return true;
4637     }
4638 
4639     //    <substitution> ::= Sd # ::std::basic_iostream<char,
4640     //                            ::std::char_traits<char> >
4641     if (isStreamCharSpecialization(SD, "basic_iostream")) {
4642       Out << "Sd";
4643       return true;
4644     }
4645   }
4646   return false;
4647 }
4648 
4649 void CXXNameMangler::addSubstitution(QualType T) {
4650   if (!hasMangledSubstitutionQualifiers(T)) {
4651     if (const RecordType *RT = T->getAs<RecordType>()) {
4652       addSubstitution(RT->getDecl());
4653       return;
4654     }
4655   }
4656 
4657   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4658   addSubstitution(TypePtr);
4659 }
4660 
4661 void CXXNameMangler::addSubstitution(TemplateName Template) {
4662   if (TemplateDecl *TD = Template.getAsTemplateDecl())
4663     return addSubstitution(TD);
4664 
4665   Template = Context.getASTContext().getCanonicalTemplateName(Template);
4666   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4667 }
4668 
4669 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4670   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4671   Substitutions[Ptr] = SeqID++;
4672 }
4673 
4674 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4675   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4676   if (Other->SeqID > SeqID) {
4677     Substitutions.swap(Other->Substitutions);
4678     SeqID = Other->SeqID;
4679   }
4680 }
4681 
4682 CXXNameMangler::AbiTagList
4683 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4684   // When derived abi tags are disabled there is no need to make any list.
4685   if (DisableDerivedAbiTags)
4686     return AbiTagList();
4687 
4688   llvm::raw_null_ostream NullOutStream;
4689   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4690   TrackReturnTypeTags.disableDerivedAbiTags();
4691 
4692   const FunctionProtoType *Proto =
4693       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4694   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4695   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4696   TrackReturnTypeTags.mangleType(Proto->getReturnType());
4697   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4698   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4699 
4700   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4701 }
4702 
4703 CXXNameMangler::AbiTagList
4704 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4705   // When derived abi tags are disabled there is no need to make any list.
4706   if (DisableDerivedAbiTags)
4707     return AbiTagList();
4708 
4709   llvm::raw_null_ostream NullOutStream;
4710   CXXNameMangler TrackVariableType(*this, NullOutStream);
4711   TrackVariableType.disableDerivedAbiTags();
4712 
4713   TrackVariableType.mangleType(VD->getType());
4714 
4715   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4716 }
4717 
4718 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4719                                        const VarDecl *VD) {
4720   llvm::raw_null_ostream NullOutStream;
4721   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4722   TrackAbiTags.mangle(VD);
4723   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4724 }
4725 
4726 //
4727 
4728 /// Mangles the name of the declaration D and emits that name to the given
4729 /// output stream.
4730 ///
4731 /// If the declaration D requires a mangled name, this routine will emit that
4732 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4733 /// and this routine will return false. In this case, the caller should just
4734 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4735 /// name.
4736 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4737                                              raw_ostream &Out) {
4738   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4739           "Invalid mangleName() call, argument is not a variable or function!");
4740   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4741          "Invalid mangleName() call on 'structor decl!");
4742 
4743   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4744                                  getASTContext().getSourceManager(),
4745                                  "Mangling declaration");
4746 
4747   CXXNameMangler Mangler(*this, Out, D);
4748   Mangler.mangle(D);
4749 }
4750 
4751 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4752                                              CXXCtorType Type,
4753                                              raw_ostream &Out) {
4754   CXXNameMangler Mangler(*this, Out, D, Type);
4755   Mangler.mangle(D);
4756 }
4757 
4758 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4759                                              CXXDtorType Type,
4760                                              raw_ostream &Out) {
4761   CXXNameMangler Mangler(*this, Out, D, Type);
4762   Mangler.mangle(D);
4763 }
4764 
4765 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4766                                                    raw_ostream &Out) {
4767   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4768   Mangler.mangle(D);
4769 }
4770 
4771 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4772                                                    raw_ostream &Out) {
4773   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4774   Mangler.mangle(D);
4775 }
4776 
4777 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4778                                            const ThunkInfo &Thunk,
4779                                            raw_ostream &Out) {
4780   //  <special-name> ::= T <call-offset> <base encoding>
4781   //                      # base is the nominal target function of thunk
4782   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4783   //                      # base is the nominal target function of thunk
4784   //                      # first call-offset is 'this' adjustment
4785   //                      # second call-offset is result adjustment
4786 
4787   assert(!isa<CXXDestructorDecl>(MD) &&
4788          "Use mangleCXXDtor for destructor decls!");
4789   CXXNameMangler Mangler(*this, Out);
4790   Mangler.getStream() << "_ZT";
4791   if (!Thunk.Return.isEmpty())
4792     Mangler.getStream() << 'c';
4793 
4794   // Mangle the 'this' pointer adjustment.
4795   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4796                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4797 
4798   // Mangle the return pointer adjustment if there is one.
4799   if (!Thunk.Return.isEmpty())
4800     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4801                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4802 
4803   Mangler.mangleFunctionEncoding(MD);
4804 }
4805 
4806 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4807     const CXXDestructorDecl *DD, CXXDtorType Type,
4808     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4809   //  <special-name> ::= T <call-offset> <base encoding>
4810   //                      # base is the nominal target function of thunk
4811   CXXNameMangler Mangler(*this, Out, DD, Type);
4812   Mangler.getStream() << "_ZT";
4813 
4814   // Mangle the 'this' pointer adjustment.
4815   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4816                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4817 
4818   Mangler.mangleFunctionEncoding(DD);
4819 }
4820 
4821 /// Returns the mangled name for a guard variable for the passed in VarDecl.
4822 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4823                                                          raw_ostream &Out) {
4824   //  <special-name> ::= GV <object name>       # Guard variable for one-time
4825   //                                            # initialization
4826   CXXNameMangler Mangler(*this, Out);
4827   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4828   // be a bug that is fixed in trunk.
4829   Mangler.getStream() << "_ZGV";
4830   Mangler.mangleName(D);
4831 }
4832 
4833 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4834                                                         raw_ostream &Out) {
4835   // These symbols are internal in the Itanium ABI, so the names don't matter.
4836   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4837   // avoid duplicate symbols.
4838   Out << "__cxx_global_var_init";
4839 }
4840 
4841 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4842                                                              raw_ostream &Out) {
4843   // Prefix the mangling of D with __dtor_.
4844   CXXNameMangler Mangler(*this, Out);
4845   Mangler.getStream() << "__dtor_";
4846   if (shouldMangleDeclName(D))
4847     Mangler.mangle(D);
4848   else
4849     Mangler.getStream() << D->getName();
4850 }
4851 
4852 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4853     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4854   CXXNameMangler Mangler(*this, Out);
4855   Mangler.getStream() << "__filt_";
4856   if (shouldMangleDeclName(EnclosingDecl))
4857     Mangler.mangle(EnclosingDecl);
4858   else
4859     Mangler.getStream() << EnclosingDecl->getName();
4860 }
4861 
4862 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4863     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4864   CXXNameMangler Mangler(*this, Out);
4865   Mangler.getStream() << "__fin_";
4866   if (shouldMangleDeclName(EnclosingDecl))
4867     Mangler.mangle(EnclosingDecl);
4868   else
4869     Mangler.getStream() << EnclosingDecl->getName();
4870 }
4871 
4872 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4873                                                             raw_ostream &Out) {
4874   //  <special-name> ::= TH <object name>
4875   CXXNameMangler Mangler(*this, Out);
4876   Mangler.getStream() << "_ZTH";
4877   Mangler.mangleName(D);
4878 }
4879 
4880 void
4881 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4882                                                           raw_ostream &Out) {
4883   //  <special-name> ::= TW <object name>
4884   CXXNameMangler Mangler(*this, Out);
4885   Mangler.getStream() << "_ZTW";
4886   Mangler.mangleName(D);
4887 }
4888 
4889 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4890                                                         unsigned ManglingNumber,
4891                                                         raw_ostream &Out) {
4892   // We match the GCC mangling here.
4893   //  <special-name> ::= GR <object name>
4894   CXXNameMangler Mangler(*this, Out);
4895   Mangler.getStream() << "_ZGR";
4896   Mangler.mangleName(D);
4897   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4898   Mangler.mangleSeqID(ManglingNumber - 1);
4899 }
4900 
4901 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4902                                                raw_ostream &Out) {
4903   // <special-name> ::= TV <type>  # virtual table
4904   CXXNameMangler Mangler(*this, Out);
4905   Mangler.getStream() << "_ZTV";
4906   Mangler.mangleNameOrStandardSubstitution(RD);
4907 }
4908 
4909 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4910                                             raw_ostream &Out) {
4911   // <special-name> ::= TT <type>  # VTT structure
4912   CXXNameMangler Mangler(*this, Out);
4913   Mangler.getStream() << "_ZTT";
4914   Mangler.mangleNameOrStandardSubstitution(RD);
4915 }
4916 
4917 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4918                                                    int64_t Offset,
4919                                                    const CXXRecordDecl *Type,
4920                                                    raw_ostream &Out) {
4921   // <special-name> ::= TC <type> <offset number> _ <base type>
4922   CXXNameMangler Mangler(*this, Out);
4923   Mangler.getStream() << "_ZTC";
4924   Mangler.mangleNameOrStandardSubstitution(RD);
4925   Mangler.getStream() << Offset;
4926   Mangler.getStream() << '_';
4927   Mangler.mangleNameOrStandardSubstitution(Type);
4928 }
4929 
4930 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4931   // <special-name> ::= TI <type>  # typeinfo structure
4932   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4933   CXXNameMangler Mangler(*this, Out);
4934   Mangler.getStream() << "_ZTI";
4935   Mangler.mangleType(Ty);
4936 }
4937 
4938 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4939                                                  raw_ostream &Out) {
4940   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4941   CXXNameMangler Mangler(*this, Out);
4942   Mangler.getStream() << "_ZTS";
4943   Mangler.mangleType(Ty);
4944 }
4945 
4946 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4947   mangleCXXRTTIName(Ty, Out);
4948 }
4949 
4950 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4951   llvm_unreachable("Can't mangle string literals");
4952 }
4953 
4954 ItaniumMangleContext *
4955 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4956   return new ItaniumMangleContextImpl(Context, Diags);
4957 }
4958