1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implements C++ name mangling according to the Itanium C++ ABI, 11 // which is used in GCC 3.2 and newer (and many compilers that are 12 // ABI-compatible with GCC): 13 // 14 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 15 // 16 //===----------------------------------------------------------------------===// 17 #include "clang/AST/Mangle.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclOpenMP.h" 24 #include "clang/AST/DeclTemplate.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/TypeLoc.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 #define MANGLE_CHECKER 0 37 38 #if MANGLE_CHECKER 39 #include <cxxabi.h> 40 #endif 41 42 using namespace clang; 43 44 namespace { 45 46 /// Retrieve the declaration context that should be used when mangling the given 47 /// declaration. 48 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 49 // The ABI assumes that lambda closure types that occur within 50 // default arguments live in the context of the function. However, due to 51 // the way in which Clang parses and creates function declarations, this is 52 // not the case: the lambda closure type ends up living in the context 53 // where the function itself resides, because the function declaration itself 54 // had not yet been created. Fix the context here. 55 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 56 if (RD->isLambda()) 57 if (ParmVarDecl *ContextParam 58 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 59 return ContextParam->getDeclContext(); 60 } 61 62 // Perform the same check for block literals. 63 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 64 if (ParmVarDecl *ContextParam 65 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 66 return ContextParam->getDeclContext(); 67 } 68 69 const DeclContext *DC = D->getDeclContext(); 70 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) { 71 return getEffectiveDeclContext(cast<Decl>(DC)); 72 } 73 74 if (const auto *VD = dyn_cast<VarDecl>(D)) 75 if (VD->isExternC()) 76 return VD->getASTContext().getTranslationUnitDecl(); 77 78 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 79 if (FD->isExternC()) 80 return FD->getASTContext().getTranslationUnitDecl(); 81 82 return DC->getRedeclContext(); 83 } 84 85 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 86 return getEffectiveDeclContext(cast<Decl>(DC)); 87 } 88 89 static bool isLocalContainerContext(const DeclContext *DC) { 90 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 91 } 92 93 static const RecordDecl *GetLocalClassDecl(const Decl *D) { 94 const DeclContext *DC = getEffectiveDeclContext(D); 95 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 96 if (isLocalContainerContext(DC)) 97 return dyn_cast<RecordDecl>(D); 98 D = cast<Decl>(DC); 99 DC = getEffectiveDeclContext(D); 100 } 101 return nullptr; 102 } 103 104 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 105 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 106 return ftd->getTemplatedDecl(); 107 108 return fn; 109 } 110 111 static const NamedDecl *getStructor(const NamedDecl *decl) { 112 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 113 return (fn ? getStructor(fn) : decl); 114 } 115 116 static bool isLambda(const NamedDecl *ND) { 117 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 118 if (!Record) 119 return false; 120 121 return Record->isLambda(); 122 } 123 124 static const unsigned UnknownArity = ~0U; 125 126 class ItaniumMangleContextImpl : public ItaniumMangleContext { 127 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 128 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 129 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 130 131 public: 132 explicit ItaniumMangleContextImpl(ASTContext &Context, 133 DiagnosticsEngine &Diags) 134 : ItaniumMangleContext(Context, Diags) {} 135 136 /// @name Mangler Entry Points 137 /// @{ 138 139 bool shouldMangleCXXName(const NamedDecl *D) override; 140 bool shouldMangleStringLiteral(const StringLiteral *) override { 141 return false; 142 } 143 void mangleCXXName(const NamedDecl *D, raw_ostream &) override; 144 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 145 raw_ostream &) override; 146 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 147 const ThisAdjustment &ThisAdjustment, 148 raw_ostream &) override; 149 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 150 raw_ostream &) override; 151 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 152 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 153 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 154 const CXXRecordDecl *Type, raw_ostream &) override; 155 void mangleCXXRTTI(QualType T, raw_ostream &) override; 156 void mangleCXXRTTIName(QualType T, raw_ostream &) override; 157 void mangleTypeName(QualType T, raw_ostream &) override; 158 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 159 raw_ostream &) override; 160 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 161 raw_ostream &) override; 162 163 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 164 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 165 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 166 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 167 void mangleDynamicAtExitDestructor(const VarDecl *D, 168 raw_ostream &Out) override; 169 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 170 raw_ostream &Out) override; 171 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 172 raw_ostream &Out) override; 173 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 174 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 175 raw_ostream &) override; 176 177 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 178 179 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 180 // Lambda closure types are already numbered. 181 if (isLambda(ND)) 182 return false; 183 184 // Anonymous tags are already numbered. 185 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 186 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 187 return false; 188 } 189 190 // Use the canonical number for externally visible decls. 191 if (ND->isExternallyVisible()) { 192 unsigned discriminator = getASTContext().getManglingNumber(ND); 193 if (discriminator == 1) 194 return false; 195 disc = discriminator - 2; 196 return true; 197 } 198 199 // Make up a reasonable number for internal decls. 200 unsigned &discriminator = Uniquifier[ND]; 201 if (!discriminator) { 202 const DeclContext *DC = getEffectiveDeclContext(ND); 203 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 204 } 205 if (discriminator == 1) 206 return false; 207 disc = discriminator-2; 208 return true; 209 } 210 /// @} 211 }; 212 213 /// Manage the mangling of a single name. 214 class CXXNameMangler { 215 ItaniumMangleContextImpl &Context; 216 raw_ostream &Out; 217 bool NullOut = false; 218 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 219 /// This mode is used when mangler creates another mangler recursively to 220 /// calculate ABI tags for the function return value or the variable type. 221 /// Also it is required to avoid infinite recursion in some cases. 222 bool DisableDerivedAbiTags = false; 223 224 /// The "structor" is the top-level declaration being mangled, if 225 /// that's not a template specialization; otherwise it's the pattern 226 /// for that specialization. 227 const NamedDecl *Structor; 228 unsigned StructorType; 229 230 /// The next substitution sequence number. 231 unsigned SeqID; 232 233 class FunctionTypeDepthState { 234 unsigned Bits; 235 236 enum { InResultTypeMask = 1 }; 237 238 public: 239 FunctionTypeDepthState() : Bits(0) {} 240 241 /// The number of function types we're inside. 242 unsigned getDepth() const { 243 return Bits >> 1; 244 } 245 246 /// True if we're in the return type of the innermost function type. 247 bool isInResultType() const { 248 return Bits & InResultTypeMask; 249 } 250 251 FunctionTypeDepthState push() { 252 FunctionTypeDepthState tmp = *this; 253 Bits = (Bits & ~InResultTypeMask) + 2; 254 return tmp; 255 } 256 257 void enterResultType() { 258 Bits |= InResultTypeMask; 259 } 260 261 void leaveResultType() { 262 Bits &= ~InResultTypeMask; 263 } 264 265 void pop(FunctionTypeDepthState saved) { 266 assert(getDepth() == saved.getDepth() + 1); 267 Bits = saved.Bits; 268 } 269 270 } FunctionTypeDepth; 271 272 // abi_tag is a gcc attribute, taking one or more strings called "tags". 273 // The goal is to annotate against which version of a library an object was 274 // built and to be able to provide backwards compatibility ("dual abi"). 275 // For more information see docs/ItaniumMangleAbiTags.rst. 276 typedef SmallVector<StringRef, 4> AbiTagList; 277 278 // State to gather all implicit and explicit tags used in a mangled name. 279 // Must always have an instance of this while emitting any name to keep 280 // track. 281 class AbiTagState final { 282 public: 283 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 284 Parent = LinkHead; 285 LinkHead = this; 286 } 287 288 // No copy, no move. 289 AbiTagState(const AbiTagState &) = delete; 290 AbiTagState &operator=(const AbiTagState &) = delete; 291 292 ~AbiTagState() { pop(); } 293 294 void write(raw_ostream &Out, const NamedDecl *ND, 295 const AbiTagList *AdditionalAbiTags) { 296 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 297 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 298 assert( 299 !AdditionalAbiTags && 300 "only function and variables need a list of additional abi tags"); 301 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 302 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 303 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 304 AbiTag->tags().end()); 305 } 306 // Don't emit abi tags for namespaces. 307 return; 308 } 309 } 310 311 AbiTagList TagList; 312 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 313 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 314 AbiTag->tags().end()); 315 TagList.insert(TagList.end(), AbiTag->tags().begin(), 316 AbiTag->tags().end()); 317 } 318 319 if (AdditionalAbiTags) { 320 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 321 AdditionalAbiTags->end()); 322 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 323 AdditionalAbiTags->end()); 324 } 325 326 llvm::sort(TagList.begin(), TagList.end()); 327 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 328 329 writeSortedUniqueAbiTags(Out, TagList); 330 } 331 332 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 333 void setUsedAbiTags(const AbiTagList &AbiTags) { 334 UsedAbiTags = AbiTags; 335 } 336 337 const AbiTagList &getEmittedAbiTags() const { 338 return EmittedAbiTags; 339 } 340 341 const AbiTagList &getSortedUniqueUsedAbiTags() { 342 llvm::sort(UsedAbiTags.begin(), UsedAbiTags.end()); 343 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 344 UsedAbiTags.end()); 345 return UsedAbiTags; 346 } 347 348 private: 349 //! All abi tags used implicitly or explicitly. 350 AbiTagList UsedAbiTags; 351 //! All explicit abi tags (i.e. not from namespace). 352 AbiTagList EmittedAbiTags; 353 354 AbiTagState *&LinkHead; 355 AbiTagState *Parent = nullptr; 356 357 void pop() { 358 assert(LinkHead == this && 359 "abi tag link head must point to us on destruction"); 360 if (Parent) { 361 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 362 UsedAbiTags.begin(), UsedAbiTags.end()); 363 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 364 EmittedAbiTags.begin(), 365 EmittedAbiTags.end()); 366 } 367 LinkHead = Parent; 368 } 369 370 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 371 for (const auto &Tag : AbiTags) { 372 EmittedAbiTags.push_back(Tag); 373 Out << "B"; 374 Out << Tag.size(); 375 Out << Tag; 376 } 377 } 378 }; 379 380 AbiTagState *AbiTags = nullptr; 381 AbiTagState AbiTagsRoot; 382 383 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 384 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 385 386 ASTContext &getASTContext() const { return Context.getASTContext(); } 387 388 public: 389 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 390 const NamedDecl *D = nullptr, bool NullOut_ = false) 391 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 392 StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { 393 // These can't be mangled without a ctor type or dtor type. 394 assert(!D || (!isa<CXXDestructorDecl>(D) && 395 !isa<CXXConstructorDecl>(D))); 396 } 397 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 398 const CXXConstructorDecl *D, CXXCtorType Type) 399 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 400 SeqID(0), AbiTagsRoot(AbiTags) { } 401 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 402 const CXXDestructorDecl *D, CXXDtorType Type) 403 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 404 SeqID(0), AbiTagsRoot(AbiTags) { } 405 406 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 407 : Context(Outer.Context), Out(Out_), NullOut(false), 408 Structor(Outer.Structor), StructorType(Outer.StructorType), 409 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 410 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 411 412 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 413 : Context(Outer.Context), Out(Out_), NullOut(true), 414 Structor(Outer.Structor), StructorType(Outer.StructorType), 415 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 416 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 417 418 #if MANGLE_CHECKER 419 ~CXXNameMangler() { 420 if (Out.str()[0] == '\01') 421 return; 422 423 int status = 0; 424 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); 425 assert(status == 0 && "Could not demangle mangled name!"); 426 free(result); 427 } 428 #endif 429 raw_ostream &getStream() { return Out; } 430 431 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 432 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 433 434 void mangle(const NamedDecl *D); 435 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 436 void mangleNumber(const llvm::APSInt &I); 437 void mangleNumber(int64_t Number); 438 void mangleFloat(const llvm::APFloat &F); 439 void mangleFunctionEncoding(const FunctionDecl *FD); 440 void mangleSeqID(unsigned SeqID); 441 void mangleName(const NamedDecl *ND); 442 void mangleType(QualType T); 443 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 444 445 private: 446 447 bool mangleSubstitution(const NamedDecl *ND); 448 bool mangleSubstitution(QualType T); 449 bool mangleSubstitution(TemplateName Template); 450 bool mangleSubstitution(uintptr_t Ptr); 451 452 void mangleExistingSubstitution(TemplateName name); 453 454 bool mangleStandardSubstitution(const NamedDecl *ND); 455 456 void addSubstitution(const NamedDecl *ND) { 457 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 458 459 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 460 } 461 void addSubstitution(QualType T); 462 void addSubstitution(TemplateName Template); 463 void addSubstitution(uintptr_t Ptr); 464 // Destructive copy substitutions from other mangler. 465 void extendSubstitutions(CXXNameMangler* Other); 466 467 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 468 bool recursive = false); 469 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 470 DeclarationName name, 471 const TemplateArgumentLoc *TemplateArgs, 472 unsigned NumTemplateArgs, 473 unsigned KnownArity = UnknownArity); 474 475 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 476 477 void mangleNameWithAbiTags(const NamedDecl *ND, 478 const AbiTagList *AdditionalAbiTags); 479 void mangleModuleName(const Module *M); 480 void mangleModuleNamePrefix(StringRef Name); 481 void mangleTemplateName(const TemplateDecl *TD, 482 const TemplateArgument *TemplateArgs, 483 unsigned NumTemplateArgs); 484 void mangleUnqualifiedName(const NamedDecl *ND, 485 const AbiTagList *AdditionalAbiTags) { 486 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity, 487 AdditionalAbiTags); 488 } 489 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, 490 unsigned KnownArity, 491 const AbiTagList *AdditionalAbiTags); 492 void mangleUnscopedName(const NamedDecl *ND, 493 const AbiTagList *AdditionalAbiTags); 494 void mangleUnscopedTemplateName(const TemplateDecl *ND, 495 const AbiTagList *AdditionalAbiTags); 496 void mangleUnscopedTemplateName(TemplateName, 497 const AbiTagList *AdditionalAbiTags); 498 void mangleSourceName(const IdentifierInfo *II); 499 void mangleRegCallName(const IdentifierInfo *II); 500 void mangleSourceNameWithAbiTags( 501 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 502 void mangleLocalName(const Decl *D, 503 const AbiTagList *AdditionalAbiTags); 504 void mangleBlockForPrefix(const BlockDecl *Block); 505 void mangleUnqualifiedBlock(const BlockDecl *Block); 506 void mangleLambda(const CXXRecordDecl *Lambda); 507 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, 508 const AbiTagList *AdditionalAbiTags, 509 bool NoFunction=false); 510 void mangleNestedName(const TemplateDecl *TD, 511 const TemplateArgument *TemplateArgs, 512 unsigned NumTemplateArgs); 513 void manglePrefix(NestedNameSpecifier *qualifier); 514 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 515 void manglePrefix(QualType type); 516 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false); 517 void mangleTemplatePrefix(TemplateName Template); 518 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 519 StringRef Prefix = ""); 520 void mangleOperatorName(DeclarationName Name, unsigned Arity); 521 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 522 void mangleVendorQualifier(StringRef qualifier); 523 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 524 void mangleRefQualifier(RefQualifierKind RefQualifier); 525 526 void mangleObjCMethodName(const ObjCMethodDecl *MD); 527 528 // Declare manglers for every type class. 529 #define ABSTRACT_TYPE(CLASS, PARENT) 530 #define NON_CANONICAL_TYPE(CLASS, PARENT) 531 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 532 #include "clang/AST/TypeNodes.def" 533 534 void mangleType(const TagType*); 535 void mangleType(TemplateName); 536 static StringRef getCallingConvQualifierName(CallingConv CC); 537 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 538 void mangleExtFunctionInfo(const FunctionType *T); 539 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 540 const FunctionDecl *FD = nullptr); 541 void mangleNeonVectorType(const VectorType *T); 542 void mangleAArch64NeonVectorType(const VectorType *T); 543 544 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 545 void mangleMemberExprBase(const Expr *base, bool isArrow); 546 void mangleMemberExpr(const Expr *base, bool isArrow, 547 NestedNameSpecifier *qualifier, 548 NamedDecl *firstQualifierLookup, 549 DeclarationName name, 550 const TemplateArgumentLoc *TemplateArgs, 551 unsigned NumTemplateArgs, 552 unsigned knownArity); 553 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 554 void mangleInitListElements(const InitListExpr *InitList); 555 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); 556 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 557 void mangleCXXDtorType(CXXDtorType T); 558 559 void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, 560 unsigned NumTemplateArgs); 561 void mangleTemplateArgs(const TemplateArgument *TemplateArgs, 562 unsigned NumTemplateArgs); 563 void mangleTemplateArgs(const TemplateArgumentList &AL); 564 void mangleTemplateArg(TemplateArgument A); 565 566 void mangleTemplateParameter(unsigned Index); 567 568 void mangleFunctionParam(const ParmVarDecl *parm); 569 570 void writeAbiTags(const NamedDecl *ND, 571 const AbiTagList *AdditionalAbiTags); 572 573 // Returns sorted unique list of ABI tags. 574 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 575 // Returns sorted unique list of ABI tags. 576 AbiTagList makeVariableTypeTags(const VarDecl *VD); 577 }; 578 579 } 580 581 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 582 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 583 if (FD) { 584 LanguageLinkage L = FD->getLanguageLinkage(); 585 // Overloadable functions need mangling. 586 if (FD->hasAttr<OverloadableAttr>()) 587 return true; 588 589 // "main" is not mangled. 590 if (FD->isMain()) 591 return false; 592 593 // C++ functions and those whose names are not a simple identifier need 594 // mangling. 595 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 596 return true; 597 598 // C functions are not mangled. 599 if (L == CLanguageLinkage) 600 return false; 601 } 602 603 // Otherwise, no mangling is done outside C++ mode. 604 if (!getASTContext().getLangOpts().CPlusPlus) 605 return false; 606 607 const VarDecl *VD = dyn_cast<VarDecl>(D); 608 if (VD && !isa<DecompositionDecl>(D)) { 609 // C variables are not mangled. 610 if (VD->isExternC()) 611 return false; 612 613 // Variables at global scope with non-internal linkage are not mangled 614 const DeclContext *DC = getEffectiveDeclContext(D); 615 // Check for extern variable declared locally. 616 if (DC->isFunctionOrMethod() && D->hasLinkage()) 617 while (!DC->isNamespace() && !DC->isTranslationUnit()) 618 DC = getEffectiveParentContext(DC); 619 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && 620 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 621 !isa<VarTemplateSpecializationDecl>(D)) 622 return false; 623 } 624 625 return true; 626 } 627 628 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 629 const AbiTagList *AdditionalAbiTags) { 630 assert(AbiTags && "require AbiTagState"); 631 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 632 } 633 634 void CXXNameMangler::mangleSourceNameWithAbiTags( 635 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 636 mangleSourceName(ND->getIdentifier()); 637 writeAbiTags(ND, AdditionalAbiTags); 638 } 639 640 void CXXNameMangler::mangle(const NamedDecl *D) { 641 // <mangled-name> ::= _Z <encoding> 642 // ::= <data name> 643 // ::= <special-name> 644 Out << "_Z"; 645 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 646 mangleFunctionEncoding(FD); 647 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 648 mangleName(VD); 649 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) 650 mangleName(IFD->getAnonField()); 651 else 652 mangleName(cast<FieldDecl>(D)); 653 } 654 655 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { 656 // <encoding> ::= <function name> <bare-function-type> 657 658 // Don't mangle in the type if this isn't a decl we should typically mangle. 659 if (!Context.shouldMangleDeclName(FD)) { 660 mangleName(FD); 661 return; 662 } 663 664 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 665 if (ReturnTypeAbiTags.empty()) { 666 // There are no tags for return type, the simplest case. 667 mangleName(FD); 668 mangleFunctionEncodingBareType(FD); 669 return; 670 } 671 672 // Mangle function name and encoding to temporary buffer. 673 // We have to output name and encoding to the same mangler to get the same 674 // substitution as it will be in final mangling. 675 SmallString<256> FunctionEncodingBuf; 676 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 677 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 678 // Output name of the function. 679 FunctionEncodingMangler.disableDerivedAbiTags(); 680 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 681 682 // Remember length of the function name in the buffer. 683 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 684 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 685 686 // Get tags from return type that are not present in function name or 687 // encoding. 688 const AbiTagList &UsedAbiTags = 689 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 690 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 691 AdditionalAbiTags.erase( 692 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 693 UsedAbiTags.begin(), UsedAbiTags.end(), 694 AdditionalAbiTags.begin()), 695 AdditionalAbiTags.end()); 696 697 // Output name with implicit tags and function encoding from temporary buffer. 698 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 699 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 700 701 // Function encoding could create new substitutions so we have to add 702 // temp mangled substitutions to main mangler. 703 extendSubstitutions(&FunctionEncodingMangler); 704 } 705 706 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 707 if (FD->hasAttr<EnableIfAttr>()) { 708 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 709 Out << "Ua9enable_ifI"; 710 // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use 711 // it here. 712 for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(), 713 E = FD->getAttrs().rend(); 714 I != E; ++I) { 715 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 716 if (!EIA) 717 continue; 718 Out << 'X'; 719 mangleExpression(EIA->getCond()); 720 Out << 'E'; 721 } 722 Out << 'E'; 723 FunctionTypeDepth.pop(Saved); 724 } 725 726 // When mangling an inheriting constructor, the bare function type used is 727 // that of the inherited constructor. 728 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 729 if (auto Inherited = CD->getInheritedConstructor()) 730 FD = Inherited.getConstructor(); 731 732 // Whether the mangling of a function type includes the return type depends on 733 // the context and the nature of the function. The rules for deciding whether 734 // the return type is included are: 735 // 736 // 1. Template functions (names or types) have return types encoded, with 737 // the exceptions listed below. 738 // 2. Function types not appearing as part of a function name mangling, 739 // e.g. parameters, pointer types, etc., have return type encoded, with the 740 // exceptions listed below. 741 // 3. Non-template function names do not have return types encoded. 742 // 743 // The exceptions mentioned in (1) and (2) above, for which the return type is 744 // never included, are 745 // 1. Constructors. 746 // 2. Destructors. 747 // 3. Conversion operator functions, e.g. operator int. 748 bool MangleReturnType = false; 749 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 750 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 751 isa<CXXConversionDecl>(FD))) 752 MangleReturnType = true; 753 754 // Mangle the type of the primary template. 755 FD = PrimaryTemplate->getTemplatedDecl(); 756 } 757 758 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 759 MangleReturnType, FD); 760 } 761 762 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { 763 while (isa<LinkageSpecDecl>(DC)) { 764 DC = getEffectiveParentContext(DC); 765 } 766 767 return DC; 768 } 769 770 /// Return whether a given namespace is the 'std' namespace. 771 static bool isStd(const NamespaceDecl *NS) { 772 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) 773 ->isTranslationUnit()) 774 return false; 775 776 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 777 return II && II->isStr("std"); 778 } 779 780 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 781 // namespace. 782 static bool isStdNamespace(const DeclContext *DC) { 783 if (!DC->isNamespace()) 784 return false; 785 786 return isStd(cast<NamespaceDecl>(DC)); 787 } 788 789 static const TemplateDecl * 790 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 791 // Check if we have a function template. 792 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 793 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 794 TemplateArgs = FD->getTemplateSpecializationArgs(); 795 return TD; 796 } 797 } 798 799 // Check if we have a class template. 800 if (const ClassTemplateSpecializationDecl *Spec = 801 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 802 TemplateArgs = &Spec->getTemplateArgs(); 803 return Spec->getSpecializedTemplate(); 804 } 805 806 // Check if we have a variable template. 807 if (const VarTemplateSpecializationDecl *Spec = 808 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 809 TemplateArgs = &Spec->getTemplateArgs(); 810 return Spec->getSpecializedTemplate(); 811 } 812 813 return nullptr; 814 } 815 816 void CXXNameMangler::mangleName(const NamedDecl *ND) { 817 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 818 // Variables should have implicit tags from its type. 819 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 820 if (VariableTypeAbiTags.empty()) { 821 // Simple case no variable type tags. 822 mangleNameWithAbiTags(VD, nullptr); 823 return; 824 } 825 826 // Mangle variable name to null stream to collect tags. 827 llvm::raw_null_ostream NullOutStream; 828 CXXNameMangler VariableNameMangler(*this, NullOutStream); 829 VariableNameMangler.disableDerivedAbiTags(); 830 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 831 832 // Get tags from variable type that are not present in its name. 833 const AbiTagList &UsedAbiTags = 834 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 835 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 836 AdditionalAbiTags.erase( 837 std::set_difference(VariableTypeAbiTags.begin(), 838 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 839 UsedAbiTags.end(), AdditionalAbiTags.begin()), 840 AdditionalAbiTags.end()); 841 842 // Output name with implicit tags. 843 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 844 } else { 845 mangleNameWithAbiTags(ND, nullptr); 846 } 847 } 848 849 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND, 850 const AbiTagList *AdditionalAbiTags) { 851 // <name> ::= [<module-name>] <nested-name> 852 // ::= [<module-name>] <unscoped-name> 853 // ::= [<module-name>] <unscoped-template-name> <template-args> 854 // ::= <local-name> 855 // 856 const DeclContext *DC = getEffectiveDeclContext(ND); 857 858 // If this is an extern variable declared locally, the relevant DeclContext 859 // is that of the containing namespace, or the translation unit. 860 // FIXME: This is a hack; extern variables declared locally should have 861 // a proper semantic declaration context! 862 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) 863 while (!DC->isNamespace() && !DC->isTranslationUnit()) 864 DC = getEffectiveParentContext(DC); 865 else if (GetLocalClassDecl(ND)) { 866 mangleLocalName(ND, AdditionalAbiTags); 867 return; 868 } 869 870 DC = IgnoreLinkageSpecDecls(DC); 871 872 if (isLocalContainerContext(DC)) { 873 mangleLocalName(ND, AdditionalAbiTags); 874 return; 875 } 876 877 // Do not mangle the owning module for an external linkage declaration. 878 // This enables backwards-compatibility with non-modular code, and is 879 // a valid choice since conflicts are not permitted by C++ Modules TS 880 // [basic.def.odr]/6.2. 881 if (!ND->hasExternalFormalLinkage()) 882 if (Module *M = ND->getOwningModuleForLinkage()) 883 mangleModuleName(M); 884 885 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 886 // Check if we have a template. 887 const TemplateArgumentList *TemplateArgs = nullptr; 888 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 889 mangleUnscopedTemplateName(TD, AdditionalAbiTags); 890 mangleTemplateArgs(*TemplateArgs); 891 return; 892 } 893 894 mangleUnscopedName(ND, AdditionalAbiTags); 895 return; 896 } 897 898 mangleNestedName(ND, DC, AdditionalAbiTags); 899 } 900 901 void CXXNameMangler::mangleModuleName(const Module *M) { 902 // Implement the C++ Modules TS name mangling proposal; see 903 // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile 904 // 905 // <module-name> ::= W <unscoped-name>+ E 906 // ::= W <module-subst> <unscoped-name>* E 907 Out << 'W'; 908 mangleModuleNamePrefix(M->Name); 909 Out << 'E'; 910 } 911 912 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { 913 // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 914 // ::= W <seq-id - 10> _ # otherwise 915 auto It = ModuleSubstitutions.find(Name); 916 if (It != ModuleSubstitutions.end()) { 917 if (It->second < 10) 918 Out << '_' << static_cast<char>('0' + It->second); 919 else 920 Out << 'W' << (It->second - 10) << '_'; 921 return; 922 } 923 924 // FIXME: Preserve hierarchy in module names rather than flattening 925 // them to strings; use Module*s as substitution keys. 926 auto Parts = Name.rsplit('.'); 927 if (Parts.second.empty()) 928 Parts.second = Parts.first; 929 else 930 mangleModuleNamePrefix(Parts.first); 931 932 Out << Parts.second.size() << Parts.second; 933 ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); 934 } 935 936 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 937 const TemplateArgument *TemplateArgs, 938 unsigned NumTemplateArgs) { 939 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); 940 941 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 942 mangleUnscopedTemplateName(TD, nullptr); 943 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 944 } else { 945 mangleNestedName(TD, TemplateArgs, NumTemplateArgs); 946 } 947 } 948 949 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND, 950 const AbiTagList *AdditionalAbiTags) { 951 // <unscoped-name> ::= <unqualified-name> 952 // ::= St <unqualified-name> # ::std:: 953 954 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) 955 Out << "St"; 956 957 mangleUnqualifiedName(ND, AdditionalAbiTags); 958 } 959 960 void CXXNameMangler::mangleUnscopedTemplateName( 961 const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) { 962 // <unscoped-template-name> ::= <unscoped-name> 963 // ::= <substitution> 964 if (mangleSubstitution(ND)) 965 return; 966 967 // <template-template-param> ::= <template-param> 968 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 969 assert(!AdditionalAbiTags && 970 "template template param cannot have abi tags"); 971 mangleTemplateParameter(TTP->getIndex()); 972 } else if (isa<BuiltinTemplateDecl>(ND)) { 973 mangleUnscopedName(ND, AdditionalAbiTags); 974 } else { 975 mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags); 976 } 977 978 addSubstitution(ND); 979 } 980 981 void CXXNameMangler::mangleUnscopedTemplateName( 982 TemplateName Template, const AbiTagList *AdditionalAbiTags) { 983 // <unscoped-template-name> ::= <unscoped-name> 984 // ::= <substitution> 985 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 986 return mangleUnscopedTemplateName(TD, AdditionalAbiTags); 987 988 if (mangleSubstitution(Template)) 989 return; 990 991 assert(!AdditionalAbiTags && 992 "dependent template name cannot have abi tags"); 993 994 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 995 assert(Dependent && "Not a dependent template name?"); 996 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 997 mangleSourceName(Id); 998 else 999 mangleOperatorName(Dependent->getOperator(), UnknownArity); 1000 1001 addSubstitution(Template); 1002 } 1003 1004 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1005 // ABI: 1006 // Floating-point literals are encoded using a fixed-length 1007 // lowercase hexadecimal string corresponding to the internal 1008 // representation (IEEE on Itanium), high-order bytes first, 1009 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1010 // on Itanium. 1011 // The 'without leading zeroes' thing seems to be an editorial 1012 // mistake; see the discussion on cxx-abi-dev beginning on 1013 // 2012-01-16. 1014 1015 // Our requirements here are just barely weird enough to justify 1016 // using a custom algorithm instead of post-processing APInt::toString(). 1017 1018 llvm::APInt valueBits = f.bitcastToAPInt(); 1019 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1020 assert(numCharacters != 0); 1021 1022 // Allocate a buffer of the right number of characters. 1023 SmallVector<char, 20> buffer(numCharacters); 1024 1025 // Fill the buffer left-to-right. 1026 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1027 // The bit-index of the next hex digit. 1028 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1029 1030 // Project out 4 bits starting at 'digitIndex'. 1031 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1032 hexDigit >>= (digitBitIndex % 64); 1033 hexDigit &= 0xF; 1034 1035 // Map that over to a lowercase hex digit. 1036 static const char charForHex[16] = { 1037 '0', '1', '2', '3', '4', '5', '6', '7', 1038 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1039 }; 1040 buffer[stringIndex] = charForHex[hexDigit]; 1041 } 1042 1043 Out.write(buffer.data(), numCharacters); 1044 } 1045 1046 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1047 if (Value.isSigned() && Value.isNegative()) { 1048 Out << 'n'; 1049 Value.abs().print(Out, /*signed*/ false); 1050 } else { 1051 Value.print(Out, /*signed*/ false); 1052 } 1053 } 1054 1055 void CXXNameMangler::mangleNumber(int64_t Number) { 1056 // <number> ::= [n] <non-negative decimal integer> 1057 if (Number < 0) { 1058 Out << 'n'; 1059 Number = -Number; 1060 } 1061 1062 Out << Number; 1063 } 1064 1065 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1066 // <call-offset> ::= h <nv-offset> _ 1067 // ::= v <v-offset> _ 1068 // <nv-offset> ::= <offset number> # non-virtual base override 1069 // <v-offset> ::= <offset number> _ <virtual offset number> 1070 // # virtual base override, with vcall offset 1071 if (!Virtual) { 1072 Out << 'h'; 1073 mangleNumber(NonVirtual); 1074 Out << '_'; 1075 return; 1076 } 1077 1078 Out << 'v'; 1079 mangleNumber(NonVirtual); 1080 Out << '_'; 1081 mangleNumber(Virtual); 1082 Out << '_'; 1083 } 1084 1085 void CXXNameMangler::manglePrefix(QualType type) { 1086 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1087 if (!mangleSubstitution(QualType(TST, 0))) { 1088 mangleTemplatePrefix(TST->getTemplateName()); 1089 1090 // FIXME: GCC does not appear to mangle the template arguments when 1091 // the template in question is a dependent template name. Should we 1092 // emulate that badness? 1093 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); 1094 addSubstitution(QualType(TST, 0)); 1095 } 1096 } else if (const auto *DTST = 1097 type->getAs<DependentTemplateSpecializationType>()) { 1098 if (!mangleSubstitution(QualType(DTST, 0))) { 1099 TemplateName Template = getASTContext().getDependentTemplateName( 1100 DTST->getQualifier(), DTST->getIdentifier()); 1101 mangleTemplatePrefix(Template); 1102 1103 // FIXME: GCC does not appear to mangle the template arguments when 1104 // the template in question is a dependent template name. Should we 1105 // emulate that badness? 1106 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); 1107 addSubstitution(QualType(DTST, 0)); 1108 } 1109 } else { 1110 // We use the QualType mangle type variant here because it handles 1111 // substitutions. 1112 mangleType(type); 1113 } 1114 } 1115 1116 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1117 /// 1118 /// \param recursive - true if this is being called recursively, 1119 /// i.e. if there is more prefix "to the right". 1120 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1121 bool recursive) { 1122 1123 // x, ::x 1124 // <unresolved-name> ::= [gs] <base-unresolved-name> 1125 1126 // T::x / decltype(p)::x 1127 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1128 1129 // T::N::x /decltype(p)::N::x 1130 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1131 // <base-unresolved-name> 1132 1133 // A::x, N::y, A<T>::z; "gs" means leading "::" 1134 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1135 // <base-unresolved-name> 1136 1137 switch (qualifier->getKind()) { 1138 case NestedNameSpecifier::Global: 1139 Out << "gs"; 1140 1141 // We want an 'sr' unless this is the entire NNS. 1142 if (recursive) 1143 Out << "sr"; 1144 1145 // We never want an 'E' here. 1146 return; 1147 1148 case NestedNameSpecifier::Super: 1149 llvm_unreachable("Can't mangle __super specifier"); 1150 1151 case NestedNameSpecifier::Namespace: 1152 if (qualifier->getPrefix()) 1153 mangleUnresolvedPrefix(qualifier->getPrefix(), 1154 /*recursive*/ true); 1155 else 1156 Out << "sr"; 1157 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1158 break; 1159 case NestedNameSpecifier::NamespaceAlias: 1160 if (qualifier->getPrefix()) 1161 mangleUnresolvedPrefix(qualifier->getPrefix(), 1162 /*recursive*/ true); 1163 else 1164 Out << "sr"; 1165 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1166 break; 1167 1168 case NestedNameSpecifier::TypeSpec: 1169 case NestedNameSpecifier::TypeSpecWithTemplate: { 1170 const Type *type = qualifier->getAsType(); 1171 1172 // We only want to use an unresolved-type encoding if this is one of: 1173 // - a decltype 1174 // - a template type parameter 1175 // - a template template parameter with arguments 1176 // In all of these cases, we should have no prefix. 1177 if (qualifier->getPrefix()) { 1178 mangleUnresolvedPrefix(qualifier->getPrefix(), 1179 /*recursive*/ true); 1180 } else { 1181 // Otherwise, all the cases want this. 1182 Out << "sr"; 1183 } 1184 1185 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1186 return; 1187 1188 break; 1189 } 1190 1191 case NestedNameSpecifier::Identifier: 1192 // Member expressions can have these without prefixes. 1193 if (qualifier->getPrefix()) 1194 mangleUnresolvedPrefix(qualifier->getPrefix(), 1195 /*recursive*/ true); 1196 else 1197 Out << "sr"; 1198 1199 mangleSourceName(qualifier->getAsIdentifier()); 1200 // An Identifier has no type information, so we can't emit abi tags for it. 1201 break; 1202 } 1203 1204 // If this was the innermost part of the NNS, and we fell out to 1205 // here, append an 'E'. 1206 if (!recursive) 1207 Out << 'E'; 1208 } 1209 1210 /// Mangle an unresolved-name, which is generally used for names which 1211 /// weren't resolved to specific entities. 1212 void CXXNameMangler::mangleUnresolvedName( 1213 NestedNameSpecifier *qualifier, DeclarationName name, 1214 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1215 unsigned knownArity) { 1216 if (qualifier) mangleUnresolvedPrefix(qualifier); 1217 switch (name.getNameKind()) { 1218 // <base-unresolved-name> ::= <simple-id> 1219 case DeclarationName::Identifier: 1220 mangleSourceName(name.getAsIdentifierInfo()); 1221 break; 1222 // <base-unresolved-name> ::= dn <destructor-name> 1223 case DeclarationName::CXXDestructorName: 1224 Out << "dn"; 1225 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1226 break; 1227 // <base-unresolved-name> ::= on <operator-name> 1228 case DeclarationName::CXXConversionFunctionName: 1229 case DeclarationName::CXXLiteralOperatorName: 1230 case DeclarationName::CXXOperatorName: 1231 Out << "on"; 1232 mangleOperatorName(name, knownArity); 1233 break; 1234 case DeclarationName::CXXConstructorName: 1235 llvm_unreachable("Can't mangle a constructor name!"); 1236 case DeclarationName::CXXUsingDirective: 1237 llvm_unreachable("Can't mangle a using directive name!"); 1238 case DeclarationName::CXXDeductionGuideName: 1239 llvm_unreachable("Can't mangle a deduction guide name!"); 1240 case DeclarationName::ObjCMultiArgSelector: 1241 case DeclarationName::ObjCOneArgSelector: 1242 case DeclarationName::ObjCZeroArgSelector: 1243 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1244 } 1245 1246 // The <simple-id> and on <operator-name> productions end in an optional 1247 // <template-args>. 1248 if (TemplateArgs) 1249 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 1250 } 1251 1252 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 1253 DeclarationName Name, 1254 unsigned KnownArity, 1255 const AbiTagList *AdditionalAbiTags) { 1256 unsigned Arity = KnownArity; 1257 // <unqualified-name> ::= <operator-name> 1258 // ::= <ctor-dtor-name> 1259 // ::= <source-name> 1260 switch (Name.getNameKind()) { 1261 case DeclarationName::Identifier: { 1262 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1263 1264 // We mangle decomposition declarations as the names of their bindings. 1265 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1266 // FIXME: Non-standard mangling for decomposition declarations: 1267 // 1268 // <unqualified-name> ::= DC <source-name>* E 1269 // 1270 // These can never be referenced across translation units, so we do 1271 // not need a cross-vendor mangling for anything other than demanglers. 1272 // Proposed on cxx-abi-dev on 2016-08-12 1273 Out << "DC"; 1274 for (auto *BD : DD->bindings()) 1275 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1276 Out << 'E'; 1277 writeAbiTags(ND, AdditionalAbiTags); 1278 break; 1279 } 1280 1281 if (II) { 1282 // Match GCC's naming convention for internal linkage symbols, for 1283 // symbols that are not actually visible outside of this TU. GCC 1284 // distinguishes between internal and external linkage symbols in 1285 // its mangling, to support cases like this that were valid C++ prior 1286 // to DR426: 1287 // 1288 // void test() { extern void foo(); } 1289 // static void foo(); 1290 // 1291 // Don't bother with the L marker for names in anonymous namespaces; the 1292 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1293 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1294 // implying internal linkage. 1295 if (ND && ND->getFormalLinkage() == InternalLinkage && 1296 !ND->isExternallyVisible() && 1297 getEffectiveDeclContext(ND)->isFileContext() && 1298 !ND->isInAnonymousNamespace()) 1299 Out << 'L'; 1300 1301 auto *FD = dyn_cast<FunctionDecl>(ND); 1302 bool IsRegCall = FD && 1303 FD->getType()->castAs<FunctionType>()->getCallConv() == 1304 clang::CC_X86RegCall; 1305 if (IsRegCall) 1306 mangleRegCallName(II); 1307 else 1308 mangleSourceName(II); 1309 1310 writeAbiTags(ND, AdditionalAbiTags); 1311 break; 1312 } 1313 1314 // Otherwise, an anonymous entity. We must have a declaration. 1315 assert(ND && "mangling empty name without declaration"); 1316 1317 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1318 if (NS->isAnonymousNamespace()) { 1319 // This is how gcc mangles these names. 1320 Out << "12_GLOBAL__N_1"; 1321 break; 1322 } 1323 } 1324 1325 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1326 // We must have an anonymous union or struct declaration. 1327 const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl(); 1328 1329 // Itanium C++ ABI 5.1.2: 1330 // 1331 // For the purposes of mangling, the name of an anonymous union is 1332 // considered to be the name of the first named data member found by a 1333 // pre-order, depth-first, declaration-order walk of the data members of 1334 // the anonymous union. If there is no such data member (i.e., if all of 1335 // the data members in the union are unnamed), then there is no way for 1336 // a program to refer to the anonymous union, and there is therefore no 1337 // need to mangle its name. 1338 assert(RD->isAnonymousStructOrUnion() 1339 && "Expected anonymous struct or union!"); 1340 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1341 1342 // It's actually possible for various reasons for us to get here 1343 // with an empty anonymous struct / union. Fortunately, it 1344 // doesn't really matter what name we generate. 1345 if (!FD) break; 1346 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1347 1348 mangleSourceName(FD->getIdentifier()); 1349 // Not emitting abi tags: internal name anyway. 1350 break; 1351 } 1352 1353 // Class extensions have no name as a category, and it's possible 1354 // for them to be the semantic parent of certain declarations 1355 // (primarily, tag decls defined within declarations). Such 1356 // declarations will always have internal linkage, so the name 1357 // doesn't really matter, but we shouldn't crash on them. For 1358 // safety, just handle all ObjC containers here. 1359 if (isa<ObjCContainerDecl>(ND)) 1360 break; 1361 1362 // We must have an anonymous struct. 1363 const TagDecl *TD = cast<TagDecl>(ND); 1364 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1365 assert(TD->getDeclContext() == D->getDeclContext() && 1366 "Typedef should not be in another decl context!"); 1367 assert(D->getDeclName().getAsIdentifierInfo() && 1368 "Typedef was not named!"); 1369 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1370 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1371 // Explicit abi tags are still possible; take from underlying type, not 1372 // from typedef. 1373 writeAbiTags(TD, nullptr); 1374 break; 1375 } 1376 1377 // <unnamed-type-name> ::= <closure-type-name> 1378 // 1379 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1380 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'. 1381 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1382 if (Record->isLambda() && Record->getLambdaManglingNumber()) { 1383 assert(!AdditionalAbiTags && 1384 "Lambda type cannot have additional abi tags"); 1385 mangleLambda(Record); 1386 break; 1387 } 1388 } 1389 1390 if (TD->isExternallyVisible()) { 1391 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); 1392 Out << "Ut"; 1393 if (UnnamedMangle > 1) 1394 Out << UnnamedMangle - 2; 1395 Out << '_'; 1396 writeAbiTags(TD, AdditionalAbiTags); 1397 break; 1398 } 1399 1400 // Get a unique id for the anonymous struct. If it is not a real output 1401 // ID doesn't matter so use fake one. 1402 unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); 1403 1404 // Mangle it as a source name in the form 1405 // [n] $_<id> 1406 // where n is the length of the string. 1407 SmallString<8> Str; 1408 Str += "$_"; 1409 Str += llvm::utostr(AnonStructId); 1410 1411 Out << Str.size(); 1412 Out << Str; 1413 break; 1414 } 1415 1416 case DeclarationName::ObjCZeroArgSelector: 1417 case DeclarationName::ObjCOneArgSelector: 1418 case DeclarationName::ObjCMultiArgSelector: 1419 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1420 1421 case DeclarationName::CXXConstructorName: { 1422 const CXXRecordDecl *InheritedFrom = nullptr; 1423 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1424 if (auto Inherited = 1425 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1426 InheritedFrom = Inherited.getConstructor()->getParent(); 1427 InheritedTemplateArgs = 1428 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1429 } 1430 1431 if (ND == Structor) 1432 // If the named decl is the C++ constructor we're mangling, use the type 1433 // we were given. 1434 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1435 else 1436 // Otherwise, use the complete constructor name. This is relevant if a 1437 // class with a constructor is declared within a constructor. 1438 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1439 1440 // FIXME: The template arguments are part of the enclosing prefix or 1441 // nested-name, but it's more convenient to mangle them here. 1442 if (InheritedTemplateArgs) 1443 mangleTemplateArgs(*InheritedTemplateArgs); 1444 1445 writeAbiTags(ND, AdditionalAbiTags); 1446 break; 1447 } 1448 1449 case DeclarationName::CXXDestructorName: 1450 if (ND == Structor) 1451 // If the named decl is the C++ destructor we're mangling, use the type we 1452 // were given. 1453 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1454 else 1455 // Otherwise, use the complete destructor name. This is relevant if a 1456 // class with a destructor is declared within a destructor. 1457 mangleCXXDtorType(Dtor_Complete); 1458 writeAbiTags(ND, AdditionalAbiTags); 1459 break; 1460 1461 case DeclarationName::CXXOperatorName: 1462 if (ND && Arity == UnknownArity) { 1463 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1464 1465 // If we have a member function, we need to include the 'this' pointer. 1466 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1467 if (!MD->isStatic()) 1468 Arity++; 1469 } 1470 LLVM_FALLTHROUGH; 1471 case DeclarationName::CXXConversionFunctionName: 1472 case DeclarationName::CXXLiteralOperatorName: 1473 mangleOperatorName(Name, Arity); 1474 writeAbiTags(ND, AdditionalAbiTags); 1475 break; 1476 1477 case DeclarationName::CXXDeductionGuideName: 1478 llvm_unreachable("Can't mangle a deduction guide name!"); 1479 1480 case DeclarationName::CXXUsingDirective: 1481 llvm_unreachable("Can't mangle a using directive name!"); 1482 } 1483 } 1484 1485 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1486 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1487 // <number> ::= [n] <non-negative decimal integer> 1488 // <identifier> ::= <unqualified source code identifier> 1489 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1490 << II->getName(); 1491 } 1492 1493 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1494 // <source-name> ::= <positive length number> <identifier> 1495 // <number> ::= [n] <non-negative decimal integer> 1496 // <identifier> ::= <unqualified source code identifier> 1497 Out << II->getLength() << II->getName(); 1498 } 1499 1500 void CXXNameMangler::mangleNestedName(const NamedDecl *ND, 1501 const DeclContext *DC, 1502 const AbiTagList *AdditionalAbiTags, 1503 bool NoFunction) { 1504 // <nested-name> 1505 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1506 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1507 // <template-args> E 1508 1509 Out << 'N'; 1510 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1511 Qualifiers MethodQuals = 1512 Qualifiers::fromCVRUMask(Method->getTypeQualifiers()); 1513 // We do not consider restrict a distinguishing attribute for overloading 1514 // purposes so we must not mangle it. 1515 MethodQuals.removeRestrict(); 1516 mangleQualifiers(MethodQuals); 1517 mangleRefQualifier(Method->getRefQualifier()); 1518 } 1519 1520 // Check if we have a template. 1521 const TemplateArgumentList *TemplateArgs = nullptr; 1522 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1523 mangleTemplatePrefix(TD, NoFunction); 1524 mangleTemplateArgs(*TemplateArgs); 1525 } 1526 else { 1527 manglePrefix(DC, NoFunction); 1528 mangleUnqualifiedName(ND, AdditionalAbiTags); 1529 } 1530 1531 Out << 'E'; 1532 } 1533 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1534 const TemplateArgument *TemplateArgs, 1535 unsigned NumTemplateArgs) { 1536 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1537 1538 Out << 'N'; 1539 1540 mangleTemplatePrefix(TD); 1541 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 1542 1543 Out << 'E'; 1544 } 1545 1546 void CXXNameMangler::mangleLocalName(const Decl *D, 1547 const AbiTagList *AdditionalAbiTags) { 1548 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1549 // := Z <function encoding> E s [<discriminator>] 1550 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1551 // _ <entity name> 1552 // <discriminator> := _ <non-negative number> 1553 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1554 const RecordDecl *RD = GetLocalClassDecl(D); 1555 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); 1556 1557 Out << 'Z'; 1558 1559 { 1560 AbiTagState LocalAbiTags(AbiTags); 1561 1562 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1563 mangleObjCMethodName(MD); 1564 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1565 mangleBlockForPrefix(BD); 1566 else 1567 mangleFunctionEncoding(cast<FunctionDecl>(DC)); 1568 1569 // Implicit ABI tags (from namespace) are not available in the following 1570 // entity; reset to actually emitted tags, which are available. 1571 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1572 } 1573 1574 Out << 'E'; 1575 1576 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1577 // be a bug that is fixed in trunk. 1578 1579 if (RD) { 1580 // The parameter number is omitted for the last parameter, 0 for the 1581 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1582 // <entity name> will of course contain a <closure-type-name>: Its 1583 // numbering will be local to the particular argument in which it appears 1584 // -- other default arguments do not affect its encoding. 1585 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1586 if (CXXRD && CXXRD->isLambda()) { 1587 if (const ParmVarDecl *Parm 1588 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1589 if (const FunctionDecl *Func 1590 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1591 Out << 'd'; 1592 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1593 if (Num > 1) 1594 mangleNumber(Num - 2); 1595 Out << '_'; 1596 } 1597 } 1598 } 1599 1600 // Mangle the name relative to the closest enclosing function. 1601 // equality ok because RD derived from ND above 1602 if (D == RD) { 1603 mangleUnqualifiedName(RD, AdditionalAbiTags); 1604 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1605 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); 1606 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1607 mangleUnqualifiedBlock(BD); 1608 } else { 1609 const NamedDecl *ND = cast<NamedDecl>(D); 1610 mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags, 1611 true /*NoFunction*/); 1612 } 1613 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1614 // Mangle a block in a default parameter; see above explanation for 1615 // lambdas. 1616 if (const ParmVarDecl *Parm 1617 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1618 if (const FunctionDecl *Func 1619 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1620 Out << 'd'; 1621 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1622 if (Num > 1) 1623 mangleNumber(Num - 2); 1624 Out << '_'; 1625 } 1626 } 1627 1628 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1629 mangleUnqualifiedBlock(BD); 1630 } else { 1631 mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags); 1632 } 1633 1634 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1635 unsigned disc; 1636 if (Context.getNextDiscriminator(ND, disc)) { 1637 if (disc < 10) 1638 Out << '_' << disc; 1639 else 1640 Out << "__" << disc << '_'; 1641 } 1642 } 1643 } 1644 1645 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1646 if (GetLocalClassDecl(Block)) { 1647 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1648 return; 1649 } 1650 const DeclContext *DC = getEffectiveDeclContext(Block); 1651 if (isLocalContainerContext(DC)) { 1652 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1653 return; 1654 } 1655 manglePrefix(getEffectiveDeclContext(Block)); 1656 mangleUnqualifiedBlock(Block); 1657 } 1658 1659 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1660 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1661 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1662 Context->getDeclContext()->isRecord()) { 1663 const auto *ND = cast<NamedDecl>(Context); 1664 if (ND->getIdentifier()) { 1665 mangleSourceNameWithAbiTags(ND); 1666 Out << 'M'; 1667 } 1668 } 1669 } 1670 1671 // If we have a block mangling number, use it. 1672 unsigned Number = Block->getBlockManglingNumber(); 1673 // Otherwise, just make up a number. It doesn't matter what it is because 1674 // the symbol in question isn't externally visible. 1675 if (!Number) 1676 Number = Context.getBlockId(Block, false); 1677 else { 1678 // Stored mangling numbers are 1-based. 1679 --Number; 1680 } 1681 Out << "Ub"; 1682 if (Number > 0) 1683 Out << Number - 1; 1684 Out << '_'; 1685 } 1686 1687 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 1688 // If the context of a closure type is an initializer for a class member 1689 // (static or nonstatic), it is encoded in a qualified name with a final 1690 // <prefix> of the form: 1691 // 1692 // <data-member-prefix> := <member source-name> M 1693 // 1694 // Technically, the data-member-prefix is part of the <prefix>. However, 1695 // since a closure type will always be mangled with a prefix, it's easier 1696 // to emit that last part of the prefix here. 1697 if (Decl *Context = Lambda->getLambdaContextDecl()) { 1698 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1699 !isa<ParmVarDecl>(Context)) { 1700 // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a 1701 // reasonable mangling here. 1702 if (const IdentifierInfo *Name 1703 = cast<NamedDecl>(Context)->getIdentifier()) { 1704 mangleSourceName(Name); 1705 const TemplateArgumentList *TemplateArgs = nullptr; 1706 if (isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 1707 mangleTemplateArgs(*TemplateArgs); 1708 Out << 'M'; 1709 } 1710 } 1711 } 1712 1713 Out << "Ul"; 1714 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> 1715 getAs<FunctionProtoType>(); 1716 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 1717 Lambda->getLambdaStaticInvoker()); 1718 Out << "E"; 1719 1720 // The number is omitted for the first closure type with a given 1721 // <lambda-sig> in a given context; it is n-2 for the nth closure type 1722 // (in lexical order) with that same <lambda-sig> and context. 1723 // 1724 // The AST keeps track of the number for us. 1725 unsigned Number = Lambda->getLambdaManglingNumber(); 1726 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 1727 if (Number > 1) 1728 mangleNumber(Number - 2); 1729 Out << '_'; 1730 } 1731 1732 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 1733 switch (qualifier->getKind()) { 1734 case NestedNameSpecifier::Global: 1735 // nothing 1736 return; 1737 1738 case NestedNameSpecifier::Super: 1739 llvm_unreachable("Can't mangle __super specifier"); 1740 1741 case NestedNameSpecifier::Namespace: 1742 mangleName(qualifier->getAsNamespace()); 1743 return; 1744 1745 case NestedNameSpecifier::NamespaceAlias: 1746 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 1747 return; 1748 1749 case NestedNameSpecifier::TypeSpec: 1750 case NestedNameSpecifier::TypeSpecWithTemplate: 1751 manglePrefix(QualType(qualifier->getAsType(), 0)); 1752 return; 1753 1754 case NestedNameSpecifier::Identifier: 1755 // Member expressions can have these without prefixes, but that 1756 // should end up in mangleUnresolvedPrefix instead. 1757 assert(qualifier->getPrefix()); 1758 manglePrefix(qualifier->getPrefix()); 1759 1760 mangleSourceName(qualifier->getAsIdentifier()); 1761 return; 1762 } 1763 1764 llvm_unreachable("unexpected nested name specifier"); 1765 } 1766 1767 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 1768 // <prefix> ::= <prefix> <unqualified-name> 1769 // ::= <template-prefix> <template-args> 1770 // ::= <template-param> 1771 // ::= # empty 1772 // ::= <substitution> 1773 1774 DC = IgnoreLinkageSpecDecls(DC); 1775 1776 if (DC->isTranslationUnit()) 1777 return; 1778 1779 if (NoFunction && isLocalContainerContext(DC)) 1780 return; 1781 1782 assert(!isLocalContainerContext(DC)); 1783 1784 const NamedDecl *ND = cast<NamedDecl>(DC); 1785 if (mangleSubstitution(ND)) 1786 return; 1787 1788 // Check if we have a template. 1789 const TemplateArgumentList *TemplateArgs = nullptr; 1790 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1791 mangleTemplatePrefix(TD); 1792 mangleTemplateArgs(*TemplateArgs); 1793 } else { 1794 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 1795 mangleUnqualifiedName(ND, nullptr); 1796 } 1797 1798 addSubstitution(ND); 1799 } 1800 1801 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 1802 // <template-prefix> ::= <prefix> <template unqualified-name> 1803 // ::= <template-param> 1804 // ::= <substitution> 1805 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 1806 return mangleTemplatePrefix(TD); 1807 1808 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) 1809 manglePrefix(Qualified->getQualifier()); 1810 1811 if (OverloadedTemplateStorage *Overloaded 1812 = Template.getAsOverloadedTemplate()) { 1813 mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(), 1814 UnknownArity, nullptr); 1815 return; 1816 } 1817 1818 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 1819 assert(Dependent && "Unknown template name kind?"); 1820 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 1821 manglePrefix(Qualifier); 1822 mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr); 1823 } 1824 1825 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND, 1826 bool NoFunction) { 1827 // <template-prefix> ::= <prefix> <template unqualified-name> 1828 // ::= <template-param> 1829 // ::= <substitution> 1830 // <template-template-param> ::= <template-param> 1831 // <substitution> 1832 1833 if (mangleSubstitution(ND)) 1834 return; 1835 1836 // <template-template-param> ::= <template-param> 1837 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1838 mangleTemplateParameter(TTP->getIndex()); 1839 } else { 1840 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 1841 if (isa<BuiltinTemplateDecl>(ND)) 1842 mangleUnqualifiedName(ND, nullptr); 1843 else 1844 mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr); 1845 } 1846 1847 addSubstitution(ND); 1848 } 1849 1850 /// Mangles a template name under the production <type>. Required for 1851 /// template template arguments. 1852 /// <type> ::= <class-enum-type> 1853 /// ::= <template-param> 1854 /// ::= <substitution> 1855 void CXXNameMangler::mangleType(TemplateName TN) { 1856 if (mangleSubstitution(TN)) 1857 return; 1858 1859 TemplateDecl *TD = nullptr; 1860 1861 switch (TN.getKind()) { 1862 case TemplateName::QualifiedTemplate: 1863 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); 1864 goto HaveDecl; 1865 1866 case TemplateName::Template: 1867 TD = TN.getAsTemplateDecl(); 1868 goto HaveDecl; 1869 1870 HaveDecl: 1871 if (isa<TemplateTemplateParmDecl>(TD)) 1872 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); 1873 else 1874 mangleName(TD); 1875 break; 1876 1877 case TemplateName::OverloadedTemplate: 1878 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 1879 1880 case TemplateName::DependentTemplate: { 1881 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 1882 assert(Dependent->isIdentifier()); 1883 1884 // <class-enum-type> ::= <name> 1885 // <name> ::= <nested-name> 1886 mangleUnresolvedPrefix(Dependent->getQualifier()); 1887 mangleSourceName(Dependent->getIdentifier()); 1888 break; 1889 } 1890 1891 case TemplateName::SubstTemplateTemplateParm: { 1892 // Substituted template parameters are mangled as the substituted 1893 // template. This will check for the substitution twice, which is 1894 // fine, but we have to return early so that we don't try to *add* 1895 // the substitution twice. 1896 SubstTemplateTemplateParmStorage *subst 1897 = TN.getAsSubstTemplateTemplateParm(); 1898 mangleType(subst->getReplacement()); 1899 return; 1900 } 1901 1902 case TemplateName::SubstTemplateTemplateParmPack: { 1903 // FIXME: not clear how to mangle this! 1904 // template <template <class> class T...> class A { 1905 // template <template <class> class U...> void foo(B<T,U> x...); 1906 // }; 1907 Out << "_SUBSTPACK_"; 1908 break; 1909 } 1910 } 1911 1912 addSubstitution(TN); 1913 } 1914 1915 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 1916 StringRef Prefix) { 1917 // Only certain other types are valid as prefixes; enumerate them. 1918 switch (Ty->getTypeClass()) { 1919 case Type::Builtin: 1920 case Type::Complex: 1921 case Type::Adjusted: 1922 case Type::Decayed: 1923 case Type::Pointer: 1924 case Type::BlockPointer: 1925 case Type::LValueReference: 1926 case Type::RValueReference: 1927 case Type::MemberPointer: 1928 case Type::ConstantArray: 1929 case Type::IncompleteArray: 1930 case Type::VariableArray: 1931 case Type::DependentSizedArray: 1932 case Type::DependentAddressSpace: 1933 case Type::DependentSizedExtVector: 1934 case Type::Vector: 1935 case Type::ExtVector: 1936 case Type::FunctionProto: 1937 case Type::FunctionNoProto: 1938 case Type::Paren: 1939 case Type::Attributed: 1940 case Type::Auto: 1941 case Type::DeducedTemplateSpecialization: 1942 case Type::PackExpansion: 1943 case Type::ObjCObject: 1944 case Type::ObjCInterface: 1945 case Type::ObjCObjectPointer: 1946 case Type::ObjCTypeParam: 1947 case Type::Atomic: 1948 case Type::Pipe: 1949 llvm_unreachable("type is illegal as a nested name specifier"); 1950 1951 case Type::SubstTemplateTypeParmPack: 1952 // FIXME: not clear how to mangle this! 1953 // template <class T...> class A { 1954 // template <class U...> void foo(decltype(T::foo(U())) x...); 1955 // }; 1956 Out << "_SUBSTPACK_"; 1957 break; 1958 1959 // <unresolved-type> ::= <template-param> 1960 // ::= <decltype> 1961 // ::= <template-template-param> <template-args> 1962 // (this last is not official yet) 1963 case Type::TypeOfExpr: 1964 case Type::TypeOf: 1965 case Type::Decltype: 1966 case Type::TemplateTypeParm: 1967 case Type::UnaryTransform: 1968 case Type::SubstTemplateTypeParm: 1969 unresolvedType: 1970 // Some callers want a prefix before the mangled type. 1971 Out << Prefix; 1972 1973 // This seems to do everything we want. It's not really 1974 // sanctioned for a substituted template parameter, though. 1975 mangleType(Ty); 1976 1977 // We never want to print 'E' directly after an unresolved-type, 1978 // so we return directly. 1979 return true; 1980 1981 case Type::Typedef: 1982 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 1983 break; 1984 1985 case Type::UnresolvedUsing: 1986 mangleSourceNameWithAbiTags( 1987 cast<UnresolvedUsingType>(Ty)->getDecl()); 1988 break; 1989 1990 case Type::Enum: 1991 case Type::Record: 1992 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 1993 break; 1994 1995 case Type::TemplateSpecialization: { 1996 const TemplateSpecializationType *TST = 1997 cast<TemplateSpecializationType>(Ty); 1998 TemplateName TN = TST->getTemplateName(); 1999 switch (TN.getKind()) { 2000 case TemplateName::Template: 2001 case TemplateName::QualifiedTemplate: { 2002 TemplateDecl *TD = TN.getAsTemplateDecl(); 2003 2004 // If the base is a template template parameter, this is an 2005 // unresolved type. 2006 assert(TD && "no template for template specialization type"); 2007 if (isa<TemplateTemplateParmDecl>(TD)) 2008 goto unresolvedType; 2009 2010 mangleSourceNameWithAbiTags(TD); 2011 break; 2012 } 2013 2014 case TemplateName::OverloadedTemplate: 2015 case TemplateName::DependentTemplate: 2016 llvm_unreachable("invalid base for a template specialization type"); 2017 2018 case TemplateName::SubstTemplateTemplateParm: { 2019 SubstTemplateTemplateParmStorage *subst = 2020 TN.getAsSubstTemplateTemplateParm(); 2021 mangleExistingSubstitution(subst->getReplacement()); 2022 break; 2023 } 2024 2025 case TemplateName::SubstTemplateTemplateParmPack: { 2026 // FIXME: not clear how to mangle this! 2027 // template <template <class U> class T...> class A { 2028 // template <class U...> void foo(decltype(T<U>::foo) x...); 2029 // }; 2030 Out << "_SUBSTPACK_"; 2031 break; 2032 } 2033 } 2034 2035 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); 2036 break; 2037 } 2038 2039 case Type::InjectedClassName: 2040 mangleSourceNameWithAbiTags( 2041 cast<InjectedClassNameType>(Ty)->getDecl()); 2042 break; 2043 2044 case Type::DependentName: 2045 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2046 break; 2047 2048 case Type::DependentTemplateSpecialization: { 2049 const DependentTemplateSpecializationType *DTST = 2050 cast<DependentTemplateSpecializationType>(Ty); 2051 mangleSourceName(DTST->getIdentifier()); 2052 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); 2053 break; 2054 } 2055 2056 case Type::Elaborated: 2057 return mangleUnresolvedTypeOrSimpleId( 2058 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2059 } 2060 2061 return false; 2062 } 2063 2064 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2065 switch (Name.getNameKind()) { 2066 case DeclarationName::CXXConstructorName: 2067 case DeclarationName::CXXDestructorName: 2068 case DeclarationName::CXXDeductionGuideName: 2069 case DeclarationName::CXXUsingDirective: 2070 case DeclarationName::Identifier: 2071 case DeclarationName::ObjCMultiArgSelector: 2072 case DeclarationName::ObjCOneArgSelector: 2073 case DeclarationName::ObjCZeroArgSelector: 2074 llvm_unreachable("Not an operator name"); 2075 2076 case DeclarationName::CXXConversionFunctionName: 2077 // <operator-name> ::= cv <type> # (cast) 2078 Out << "cv"; 2079 mangleType(Name.getCXXNameType()); 2080 break; 2081 2082 case DeclarationName::CXXLiteralOperatorName: 2083 Out << "li"; 2084 mangleSourceName(Name.getCXXLiteralIdentifier()); 2085 return; 2086 2087 case DeclarationName::CXXOperatorName: 2088 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2089 break; 2090 } 2091 } 2092 2093 void 2094 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2095 switch (OO) { 2096 // <operator-name> ::= nw # new 2097 case OO_New: Out << "nw"; break; 2098 // ::= na # new[] 2099 case OO_Array_New: Out << "na"; break; 2100 // ::= dl # delete 2101 case OO_Delete: Out << "dl"; break; 2102 // ::= da # delete[] 2103 case OO_Array_Delete: Out << "da"; break; 2104 // ::= ps # + (unary) 2105 // ::= pl # + (binary or unknown) 2106 case OO_Plus: 2107 Out << (Arity == 1? "ps" : "pl"); break; 2108 // ::= ng # - (unary) 2109 // ::= mi # - (binary or unknown) 2110 case OO_Minus: 2111 Out << (Arity == 1? "ng" : "mi"); break; 2112 // ::= ad # & (unary) 2113 // ::= an # & (binary or unknown) 2114 case OO_Amp: 2115 Out << (Arity == 1? "ad" : "an"); break; 2116 // ::= de # * (unary) 2117 // ::= ml # * (binary or unknown) 2118 case OO_Star: 2119 // Use binary when unknown. 2120 Out << (Arity == 1? "de" : "ml"); break; 2121 // ::= co # ~ 2122 case OO_Tilde: Out << "co"; break; 2123 // ::= dv # / 2124 case OO_Slash: Out << "dv"; break; 2125 // ::= rm # % 2126 case OO_Percent: Out << "rm"; break; 2127 // ::= or # | 2128 case OO_Pipe: Out << "or"; break; 2129 // ::= eo # ^ 2130 case OO_Caret: Out << "eo"; break; 2131 // ::= aS # = 2132 case OO_Equal: Out << "aS"; break; 2133 // ::= pL # += 2134 case OO_PlusEqual: Out << "pL"; break; 2135 // ::= mI # -= 2136 case OO_MinusEqual: Out << "mI"; break; 2137 // ::= mL # *= 2138 case OO_StarEqual: Out << "mL"; break; 2139 // ::= dV # /= 2140 case OO_SlashEqual: Out << "dV"; break; 2141 // ::= rM # %= 2142 case OO_PercentEqual: Out << "rM"; break; 2143 // ::= aN # &= 2144 case OO_AmpEqual: Out << "aN"; break; 2145 // ::= oR # |= 2146 case OO_PipeEqual: Out << "oR"; break; 2147 // ::= eO # ^= 2148 case OO_CaretEqual: Out << "eO"; break; 2149 // ::= ls # << 2150 case OO_LessLess: Out << "ls"; break; 2151 // ::= rs # >> 2152 case OO_GreaterGreater: Out << "rs"; break; 2153 // ::= lS # <<= 2154 case OO_LessLessEqual: Out << "lS"; break; 2155 // ::= rS # >>= 2156 case OO_GreaterGreaterEqual: Out << "rS"; break; 2157 // ::= eq # == 2158 case OO_EqualEqual: Out << "eq"; break; 2159 // ::= ne # != 2160 case OO_ExclaimEqual: Out << "ne"; break; 2161 // ::= lt # < 2162 case OO_Less: Out << "lt"; break; 2163 // ::= gt # > 2164 case OO_Greater: Out << "gt"; break; 2165 // ::= le # <= 2166 case OO_LessEqual: Out << "le"; break; 2167 // ::= ge # >= 2168 case OO_GreaterEqual: Out << "ge"; break; 2169 // ::= nt # ! 2170 case OO_Exclaim: Out << "nt"; break; 2171 // ::= aa # && 2172 case OO_AmpAmp: Out << "aa"; break; 2173 // ::= oo # || 2174 case OO_PipePipe: Out << "oo"; break; 2175 // ::= pp # ++ 2176 case OO_PlusPlus: Out << "pp"; break; 2177 // ::= mm # -- 2178 case OO_MinusMinus: Out << "mm"; break; 2179 // ::= cm # , 2180 case OO_Comma: Out << "cm"; break; 2181 // ::= pm # ->* 2182 case OO_ArrowStar: Out << "pm"; break; 2183 // ::= pt # -> 2184 case OO_Arrow: Out << "pt"; break; 2185 // ::= cl # () 2186 case OO_Call: Out << "cl"; break; 2187 // ::= ix # [] 2188 case OO_Subscript: Out << "ix"; break; 2189 2190 // ::= qu # ? 2191 // The conditional operator can't be overloaded, but we still handle it when 2192 // mangling expressions. 2193 case OO_Conditional: Out << "qu"; break; 2194 // Proposal on cxx-abi-dev, 2015-10-21. 2195 // ::= aw # co_await 2196 case OO_Coawait: Out << "aw"; break; 2197 // Proposed in cxx-abi github issue 43. 2198 // ::= ss # <=> 2199 case OO_Spaceship: Out << "ss"; break; 2200 2201 case OO_None: 2202 case NUM_OVERLOADED_OPERATORS: 2203 llvm_unreachable("Not an overloaded operator"); 2204 } 2205 } 2206 2207 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2208 // Vendor qualifiers come first and if they are order-insensitive they must 2209 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2210 2211 // <type> ::= U <addrspace-expr> 2212 if (DAST) { 2213 Out << "U2ASI"; 2214 mangleExpression(DAST->getAddrSpaceExpr()); 2215 Out << "E"; 2216 } 2217 2218 // Address space qualifiers start with an ordinary letter. 2219 if (Quals.hasAddressSpace()) { 2220 // Address space extension: 2221 // 2222 // <type> ::= U <target-addrspace> 2223 // <type> ::= U <OpenCL-addrspace> 2224 // <type> ::= U <CUDA-addrspace> 2225 2226 SmallString<64> ASString; 2227 LangAS AS = Quals.getAddressSpace(); 2228 2229 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2230 // <target-addrspace> ::= "AS" <address-space-number> 2231 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2232 if (TargetAS != 0) 2233 ASString = "AS" + llvm::utostr(TargetAS); 2234 } else { 2235 switch (AS) { 2236 default: llvm_unreachable("Not a language specific address space"); 2237 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2238 // "private"| "generic" ] 2239 case LangAS::opencl_global: ASString = "CLglobal"; break; 2240 case LangAS::opencl_local: ASString = "CLlocal"; break; 2241 case LangAS::opencl_constant: ASString = "CLconstant"; break; 2242 case LangAS::opencl_private: ASString = "CLprivate"; break; 2243 case LangAS::opencl_generic: ASString = "CLgeneric"; break; 2244 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2245 case LangAS::cuda_device: ASString = "CUdevice"; break; 2246 case LangAS::cuda_constant: ASString = "CUconstant"; break; 2247 case LangAS::cuda_shared: ASString = "CUshared"; break; 2248 } 2249 } 2250 if (!ASString.empty()) 2251 mangleVendorQualifier(ASString); 2252 } 2253 2254 // The ARC ownership qualifiers start with underscores. 2255 // Objective-C ARC Extension: 2256 // 2257 // <type> ::= U "__strong" 2258 // <type> ::= U "__weak" 2259 // <type> ::= U "__autoreleasing" 2260 // 2261 // Note: we emit __weak first to preserve the order as 2262 // required by the Itanium ABI. 2263 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2264 mangleVendorQualifier("__weak"); 2265 2266 // __unaligned (from -fms-extensions) 2267 if (Quals.hasUnaligned()) 2268 mangleVendorQualifier("__unaligned"); 2269 2270 // Remaining ARC ownership qualifiers. 2271 switch (Quals.getObjCLifetime()) { 2272 case Qualifiers::OCL_None: 2273 break; 2274 2275 case Qualifiers::OCL_Weak: 2276 // Do nothing as we already handled this case above. 2277 break; 2278 2279 case Qualifiers::OCL_Strong: 2280 mangleVendorQualifier("__strong"); 2281 break; 2282 2283 case Qualifiers::OCL_Autoreleasing: 2284 mangleVendorQualifier("__autoreleasing"); 2285 break; 2286 2287 case Qualifiers::OCL_ExplicitNone: 2288 // The __unsafe_unretained qualifier is *not* mangled, so that 2289 // __unsafe_unretained types in ARC produce the same manglings as the 2290 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2291 // better ABI compatibility. 2292 // 2293 // It's safe to do this because unqualified 'id' won't show up 2294 // in any type signatures that need to be mangled. 2295 break; 2296 } 2297 2298 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2299 if (Quals.hasRestrict()) 2300 Out << 'r'; 2301 if (Quals.hasVolatile()) 2302 Out << 'V'; 2303 if (Quals.hasConst()) 2304 Out << 'K'; 2305 } 2306 2307 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2308 Out << 'U' << name.size() << name; 2309 } 2310 2311 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2312 // <ref-qualifier> ::= R # lvalue reference 2313 // ::= O # rvalue-reference 2314 switch (RefQualifier) { 2315 case RQ_None: 2316 break; 2317 2318 case RQ_LValue: 2319 Out << 'R'; 2320 break; 2321 2322 case RQ_RValue: 2323 Out << 'O'; 2324 break; 2325 } 2326 } 2327 2328 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2329 Context.mangleObjCMethodName(MD, Out); 2330 } 2331 2332 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2333 ASTContext &Ctx) { 2334 if (Quals) 2335 return true; 2336 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2337 return true; 2338 if (Ty->isOpenCLSpecificType()) 2339 return true; 2340 if (Ty->isBuiltinType()) 2341 return false; 2342 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2343 // substitution candidates. 2344 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2345 isa<AutoType>(Ty)) 2346 return false; 2347 return true; 2348 } 2349 2350 void CXXNameMangler::mangleType(QualType T) { 2351 // If our type is instantiation-dependent but not dependent, we mangle 2352 // it as it was written in the source, removing any top-level sugar. 2353 // Otherwise, use the canonical type. 2354 // 2355 // FIXME: This is an approximation of the instantiation-dependent name 2356 // mangling rules, since we should really be using the type as written and 2357 // augmented via semantic analysis (i.e., with implicit conversions and 2358 // default template arguments) for any instantiation-dependent type. 2359 // Unfortunately, that requires several changes to our AST: 2360 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2361 // uniqued, so that we can handle substitutions properly 2362 // - Default template arguments will need to be represented in the 2363 // TemplateSpecializationType, since they need to be mangled even though 2364 // they aren't written. 2365 // - Conversions on non-type template arguments need to be expressed, since 2366 // they can affect the mangling of sizeof/alignof. 2367 // 2368 // FIXME: This is wrong when mapping to the canonical type for a dependent 2369 // type discards instantiation-dependent portions of the type, such as for: 2370 // 2371 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2372 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2373 // 2374 // It's also wrong in the opposite direction when instantiation-dependent, 2375 // canonically-equivalent types differ in some irrelevant portion of inner 2376 // type sugar. In such cases, we fail to form correct substitutions, eg: 2377 // 2378 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2379 // 2380 // We should instead canonicalize the non-instantiation-dependent parts, 2381 // regardless of whether the type as a whole is dependent or instantiation 2382 // dependent. 2383 if (!T->isInstantiationDependentType() || T->isDependentType()) 2384 T = T.getCanonicalType(); 2385 else { 2386 // Desugar any types that are purely sugar. 2387 do { 2388 // Don't desugar through template specialization types that aren't 2389 // type aliases. We need to mangle the template arguments as written. 2390 if (const TemplateSpecializationType *TST 2391 = dyn_cast<TemplateSpecializationType>(T)) 2392 if (!TST->isTypeAlias()) 2393 break; 2394 2395 QualType Desugared 2396 = T.getSingleStepDesugaredType(Context.getASTContext()); 2397 if (Desugared == T) 2398 break; 2399 2400 T = Desugared; 2401 } while (true); 2402 } 2403 SplitQualType split = T.split(); 2404 Qualifiers quals = split.Quals; 2405 const Type *ty = split.Ty; 2406 2407 bool isSubstitutable = 2408 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2409 if (isSubstitutable && mangleSubstitution(T)) 2410 return; 2411 2412 // If we're mangling a qualified array type, push the qualifiers to 2413 // the element type. 2414 if (quals && isa<ArrayType>(T)) { 2415 ty = Context.getASTContext().getAsArrayType(T); 2416 quals = Qualifiers(); 2417 2418 // Note that we don't update T: we want to add the 2419 // substitution at the original type. 2420 } 2421 2422 if (quals || ty->isDependentAddressSpaceType()) { 2423 if (const DependentAddressSpaceType *DAST = 2424 dyn_cast<DependentAddressSpaceType>(ty)) { 2425 SplitQualType splitDAST = DAST->getPointeeType().split(); 2426 mangleQualifiers(splitDAST.Quals, DAST); 2427 mangleType(QualType(splitDAST.Ty, 0)); 2428 } else { 2429 mangleQualifiers(quals); 2430 2431 // Recurse: even if the qualified type isn't yet substitutable, 2432 // the unqualified type might be. 2433 mangleType(QualType(ty, 0)); 2434 } 2435 } else { 2436 switch (ty->getTypeClass()) { 2437 #define ABSTRACT_TYPE(CLASS, PARENT) 2438 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2439 case Type::CLASS: \ 2440 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2441 return; 2442 #define TYPE(CLASS, PARENT) \ 2443 case Type::CLASS: \ 2444 mangleType(static_cast<const CLASS##Type*>(ty)); \ 2445 break; 2446 #include "clang/AST/TypeNodes.def" 2447 } 2448 } 2449 2450 // Add the substitution. 2451 if (isSubstitutable) 2452 addSubstitution(T); 2453 } 2454 2455 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 2456 if (!mangleStandardSubstitution(ND)) 2457 mangleName(ND); 2458 } 2459 2460 void CXXNameMangler::mangleType(const BuiltinType *T) { 2461 // <type> ::= <builtin-type> 2462 // <builtin-type> ::= v # void 2463 // ::= w # wchar_t 2464 // ::= b # bool 2465 // ::= c # char 2466 // ::= a # signed char 2467 // ::= h # unsigned char 2468 // ::= s # short 2469 // ::= t # unsigned short 2470 // ::= i # int 2471 // ::= j # unsigned int 2472 // ::= l # long 2473 // ::= m # unsigned long 2474 // ::= x # long long, __int64 2475 // ::= y # unsigned long long, __int64 2476 // ::= n # __int128 2477 // ::= o # unsigned __int128 2478 // ::= f # float 2479 // ::= d # double 2480 // ::= e # long double, __float80 2481 // ::= g # __float128 2482 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 2483 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 2484 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 2485 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 2486 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 2487 // ::= Di # char32_t 2488 // ::= Ds # char16_t 2489 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 2490 // ::= u <source-name> # vendor extended type 2491 std::string type_name; 2492 switch (T->getKind()) { 2493 case BuiltinType::Void: 2494 Out << 'v'; 2495 break; 2496 case BuiltinType::Bool: 2497 Out << 'b'; 2498 break; 2499 case BuiltinType::Char_U: 2500 case BuiltinType::Char_S: 2501 Out << 'c'; 2502 break; 2503 case BuiltinType::UChar: 2504 Out << 'h'; 2505 break; 2506 case BuiltinType::UShort: 2507 Out << 't'; 2508 break; 2509 case BuiltinType::UInt: 2510 Out << 'j'; 2511 break; 2512 case BuiltinType::ULong: 2513 Out << 'm'; 2514 break; 2515 case BuiltinType::ULongLong: 2516 Out << 'y'; 2517 break; 2518 case BuiltinType::UInt128: 2519 Out << 'o'; 2520 break; 2521 case BuiltinType::SChar: 2522 Out << 'a'; 2523 break; 2524 case BuiltinType::WChar_S: 2525 case BuiltinType::WChar_U: 2526 Out << 'w'; 2527 break; 2528 case BuiltinType::Char8: 2529 Out << "Du"; 2530 break; 2531 case BuiltinType::Char16: 2532 Out << "Ds"; 2533 break; 2534 case BuiltinType::Char32: 2535 Out << "Di"; 2536 break; 2537 case BuiltinType::Short: 2538 Out << 's'; 2539 break; 2540 case BuiltinType::Int: 2541 Out << 'i'; 2542 break; 2543 case BuiltinType::Long: 2544 Out << 'l'; 2545 break; 2546 case BuiltinType::LongLong: 2547 Out << 'x'; 2548 break; 2549 case BuiltinType::Int128: 2550 Out << 'n'; 2551 break; 2552 case BuiltinType::Float16: 2553 Out << "DF16_"; 2554 break; 2555 case BuiltinType::Half: 2556 Out << "Dh"; 2557 break; 2558 case BuiltinType::Float: 2559 Out << 'f'; 2560 break; 2561 case BuiltinType::Double: 2562 Out << 'd'; 2563 break; 2564 case BuiltinType::LongDouble: 2565 Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble() 2566 ? 'g' 2567 : 'e'); 2568 break; 2569 case BuiltinType::Float128: 2570 if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()) 2571 Out << "U10__float128"; // Match the GCC mangling 2572 else 2573 Out << 'g'; 2574 break; 2575 case BuiltinType::NullPtr: 2576 Out << "Dn"; 2577 break; 2578 2579 #define BUILTIN_TYPE(Id, SingletonId) 2580 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2581 case BuiltinType::Id: 2582 #include "clang/AST/BuiltinTypes.def" 2583 case BuiltinType::Dependent: 2584 if (!NullOut) 2585 llvm_unreachable("mangling a placeholder type"); 2586 break; 2587 case BuiltinType::ObjCId: 2588 Out << "11objc_object"; 2589 break; 2590 case BuiltinType::ObjCClass: 2591 Out << "10objc_class"; 2592 break; 2593 case BuiltinType::ObjCSel: 2594 Out << "13objc_selector"; 2595 break; 2596 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2597 case BuiltinType::Id: \ 2598 type_name = "ocl_" #ImgType "_" #Suffix; \ 2599 Out << type_name.size() << type_name; \ 2600 break; 2601 #include "clang/Basic/OpenCLImageTypes.def" 2602 case BuiltinType::OCLSampler: 2603 Out << "11ocl_sampler"; 2604 break; 2605 case BuiltinType::OCLEvent: 2606 Out << "9ocl_event"; 2607 break; 2608 case BuiltinType::OCLClkEvent: 2609 Out << "12ocl_clkevent"; 2610 break; 2611 case BuiltinType::OCLQueue: 2612 Out << "9ocl_queue"; 2613 break; 2614 case BuiltinType::OCLReserveID: 2615 Out << "13ocl_reserveid"; 2616 break; 2617 } 2618 } 2619 2620 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 2621 switch (CC) { 2622 case CC_C: 2623 return ""; 2624 2625 case CC_X86StdCall: 2626 case CC_X86FastCall: 2627 case CC_X86ThisCall: 2628 case CC_X86VectorCall: 2629 case CC_X86Pascal: 2630 case CC_Win64: 2631 case CC_X86_64SysV: 2632 case CC_X86RegCall: 2633 case CC_AAPCS: 2634 case CC_AAPCS_VFP: 2635 case CC_IntelOclBicc: 2636 case CC_SpirFunction: 2637 case CC_OpenCLKernel: 2638 case CC_PreserveMost: 2639 case CC_PreserveAll: 2640 // FIXME: we should be mangling all of the above. 2641 return ""; 2642 2643 case CC_Swift: 2644 return "swiftcall"; 2645 } 2646 llvm_unreachable("bad calling convention"); 2647 } 2648 2649 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 2650 // Fast path. 2651 if (T->getExtInfo() == FunctionType::ExtInfo()) 2652 return; 2653 2654 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 2655 // This will get more complicated in the future if we mangle other 2656 // things here; but for now, since we mangle ns_returns_retained as 2657 // a qualifier on the result type, we can get away with this: 2658 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 2659 if (!CCQualifier.empty()) 2660 mangleVendorQualifier(CCQualifier); 2661 2662 // FIXME: regparm 2663 // FIXME: noreturn 2664 } 2665 2666 void 2667 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 2668 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 2669 2670 // Note that these are *not* substitution candidates. Demanglers might 2671 // have trouble with this if the parameter type is fully substituted. 2672 2673 switch (PI.getABI()) { 2674 case ParameterABI::Ordinary: 2675 break; 2676 2677 // All of these start with "swift", so they come before "ns_consumed". 2678 case ParameterABI::SwiftContext: 2679 case ParameterABI::SwiftErrorResult: 2680 case ParameterABI::SwiftIndirectResult: 2681 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 2682 break; 2683 } 2684 2685 if (PI.isConsumed()) 2686 mangleVendorQualifier("ns_consumed"); 2687 2688 if (PI.isNoEscape()) 2689 mangleVendorQualifier("noescape"); 2690 } 2691 2692 // <type> ::= <function-type> 2693 // <function-type> ::= [<CV-qualifiers>] F [Y] 2694 // <bare-function-type> [<ref-qualifier>] E 2695 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 2696 mangleExtFunctionInfo(T); 2697 2698 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 2699 // e.g. "const" in "int (A::*)() const". 2700 mangleQualifiers(Qualifiers::fromCVRUMask(T->getTypeQuals())); 2701 2702 // Mangle instantiation-dependent exception-specification, if present, 2703 // per cxx-abi-dev proposal on 2016-10-11. 2704 if (T->hasInstantiationDependentExceptionSpec()) { 2705 if (isComputedNoexcept(T->getExceptionSpecType())) { 2706 Out << "DO"; 2707 mangleExpression(T->getNoexceptExpr()); 2708 Out << "E"; 2709 } else { 2710 assert(T->getExceptionSpecType() == EST_Dynamic); 2711 Out << "Dw"; 2712 for (auto ExceptTy : T->exceptions()) 2713 mangleType(ExceptTy); 2714 Out << "E"; 2715 } 2716 } else if (T->isNothrow()) { 2717 Out << "Do"; 2718 } 2719 2720 Out << 'F'; 2721 2722 // FIXME: We don't have enough information in the AST to produce the 'Y' 2723 // encoding for extern "C" function types. 2724 mangleBareFunctionType(T, /*MangleReturnType=*/true); 2725 2726 // Mangle the ref-qualifier, if present. 2727 mangleRefQualifier(T->getRefQualifier()); 2728 2729 Out << 'E'; 2730 } 2731 2732 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 2733 // Function types without prototypes can arise when mangling a function type 2734 // within an overloadable function in C. We mangle these as the absence of any 2735 // parameter types (not even an empty parameter list). 2736 Out << 'F'; 2737 2738 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 2739 2740 FunctionTypeDepth.enterResultType(); 2741 mangleType(T->getReturnType()); 2742 FunctionTypeDepth.leaveResultType(); 2743 2744 FunctionTypeDepth.pop(saved); 2745 Out << 'E'; 2746 } 2747 2748 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 2749 bool MangleReturnType, 2750 const FunctionDecl *FD) { 2751 // Record that we're in a function type. See mangleFunctionParam 2752 // for details on what we're trying to achieve here. 2753 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 2754 2755 // <bare-function-type> ::= <signature type>+ 2756 if (MangleReturnType) { 2757 FunctionTypeDepth.enterResultType(); 2758 2759 // Mangle ns_returns_retained as an order-sensitive qualifier here. 2760 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 2761 mangleVendorQualifier("ns_returns_retained"); 2762 2763 // Mangle the return type without any direct ARC ownership qualifiers. 2764 QualType ReturnTy = Proto->getReturnType(); 2765 if (ReturnTy.getObjCLifetime()) { 2766 auto SplitReturnTy = ReturnTy.split(); 2767 SplitReturnTy.Quals.removeObjCLifetime(); 2768 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 2769 } 2770 mangleType(ReturnTy); 2771 2772 FunctionTypeDepth.leaveResultType(); 2773 } 2774 2775 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2776 // <builtin-type> ::= v # void 2777 Out << 'v'; 2778 2779 FunctionTypeDepth.pop(saved); 2780 return; 2781 } 2782 2783 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 2784 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2785 // Mangle extended parameter info as order-sensitive qualifiers here. 2786 if (Proto->hasExtParameterInfos() && FD == nullptr) { 2787 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 2788 } 2789 2790 // Mangle the type. 2791 QualType ParamTy = Proto->getParamType(I); 2792 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 2793 2794 if (FD) { 2795 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 2796 // Attr can only take 1 character, so we can hardcode the length below. 2797 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 2798 Out << "U17pass_object_size" << Attr->getType(); 2799 } 2800 } 2801 } 2802 2803 FunctionTypeDepth.pop(saved); 2804 2805 // <builtin-type> ::= z # ellipsis 2806 if (Proto->isVariadic()) 2807 Out << 'z'; 2808 } 2809 2810 // <type> ::= <class-enum-type> 2811 // <class-enum-type> ::= <name> 2812 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 2813 mangleName(T->getDecl()); 2814 } 2815 2816 // <type> ::= <class-enum-type> 2817 // <class-enum-type> ::= <name> 2818 void CXXNameMangler::mangleType(const EnumType *T) { 2819 mangleType(static_cast<const TagType*>(T)); 2820 } 2821 void CXXNameMangler::mangleType(const RecordType *T) { 2822 mangleType(static_cast<const TagType*>(T)); 2823 } 2824 void CXXNameMangler::mangleType(const TagType *T) { 2825 mangleName(T->getDecl()); 2826 } 2827 2828 // <type> ::= <array-type> 2829 // <array-type> ::= A <positive dimension number> _ <element type> 2830 // ::= A [<dimension expression>] _ <element type> 2831 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 2832 Out << 'A' << T->getSize() << '_'; 2833 mangleType(T->getElementType()); 2834 } 2835 void CXXNameMangler::mangleType(const VariableArrayType *T) { 2836 Out << 'A'; 2837 // decayed vla types (size 0) will just be skipped. 2838 if (T->getSizeExpr()) 2839 mangleExpression(T->getSizeExpr()); 2840 Out << '_'; 2841 mangleType(T->getElementType()); 2842 } 2843 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 2844 Out << 'A'; 2845 mangleExpression(T->getSizeExpr()); 2846 Out << '_'; 2847 mangleType(T->getElementType()); 2848 } 2849 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 2850 Out << "A_"; 2851 mangleType(T->getElementType()); 2852 } 2853 2854 // <type> ::= <pointer-to-member-type> 2855 // <pointer-to-member-type> ::= M <class type> <member type> 2856 void CXXNameMangler::mangleType(const MemberPointerType *T) { 2857 Out << 'M'; 2858 mangleType(QualType(T->getClass(), 0)); 2859 QualType PointeeType = T->getPointeeType(); 2860 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 2861 mangleType(FPT); 2862 2863 // Itanium C++ ABI 5.1.8: 2864 // 2865 // The type of a non-static member function is considered to be different, 2866 // for the purposes of substitution, from the type of a namespace-scope or 2867 // static member function whose type appears similar. The types of two 2868 // non-static member functions are considered to be different, for the 2869 // purposes of substitution, if the functions are members of different 2870 // classes. In other words, for the purposes of substitution, the class of 2871 // which the function is a member is considered part of the type of 2872 // function. 2873 2874 // Given that we already substitute member function pointers as a 2875 // whole, the net effect of this rule is just to unconditionally 2876 // suppress substitution on the function type in a member pointer. 2877 // We increment the SeqID here to emulate adding an entry to the 2878 // substitution table. 2879 ++SeqID; 2880 } else 2881 mangleType(PointeeType); 2882 } 2883 2884 // <type> ::= <template-param> 2885 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 2886 mangleTemplateParameter(T->getIndex()); 2887 } 2888 2889 // <type> ::= <template-param> 2890 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 2891 // FIXME: not clear how to mangle this! 2892 // template <class T...> class A { 2893 // template <class U...> void foo(T(*)(U) x...); 2894 // }; 2895 Out << "_SUBSTPACK_"; 2896 } 2897 2898 // <type> ::= P <type> # pointer-to 2899 void CXXNameMangler::mangleType(const PointerType *T) { 2900 Out << 'P'; 2901 mangleType(T->getPointeeType()); 2902 } 2903 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 2904 Out << 'P'; 2905 mangleType(T->getPointeeType()); 2906 } 2907 2908 // <type> ::= R <type> # reference-to 2909 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 2910 Out << 'R'; 2911 mangleType(T->getPointeeType()); 2912 } 2913 2914 // <type> ::= O <type> # rvalue reference-to (C++0x) 2915 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 2916 Out << 'O'; 2917 mangleType(T->getPointeeType()); 2918 } 2919 2920 // <type> ::= C <type> # complex pair (C 2000) 2921 void CXXNameMangler::mangleType(const ComplexType *T) { 2922 Out << 'C'; 2923 mangleType(T->getElementType()); 2924 } 2925 2926 // ARM's ABI for Neon vector types specifies that they should be mangled as 2927 // if they are structs (to match ARM's initial implementation). The 2928 // vector type must be one of the special types predefined by ARM. 2929 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 2930 QualType EltType = T->getElementType(); 2931 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 2932 const char *EltName = nullptr; 2933 if (T->getVectorKind() == VectorType::NeonPolyVector) { 2934 switch (cast<BuiltinType>(EltType)->getKind()) { 2935 case BuiltinType::SChar: 2936 case BuiltinType::UChar: 2937 EltName = "poly8_t"; 2938 break; 2939 case BuiltinType::Short: 2940 case BuiltinType::UShort: 2941 EltName = "poly16_t"; 2942 break; 2943 case BuiltinType::ULongLong: 2944 EltName = "poly64_t"; 2945 break; 2946 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 2947 } 2948 } else { 2949 switch (cast<BuiltinType>(EltType)->getKind()) { 2950 case BuiltinType::SChar: EltName = "int8_t"; break; 2951 case BuiltinType::UChar: EltName = "uint8_t"; break; 2952 case BuiltinType::Short: EltName = "int16_t"; break; 2953 case BuiltinType::UShort: EltName = "uint16_t"; break; 2954 case BuiltinType::Int: EltName = "int32_t"; break; 2955 case BuiltinType::UInt: EltName = "uint32_t"; break; 2956 case BuiltinType::LongLong: EltName = "int64_t"; break; 2957 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 2958 case BuiltinType::Double: EltName = "float64_t"; break; 2959 case BuiltinType::Float: EltName = "float32_t"; break; 2960 case BuiltinType::Half: EltName = "float16_t";break; 2961 default: 2962 llvm_unreachable("unexpected Neon vector element type"); 2963 } 2964 } 2965 const char *BaseName = nullptr; 2966 unsigned BitSize = (T->getNumElements() * 2967 getASTContext().getTypeSize(EltType)); 2968 if (BitSize == 64) 2969 BaseName = "__simd64_"; 2970 else { 2971 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 2972 BaseName = "__simd128_"; 2973 } 2974 Out << strlen(BaseName) + strlen(EltName); 2975 Out << BaseName << EltName; 2976 } 2977 2978 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 2979 switch (EltType->getKind()) { 2980 case BuiltinType::SChar: 2981 return "Int8"; 2982 case BuiltinType::Short: 2983 return "Int16"; 2984 case BuiltinType::Int: 2985 return "Int32"; 2986 case BuiltinType::Long: 2987 case BuiltinType::LongLong: 2988 return "Int64"; 2989 case BuiltinType::UChar: 2990 return "Uint8"; 2991 case BuiltinType::UShort: 2992 return "Uint16"; 2993 case BuiltinType::UInt: 2994 return "Uint32"; 2995 case BuiltinType::ULong: 2996 case BuiltinType::ULongLong: 2997 return "Uint64"; 2998 case BuiltinType::Half: 2999 return "Float16"; 3000 case BuiltinType::Float: 3001 return "Float32"; 3002 case BuiltinType::Double: 3003 return "Float64"; 3004 default: 3005 llvm_unreachable("Unexpected vector element base type"); 3006 } 3007 } 3008 3009 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3010 // the equivalent internal name. The vector type must be one of the special 3011 // types predefined by ARM. 3012 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3013 QualType EltType = T->getElementType(); 3014 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3015 unsigned BitSize = 3016 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3017 (void)BitSize; // Silence warning. 3018 3019 assert((BitSize == 64 || BitSize == 128) && 3020 "Neon vector type not 64 or 128 bits"); 3021 3022 StringRef EltName; 3023 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3024 switch (cast<BuiltinType>(EltType)->getKind()) { 3025 case BuiltinType::UChar: 3026 EltName = "Poly8"; 3027 break; 3028 case BuiltinType::UShort: 3029 EltName = "Poly16"; 3030 break; 3031 case BuiltinType::ULong: 3032 case BuiltinType::ULongLong: 3033 EltName = "Poly64"; 3034 break; 3035 default: 3036 llvm_unreachable("unexpected Neon polynomial vector element type"); 3037 } 3038 } else 3039 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3040 3041 std::string TypeName = 3042 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3043 Out << TypeName.length() << TypeName; 3044 } 3045 3046 // GNU extension: vector types 3047 // <type> ::= <vector-type> 3048 // <vector-type> ::= Dv <positive dimension number> _ 3049 // <extended element type> 3050 // ::= Dv [<dimension expression>] _ <element type> 3051 // <extended element type> ::= <element type> 3052 // ::= p # AltiVec vector pixel 3053 // ::= b # Altivec vector bool 3054 void CXXNameMangler::mangleType(const VectorType *T) { 3055 if ((T->getVectorKind() == VectorType::NeonVector || 3056 T->getVectorKind() == VectorType::NeonPolyVector)) { 3057 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3058 llvm::Triple::ArchType Arch = 3059 getASTContext().getTargetInfo().getTriple().getArch(); 3060 if ((Arch == llvm::Triple::aarch64 || 3061 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 3062 mangleAArch64NeonVectorType(T); 3063 else 3064 mangleNeonVectorType(T); 3065 return; 3066 } 3067 Out << "Dv" << T->getNumElements() << '_'; 3068 if (T->getVectorKind() == VectorType::AltiVecPixel) 3069 Out << 'p'; 3070 else if (T->getVectorKind() == VectorType::AltiVecBool) 3071 Out << 'b'; 3072 else 3073 mangleType(T->getElementType()); 3074 } 3075 void CXXNameMangler::mangleType(const ExtVectorType *T) { 3076 mangleType(static_cast<const VectorType*>(T)); 3077 } 3078 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 3079 Out << "Dv"; 3080 mangleExpression(T->getSizeExpr()); 3081 Out << '_'; 3082 mangleType(T->getElementType()); 3083 } 3084 3085 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 3086 SplitQualType split = T->getPointeeType().split(); 3087 mangleQualifiers(split.Quals, T); 3088 mangleType(QualType(split.Ty, 0)); 3089 } 3090 3091 void CXXNameMangler::mangleType(const PackExpansionType *T) { 3092 // <type> ::= Dp <type> # pack expansion (C++0x) 3093 Out << "Dp"; 3094 mangleType(T->getPattern()); 3095 } 3096 3097 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 3098 mangleSourceName(T->getDecl()->getIdentifier()); 3099 } 3100 3101 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 3102 // Treat __kindof as a vendor extended type qualifier. 3103 if (T->isKindOfType()) 3104 Out << "U8__kindof"; 3105 3106 if (!T->qual_empty()) { 3107 // Mangle protocol qualifiers. 3108 SmallString<64> QualStr; 3109 llvm::raw_svector_ostream QualOS(QualStr); 3110 QualOS << "objcproto"; 3111 for (const auto *I : T->quals()) { 3112 StringRef name = I->getName(); 3113 QualOS << name.size() << name; 3114 } 3115 Out << 'U' << QualStr.size() << QualStr; 3116 } 3117 3118 mangleType(T->getBaseType()); 3119 3120 if (T->isSpecialized()) { 3121 // Mangle type arguments as I <type>+ E 3122 Out << 'I'; 3123 for (auto typeArg : T->getTypeArgs()) 3124 mangleType(typeArg); 3125 Out << 'E'; 3126 } 3127 } 3128 3129 void CXXNameMangler::mangleType(const BlockPointerType *T) { 3130 Out << "U13block_pointer"; 3131 mangleType(T->getPointeeType()); 3132 } 3133 3134 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 3135 // Mangle injected class name types as if the user had written the 3136 // specialization out fully. It may not actually be possible to see 3137 // this mangling, though. 3138 mangleType(T->getInjectedSpecializationType()); 3139 } 3140 3141 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 3142 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 3143 mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); 3144 } else { 3145 if (mangleSubstitution(QualType(T, 0))) 3146 return; 3147 3148 mangleTemplatePrefix(T->getTemplateName()); 3149 3150 // FIXME: GCC does not appear to mangle the template arguments when 3151 // the template in question is a dependent template name. Should we 3152 // emulate that badness? 3153 mangleTemplateArgs(T->getArgs(), T->getNumArgs()); 3154 addSubstitution(QualType(T, 0)); 3155 } 3156 } 3157 3158 void CXXNameMangler::mangleType(const DependentNameType *T) { 3159 // Proposal by cxx-abi-dev, 2014-03-26 3160 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 3161 // # dependent elaborated type specifier using 3162 // # 'typename' 3163 // ::= Ts <name> # dependent elaborated type specifier using 3164 // # 'struct' or 'class' 3165 // ::= Tu <name> # dependent elaborated type specifier using 3166 // # 'union' 3167 // ::= Te <name> # dependent elaborated type specifier using 3168 // # 'enum' 3169 switch (T->getKeyword()) { 3170 case ETK_None: 3171 case ETK_Typename: 3172 break; 3173 case ETK_Struct: 3174 case ETK_Class: 3175 case ETK_Interface: 3176 Out << "Ts"; 3177 break; 3178 case ETK_Union: 3179 Out << "Tu"; 3180 break; 3181 case ETK_Enum: 3182 Out << "Te"; 3183 break; 3184 } 3185 // Typename types are always nested 3186 Out << 'N'; 3187 manglePrefix(T->getQualifier()); 3188 mangleSourceName(T->getIdentifier()); 3189 Out << 'E'; 3190 } 3191 3192 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 3193 // Dependently-scoped template types are nested if they have a prefix. 3194 Out << 'N'; 3195 3196 // TODO: avoid making this TemplateName. 3197 TemplateName Prefix = 3198 getASTContext().getDependentTemplateName(T->getQualifier(), 3199 T->getIdentifier()); 3200 mangleTemplatePrefix(Prefix); 3201 3202 // FIXME: GCC does not appear to mangle the template arguments when 3203 // the template in question is a dependent template name. Should we 3204 // emulate that badness? 3205 mangleTemplateArgs(T->getArgs(), T->getNumArgs()); 3206 Out << 'E'; 3207 } 3208 3209 void CXXNameMangler::mangleType(const TypeOfType *T) { 3210 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3211 // "extension with parameters" mangling. 3212 Out << "u6typeof"; 3213 } 3214 3215 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 3216 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3217 // "extension with parameters" mangling. 3218 Out << "u6typeof"; 3219 } 3220 3221 void CXXNameMangler::mangleType(const DecltypeType *T) { 3222 Expr *E = T->getUnderlyingExpr(); 3223 3224 // type ::= Dt <expression> E # decltype of an id-expression 3225 // # or class member access 3226 // ::= DT <expression> E # decltype of an expression 3227 3228 // This purports to be an exhaustive list of id-expressions and 3229 // class member accesses. Note that we do not ignore parentheses; 3230 // parentheses change the semantics of decltype for these 3231 // expressions (and cause the mangler to use the other form). 3232 if (isa<DeclRefExpr>(E) || 3233 isa<MemberExpr>(E) || 3234 isa<UnresolvedLookupExpr>(E) || 3235 isa<DependentScopeDeclRefExpr>(E) || 3236 isa<CXXDependentScopeMemberExpr>(E) || 3237 isa<UnresolvedMemberExpr>(E)) 3238 Out << "Dt"; 3239 else 3240 Out << "DT"; 3241 mangleExpression(E); 3242 Out << 'E'; 3243 } 3244 3245 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 3246 // If this is dependent, we need to record that. If not, we simply 3247 // mangle it as the underlying type since they are equivalent. 3248 if (T->isDependentType()) { 3249 Out << 'U'; 3250 3251 switch (T->getUTTKind()) { 3252 case UnaryTransformType::EnumUnderlyingType: 3253 Out << "3eut"; 3254 break; 3255 } 3256 } 3257 3258 mangleType(T->getBaseType()); 3259 } 3260 3261 void CXXNameMangler::mangleType(const AutoType *T) { 3262 assert(T->getDeducedType().isNull() && 3263 "Deduced AutoType shouldn't be handled here!"); 3264 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 3265 "shouldn't need to mangle __auto_type!"); 3266 // <builtin-type> ::= Da # auto 3267 // ::= Dc # decltype(auto) 3268 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 3269 } 3270 3271 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 3272 // FIXME: This is not the right mangling. We also need to include a scope 3273 // here in some cases. 3274 QualType D = T->getDeducedType(); 3275 if (D.isNull()) 3276 mangleUnscopedTemplateName(T->getTemplateName(), nullptr); 3277 else 3278 mangleType(D); 3279 } 3280 3281 void CXXNameMangler::mangleType(const AtomicType *T) { 3282 // <type> ::= U <source-name> <type> # vendor extended type qualifier 3283 // (Until there's a standardized mangling...) 3284 Out << "U7_Atomic"; 3285 mangleType(T->getValueType()); 3286 } 3287 3288 void CXXNameMangler::mangleType(const PipeType *T) { 3289 // Pipe type mangling rules are described in SPIR 2.0 specification 3290 // A.1 Data types and A.3 Summary of changes 3291 // <type> ::= 8ocl_pipe 3292 Out << "8ocl_pipe"; 3293 } 3294 3295 void CXXNameMangler::mangleIntegerLiteral(QualType T, 3296 const llvm::APSInt &Value) { 3297 // <expr-primary> ::= L <type> <value number> E # integer literal 3298 Out << 'L'; 3299 3300 mangleType(T); 3301 if (T->isBooleanType()) { 3302 // Boolean values are encoded as 0/1. 3303 Out << (Value.getBoolValue() ? '1' : '0'); 3304 } else { 3305 mangleNumber(Value); 3306 } 3307 Out << 'E'; 3308 3309 } 3310 3311 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 3312 // Ignore member expressions involving anonymous unions. 3313 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 3314 if (!RT->getDecl()->isAnonymousStructOrUnion()) 3315 break; 3316 const auto *ME = dyn_cast<MemberExpr>(Base); 3317 if (!ME) 3318 break; 3319 Base = ME->getBase(); 3320 IsArrow = ME->isArrow(); 3321 } 3322 3323 if (Base->isImplicitCXXThis()) { 3324 // Note: GCC mangles member expressions to the implicit 'this' as 3325 // *this., whereas we represent them as this->. The Itanium C++ ABI 3326 // does not specify anything here, so we follow GCC. 3327 Out << "dtdefpT"; 3328 } else { 3329 Out << (IsArrow ? "pt" : "dt"); 3330 mangleExpression(Base); 3331 } 3332 } 3333 3334 /// Mangles a member expression. 3335 void CXXNameMangler::mangleMemberExpr(const Expr *base, 3336 bool isArrow, 3337 NestedNameSpecifier *qualifier, 3338 NamedDecl *firstQualifierLookup, 3339 DeclarationName member, 3340 const TemplateArgumentLoc *TemplateArgs, 3341 unsigned NumTemplateArgs, 3342 unsigned arity) { 3343 // <expression> ::= dt <expression> <unresolved-name> 3344 // ::= pt <expression> <unresolved-name> 3345 if (base) 3346 mangleMemberExprBase(base, isArrow); 3347 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 3348 } 3349 3350 /// Look at the callee of the given call expression and determine if 3351 /// it's a parenthesized id-expression which would have triggered ADL 3352 /// otherwise. 3353 static bool isParenthesizedADLCallee(const CallExpr *call) { 3354 const Expr *callee = call->getCallee(); 3355 const Expr *fn = callee->IgnoreParens(); 3356 3357 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 3358 // too, but for those to appear in the callee, it would have to be 3359 // parenthesized. 3360 if (callee == fn) return false; 3361 3362 // Must be an unresolved lookup. 3363 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 3364 if (!lookup) return false; 3365 3366 assert(!lookup->requiresADL()); 3367 3368 // Must be an unqualified lookup. 3369 if (lookup->getQualifier()) return false; 3370 3371 // Must not have found a class member. Note that if one is a class 3372 // member, they're all class members. 3373 if (lookup->getNumDecls() > 0 && 3374 (*lookup->decls_begin())->isCXXClassMember()) 3375 return false; 3376 3377 // Otherwise, ADL would have been triggered. 3378 return true; 3379 } 3380 3381 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 3382 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 3383 Out << CastEncoding; 3384 mangleType(ECE->getType()); 3385 mangleExpression(ECE->getSubExpr()); 3386 } 3387 3388 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 3389 if (auto *Syntactic = InitList->getSyntacticForm()) 3390 InitList = Syntactic; 3391 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 3392 mangleExpression(InitList->getInit(i)); 3393 } 3394 3395 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { 3396 // <expression> ::= <unary operator-name> <expression> 3397 // ::= <binary operator-name> <expression> <expression> 3398 // ::= <trinary operator-name> <expression> <expression> <expression> 3399 // ::= cv <type> expression # conversion with one argument 3400 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 3401 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 3402 // ::= sc <type> <expression> # static_cast<type> (expression) 3403 // ::= cc <type> <expression> # const_cast<type> (expression) 3404 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 3405 // ::= st <type> # sizeof (a type) 3406 // ::= at <type> # alignof (a type) 3407 // ::= <template-param> 3408 // ::= <function-param> 3409 // ::= sr <type> <unqualified-name> # dependent name 3410 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 3411 // ::= ds <expression> <expression> # expr.*expr 3412 // ::= sZ <template-param> # size of a parameter pack 3413 // ::= sZ <function-param> # size of a function parameter pack 3414 // ::= <expr-primary> 3415 // <expr-primary> ::= L <type> <value number> E # integer literal 3416 // ::= L <type <value float> E # floating literal 3417 // ::= L <mangled-name> E # external name 3418 // ::= fpT # 'this' expression 3419 QualType ImplicitlyConvertedToType; 3420 3421 recurse: 3422 switch (E->getStmtClass()) { 3423 case Expr::NoStmtClass: 3424 #define ABSTRACT_STMT(Type) 3425 #define EXPR(Type, Base) 3426 #define STMT(Type, Base) \ 3427 case Expr::Type##Class: 3428 #include "clang/AST/StmtNodes.inc" 3429 // fallthrough 3430 3431 // These all can only appear in local or variable-initialization 3432 // contexts and so should never appear in a mangling. 3433 case Expr::AddrLabelExprClass: 3434 case Expr::DesignatedInitUpdateExprClass: 3435 case Expr::ImplicitValueInitExprClass: 3436 case Expr::ArrayInitLoopExprClass: 3437 case Expr::ArrayInitIndexExprClass: 3438 case Expr::NoInitExprClass: 3439 case Expr::ParenListExprClass: 3440 case Expr::LambdaExprClass: 3441 case Expr::MSPropertyRefExprClass: 3442 case Expr::MSPropertySubscriptExprClass: 3443 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 3444 case Expr::OMPArraySectionExprClass: 3445 case Expr::CXXInheritedCtorInitExprClass: 3446 llvm_unreachable("unexpected statement kind"); 3447 3448 // FIXME: invent manglings for all these. 3449 case Expr::BlockExprClass: 3450 case Expr::ChooseExprClass: 3451 case Expr::CompoundLiteralExprClass: 3452 case Expr::ExtVectorElementExprClass: 3453 case Expr::GenericSelectionExprClass: 3454 case Expr::ObjCEncodeExprClass: 3455 case Expr::ObjCIsaExprClass: 3456 case Expr::ObjCIvarRefExprClass: 3457 case Expr::ObjCMessageExprClass: 3458 case Expr::ObjCPropertyRefExprClass: 3459 case Expr::ObjCProtocolExprClass: 3460 case Expr::ObjCSelectorExprClass: 3461 case Expr::ObjCStringLiteralClass: 3462 case Expr::ObjCBoxedExprClass: 3463 case Expr::ObjCArrayLiteralClass: 3464 case Expr::ObjCDictionaryLiteralClass: 3465 case Expr::ObjCSubscriptRefExprClass: 3466 case Expr::ObjCIndirectCopyRestoreExprClass: 3467 case Expr::ObjCAvailabilityCheckExprClass: 3468 case Expr::OffsetOfExprClass: 3469 case Expr::PredefinedExprClass: 3470 case Expr::ShuffleVectorExprClass: 3471 case Expr::ConvertVectorExprClass: 3472 case Expr::StmtExprClass: 3473 case Expr::TypeTraitExprClass: 3474 case Expr::ArrayTypeTraitExprClass: 3475 case Expr::ExpressionTraitExprClass: 3476 case Expr::VAArgExprClass: 3477 case Expr::CUDAKernelCallExprClass: 3478 case Expr::AsTypeExprClass: 3479 case Expr::PseudoObjectExprClass: 3480 case Expr::AtomicExprClass: 3481 { 3482 if (!NullOut) { 3483 // As bad as this diagnostic is, it's better than crashing. 3484 DiagnosticsEngine &Diags = Context.getDiags(); 3485 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3486 "cannot yet mangle expression type %0"); 3487 Diags.Report(E->getExprLoc(), DiagID) 3488 << E->getStmtClassName() << E->getSourceRange(); 3489 } 3490 break; 3491 } 3492 3493 case Expr::CXXUuidofExprClass: { 3494 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 3495 if (UE->isTypeOperand()) { 3496 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 3497 Out << "u8__uuidoft"; 3498 mangleType(UuidT); 3499 } else { 3500 Expr *UuidExp = UE->getExprOperand(); 3501 Out << "u8__uuidofz"; 3502 mangleExpression(UuidExp, Arity); 3503 } 3504 break; 3505 } 3506 3507 // Even gcc-4.5 doesn't mangle this. 3508 case Expr::BinaryConditionalOperatorClass: { 3509 DiagnosticsEngine &Diags = Context.getDiags(); 3510 unsigned DiagID = 3511 Diags.getCustomDiagID(DiagnosticsEngine::Error, 3512 "?: operator with omitted middle operand cannot be mangled"); 3513 Diags.Report(E->getExprLoc(), DiagID) 3514 << E->getStmtClassName() << E->getSourceRange(); 3515 break; 3516 } 3517 3518 // These are used for internal purposes and cannot be meaningfully mangled. 3519 case Expr::OpaqueValueExprClass: 3520 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 3521 3522 case Expr::InitListExprClass: { 3523 Out << "il"; 3524 mangleInitListElements(cast<InitListExpr>(E)); 3525 Out << "E"; 3526 break; 3527 } 3528 3529 case Expr::DesignatedInitExprClass: { 3530 auto *DIE = cast<DesignatedInitExpr>(E); 3531 for (const auto &Designator : DIE->designators()) { 3532 if (Designator.isFieldDesignator()) { 3533 Out << "di"; 3534 mangleSourceName(Designator.getFieldName()); 3535 } else if (Designator.isArrayDesignator()) { 3536 Out << "dx"; 3537 mangleExpression(DIE->getArrayIndex(Designator)); 3538 } else { 3539 assert(Designator.isArrayRangeDesignator() && 3540 "unknown designator kind"); 3541 Out << "dX"; 3542 mangleExpression(DIE->getArrayRangeStart(Designator)); 3543 mangleExpression(DIE->getArrayRangeEnd(Designator)); 3544 } 3545 } 3546 mangleExpression(DIE->getInit()); 3547 break; 3548 } 3549 3550 case Expr::CXXDefaultArgExprClass: 3551 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); 3552 break; 3553 3554 case Expr::CXXDefaultInitExprClass: 3555 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity); 3556 break; 3557 3558 case Expr::CXXStdInitializerListExprClass: 3559 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity); 3560 break; 3561 3562 case Expr::SubstNonTypeTemplateParmExprClass: 3563 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), 3564 Arity); 3565 break; 3566 3567 case Expr::UserDefinedLiteralClass: 3568 // We follow g++'s approach of mangling a UDL as a call to the literal 3569 // operator. 3570 case Expr::CXXMemberCallExprClass: // fallthrough 3571 case Expr::CallExprClass: { 3572 const CallExpr *CE = cast<CallExpr>(E); 3573 3574 // <expression> ::= cp <simple-id> <expression>* E 3575 // We use this mangling only when the call would use ADL except 3576 // for being parenthesized. Per discussion with David 3577 // Vandervoorde, 2011.04.25. 3578 if (isParenthesizedADLCallee(CE)) { 3579 Out << "cp"; 3580 // The callee here is a parenthesized UnresolvedLookupExpr with 3581 // no qualifier and should always get mangled as a <simple-id> 3582 // anyway. 3583 3584 // <expression> ::= cl <expression>* E 3585 } else { 3586 Out << "cl"; 3587 } 3588 3589 unsigned CallArity = CE->getNumArgs(); 3590 for (const Expr *Arg : CE->arguments()) 3591 if (isa<PackExpansionExpr>(Arg)) 3592 CallArity = UnknownArity; 3593 3594 mangleExpression(CE->getCallee(), CallArity); 3595 for (const Expr *Arg : CE->arguments()) 3596 mangleExpression(Arg); 3597 Out << 'E'; 3598 break; 3599 } 3600 3601 case Expr::CXXNewExprClass: { 3602 const CXXNewExpr *New = cast<CXXNewExpr>(E); 3603 if (New->isGlobalNew()) Out << "gs"; 3604 Out << (New->isArray() ? "na" : "nw"); 3605 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 3606 E = New->placement_arg_end(); I != E; ++I) 3607 mangleExpression(*I); 3608 Out << '_'; 3609 mangleType(New->getAllocatedType()); 3610 if (New->hasInitializer()) { 3611 if (New->getInitializationStyle() == CXXNewExpr::ListInit) 3612 Out << "il"; 3613 else 3614 Out << "pi"; 3615 const Expr *Init = New->getInitializer(); 3616 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 3617 // Directly inline the initializers. 3618 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 3619 E = CCE->arg_end(); 3620 I != E; ++I) 3621 mangleExpression(*I); 3622 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 3623 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 3624 mangleExpression(PLE->getExpr(i)); 3625 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && 3626 isa<InitListExpr>(Init)) { 3627 // Only take InitListExprs apart for list-initialization. 3628 mangleInitListElements(cast<InitListExpr>(Init)); 3629 } else 3630 mangleExpression(Init); 3631 } 3632 Out << 'E'; 3633 break; 3634 } 3635 3636 case Expr::CXXPseudoDestructorExprClass: { 3637 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 3638 if (const Expr *Base = PDE->getBase()) 3639 mangleMemberExprBase(Base, PDE->isArrow()); 3640 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 3641 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 3642 if (Qualifier) { 3643 mangleUnresolvedPrefix(Qualifier, 3644 /*Recursive=*/true); 3645 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 3646 Out << 'E'; 3647 } else { 3648 Out << "sr"; 3649 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 3650 Out << 'E'; 3651 } 3652 } else if (Qualifier) { 3653 mangleUnresolvedPrefix(Qualifier); 3654 } 3655 // <base-unresolved-name> ::= dn <destructor-name> 3656 Out << "dn"; 3657 QualType DestroyedType = PDE->getDestroyedType(); 3658 mangleUnresolvedTypeOrSimpleId(DestroyedType); 3659 break; 3660 } 3661 3662 case Expr::MemberExprClass: { 3663 const MemberExpr *ME = cast<MemberExpr>(E); 3664 mangleMemberExpr(ME->getBase(), ME->isArrow(), 3665 ME->getQualifier(), nullptr, 3666 ME->getMemberDecl()->getDeclName(), 3667 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3668 Arity); 3669 break; 3670 } 3671 3672 case Expr::UnresolvedMemberExprClass: { 3673 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 3674 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 3675 ME->isArrow(), ME->getQualifier(), nullptr, 3676 ME->getMemberName(), 3677 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3678 Arity); 3679 break; 3680 } 3681 3682 case Expr::CXXDependentScopeMemberExprClass: { 3683 const CXXDependentScopeMemberExpr *ME 3684 = cast<CXXDependentScopeMemberExpr>(E); 3685 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 3686 ME->isArrow(), ME->getQualifier(), 3687 ME->getFirstQualifierFoundInScope(), 3688 ME->getMember(), 3689 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3690 Arity); 3691 break; 3692 } 3693 3694 case Expr::UnresolvedLookupExprClass: { 3695 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 3696 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 3697 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 3698 Arity); 3699 break; 3700 } 3701 3702 case Expr::CXXUnresolvedConstructExprClass: { 3703 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 3704 unsigned N = CE->arg_size(); 3705 3706 if (CE->isListInitialization()) { 3707 assert(N == 1 && "unexpected form for list initialization"); 3708 auto *IL = cast<InitListExpr>(CE->getArg(0)); 3709 Out << "tl"; 3710 mangleType(CE->getType()); 3711 mangleInitListElements(IL); 3712 Out << "E"; 3713 return; 3714 } 3715 3716 Out << "cv"; 3717 mangleType(CE->getType()); 3718 if (N != 1) Out << '_'; 3719 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 3720 if (N != 1) Out << 'E'; 3721 break; 3722 } 3723 3724 case Expr::CXXConstructExprClass: { 3725 const auto *CE = cast<CXXConstructExpr>(E); 3726 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 3727 assert( 3728 CE->getNumArgs() >= 1 && 3729 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 3730 "implicit CXXConstructExpr must have one argument"); 3731 return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0)); 3732 } 3733 Out << "il"; 3734 for (auto *E : CE->arguments()) 3735 mangleExpression(E); 3736 Out << "E"; 3737 break; 3738 } 3739 3740 case Expr::CXXTemporaryObjectExprClass: { 3741 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 3742 unsigned N = CE->getNumArgs(); 3743 bool List = CE->isListInitialization(); 3744 3745 if (List) 3746 Out << "tl"; 3747 else 3748 Out << "cv"; 3749 mangleType(CE->getType()); 3750 if (!List && N != 1) 3751 Out << '_'; 3752 if (CE->isStdInitListInitialization()) { 3753 // We implicitly created a std::initializer_list<T> for the first argument 3754 // of a constructor of type U in an expression of the form U{a, b, c}. 3755 // Strip all the semantic gunk off the initializer list. 3756 auto *SILE = 3757 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 3758 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 3759 mangleInitListElements(ILE); 3760 } else { 3761 for (auto *E : CE->arguments()) 3762 mangleExpression(E); 3763 } 3764 if (List || N != 1) 3765 Out << 'E'; 3766 break; 3767 } 3768 3769 case Expr::CXXScalarValueInitExprClass: 3770 Out << "cv"; 3771 mangleType(E->getType()); 3772 Out << "_E"; 3773 break; 3774 3775 case Expr::CXXNoexceptExprClass: 3776 Out << "nx"; 3777 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 3778 break; 3779 3780 case Expr::UnaryExprOrTypeTraitExprClass: { 3781 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 3782 3783 if (!SAE->isInstantiationDependent()) { 3784 // Itanium C++ ABI: 3785 // If the operand of a sizeof or alignof operator is not 3786 // instantiation-dependent it is encoded as an integer literal 3787 // reflecting the result of the operator. 3788 // 3789 // If the result of the operator is implicitly converted to a known 3790 // integer type, that type is used for the literal; otherwise, the type 3791 // of std::size_t or std::ptrdiff_t is used. 3792 QualType T = (ImplicitlyConvertedToType.isNull() || 3793 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 3794 : ImplicitlyConvertedToType; 3795 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 3796 mangleIntegerLiteral(T, V); 3797 break; 3798 } 3799 3800 switch(SAE->getKind()) { 3801 case UETT_SizeOf: 3802 Out << 's'; 3803 break; 3804 case UETT_AlignOf: 3805 Out << 'a'; 3806 break; 3807 case UETT_VecStep: { 3808 DiagnosticsEngine &Diags = Context.getDiags(); 3809 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3810 "cannot yet mangle vec_step expression"); 3811 Diags.Report(DiagID); 3812 return; 3813 } 3814 case UETT_OpenMPRequiredSimdAlign: 3815 DiagnosticsEngine &Diags = Context.getDiags(); 3816 unsigned DiagID = Diags.getCustomDiagID( 3817 DiagnosticsEngine::Error, 3818 "cannot yet mangle __builtin_omp_required_simd_align expression"); 3819 Diags.Report(DiagID); 3820 return; 3821 } 3822 if (SAE->isArgumentType()) { 3823 Out << 't'; 3824 mangleType(SAE->getArgumentType()); 3825 } else { 3826 Out << 'z'; 3827 mangleExpression(SAE->getArgumentExpr()); 3828 } 3829 break; 3830 } 3831 3832 case Expr::CXXThrowExprClass: { 3833 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 3834 // <expression> ::= tw <expression> # throw expression 3835 // ::= tr # rethrow 3836 if (TE->getSubExpr()) { 3837 Out << "tw"; 3838 mangleExpression(TE->getSubExpr()); 3839 } else { 3840 Out << "tr"; 3841 } 3842 break; 3843 } 3844 3845 case Expr::CXXTypeidExprClass: { 3846 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 3847 // <expression> ::= ti <type> # typeid (type) 3848 // ::= te <expression> # typeid (expression) 3849 if (TIE->isTypeOperand()) { 3850 Out << "ti"; 3851 mangleType(TIE->getTypeOperand(Context.getASTContext())); 3852 } else { 3853 Out << "te"; 3854 mangleExpression(TIE->getExprOperand()); 3855 } 3856 break; 3857 } 3858 3859 case Expr::CXXDeleteExprClass: { 3860 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 3861 // <expression> ::= [gs] dl <expression> # [::] delete expr 3862 // ::= [gs] da <expression> # [::] delete [] expr 3863 if (DE->isGlobalDelete()) Out << "gs"; 3864 Out << (DE->isArrayForm() ? "da" : "dl"); 3865 mangleExpression(DE->getArgument()); 3866 break; 3867 } 3868 3869 case Expr::UnaryOperatorClass: { 3870 const UnaryOperator *UO = cast<UnaryOperator>(E); 3871 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 3872 /*Arity=*/1); 3873 mangleExpression(UO->getSubExpr()); 3874 break; 3875 } 3876 3877 case Expr::ArraySubscriptExprClass: { 3878 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 3879 3880 // Array subscript is treated as a syntactically weird form of 3881 // binary operator. 3882 Out << "ix"; 3883 mangleExpression(AE->getLHS()); 3884 mangleExpression(AE->getRHS()); 3885 break; 3886 } 3887 3888 case Expr::CompoundAssignOperatorClass: // fallthrough 3889 case Expr::BinaryOperatorClass: { 3890 const BinaryOperator *BO = cast<BinaryOperator>(E); 3891 if (BO->getOpcode() == BO_PtrMemD) 3892 Out << "ds"; 3893 else 3894 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 3895 /*Arity=*/2); 3896 mangleExpression(BO->getLHS()); 3897 mangleExpression(BO->getRHS()); 3898 break; 3899 } 3900 3901 case Expr::ConditionalOperatorClass: { 3902 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 3903 mangleOperatorName(OO_Conditional, /*Arity=*/3); 3904 mangleExpression(CO->getCond()); 3905 mangleExpression(CO->getLHS(), Arity); 3906 mangleExpression(CO->getRHS(), Arity); 3907 break; 3908 } 3909 3910 case Expr::ImplicitCastExprClass: { 3911 ImplicitlyConvertedToType = E->getType(); 3912 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 3913 goto recurse; 3914 } 3915 3916 case Expr::ObjCBridgedCastExprClass: { 3917 // Mangle ownership casts as a vendor extended operator __bridge, 3918 // __bridge_transfer, or __bridge_retain. 3919 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 3920 Out << "v1U" << Kind.size() << Kind; 3921 } 3922 // Fall through to mangle the cast itself. 3923 LLVM_FALLTHROUGH; 3924 3925 case Expr::CStyleCastExprClass: 3926 mangleCastExpression(E, "cv"); 3927 break; 3928 3929 case Expr::CXXFunctionalCastExprClass: { 3930 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 3931 // FIXME: Add isImplicit to CXXConstructExpr. 3932 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 3933 if (CCE->getParenOrBraceRange().isInvalid()) 3934 Sub = CCE->getArg(0)->IgnoreImplicit(); 3935 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 3936 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 3937 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 3938 Out << "tl"; 3939 mangleType(E->getType()); 3940 mangleInitListElements(IL); 3941 Out << "E"; 3942 } else { 3943 mangleCastExpression(E, "cv"); 3944 } 3945 break; 3946 } 3947 3948 case Expr::CXXStaticCastExprClass: 3949 mangleCastExpression(E, "sc"); 3950 break; 3951 case Expr::CXXDynamicCastExprClass: 3952 mangleCastExpression(E, "dc"); 3953 break; 3954 case Expr::CXXReinterpretCastExprClass: 3955 mangleCastExpression(E, "rc"); 3956 break; 3957 case Expr::CXXConstCastExprClass: 3958 mangleCastExpression(E, "cc"); 3959 break; 3960 3961 case Expr::CXXOperatorCallExprClass: { 3962 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 3963 unsigned NumArgs = CE->getNumArgs(); 3964 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 3965 // (the enclosing MemberExpr covers the syntactic portion). 3966 if (CE->getOperator() != OO_Arrow) 3967 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 3968 // Mangle the arguments. 3969 for (unsigned i = 0; i != NumArgs; ++i) 3970 mangleExpression(CE->getArg(i)); 3971 break; 3972 } 3973 3974 case Expr::ParenExprClass: 3975 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); 3976 break; 3977 3978 case Expr::DeclRefExprClass: { 3979 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 3980 3981 switch (D->getKind()) { 3982 default: 3983 // <expr-primary> ::= L <mangled-name> E # external name 3984 Out << 'L'; 3985 mangle(D); 3986 Out << 'E'; 3987 break; 3988 3989 case Decl::ParmVar: 3990 mangleFunctionParam(cast<ParmVarDecl>(D)); 3991 break; 3992 3993 case Decl::EnumConstant: { 3994 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 3995 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 3996 break; 3997 } 3998 3999 case Decl::NonTypeTemplateParm: { 4000 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 4001 mangleTemplateParameter(PD->getIndex()); 4002 break; 4003 } 4004 4005 } 4006 4007 break; 4008 } 4009 4010 case Expr::SubstNonTypeTemplateParmPackExprClass: 4011 // FIXME: not clear how to mangle this! 4012 // template <unsigned N...> class A { 4013 // template <class U...> void foo(U (&x)[N]...); 4014 // }; 4015 Out << "_SUBSTPACK_"; 4016 break; 4017 4018 case Expr::FunctionParmPackExprClass: { 4019 // FIXME: not clear how to mangle this! 4020 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 4021 Out << "v110_SUBSTPACK"; 4022 mangleFunctionParam(FPPE->getParameterPack()); 4023 break; 4024 } 4025 4026 case Expr::DependentScopeDeclRefExprClass: { 4027 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 4028 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 4029 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 4030 Arity); 4031 break; 4032 } 4033 4034 case Expr::CXXBindTemporaryExprClass: 4035 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); 4036 break; 4037 4038 case Expr::ExprWithCleanupsClass: 4039 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); 4040 break; 4041 4042 case Expr::FloatingLiteralClass: { 4043 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 4044 Out << 'L'; 4045 mangleType(FL->getType()); 4046 mangleFloat(FL->getValue()); 4047 Out << 'E'; 4048 break; 4049 } 4050 4051 case Expr::CharacterLiteralClass: 4052 Out << 'L'; 4053 mangleType(E->getType()); 4054 Out << cast<CharacterLiteral>(E)->getValue(); 4055 Out << 'E'; 4056 break; 4057 4058 // FIXME. __objc_yes/__objc_no are mangled same as true/false 4059 case Expr::ObjCBoolLiteralExprClass: 4060 Out << "Lb"; 4061 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4062 Out << 'E'; 4063 break; 4064 4065 case Expr::CXXBoolLiteralExprClass: 4066 Out << "Lb"; 4067 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4068 Out << 'E'; 4069 break; 4070 4071 case Expr::IntegerLiteralClass: { 4072 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 4073 if (E->getType()->isSignedIntegerType()) 4074 Value.setIsSigned(true); 4075 mangleIntegerLiteral(E->getType(), Value); 4076 break; 4077 } 4078 4079 case Expr::ImaginaryLiteralClass: { 4080 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 4081 // Mangle as if a complex literal. 4082 // Proposal from David Vandevoorde, 2010.06.30. 4083 Out << 'L'; 4084 mangleType(E->getType()); 4085 if (const FloatingLiteral *Imag = 4086 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 4087 // Mangle a floating-point zero of the appropriate type. 4088 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 4089 Out << '_'; 4090 mangleFloat(Imag->getValue()); 4091 } else { 4092 Out << "0_"; 4093 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 4094 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 4095 Value.setIsSigned(true); 4096 mangleNumber(Value); 4097 } 4098 Out << 'E'; 4099 break; 4100 } 4101 4102 case Expr::StringLiteralClass: { 4103 // Revised proposal from David Vandervoorde, 2010.07.15. 4104 Out << 'L'; 4105 assert(isa<ConstantArrayType>(E->getType())); 4106 mangleType(E->getType()); 4107 Out << 'E'; 4108 break; 4109 } 4110 4111 case Expr::GNUNullExprClass: 4112 // FIXME: should this really be mangled the same as nullptr? 4113 // fallthrough 4114 4115 case Expr::CXXNullPtrLiteralExprClass: { 4116 Out << "LDnE"; 4117 break; 4118 } 4119 4120 case Expr::PackExpansionExprClass: 4121 Out << "sp"; 4122 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 4123 break; 4124 4125 case Expr::SizeOfPackExprClass: { 4126 auto *SPE = cast<SizeOfPackExpr>(E); 4127 if (SPE->isPartiallySubstituted()) { 4128 Out << "sP"; 4129 for (const auto &A : SPE->getPartialArguments()) 4130 mangleTemplateArg(A); 4131 Out << "E"; 4132 break; 4133 } 4134 4135 Out << "sZ"; 4136 const NamedDecl *Pack = SPE->getPack(); 4137 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 4138 mangleTemplateParameter(TTP->getIndex()); 4139 else if (const NonTypeTemplateParmDecl *NTTP 4140 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 4141 mangleTemplateParameter(NTTP->getIndex()); 4142 else if (const TemplateTemplateParmDecl *TempTP 4143 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 4144 mangleTemplateParameter(TempTP->getIndex()); 4145 else 4146 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 4147 break; 4148 } 4149 4150 case Expr::MaterializeTemporaryExprClass: { 4151 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()); 4152 break; 4153 } 4154 4155 case Expr::CXXFoldExprClass: { 4156 auto *FE = cast<CXXFoldExpr>(E); 4157 if (FE->isLeftFold()) 4158 Out << (FE->getInit() ? "fL" : "fl"); 4159 else 4160 Out << (FE->getInit() ? "fR" : "fr"); 4161 4162 if (FE->getOperator() == BO_PtrMemD) 4163 Out << "ds"; 4164 else 4165 mangleOperatorName( 4166 BinaryOperator::getOverloadedOperator(FE->getOperator()), 4167 /*Arity=*/2); 4168 4169 if (FE->getLHS()) 4170 mangleExpression(FE->getLHS()); 4171 if (FE->getRHS()) 4172 mangleExpression(FE->getRHS()); 4173 break; 4174 } 4175 4176 case Expr::CXXThisExprClass: 4177 Out << "fpT"; 4178 break; 4179 4180 case Expr::CoawaitExprClass: 4181 // FIXME: Propose a non-vendor mangling. 4182 Out << "v18co_await"; 4183 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 4184 break; 4185 4186 case Expr::DependentCoawaitExprClass: 4187 // FIXME: Propose a non-vendor mangling. 4188 Out << "v18co_await"; 4189 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 4190 break; 4191 4192 case Expr::CoyieldExprClass: 4193 // FIXME: Propose a non-vendor mangling. 4194 Out << "v18co_yield"; 4195 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 4196 break; 4197 } 4198 } 4199 4200 /// Mangle an expression which refers to a parameter variable. 4201 /// 4202 /// <expression> ::= <function-param> 4203 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 4204 /// <function-param> ::= fp <top-level CV-qualifiers> 4205 /// <parameter-2 non-negative number> _ # L == 0, I > 0 4206 /// <function-param> ::= fL <L-1 non-negative number> 4207 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 4208 /// <function-param> ::= fL <L-1 non-negative number> 4209 /// p <top-level CV-qualifiers> 4210 /// <I-1 non-negative number> _ # L > 0, I > 0 4211 /// 4212 /// L is the nesting depth of the parameter, defined as 1 if the 4213 /// parameter comes from the innermost function prototype scope 4214 /// enclosing the current context, 2 if from the next enclosing 4215 /// function prototype scope, and so on, with one special case: if 4216 /// we've processed the full parameter clause for the innermost 4217 /// function type, then L is one less. This definition conveniently 4218 /// makes it irrelevant whether a function's result type was written 4219 /// trailing or leading, but is otherwise overly complicated; the 4220 /// numbering was first designed without considering references to 4221 /// parameter in locations other than return types, and then the 4222 /// mangling had to be generalized without changing the existing 4223 /// manglings. 4224 /// 4225 /// I is the zero-based index of the parameter within its parameter 4226 /// declaration clause. Note that the original ABI document describes 4227 /// this using 1-based ordinals. 4228 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 4229 unsigned parmDepth = parm->getFunctionScopeDepth(); 4230 unsigned parmIndex = parm->getFunctionScopeIndex(); 4231 4232 // Compute 'L'. 4233 // parmDepth does not include the declaring function prototype. 4234 // FunctionTypeDepth does account for that. 4235 assert(parmDepth < FunctionTypeDepth.getDepth()); 4236 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 4237 if (FunctionTypeDepth.isInResultType()) 4238 nestingDepth--; 4239 4240 if (nestingDepth == 0) { 4241 Out << "fp"; 4242 } else { 4243 Out << "fL" << (nestingDepth - 1) << 'p'; 4244 } 4245 4246 // Top-level qualifiers. We don't have to worry about arrays here, 4247 // because parameters declared as arrays should already have been 4248 // transformed to have pointer type. FIXME: apparently these don't 4249 // get mangled if used as an rvalue of a known non-class type? 4250 assert(!parm->getType()->isArrayType() 4251 && "parameter's type is still an array type?"); 4252 4253 if (const DependentAddressSpaceType *DAST = 4254 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 4255 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 4256 } else { 4257 mangleQualifiers(parm->getType().getQualifiers()); 4258 } 4259 4260 // Parameter index. 4261 if (parmIndex != 0) { 4262 Out << (parmIndex - 1); 4263 } 4264 Out << '_'; 4265 } 4266 4267 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 4268 const CXXRecordDecl *InheritedFrom) { 4269 // <ctor-dtor-name> ::= C1 # complete object constructor 4270 // ::= C2 # base object constructor 4271 // ::= CI1 <type> # complete inheriting constructor 4272 // ::= CI2 <type> # base inheriting constructor 4273 // 4274 // In addition, C5 is a comdat name with C1 and C2 in it. 4275 Out << 'C'; 4276 if (InheritedFrom) 4277 Out << 'I'; 4278 switch (T) { 4279 case Ctor_Complete: 4280 Out << '1'; 4281 break; 4282 case Ctor_Base: 4283 Out << '2'; 4284 break; 4285 case Ctor_Comdat: 4286 Out << '5'; 4287 break; 4288 case Ctor_DefaultClosure: 4289 case Ctor_CopyingClosure: 4290 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 4291 } 4292 if (InheritedFrom) 4293 mangleName(InheritedFrom); 4294 } 4295 4296 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 4297 // <ctor-dtor-name> ::= D0 # deleting destructor 4298 // ::= D1 # complete object destructor 4299 // ::= D2 # base object destructor 4300 // 4301 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 4302 switch (T) { 4303 case Dtor_Deleting: 4304 Out << "D0"; 4305 break; 4306 case Dtor_Complete: 4307 Out << "D1"; 4308 break; 4309 case Dtor_Base: 4310 Out << "D2"; 4311 break; 4312 case Dtor_Comdat: 4313 Out << "D5"; 4314 break; 4315 } 4316 } 4317 4318 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, 4319 unsigned NumTemplateArgs) { 4320 // <template-args> ::= I <template-arg>+ E 4321 Out << 'I'; 4322 for (unsigned i = 0; i != NumTemplateArgs; ++i) 4323 mangleTemplateArg(TemplateArgs[i].getArgument()); 4324 Out << 'E'; 4325 } 4326 4327 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) { 4328 // <template-args> ::= I <template-arg>+ E 4329 Out << 'I'; 4330 for (unsigned i = 0, e = AL.size(); i != e; ++i) 4331 mangleTemplateArg(AL[i]); 4332 Out << 'E'; 4333 } 4334 4335 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs, 4336 unsigned NumTemplateArgs) { 4337 // <template-args> ::= I <template-arg>+ E 4338 Out << 'I'; 4339 for (unsigned i = 0; i != NumTemplateArgs; ++i) 4340 mangleTemplateArg(TemplateArgs[i]); 4341 Out << 'E'; 4342 } 4343 4344 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) { 4345 // <template-arg> ::= <type> # type or template 4346 // ::= X <expression> E # expression 4347 // ::= <expr-primary> # simple expressions 4348 // ::= J <template-arg>* E # argument pack 4349 if (!A.isInstantiationDependent() || A.isDependent()) 4350 A = Context.getASTContext().getCanonicalTemplateArgument(A); 4351 4352 switch (A.getKind()) { 4353 case TemplateArgument::Null: 4354 llvm_unreachable("Cannot mangle NULL template argument"); 4355 4356 case TemplateArgument::Type: 4357 mangleType(A.getAsType()); 4358 break; 4359 case TemplateArgument::Template: 4360 // This is mangled as <type>. 4361 mangleType(A.getAsTemplate()); 4362 break; 4363 case TemplateArgument::TemplateExpansion: 4364 // <type> ::= Dp <type> # pack expansion (C++0x) 4365 Out << "Dp"; 4366 mangleType(A.getAsTemplateOrTemplatePattern()); 4367 break; 4368 case TemplateArgument::Expression: { 4369 // It's possible to end up with a DeclRefExpr here in certain 4370 // dependent cases, in which case we should mangle as a 4371 // declaration. 4372 const Expr *E = A.getAsExpr()->IgnoreParens(); 4373 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 4374 const ValueDecl *D = DRE->getDecl(); 4375 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 4376 Out << 'L'; 4377 mangle(D); 4378 Out << 'E'; 4379 break; 4380 } 4381 } 4382 4383 Out << 'X'; 4384 mangleExpression(E); 4385 Out << 'E'; 4386 break; 4387 } 4388 case TemplateArgument::Integral: 4389 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 4390 break; 4391 case TemplateArgument::Declaration: { 4392 // <expr-primary> ::= L <mangled-name> E # external name 4393 // Clang produces AST's where pointer-to-member-function expressions 4394 // and pointer-to-function expressions are represented as a declaration not 4395 // an expression. We compensate for it here to produce the correct mangling. 4396 ValueDecl *D = A.getAsDecl(); 4397 bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType(); 4398 if (compensateMangling) { 4399 Out << 'X'; 4400 mangleOperatorName(OO_Amp, 1); 4401 } 4402 4403 Out << 'L'; 4404 // References to external entities use the mangled name; if the name would 4405 // not normally be mangled then mangle it as unqualified. 4406 mangle(D); 4407 Out << 'E'; 4408 4409 if (compensateMangling) 4410 Out << 'E'; 4411 4412 break; 4413 } 4414 case TemplateArgument::NullPtr: { 4415 // <expr-primary> ::= L <type> 0 E 4416 Out << 'L'; 4417 mangleType(A.getNullPtrType()); 4418 Out << "0E"; 4419 break; 4420 } 4421 case TemplateArgument::Pack: { 4422 // <template-arg> ::= J <template-arg>* E 4423 Out << 'J'; 4424 for (const auto &P : A.pack_elements()) 4425 mangleTemplateArg(P); 4426 Out << 'E'; 4427 } 4428 } 4429 } 4430 4431 void CXXNameMangler::mangleTemplateParameter(unsigned Index) { 4432 // <template-param> ::= T_ # first template parameter 4433 // ::= T <parameter-2 non-negative number> _ 4434 if (Index == 0) 4435 Out << "T_"; 4436 else 4437 Out << 'T' << (Index - 1) << '_'; 4438 } 4439 4440 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 4441 if (SeqID == 1) 4442 Out << '0'; 4443 else if (SeqID > 1) { 4444 SeqID--; 4445 4446 // <seq-id> is encoded in base-36, using digits and upper case letters. 4447 char Buffer[7]; // log(2**32) / log(36) ~= 7 4448 MutableArrayRef<char> BufferRef(Buffer); 4449 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 4450 4451 for (; SeqID != 0; SeqID /= 36) { 4452 unsigned C = SeqID % 36; 4453 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 4454 } 4455 4456 Out.write(I.base(), I - BufferRef.rbegin()); 4457 } 4458 Out << '_'; 4459 } 4460 4461 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 4462 bool result = mangleSubstitution(tname); 4463 assert(result && "no existing substitution for template name"); 4464 (void) result; 4465 } 4466 4467 // <substitution> ::= S <seq-id> _ 4468 // ::= S_ 4469 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 4470 // Try one of the standard substitutions first. 4471 if (mangleStandardSubstitution(ND)) 4472 return true; 4473 4474 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 4475 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 4476 } 4477 4478 /// Determine whether the given type has any qualifiers that are relevant for 4479 /// substitutions. 4480 static bool hasMangledSubstitutionQualifiers(QualType T) { 4481 Qualifiers Qs = T.getQualifiers(); 4482 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 4483 } 4484 4485 bool CXXNameMangler::mangleSubstitution(QualType T) { 4486 if (!hasMangledSubstitutionQualifiers(T)) { 4487 if (const RecordType *RT = T->getAs<RecordType>()) 4488 return mangleSubstitution(RT->getDecl()); 4489 } 4490 4491 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 4492 4493 return mangleSubstitution(TypePtr); 4494 } 4495 4496 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 4497 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 4498 return mangleSubstitution(TD); 4499 4500 Template = Context.getASTContext().getCanonicalTemplateName(Template); 4501 return mangleSubstitution( 4502 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 4503 } 4504 4505 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 4506 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 4507 if (I == Substitutions.end()) 4508 return false; 4509 4510 unsigned SeqID = I->second; 4511 Out << 'S'; 4512 mangleSeqID(SeqID); 4513 4514 return true; 4515 } 4516 4517 static bool isCharType(QualType T) { 4518 if (T.isNull()) 4519 return false; 4520 4521 return T->isSpecificBuiltinType(BuiltinType::Char_S) || 4522 T->isSpecificBuiltinType(BuiltinType::Char_U); 4523 } 4524 4525 /// Returns whether a given type is a template specialization of a given name 4526 /// with a single argument of type char. 4527 static bool isCharSpecialization(QualType T, const char *Name) { 4528 if (T.isNull()) 4529 return false; 4530 4531 const RecordType *RT = T->getAs<RecordType>(); 4532 if (!RT) 4533 return false; 4534 4535 const ClassTemplateSpecializationDecl *SD = 4536 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 4537 if (!SD) 4538 return false; 4539 4540 if (!isStdNamespace(getEffectiveDeclContext(SD))) 4541 return false; 4542 4543 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4544 if (TemplateArgs.size() != 1) 4545 return false; 4546 4547 if (!isCharType(TemplateArgs[0].getAsType())) 4548 return false; 4549 4550 return SD->getIdentifier()->getName() == Name; 4551 } 4552 4553 template <std::size_t StrLen> 4554 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, 4555 const char (&Str)[StrLen]) { 4556 if (!SD->getIdentifier()->isStr(Str)) 4557 return false; 4558 4559 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4560 if (TemplateArgs.size() != 2) 4561 return false; 4562 4563 if (!isCharType(TemplateArgs[0].getAsType())) 4564 return false; 4565 4566 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 4567 return false; 4568 4569 return true; 4570 } 4571 4572 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 4573 // <substitution> ::= St # ::std:: 4574 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 4575 if (isStd(NS)) { 4576 Out << "St"; 4577 return true; 4578 } 4579 } 4580 4581 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 4582 if (!isStdNamespace(getEffectiveDeclContext(TD))) 4583 return false; 4584 4585 // <substitution> ::= Sa # ::std::allocator 4586 if (TD->getIdentifier()->isStr("allocator")) { 4587 Out << "Sa"; 4588 return true; 4589 } 4590 4591 // <<substitution> ::= Sb # ::std::basic_string 4592 if (TD->getIdentifier()->isStr("basic_string")) { 4593 Out << "Sb"; 4594 return true; 4595 } 4596 } 4597 4598 if (const ClassTemplateSpecializationDecl *SD = 4599 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 4600 if (!isStdNamespace(getEffectiveDeclContext(SD))) 4601 return false; 4602 4603 // <substitution> ::= Ss # ::std::basic_string<char, 4604 // ::std::char_traits<char>, 4605 // ::std::allocator<char> > 4606 if (SD->getIdentifier()->isStr("basic_string")) { 4607 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4608 4609 if (TemplateArgs.size() != 3) 4610 return false; 4611 4612 if (!isCharType(TemplateArgs[0].getAsType())) 4613 return false; 4614 4615 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 4616 return false; 4617 4618 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) 4619 return false; 4620 4621 Out << "Ss"; 4622 return true; 4623 } 4624 4625 // <substitution> ::= Si # ::std::basic_istream<char, 4626 // ::std::char_traits<char> > 4627 if (isStreamCharSpecialization(SD, "basic_istream")) { 4628 Out << "Si"; 4629 return true; 4630 } 4631 4632 // <substitution> ::= So # ::std::basic_ostream<char, 4633 // ::std::char_traits<char> > 4634 if (isStreamCharSpecialization(SD, "basic_ostream")) { 4635 Out << "So"; 4636 return true; 4637 } 4638 4639 // <substitution> ::= Sd # ::std::basic_iostream<char, 4640 // ::std::char_traits<char> > 4641 if (isStreamCharSpecialization(SD, "basic_iostream")) { 4642 Out << "Sd"; 4643 return true; 4644 } 4645 } 4646 return false; 4647 } 4648 4649 void CXXNameMangler::addSubstitution(QualType T) { 4650 if (!hasMangledSubstitutionQualifiers(T)) { 4651 if (const RecordType *RT = T->getAs<RecordType>()) { 4652 addSubstitution(RT->getDecl()); 4653 return; 4654 } 4655 } 4656 4657 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 4658 addSubstitution(TypePtr); 4659 } 4660 4661 void CXXNameMangler::addSubstitution(TemplateName Template) { 4662 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 4663 return addSubstitution(TD); 4664 4665 Template = Context.getASTContext().getCanonicalTemplateName(Template); 4666 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 4667 } 4668 4669 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 4670 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 4671 Substitutions[Ptr] = SeqID++; 4672 } 4673 4674 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 4675 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 4676 if (Other->SeqID > SeqID) { 4677 Substitutions.swap(Other->Substitutions); 4678 SeqID = Other->SeqID; 4679 } 4680 } 4681 4682 CXXNameMangler::AbiTagList 4683 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 4684 // When derived abi tags are disabled there is no need to make any list. 4685 if (DisableDerivedAbiTags) 4686 return AbiTagList(); 4687 4688 llvm::raw_null_ostream NullOutStream; 4689 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 4690 TrackReturnTypeTags.disableDerivedAbiTags(); 4691 4692 const FunctionProtoType *Proto = 4693 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 4694 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 4695 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 4696 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 4697 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 4698 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 4699 4700 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 4701 } 4702 4703 CXXNameMangler::AbiTagList 4704 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 4705 // When derived abi tags are disabled there is no need to make any list. 4706 if (DisableDerivedAbiTags) 4707 return AbiTagList(); 4708 4709 llvm::raw_null_ostream NullOutStream; 4710 CXXNameMangler TrackVariableType(*this, NullOutStream); 4711 TrackVariableType.disableDerivedAbiTags(); 4712 4713 TrackVariableType.mangleType(VD->getType()); 4714 4715 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 4716 } 4717 4718 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 4719 const VarDecl *VD) { 4720 llvm::raw_null_ostream NullOutStream; 4721 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 4722 TrackAbiTags.mangle(VD); 4723 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 4724 } 4725 4726 // 4727 4728 /// Mangles the name of the declaration D and emits that name to the given 4729 /// output stream. 4730 /// 4731 /// If the declaration D requires a mangled name, this routine will emit that 4732 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 4733 /// and this routine will return false. In this case, the caller should just 4734 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 4735 /// name. 4736 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D, 4737 raw_ostream &Out) { 4738 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 4739 "Invalid mangleName() call, argument is not a variable or function!"); 4740 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 4741 "Invalid mangleName() call on 'structor decl!"); 4742 4743 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 4744 getASTContext().getSourceManager(), 4745 "Mangling declaration"); 4746 4747 CXXNameMangler Mangler(*this, Out, D); 4748 Mangler.mangle(D); 4749 } 4750 4751 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, 4752 CXXCtorType Type, 4753 raw_ostream &Out) { 4754 CXXNameMangler Mangler(*this, Out, D, Type); 4755 Mangler.mangle(D); 4756 } 4757 4758 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, 4759 CXXDtorType Type, 4760 raw_ostream &Out) { 4761 CXXNameMangler Mangler(*this, Out, D, Type); 4762 Mangler.mangle(D); 4763 } 4764 4765 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 4766 raw_ostream &Out) { 4767 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 4768 Mangler.mangle(D); 4769 } 4770 4771 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 4772 raw_ostream &Out) { 4773 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 4774 Mangler.mangle(D); 4775 } 4776 4777 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 4778 const ThunkInfo &Thunk, 4779 raw_ostream &Out) { 4780 // <special-name> ::= T <call-offset> <base encoding> 4781 // # base is the nominal target function of thunk 4782 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 4783 // # base is the nominal target function of thunk 4784 // # first call-offset is 'this' adjustment 4785 // # second call-offset is result adjustment 4786 4787 assert(!isa<CXXDestructorDecl>(MD) && 4788 "Use mangleCXXDtor for destructor decls!"); 4789 CXXNameMangler Mangler(*this, Out); 4790 Mangler.getStream() << "_ZT"; 4791 if (!Thunk.Return.isEmpty()) 4792 Mangler.getStream() << 'c'; 4793 4794 // Mangle the 'this' pointer adjustment. 4795 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 4796 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 4797 4798 // Mangle the return pointer adjustment if there is one. 4799 if (!Thunk.Return.isEmpty()) 4800 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 4801 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 4802 4803 Mangler.mangleFunctionEncoding(MD); 4804 } 4805 4806 void ItaniumMangleContextImpl::mangleCXXDtorThunk( 4807 const CXXDestructorDecl *DD, CXXDtorType Type, 4808 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { 4809 // <special-name> ::= T <call-offset> <base encoding> 4810 // # base is the nominal target function of thunk 4811 CXXNameMangler Mangler(*this, Out, DD, Type); 4812 Mangler.getStream() << "_ZT"; 4813 4814 // Mangle the 'this' pointer adjustment. 4815 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 4816 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 4817 4818 Mangler.mangleFunctionEncoding(DD); 4819 } 4820 4821 /// Returns the mangled name for a guard variable for the passed in VarDecl. 4822 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 4823 raw_ostream &Out) { 4824 // <special-name> ::= GV <object name> # Guard variable for one-time 4825 // # initialization 4826 CXXNameMangler Mangler(*this, Out); 4827 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 4828 // be a bug that is fixed in trunk. 4829 Mangler.getStream() << "_ZGV"; 4830 Mangler.mangleName(D); 4831 } 4832 4833 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 4834 raw_ostream &Out) { 4835 // These symbols are internal in the Itanium ABI, so the names don't matter. 4836 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 4837 // avoid duplicate symbols. 4838 Out << "__cxx_global_var_init"; 4839 } 4840 4841 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 4842 raw_ostream &Out) { 4843 // Prefix the mangling of D with __dtor_. 4844 CXXNameMangler Mangler(*this, Out); 4845 Mangler.getStream() << "__dtor_"; 4846 if (shouldMangleDeclName(D)) 4847 Mangler.mangle(D); 4848 else 4849 Mangler.getStream() << D->getName(); 4850 } 4851 4852 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 4853 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 4854 CXXNameMangler Mangler(*this, Out); 4855 Mangler.getStream() << "__filt_"; 4856 if (shouldMangleDeclName(EnclosingDecl)) 4857 Mangler.mangle(EnclosingDecl); 4858 else 4859 Mangler.getStream() << EnclosingDecl->getName(); 4860 } 4861 4862 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 4863 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 4864 CXXNameMangler Mangler(*this, Out); 4865 Mangler.getStream() << "__fin_"; 4866 if (shouldMangleDeclName(EnclosingDecl)) 4867 Mangler.mangle(EnclosingDecl); 4868 else 4869 Mangler.getStream() << EnclosingDecl->getName(); 4870 } 4871 4872 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 4873 raw_ostream &Out) { 4874 // <special-name> ::= TH <object name> 4875 CXXNameMangler Mangler(*this, Out); 4876 Mangler.getStream() << "_ZTH"; 4877 Mangler.mangleName(D); 4878 } 4879 4880 void 4881 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 4882 raw_ostream &Out) { 4883 // <special-name> ::= TW <object name> 4884 CXXNameMangler Mangler(*this, Out); 4885 Mangler.getStream() << "_ZTW"; 4886 Mangler.mangleName(D); 4887 } 4888 4889 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 4890 unsigned ManglingNumber, 4891 raw_ostream &Out) { 4892 // We match the GCC mangling here. 4893 // <special-name> ::= GR <object name> 4894 CXXNameMangler Mangler(*this, Out); 4895 Mangler.getStream() << "_ZGR"; 4896 Mangler.mangleName(D); 4897 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 4898 Mangler.mangleSeqID(ManglingNumber - 1); 4899 } 4900 4901 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 4902 raw_ostream &Out) { 4903 // <special-name> ::= TV <type> # virtual table 4904 CXXNameMangler Mangler(*this, Out); 4905 Mangler.getStream() << "_ZTV"; 4906 Mangler.mangleNameOrStandardSubstitution(RD); 4907 } 4908 4909 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 4910 raw_ostream &Out) { 4911 // <special-name> ::= TT <type> # VTT structure 4912 CXXNameMangler Mangler(*this, Out); 4913 Mangler.getStream() << "_ZTT"; 4914 Mangler.mangleNameOrStandardSubstitution(RD); 4915 } 4916 4917 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 4918 int64_t Offset, 4919 const CXXRecordDecl *Type, 4920 raw_ostream &Out) { 4921 // <special-name> ::= TC <type> <offset number> _ <base type> 4922 CXXNameMangler Mangler(*this, Out); 4923 Mangler.getStream() << "_ZTC"; 4924 Mangler.mangleNameOrStandardSubstitution(RD); 4925 Mangler.getStream() << Offset; 4926 Mangler.getStream() << '_'; 4927 Mangler.mangleNameOrStandardSubstitution(Type); 4928 } 4929 4930 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 4931 // <special-name> ::= TI <type> # typeinfo structure 4932 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 4933 CXXNameMangler Mangler(*this, Out); 4934 Mangler.getStream() << "_ZTI"; 4935 Mangler.mangleType(Ty); 4936 } 4937 4938 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, 4939 raw_ostream &Out) { 4940 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 4941 CXXNameMangler Mangler(*this, Out); 4942 Mangler.getStream() << "_ZTS"; 4943 Mangler.mangleType(Ty); 4944 } 4945 4946 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { 4947 mangleCXXRTTIName(Ty, Out); 4948 } 4949 4950 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 4951 llvm_unreachable("Can't mangle string literals"); 4952 } 4953 4954 ItaniumMangleContext * 4955 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 4956 return new ItaniumMangleContextImpl(Context, Diags); 4957 } 4958