1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace clang;
40 
41 namespace {
42 
43 /// Retrieve the declaration context that should be used when mangling the given
44 /// declaration.
45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46   // The ABI assumes that lambda closure types that occur within
47   // default arguments live in the context of the function. However, due to
48   // the way in which Clang parses and creates function declarations, this is
49   // not the case: the lambda closure type ends up living in the context
50   // where the function itself resides, because the function declaration itself
51   // had not yet been created. Fix the context here.
52   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53     if (RD->isLambda())
54       if (ParmVarDecl *ContextParam
55             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56         return ContextParam->getDeclContext();
57   }
58 
59   // Perform the same check for block literals.
60   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
61     if (ParmVarDecl *ContextParam
62           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
63       return ContextParam->getDeclContext();
64   }
65 
66   const DeclContext *DC = D->getDeclContext();
67   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
68       isa<OMPDeclareMapperDecl>(DC)) {
69     return getEffectiveDeclContext(cast<Decl>(DC));
70   }
71 
72   if (const auto *VD = dyn_cast<VarDecl>(D))
73     if (VD->isExternC())
74       return VD->getASTContext().getTranslationUnitDecl();
75 
76   if (const auto *FD = dyn_cast<FunctionDecl>(D))
77     if (FD->isExternC())
78       return FD->getASTContext().getTranslationUnitDecl();
79 
80   return DC->getRedeclContext();
81 }
82 
83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84   return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86 
87 static bool isLocalContainerContext(const DeclContext *DC) {
88   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90 
91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92   const DeclContext *DC = getEffectiveDeclContext(D);
93   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94     if (isLocalContainerContext(DC))
95       return dyn_cast<RecordDecl>(D);
96     D = cast<Decl>(DC);
97     DC = getEffectiveDeclContext(D);
98   }
99   return nullptr;
100 }
101 
102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104     return ftd->getTemplatedDecl();
105 
106   return fn;
107 }
108 
109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111   return (fn ? getStructor(fn) : decl);
112 }
113 
114 static bool isLambda(const NamedDecl *ND) {
115   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116   if (!Record)
117     return false;
118 
119   return Record->isLambda();
120 }
121 
122 static const unsigned UnknownArity = ~0U;
123 
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128   const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
129 
130   bool NeedsUniqueInternalLinkageNames = false;
131 
132 public:
133   explicit ItaniumMangleContextImpl(
134       ASTContext &Context, DiagnosticsEngine &Diags,
135       DiscriminatorOverrideTy DiscriminatorOverride)
136       : ItaniumMangleContext(Context, Diags),
137         DiscriminatorOverride(DiscriminatorOverride) {}
138 
139   /// @name Mangler Entry Points
140   /// @{
141 
142   bool shouldMangleCXXName(const NamedDecl *D) override;
143   bool shouldMangleStringLiteral(const StringLiteral *) override {
144     return false;
145   }
146 
147   bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
148   void needsUniqueInternalLinkageNames() override {
149     NeedsUniqueInternalLinkageNames = true;
150   }
151 
152   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
153   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
154                    raw_ostream &) override;
155   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
156                           const ThisAdjustment &ThisAdjustment,
157                           raw_ostream &) override;
158   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
159                                 raw_ostream &) override;
160   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
161   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
162   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
163                            const CXXRecordDecl *Type, raw_ostream &) override;
164   void mangleCXXRTTI(QualType T, raw_ostream &) override;
165   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
166   void mangleTypeName(QualType T, raw_ostream &) override;
167 
168   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
169   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
170   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
171   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
172   void mangleDynamicAtExitDestructor(const VarDecl *D,
173                                      raw_ostream &Out) override;
174   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
175   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
176                                  raw_ostream &Out) override;
177   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
178                              raw_ostream &Out) override;
179   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
180   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
181                                        raw_ostream &) override;
182 
183   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
184 
185   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
186 
187   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
188     // Lambda closure types are already numbered.
189     if (isLambda(ND))
190       return false;
191 
192     // Anonymous tags are already numbered.
193     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
194       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
195         return false;
196     }
197 
198     // Use the canonical number for externally visible decls.
199     if (ND->isExternallyVisible()) {
200       unsigned discriminator = getASTContext().getManglingNumber(ND);
201       if (discriminator == 1)
202         return false;
203       disc = discriminator - 2;
204       return true;
205     }
206 
207     // Make up a reasonable number for internal decls.
208     unsigned &discriminator = Uniquifier[ND];
209     if (!discriminator) {
210       const DeclContext *DC = getEffectiveDeclContext(ND);
211       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
212     }
213     if (discriminator == 1)
214       return false;
215     disc = discriminator-2;
216     return true;
217   }
218 
219   std::string getLambdaString(const CXXRecordDecl *Lambda) override {
220     // This function matches the one in MicrosoftMangle, which returns
221     // the string that is used in lambda mangled names.
222     assert(Lambda->isLambda() && "RD must be a lambda!");
223     std::string Name("<lambda");
224     Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
225     unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
226     unsigned LambdaId;
227     const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
228     const FunctionDecl *Func =
229         Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
230 
231     if (Func) {
232       unsigned DefaultArgNo =
233           Func->getNumParams() - Parm->getFunctionScopeIndex();
234       Name += llvm::utostr(DefaultArgNo);
235       Name += "_";
236     }
237 
238     if (LambdaManglingNumber)
239       LambdaId = LambdaManglingNumber;
240     else
241       LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
242 
243     Name += llvm::utostr(LambdaId);
244     Name += '>';
245     return Name;
246   }
247 
248   DiscriminatorOverrideTy getDiscriminatorOverride() const override {
249     return DiscriminatorOverride;
250   }
251 
252   /// @}
253 };
254 
255 /// Manage the mangling of a single name.
256 class CXXNameMangler {
257   ItaniumMangleContextImpl &Context;
258   raw_ostream &Out;
259   bool NullOut = false;
260   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
261   /// This mode is used when mangler creates another mangler recursively to
262   /// calculate ABI tags for the function return value or the variable type.
263   /// Also it is required to avoid infinite recursion in some cases.
264   bool DisableDerivedAbiTags = false;
265 
266   /// The "structor" is the top-level declaration being mangled, if
267   /// that's not a template specialization; otherwise it's the pattern
268   /// for that specialization.
269   const NamedDecl *Structor;
270   unsigned StructorType;
271 
272   /// The next substitution sequence number.
273   unsigned SeqID;
274 
275   class FunctionTypeDepthState {
276     unsigned Bits;
277 
278     enum { InResultTypeMask = 1 };
279 
280   public:
281     FunctionTypeDepthState() : Bits(0) {}
282 
283     /// The number of function types we're inside.
284     unsigned getDepth() const {
285       return Bits >> 1;
286     }
287 
288     /// True if we're in the return type of the innermost function type.
289     bool isInResultType() const {
290       return Bits & InResultTypeMask;
291     }
292 
293     FunctionTypeDepthState push() {
294       FunctionTypeDepthState tmp = *this;
295       Bits = (Bits & ~InResultTypeMask) + 2;
296       return tmp;
297     }
298 
299     void enterResultType() {
300       Bits |= InResultTypeMask;
301     }
302 
303     void leaveResultType() {
304       Bits &= ~InResultTypeMask;
305     }
306 
307     void pop(FunctionTypeDepthState saved) {
308       assert(getDepth() == saved.getDepth() + 1);
309       Bits = saved.Bits;
310     }
311 
312   } FunctionTypeDepth;
313 
314   // abi_tag is a gcc attribute, taking one or more strings called "tags".
315   // The goal is to annotate against which version of a library an object was
316   // built and to be able to provide backwards compatibility ("dual abi").
317   // For more information see docs/ItaniumMangleAbiTags.rst.
318   typedef SmallVector<StringRef, 4> AbiTagList;
319 
320   // State to gather all implicit and explicit tags used in a mangled name.
321   // Must always have an instance of this while emitting any name to keep
322   // track.
323   class AbiTagState final {
324   public:
325     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
326       Parent = LinkHead;
327       LinkHead = this;
328     }
329 
330     // No copy, no move.
331     AbiTagState(const AbiTagState &) = delete;
332     AbiTagState &operator=(const AbiTagState &) = delete;
333 
334     ~AbiTagState() { pop(); }
335 
336     void write(raw_ostream &Out, const NamedDecl *ND,
337                const AbiTagList *AdditionalAbiTags) {
338       ND = cast<NamedDecl>(ND->getCanonicalDecl());
339       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
340         assert(
341             !AdditionalAbiTags &&
342             "only function and variables need a list of additional abi tags");
343         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
344           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
345             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
346                                AbiTag->tags().end());
347           }
348           // Don't emit abi tags for namespaces.
349           return;
350         }
351       }
352 
353       AbiTagList TagList;
354       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
355         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
356                            AbiTag->tags().end());
357         TagList.insert(TagList.end(), AbiTag->tags().begin(),
358                        AbiTag->tags().end());
359       }
360 
361       if (AdditionalAbiTags) {
362         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
363                            AdditionalAbiTags->end());
364         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
365                        AdditionalAbiTags->end());
366       }
367 
368       llvm::sort(TagList);
369       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
370 
371       writeSortedUniqueAbiTags(Out, TagList);
372     }
373 
374     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
375     void setUsedAbiTags(const AbiTagList &AbiTags) {
376       UsedAbiTags = AbiTags;
377     }
378 
379     const AbiTagList &getEmittedAbiTags() const {
380       return EmittedAbiTags;
381     }
382 
383     const AbiTagList &getSortedUniqueUsedAbiTags() {
384       llvm::sort(UsedAbiTags);
385       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
386                         UsedAbiTags.end());
387       return UsedAbiTags;
388     }
389 
390   private:
391     //! All abi tags used implicitly or explicitly.
392     AbiTagList UsedAbiTags;
393     //! All explicit abi tags (i.e. not from namespace).
394     AbiTagList EmittedAbiTags;
395 
396     AbiTagState *&LinkHead;
397     AbiTagState *Parent = nullptr;
398 
399     void pop() {
400       assert(LinkHead == this &&
401              "abi tag link head must point to us on destruction");
402       if (Parent) {
403         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
404                                    UsedAbiTags.begin(), UsedAbiTags.end());
405         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
406                                       EmittedAbiTags.begin(),
407                                       EmittedAbiTags.end());
408       }
409       LinkHead = Parent;
410     }
411 
412     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
413       for (const auto &Tag : AbiTags) {
414         EmittedAbiTags.push_back(Tag);
415         Out << "B";
416         Out << Tag.size();
417         Out << Tag;
418       }
419     }
420   };
421 
422   AbiTagState *AbiTags = nullptr;
423   AbiTagState AbiTagsRoot;
424 
425   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
426   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
427 
428   ASTContext &getASTContext() const { return Context.getASTContext(); }
429 
430 public:
431   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
432                  const NamedDecl *D = nullptr, bool NullOut_ = false)
433     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
434       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
435     // These can't be mangled without a ctor type or dtor type.
436     assert(!D || (!isa<CXXDestructorDecl>(D) &&
437                   !isa<CXXConstructorDecl>(D)));
438   }
439   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
440                  const CXXConstructorDecl *D, CXXCtorType Type)
441     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
442       SeqID(0), AbiTagsRoot(AbiTags) { }
443   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
444                  const CXXDestructorDecl *D, CXXDtorType Type)
445     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
446       SeqID(0), AbiTagsRoot(AbiTags) { }
447 
448   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
449       : Context(Outer.Context), Out(Out_), NullOut(false),
450         Structor(Outer.Structor), StructorType(Outer.StructorType),
451         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
452         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
453 
454   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
455       : Context(Outer.Context), Out(Out_), NullOut(true),
456         Structor(Outer.Structor), StructorType(Outer.StructorType),
457         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
458         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
459 
460   raw_ostream &getStream() { return Out; }
461 
462   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
463   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
464 
465   void mangle(GlobalDecl GD);
466   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
467   void mangleNumber(const llvm::APSInt &I);
468   void mangleNumber(int64_t Number);
469   void mangleFloat(const llvm::APFloat &F);
470   void mangleFunctionEncoding(GlobalDecl GD);
471   void mangleSeqID(unsigned SeqID);
472   void mangleName(GlobalDecl GD);
473   void mangleType(QualType T);
474   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
475   void mangleLambdaSig(const CXXRecordDecl *Lambda);
476 
477 private:
478 
479   bool mangleSubstitution(const NamedDecl *ND);
480   bool mangleSubstitution(QualType T);
481   bool mangleSubstitution(TemplateName Template);
482   bool mangleSubstitution(uintptr_t Ptr);
483 
484   void mangleExistingSubstitution(TemplateName name);
485 
486   bool mangleStandardSubstitution(const NamedDecl *ND);
487 
488   void addSubstitution(const NamedDecl *ND) {
489     ND = cast<NamedDecl>(ND->getCanonicalDecl());
490 
491     addSubstitution(reinterpret_cast<uintptr_t>(ND));
492   }
493   void addSubstitution(QualType T);
494   void addSubstitution(TemplateName Template);
495   void addSubstitution(uintptr_t Ptr);
496   // Destructive copy substitutions from other mangler.
497   void extendSubstitutions(CXXNameMangler* Other);
498 
499   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
500                               bool recursive = false);
501   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
502                             DeclarationName name,
503                             const TemplateArgumentLoc *TemplateArgs,
504                             unsigned NumTemplateArgs,
505                             unsigned KnownArity = UnknownArity);
506 
507   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
508 
509   void mangleNameWithAbiTags(GlobalDecl GD,
510                              const AbiTagList *AdditionalAbiTags);
511   void mangleModuleName(const Module *M);
512   void mangleModuleNamePrefix(StringRef Name);
513   void mangleTemplateName(const TemplateDecl *TD,
514                           const TemplateArgument *TemplateArgs,
515                           unsigned NumTemplateArgs);
516   void mangleUnqualifiedName(GlobalDecl GD,
517                              const AbiTagList *AdditionalAbiTags) {
518     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
519                           AdditionalAbiTags);
520   }
521   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
522                              unsigned KnownArity,
523                              const AbiTagList *AdditionalAbiTags);
524   void mangleUnscopedName(GlobalDecl GD,
525                           const AbiTagList *AdditionalAbiTags);
526   void mangleUnscopedTemplateName(GlobalDecl GD,
527                                   const AbiTagList *AdditionalAbiTags);
528   void mangleSourceName(const IdentifierInfo *II);
529   void mangleRegCallName(const IdentifierInfo *II);
530   void mangleDeviceStubName(const IdentifierInfo *II);
531   void mangleSourceNameWithAbiTags(
532       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
533   void mangleLocalName(GlobalDecl GD,
534                        const AbiTagList *AdditionalAbiTags);
535   void mangleBlockForPrefix(const BlockDecl *Block);
536   void mangleUnqualifiedBlock(const BlockDecl *Block);
537   void mangleTemplateParamDecl(const NamedDecl *Decl);
538   void mangleLambda(const CXXRecordDecl *Lambda);
539   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
540                         const AbiTagList *AdditionalAbiTags,
541                         bool NoFunction=false);
542   void mangleNestedName(const TemplateDecl *TD,
543                         const TemplateArgument *TemplateArgs,
544                         unsigned NumTemplateArgs);
545   void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
546                                          const NamedDecl *PrefixND,
547                                          const AbiTagList *AdditionalAbiTags);
548   void manglePrefix(NestedNameSpecifier *qualifier);
549   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
550   void manglePrefix(QualType type);
551   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
552   void mangleTemplatePrefix(TemplateName Template);
553   const NamedDecl *getClosurePrefix(const Decl *ND);
554   void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
555   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
556                                       StringRef Prefix = "");
557   void mangleOperatorName(DeclarationName Name, unsigned Arity);
558   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
559   void mangleVendorQualifier(StringRef qualifier);
560   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
561   void mangleRefQualifier(RefQualifierKind RefQualifier);
562 
563   void mangleObjCMethodName(const ObjCMethodDecl *MD);
564 
565   // Declare manglers for every type class.
566 #define ABSTRACT_TYPE(CLASS, PARENT)
567 #define NON_CANONICAL_TYPE(CLASS, PARENT)
568 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
569 #include "clang/AST/TypeNodes.inc"
570 
571   void mangleType(const TagType*);
572   void mangleType(TemplateName);
573   static StringRef getCallingConvQualifierName(CallingConv CC);
574   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
575   void mangleExtFunctionInfo(const FunctionType *T);
576   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
577                               const FunctionDecl *FD = nullptr);
578   void mangleNeonVectorType(const VectorType *T);
579   void mangleNeonVectorType(const DependentVectorType *T);
580   void mangleAArch64NeonVectorType(const VectorType *T);
581   void mangleAArch64NeonVectorType(const DependentVectorType *T);
582   void mangleAArch64FixedSveVectorType(const VectorType *T);
583   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
584 
585   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
586   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
587   void mangleFixedPointLiteral();
588   void mangleNullPointer(QualType T);
589 
590   void mangleMemberExprBase(const Expr *base, bool isArrow);
591   void mangleMemberExpr(const Expr *base, bool isArrow,
592                         NestedNameSpecifier *qualifier,
593                         NamedDecl *firstQualifierLookup,
594                         DeclarationName name,
595                         const TemplateArgumentLoc *TemplateArgs,
596                         unsigned NumTemplateArgs,
597                         unsigned knownArity);
598   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
599   void mangleInitListElements(const InitListExpr *InitList);
600   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
601                         bool AsTemplateArg = false);
602   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
603   void mangleCXXDtorType(CXXDtorType T);
604 
605   void mangleTemplateArgs(TemplateName TN,
606                           const TemplateArgumentLoc *TemplateArgs,
607                           unsigned NumTemplateArgs);
608   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
609                           unsigned NumTemplateArgs);
610   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
611   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
612   void mangleTemplateArgExpr(const Expr *E);
613   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
614                                 bool NeedExactType = false);
615 
616   void mangleTemplateParameter(unsigned Depth, unsigned Index);
617 
618   void mangleFunctionParam(const ParmVarDecl *parm);
619 
620   void writeAbiTags(const NamedDecl *ND,
621                     const AbiTagList *AdditionalAbiTags);
622 
623   // Returns sorted unique list of ABI tags.
624   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
625   // Returns sorted unique list of ABI tags.
626   AbiTagList makeVariableTypeTags(const VarDecl *VD);
627 };
628 
629 }
630 
631 static bool isInternalLinkageDecl(const NamedDecl *ND) {
632   if (ND && ND->getFormalLinkage() == InternalLinkage &&
633       !ND->isExternallyVisible() &&
634       getEffectiveDeclContext(ND)->isFileContext() &&
635       !ND->isInAnonymousNamespace())
636     return true;
637   return false;
638 }
639 
640 // Check if this Function Decl needs a unique internal linkage name.
641 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
642     const NamedDecl *ND) {
643   if (!NeedsUniqueInternalLinkageNames || !ND)
644     return false;
645 
646   const auto *FD = dyn_cast<FunctionDecl>(ND);
647   if (!FD)
648     return false;
649 
650   // For C functions without prototypes, return false as their
651   // names should not be mangled.
652   if (!FD->getType()->getAs<FunctionProtoType>())
653     return false;
654 
655   if (isInternalLinkageDecl(ND))
656     return true;
657 
658   return false;
659 }
660 
661 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
662   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
663     LanguageLinkage L = FD->getLanguageLinkage();
664     // Overloadable functions need mangling.
665     if (FD->hasAttr<OverloadableAttr>())
666       return true;
667 
668     // "main" is not mangled.
669     if (FD->isMain())
670       return false;
671 
672     // The Windows ABI expects that we would never mangle "typical"
673     // user-defined entry points regardless of visibility or freestanding-ness.
674     //
675     // N.B. This is distinct from asking about "main".  "main" has a lot of
676     // special rules associated with it in the standard while these
677     // user-defined entry points are outside of the purview of the standard.
678     // For example, there can be only one definition for "main" in a standards
679     // compliant program; however nothing forbids the existence of wmain and
680     // WinMain in the same translation unit.
681     if (FD->isMSVCRTEntryPoint())
682       return false;
683 
684     // C++ functions and those whose names are not a simple identifier need
685     // mangling.
686     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
687       return true;
688 
689     // C functions are not mangled.
690     if (L == CLanguageLinkage)
691       return false;
692   }
693 
694   // Otherwise, no mangling is done outside C++ mode.
695   if (!getASTContext().getLangOpts().CPlusPlus)
696     return false;
697 
698   if (const auto *VD = dyn_cast<VarDecl>(D)) {
699     // Decompositions are mangled.
700     if (isa<DecompositionDecl>(VD))
701       return true;
702 
703     // C variables are not mangled.
704     if (VD->isExternC())
705       return false;
706 
707     // Variables at global scope with non-internal linkage are not mangled.
708     const DeclContext *DC = getEffectiveDeclContext(D);
709     // Check for extern variable declared locally.
710     if (DC->isFunctionOrMethod() && D->hasLinkage())
711       while (!DC->isFileContext())
712         DC = getEffectiveParentContext(DC);
713     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
714         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
715         !isa<VarTemplateSpecializationDecl>(VD))
716       return false;
717   }
718 
719   return true;
720 }
721 
722 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
723                                   const AbiTagList *AdditionalAbiTags) {
724   assert(AbiTags && "require AbiTagState");
725   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
726 }
727 
728 void CXXNameMangler::mangleSourceNameWithAbiTags(
729     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
730   mangleSourceName(ND->getIdentifier());
731   writeAbiTags(ND, AdditionalAbiTags);
732 }
733 
734 void CXXNameMangler::mangle(GlobalDecl GD) {
735   // <mangled-name> ::= _Z <encoding>
736   //            ::= <data name>
737   //            ::= <special-name>
738   Out << "_Z";
739   if (isa<FunctionDecl>(GD.getDecl()))
740     mangleFunctionEncoding(GD);
741   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
742                BindingDecl>(GD.getDecl()))
743     mangleName(GD);
744   else if (const IndirectFieldDecl *IFD =
745                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
746     mangleName(IFD->getAnonField());
747   else
748     llvm_unreachable("unexpected kind of global decl");
749 }
750 
751 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
752   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
753   // <encoding> ::= <function name> <bare-function-type>
754 
755   // Don't mangle in the type if this isn't a decl we should typically mangle.
756   if (!Context.shouldMangleDeclName(FD)) {
757     mangleName(GD);
758     return;
759   }
760 
761   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
762   if (ReturnTypeAbiTags.empty()) {
763     // There are no tags for return type, the simplest case.
764     mangleName(GD);
765     mangleFunctionEncodingBareType(FD);
766     return;
767   }
768 
769   // Mangle function name and encoding to temporary buffer.
770   // We have to output name and encoding to the same mangler to get the same
771   // substitution as it will be in final mangling.
772   SmallString<256> FunctionEncodingBuf;
773   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
774   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
775   // Output name of the function.
776   FunctionEncodingMangler.disableDerivedAbiTags();
777   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
778 
779   // Remember length of the function name in the buffer.
780   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
781   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
782 
783   // Get tags from return type that are not present in function name or
784   // encoding.
785   const AbiTagList &UsedAbiTags =
786       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
787   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
788   AdditionalAbiTags.erase(
789       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
790                           UsedAbiTags.begin(), UsedAbiTags.end(),
791                           AdditionalAbiTags.begin()),
792       AdditionalAbiTags.end());
793 
794   // Output name with implicit tags and function encoding from temporary buffer.
795   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
796   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
797 
798   // Function encoding could create new substitutions so we have to add
799   // temp mangled substitutions to main mangler.
800   extendSubstitutions(&FunctionEncodingMangler);
801 }
802 
803 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
804   if (FD->hasAttr<EnableIfAttr>()) {
805     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
806     Out << "Ua9enable_ifI";
807     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
808                                  E = FD->getAttrs().end();
809          I != E; ++I) {
810       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
811       if (!EIA)
812         continue;
813       if (Context.getASTContext().getLangOpts().getClangABICompat() >
814           LangOptions::ClangABI::Ver11) {
815         mangleTemplateArgExpr(EIA->getCond());
816       } else {
817         // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
818         // even though <template-arg> should not include an X/E around
819         // <expr-primary>.
820         Out << 'X';
821         mangleExpression(EIA->getCond());
822         Out << 'E';
823       }
824     }
825     Out << 'E';
826     FunctionTypeDepth.pop(Saved);
827   }
828 
829   // When mangling an inheriting constructor, the bare function type used is
830   // that of the inherited constructor.
831   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
832     if (auto Inherited = CD->getInheritedConstructor())
833       FD = Inherited.getConstructor();
834 
835   // Whether the mangling of a function type includes the return type depends on
836   // the context and the nature of the function. The rules for deciding whether
837   // the return type is included are:
838   //
839   //   1. Template functions (names or types) have return types encoded, with
840   //   the exceptions listed below.
841   //   2. Function types not appearing as part of a function name mangling,
842   //   e.g. parameters, pointer types, etc., have return type encoded, with the
843   //   exceptions listed below.
844   //   3. Non-template function names do not have return types encoded.
845   //
846   // The exceptions mentioned in (1) and (2) above, for which the return type is
847   // never included, are
848   //   1. Constructors.
849   //   2. Destructors.
850   //   3. Conversion operator functions, e.g. operator int.
851   bool MangleReturnType = false;
852   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
853     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
854           isa<CXXConversionDecl>(FD)))
855       MangleReturnType = true;
856 
857     // Mangle the type of the primary template.
858     FD = PrimaryTemplate->getTemplatedDecl();
859   }
860 
861   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
862                          MangleReturnType, FD);
863 }
864 
865 /// Return whether a given namespace is the 'std' namespace.
866 static bool isStd(const NamespaceDecl *NS) {
867   if (!getEffectiveParentContext(NS)->isTranslationUnit())
868     return false;
869 
870   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
871   return II && II->isStr("std");
872 }
873 
874 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
875 // namespace.
876 static bool isStdNamespace(const DeclContext *DC) {
877   if (!DC->isNamespace())
878     return false;
879 
880   return isStd(cast<NamespaceDecl>(DC));
881 }
882 
883 static const GlobalDecl
884 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
885   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
886   // Check if we have a function template.
887   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
888     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
889       TemplateArgs = FD->getTemplateSpecializationArgs();
890       return GD.getWithDecl(TD);
891     }
892   }
893 
894   // Check if we have a class template.
895   if (const ClassTemplateSpecializationDecl *Spec =
896         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
897     TemplateArgs = &Spec->getTemplateArgs();
898     return GD.getWithDecl(Spec->getSpecializedTemplate());
899   }
900 
901   // Check if we have a variable template.
902   if (const VarTemplateSpecializationDecl *Spec =
903           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
904     TemplateArgs = &Spec->getTemplateArgs();
905     return GD.getWithDecl(Spec->getSpecializedTemplate());
906   }
907 
908   return GlobalDecl();
909 }
910 
911 static TemplateName asTemplateName(GlobalDecl GD) {
912   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
913   return TemplateName(const_cast<TemplateDecl*>(TD));
914 }
915 
916 void CXXNameMangler::mangleName(GlobalDecl GD) {
917   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
918   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
919     // Variables should have implicit tags from its type.
920     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
921     if (VariableTypeAbiTags.empty()) {
922       // Simple case no variable type tags.
923       mangleNameWithAbiTags(VD, nullptr);
924       return;
925     }
926 
927     // Mangle variable name to null stream to collect tags.
928     llvm::raw_null_ostream NullOutStream;
929     CXXNameMangler VariableNameMangler(*this, NullOutStream);
930     VariableNameMangler.disableDerivedAbiTags();
931     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
932 
933     // Get tags from variable type that are not present in its name.
934     const AbiTagList &UsedAbiTags =
935         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
936     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
937     AdditionalAbiTags.erase(
938         std::set_difference(VariableTypeAbiTags.begin(),
939                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
940                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
941         AdditionalAbiTags.end());
942 
943     // Output name with implicit tags.
944     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
945   } else {
946     mangleNameWithAbiTags(GD, nullptr);
947   }
948 }
949 
950 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
951                                            const AbiTagList *AdditionalAbiTags) {
952   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
953   //  <name> ::= [<module-name>] <nested-name>
954   //         ::= [<module-name>] <unscoped-name>
955   //         ::= [<module-name>] <unscoped-template-name> <template-args>
956   //         ::= <local-name>
957   //
958   const DeclContext *DC = getEffectiveDeclContext(ND);
959 
960   // If this is an extern variable declared locally, the relevant DeclContext
961   // is that of the containing namespace, or the translation unit.
962   // FIXME: This is a hack; extern variables declared locally should have
963   // a proper semantic declaration context!
964   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
965     while (!DC->isNamespace() && !DC->isTranslationUnit())
966       DC = getEffectiveParentContext(DC);
967   else if (GetLocalClassDecl(ND)) {
968     mangleLocalName(GD, AdditionalAbiTags);
969     return;
970   }
971 
972   assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl");
973 
974   if (isLocalContainerContext(DC)) {
975     mangleLocalName(GD, AdditionalAbiTags);
976     return;
977   }
978 
979   // Do not mangle the owning module for an external linkage declaration.
980   // This enables backwards-compatibility with non-modular code, and is
981   // a valid choice since conflicts are not permitted by C++ Modules TS
982   // [basic.def.odr]/6.2.
983   if (!ND->hasExternalFormalLinkage())
984     if (Module *M = ND->getOwningModuleForLinkage())
985       mangleModuleName(M);
986 
987   // Closures can require a nested-name mangling even if they're semantically
988   // in the global namespace.
989   if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
990     mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
991     return;
992   }
993 
994   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
995     // Check if we have a template.
996     const TemplateArgumentList *TemplateArgs = nullptr;
997     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
998       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
999       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1000       return;
1001     }
1002 
1003     mangleUnscopedName(GD, AdditionalAbiTags);
1004     return;
1005   }
1006 
1007   mangleNestedName(GD, DC, AdditionalAbiTags);
1008 }
1009 
1010 void CXXNameMangler::mangleModuleName(const Module *M) {
1011   // Implement the C++ Modules TS name mangling proposal; see
1012   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
1013   //
1014   //   <module-name> ::= W <unscoped-name>+ E
1015   //                 ::= W <module-subst> <unscoped-name>* E
1016   Out << 'W';
1017   mangleModuleNamePrefix(M->Name);
1018   Out << 'E';
1019 }
1020 
1021 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
1022   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
1023   //                 ::= W <seq-id - 10> _   # otherwise
1024   auto It = ModuleSubstitutions.find(Name);
1025   if (It != ModuleSubstitutions.end()) {
1026     if (It->second < 10)
1027       Out << '_' << static_cast<char>('0' + It->second);
1028     else
1029       Out << 'W' << (It->second - 10) << '_';
1030     return;
1031   }
1032 
1033   // FIXME: Preserve hierarchy in module names rather than flattening
1034   // them to strings; use Module*s as substitution keys.
1035   auto Parts = Name.rsplit('.');
1036   if (Parts.second.empty())
1037     Parts.second = Parts.first;
1038   else
1039     mangleModuleNamePrefix(Parts.first);
1040 
1041   Out << Parts.second.size() << Parts.second;
1042   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
1043 }
1044 
1045 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1046                                         const TemplateArgument *TemplateArgs,
1047                                         unsigned NumTemplateArgs) {
1048   const DeclContext *DC = getEffectiveDeclContext(TD);
1049 
1050   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1051     mangleUnscopedTemplateName(TD, nullptr);
1052     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1053   } else {
1054     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
1055   }
1056 }
1057 
1058 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
1059                                         const AbiTagList *AdditionalAbiTags) {
1060   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1061   //  <unscoped-name> ::= <unqualified-name>
1062   //                  ::= St <unqualified-name>   # ::std::
1063 
1064   if (isStdNamespace(getEffectiveDeclContext(ND)))
1065     Out << "St";
1066 
1067   mangleUnqualifiedName(GD, AdditionalAbiTags);
1068 }
1069 
1070 void CXXNameMangler::mangleUnscopedTemplateName(
1071     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
1072   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1073   //     <unscoped-template-name> ::= <unscoped-name>
1074   //                              ::= <substitution>
1075   if (mangleSubstitution(ND))
1076     return;
1077 
1078   // <template-template-param> ::= <template-param>
1079   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1080     assert(!AdditionalAbiTags &&
1081            "template template param cannot have abi tags");
1082     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1083   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1084     mangleUnscopedName(GD, AdditionalAbiTags);
1085   } else {
1086     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
1087   }
1088 
1089   addSubstitution(ND);
1090 }
1091 
1092 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1093   // ABI:
1094   //   Floating-point literals are encoded using a fixed-length
1095   //   lowercase hexadecimal string corresponding to the internal
1096   //   representation (IEEE on Itanium), high-order bytes first,
1097   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1098   //   on Itanium.
1099   // The 'without leading zeroes' thing seems to be an editorial
1100   // mistake; see the discussion on cxx-abi-dev beginning on
1101   // 2012-01-16.
1102 
1103   // Our requirements here are just barely weird enough to justify
1104   // using a custom algorithm instead of post-processing APInt::toString().
1105 
1106   llvm::APInt valueBits = f.bitcastToAPInt();
1107   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1108   assert(numCharacters != 0);
1109 
1110   // Allocate a buffer of the right number of characters.
1111   SmallVector<char, 20> buffer(numCharacters);
1112 
1113   // Fill the buffer left-to-right.
1114   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1115     // The bit-index of the next hex digit.
1116     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1117 
1118     // Project out 4 bits starting at 'digitIndex'.
1119     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1120     hexDigit >>= (digitBitIndex % 64);
1121     hexDigit &= 0xF;
1122 
1123     // Map that over to a lowercase hex digit.
1124     static const char charForHex[16] = {
1125       '0', '1', '2', '3', '4', '5', '6', '7',
1126       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1127     };
1128     buffer[stringIndex] = charForHex[hexDigit];
1129   }
1130 
1131   Out.write(buffer.data(), numCharacters);
1132 }
1133 
1134 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1135   Out << 'L';
1136   mangleType(T);
1137   mangleFloat(V);
1138   Out << 'E';
1139 }
1140 
1141 void CXXNameMangler::mangleFixedPointLiteral() {
1142   DiagnosticsEngine &Diags = Context.getDiags();
1143   unsigned DiagID = Diags.getCustomDiagID(
1144       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1145   Diags.Report(DiagID);
1146 }
1147 
1148 void CXXNameMangler::mangleNullPointer(QualType T) {
1149   //  <expr-primary> ::= L <type> 0 E
1150   Out << 'L';
1151   mangleType(T);
1152   Out << "0E";
1153 }
1154 
1155 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1156   if (Value.isSigned() && Value.isNegative()) {
1157     Out << 'n';
1158     Value.abs().print(Out, /*signed*/ false);
1159   } else {
1160     Value.print(Out, /*signed*/ false);
1161   }
1162 }
1163 
1164 void CXXNameMangler::mangleNumber(int64_t Number) {
1165   //  <number> ::= [n] <non-negative decimal integer>
1166   if (Number < 0) {
1167     Out << 'n';
1168     Number = -Number;
1169   }
1170 
1171   Out << Number;
1172 }
1173 
1174 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1175   //  <call-offset>  ::= h <nv-offset> _
1176   //                 ::= v <v-offset> _
1177   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1178   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1179   //                      # virtual base override, with vcall offset
1180   if (!Virtual) {
1181     Out << 'h';
1182     mangleNumber(NonVirtual);
1183     Out << '_';
1184     return;
1185   }
1186 
1187   Out << 'v';
1188   mangleNumber(NonVirtual);
1189   Out << '_';
1190   mangleNumber(Virtual);
1191   Out << '_';
1192 }
1193 
1194 void CXXNameMangler::manglePrefix(QualType type) {
1195   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1196     if (!mangleSubstitution(QualType(TST, 0))) {
1197       mangleTemplatePrefix(TST->getTemplateName());
1198 
1199       // FIXME: GCC does not appear to mangle the template arguments when
1200       // the template in question is a dependent template name. Should we
1201       // emulate that badness?
1202       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1203                          TST->getNumArgs());
1204       addSubstitution(QualType(TST, 0));
1205     }
1206   } else if (const auto *DTST =
1207                  type->getAs<DependentTemplateSpecializationType>()) {
1208     if (!mangleSubstitution(QualType(DTST, 0))) {
1209       TemplateName Template = getASTContext().getDependentTemplateName(
1210           DTST->getQualifier(), DTST->getIdentifier());
1211       mangleTemplatePrefix(Template);
1212 
1213       // FIXME: GCC does not appear to mangle the template arguments when
1214       // the template in question is a dependent template name. Should we
1215       // emulate that badness?
1216       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1217       addSubstitution(QualType(DTST, 0));
1218     }
1219   } else {
1220     // We use the QualType mangle type variant here because it handles
1221     // substitutions.
1222     mangleType(type);
1223   }
1224 }
1225 
1226 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1227 ///
1228 /// \param recursive - true if this is being called recursively,
1229 ///   i.e. if there is more prefix "to the right".
1230 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1231                                             bool recursive) {
1232 
1233   // x, ::x
1234   // <unresolved-name> ::= [gs] <base-unresolved-name>
1235 
1236   // T::x / decltype(p)::x
1237   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1238 
1239   // T::N::x /decltype(p)::N::x
1240   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1241   //                       <base-unresolved-name>
1242 
1243   // A::x, N::y, A<T>::z; "gs" means leading "::"
1244   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1245   //                       <base-unresolved-name>
1246 
1247   switch (qualifier->getKind()) {
1248   case NestedNameSpecifier::Global:
1249     Out << "gs";
1250 
1251     // We want an 'sr' unless this is the entire NNS.
1252     if (recursive)
1253       Out << "sr";
1254 
1255     // We never want an 'E' here.
1256     return;
1257 
1258   case NestedNameSpecifier::Super:
1259     llvm_unreachable("Can't mangle __super specifier");
1260 
1261   case NestedNameSpecifier::Namespace:
1262     if (qualifier->getPrefix())
1263       mangleUnresolvedPrefix(qualifier->getPrefix(),
1264                              /*recursive*/ true);
1265     else
1266       Out << "sr";
1267     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1268     break;
1269   case NestedNameSpecifier::NamespaceAlias:
1270     if (qualifier->getPrefix())
1271       mangleUnresolvedPrefix(qualifier->getPrefix(),
1272                              /*recursive*/ true);
1273     else
1274       Out << "sr";
1275     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1276     break;
1277 
1278   case NestedNameSpecifier::TypeSpec:
1279   case NestedNameSpecifier::TypeSpecWithTemplate: {
1280     const Type *type = qualifier->getAsType();
1281 
1282     // We only want to use an unresolved-type encoding if this is one of:
1283     //   - a decltype
1284     //   - a template type parameter
1285     //   - a template template parameter with arguments
1286     // In all of these cases, we should have no prefix.
1287     if (qualifier->getPrefix()) {
1288       mangleUnresolvedPrefix(qualifier->getPrefix(),
1289                              /*recursive*/ true);
1290     } else {
1291       // Otherwise, all the cases want this.
1292       Out << "sr";
1293     }
1294 
1295     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1296       return;
1297 
1298     break;
1299   }
1300 
1301   case NestedNameSpecifier::Identifier:
1302     // Member expressions can have these without prefixes.
1303     if (qualifier->getPrefix())
1304       mangleUnresolvedPrefix(qualifier->getPrefix(),
1305                              /*recursive*/ true);
1306     else
1307       Out << "sr";
1308 
1309     mangleSourceName(qualifier->getAsIdentifier());
1310     // An Identifier has no type information, so we can't emit abi tags for it.
1311     break;
1312   }
1313 
1314   // If this was the innermost part of the NNS, and we fell out to
1315   // here, append an 'E'.
1316   if (!recursive)
1317     Out << 'E';
1318 }
1319 
1320 /// Mangle an unresolved-name, which is generally used for names which
1321 /// weren't resolved to specific entities.
1322 void CXXNameMangler::mangleUnresolvedName(
1323     NestedNameSpecifier *qualifier, DeclarationName name,
1324     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1325     unsigned knownArity) {
1326   if (qualifier) mangleUnresolvedPrefix(qualifier);
1327   switch (name.getNameKind()) {
1328     // <base-unresolved-name> ::= <simple-id>
1329     case DeclarationName::Identifier:
1330       mangleSourceName(name.getAsIdentifierInfo());
1331       break;
1332     // <base-unresolved-name> ::= dn <destructor-name>
1333     case DeclarationName::CXXDestructorName:
1334       Out << "dn";
1335       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1336       break;
1337     // <base-unresolved-name> ::= on <operator-name>
1338     case DeclarationName::CXXConversionFunctionName:
1339     case DeclarationName::CXXLiteralOperatorName:
1340     case DeclarationName::CXXOperatorName:
1341       Out << "on";
1342       mangleOperatorName(name, knownArity);
1343       break;
1344     case DeclarationName::CXXConstructorName:
1345       llvm_unreachable("Can't mangle a constructor name!");
1346     case DeclarationName::CXXUsingDirective:
1347       llvm_unreachable("Can't mangle a using directive name!");
1348     case DeclarationName::CXXDeductionGuideName:
1349       llvm_unreachable("Can't mangle a deduction guide name!");
1350     case DeclarationName::ObjCMultiArgSelector:
1351     case DeclarationName::ObjCOneArgSelector:
1352     case DeclarationName::ObjCZeroArgSelector:
1353       llvm_unreachable("Can't mangle Objective-C selector names here!");
1354   }
1355 
1356   // The <simple-id> and on <operator-name> productions end in an optional
1357   // <template-args>.
1358   if (TemplateArgs)
1359     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1360 }
1361 
1362 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1363                                            DeclarationName Name,
1364                                            unsigned KnownArity,
1365                                            const AbiTagList *AdditionalAbiTags) {
1366   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1367   unsigned Arity = KnownArity;
1368   //  <unqualified-name> ::= <operator-name>
1369   //                     ::= <ctor-dtor-name>
1370   //                     ::= <source-name>
1371   switch (Name.getNameKind()) {
1372   case DeclarationName::Identifier: {
1373     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1374 
1375     // We mangle decomposition declarations as the names of their bindings.
1376     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1377       // FIXME: Non-standard mangling for decomposition declarations:
1378       //
1379       //  <unqualified-name> ::= DC <source-name>* E
1380       //
1381       // These can never be referenced across translation units, so we do
1382       // not need a cross-vendor mangling for anything other than demanglers.
1383       // Proposed on cxx-abi-dev on 2016-08-12
1384       Out << "DC";
1385       for (auto *BD : DD->bindings())
1386         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1387       Out << 'E';
1388       writeAbiTags(ND, AdditionalAbiTags);
1389       break;
1390     }
1391 
1392     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1393       // We follow MSVC in mangling GUID declarations as if they were variables
1394       // with a particular reserved name. Continue the pretense here.
1395       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1396       llvm::raw_svector_ostream GUIDOS(GUID);
1397       Context.mangleMSGuidDecl(GD, GUIDOS);
1398       Out << GUID.size() << GUID;
1399       break;
1400     }
1401 
1402     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1403       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1404       Out << "TA";
1405       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1406                                TPO->getValue(), /*TopLevel=*/true);
1407       break;
1408     }
1409 
1410     if (II) {
1411       // Match GCC's naming convention for internal linkage symbols, for
1412       // symbols that are not actually visible outside of this TU. GCC
1413       // distinguishes between internal and external linkage symbols in
1414       // its mangling, to support cases like this that were valid C++ prior
1415       // to DR426:
1416       //
1417       //   void test() { extern void foo(); }
1418       //   static void foo();
1419       //
1420       // Don't bother with the L marker for names in anonymous namespaces; the
1421       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1422       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1423       // implying internal linkage.
1424       if (isInternalLinkageDecl(ND))
1425         Out << 'L';
1426 
1427       auto *FD = dyn_cast<FunctionDecl>(ND);
1428       bool IsRegCall = FD &&
1429                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1430                            clang::CC_X86RegCall;
1431       bool IsDeviceStub =
1432           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1433           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1434       if (IsDeviceStub)
1435         mangleDeviceStubName(II);
1436       else if (IsRegCall)
1437         mangleRegCallName(II);
1438       else
1439         mangleSourceName(II);
1440 
1441       writeAbiTags(ND, AdditionalAbiTags);
1442       break;
1443     }
1444 
1445     // Otherwise, an anonymous entity.  We must have a declaration.
1446     assert(ND && "mangling empty name without declaration");
1447 
1448     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1449       if (NS->isAnonymousNamespace()) {
1450         // This is how gcc mangles these names.
1451         Out << "12_GLOBAL__N_1";
1452         break;
1453       }
1454     }
1455 
1456     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1457       // We must have an anonymous union or struct declaration.
1458       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1459 
1460       // Itanium C++ ABI 5.1.2:
1461       //
1462       //   For the purposes of mangling, the name of an anonymous union is
1463       //   considered to be the name of the first named data member found by a
1464       //   pre-order, depth-first, declaration-order walk of the data members of
1465       //   the anonymous union. If there is no such data member (i.e., if all of
1466       //   the data members in the union are unnamed), then there is no way for
1467       //   a program to refer to the anonymous union, and there is therefore no
1468       //   need to mangle its name.
1469       assert(RD->isAnonymousStructOrUnion()
1470              && "Expected anonymous struct or union!");
1471       const FieldDecl *FD = RD->findFirstNamedDataMember();
1472 
1473       // It's actually possible for various reasons for us to get here
1474       // with an empty anonymous struct / union.  Fortunately, it
1475       // doesn't really matter what name we generate.
1476       if (!FD) break;
1477       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1478 
1479       mangleSourceName(FD->getIdentifier());
1480       // Not emitting abi tags: internal name anyway.
1481       break;
1482     }
1483 
1484     // Class extensions have no name as a category, and it's possible
1485     // for them to be the semantic parent of certain declarations
1486     // (primarily, tag decls defined within declarations).  Such
1487     // declarations will always have internal linkage, so the name
1488     // doesn't really matter, but we shouldn't crash on them.  For
1489     // safety, just handle all ObjC containers here.
1490     if (isa<ObjCContainerDecl>(ND))
1491       break;
1492 
1493     // We must have an anonymous struct.
1494     const TagDecl *TD = cast<TagDecl>(ND);
1495     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1496       assert(TD->getDeclContext() == D->getDeclContext() &&
1497              "Typedef should not be in another decl context!");
1498       assert(D->getDeclName().getAsIdentifierInfo() &&
1499              "Typedef was not named!");
1500       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1501       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1502       // Explicit abi tags are still possible; take from underlying type, not
1503       // from typedef.
1504       writeAbiTags(TD, nullptr);
1505       break;
1506     }
1507 
1508     // <unnamed-type-name> ::= <closure-type-name>
1509     //
1510     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1511     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1512     //     # Parameter types or 'v' for 'void'.
1513     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1514       llvm::Optional<unsigned> DeviceNumber =
1515           Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1516 
1517       // If we have a device-number via the discriminator, use that to mangle
1518       // the lambda, otherwise use the typical lambda-mangling-number. In either
1519       // case, a '0' should be mangled as a normal unnamed class instead of as a
1520       // lambda.
1521       if (Record->isLambda() &&
1522           ((DeviceNumber && *DeviceNumber > 0) ||
1523            (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1524         assert(!AdditionalAbiTags &&
1525                "Lambda type cannot have additional abi tags");
1526         mangleLambda(Record);
1527         break;
1528       }
1529     }
1530 
1531     if (TD->isExternallyVisible()) {
1532       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1533       Out << "Ut";
1534       if (UnnamedMangle > 1)
1535         Out << UnnamedMangle - 2;
1536       Out << '_';
1537       writeAbiTags(TD, AdditionalAbiTags);
1538       break;
1539     }
1540 
1541     // Get a unique id for the anonymous struct. If it is not a real output
1542     // ID doesn't matter so use fake one.
1543     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1544 
1545     // Mangle it as a source name in the form
1546     // [n] $_<id>
1547     // where n is the length of the string.
1548     SmallString<8> Str;
1549     Str += "$_";
1550     Str += llvm::utostr(AnonStructId);
1551 
1552     Out << Str.size();
1553     Out << Str;
1554     break;
1555   }
1556 
1557   case DeclarationName::ObjCZeroArgSelector:
1558   case DeclarationName::ObjCOneArgSelector:
1559   case DeclarationName::ObjCMultiArgSelector:
1560     llvm_unreachable("Can't mangle Objective-C selector names here!");
1561 
1562   case DeclarationName::CXXConstructorName: {
1563     const CXXRecordDecl *InheritedFrom = nullptr;
1564     TemplateName InheritedTemplateName;
1565     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1566     if (auto Inherited =
1567             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1568       InheritedFrom = Inherited.getConstructor()->getParent();
1569       InheritedTemplateName =
1570           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1571       InheritedTemplateArgs =
1572           Inherited.getConstructor()->getTemplateSpecializationArgs();
1573     }
1574 
1575     if (ND == Structor)
1576       // If the named decl is the C++ constructor we're mangling, use the type
1577       // we were given.
1578       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1579     else
1580       // Otherwise, use the complete constructor name. This is relevant if a
1581       // class with a constructor is declared within a constructor.
1582       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1583 
1584     // FIXME: The template arguments are part of the enclosing prefix or
1585     // nested-name, but it's more convenient to mangle them here.
1586     if (InheritedTemplateArgs)
1587       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1588 
1589     writeAbiTags(ND, AdditionalAbiTags);
1590     break;
1591   }
1592 
1593   case DeclarationName::CXXDestructorName:
1594     if (ND == Structor)
1595       // If the named decl is the C++ destructor we're mangling, use the type we
1596       // were given.
1597       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1598     else
1599       // Otherwise, use the complete destructor name. This is relevant if a
1600       // class with a destructor is declared within a destructor.
1601       mangleCXXDtorType(Dtor_Complete);
1602     writeAbiTags(ND, AdditionalAbiTags);
1603     break;
1604 
1605   case DeclarationName::CXXOperatorName:
1606     if (ND && Arity == UnknownArity) {
1607       Arity = cast<FunctionDecl>(ND)->getNumParams();
1608 
1609       // If we have a member function, we need to include the 'this' pointer.
1610       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1611         if (!MD->isStatic())
1612           Arity++;
1613     }
1614     LLVM_FALLTHROUGH;
1615   case DeclarationName::CXXConversionFunctionName:
1616   case DeclarationName::CXXLiteralOperatorName:
1617     mangleOperatorName(Name, Arity);
1618     writeAbiTags(ND, AdditionalAbiTags);
1619     break;
1620 
1621   case DeclarationName::CXXDeductionGuideName:
1622     llvm_unreachable("Can't mangle a deduction guide name!");
1623 
1624   case DeclarationName::CXXUsingDirective:
1625     llvm_unreachable("Can't mangle a using directive name!");
1626   }
1627 }
1628 
1629 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1630   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1631   // <number> ::= [n] <non-negative decimal integer>
1632   // <identifier> ::= <unqualified source code identifier>
1633   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1634       << II->getName();
1635 }
1636 
1637 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1638   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1639   // <number> ::= [n] <non-negative decimal integer>
1640   // <identifier> ::= <unqualified source code identifier>
1641   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1642       << II->getName();
1643 }
1644 
1645 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1646   // <source-name> ::= <positive length number> <identifier>
1647   // <number> ::= [n] <non-negative decimal integer>
1648   // <identifier> ::= <unqualified source code identifier>
1649   Out << II->getLength() << II->getName();
1650 }
1651 
1652 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1653                                       const DeclContext *DC,
1654                                       const AbiTagList *AdditionalAbiTags,
1655                                       bool NoFunction) {
1656   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1657   // <nested-name>
1658   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1659   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1660   //       <template-args> E
1661 
1662   Out << 'N';
1663   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1664     Qualifiers MethodQuals = Method->getMethodQualifiers();
1665     // We do not consider restrict a distinguishing attribute for overloading
1666     // purposes so we must not mangle it.
1667     MethodQuals.removeRestrict();
1668     mangleQualifiers(MethodQuals);
1669     mangleRefQualifier(Method->getRefQualifier());
1670   }
1671 
1672   // Check if we have a template.
1673   const TemplateArgumentList *TemplateArgs = nullptr;
1674   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1675     mangleTemplatePrefix(TD, NoFunction);
1676     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1677   } else {
1678     manglePrefix(DC, NoFunction);
1679     mangleUnqualifiedName(GD, AdditionalAbiTags);
1680   }
1681 
1682   Out << 'E';
1683 }
1684 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1685                                       const TemplateArgument *TemplateArgs,
1686                                       unsigned NumTemplateArgs) {
1687   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1688 
1689   Out << 'N';
1690 
1691   mangleTemplatePrefix(TD);
1692   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1693 
1694   Out << 'E';
1695 }
1696 
1697 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1698     GlobalDecl GD, const NamedDecl *PrefixND,
1699     const AbiTagList *AdditionalAbiTags) {
1700   // A <closure-prefix> represents a variable or field, not a regular
1701   // DeclContext, so needs special handling. In this case we're mangling a
1702   // limited form of <nested-name>:
1703   //
1704   // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1705 
1706   Out << 'N';
1707 
1708   mangleClosurePrefix(PrefixND);
1709   mangleUnqualifiedName(GD, AdditionalAbiTags);
1710 
1711   Out << 'E';
1712 }
1713 
1714 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1715   GlobalDecl GD;
1716   // The Itanium spec says:
1717   // For entities in constructors and destructors, the mangling of the
1718   // complete object constructor or destructor is used as the base function
1719   // name, i.e. the C1 or D1 version.
1720   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1721     GD = GlobalDecl(CD, Ctor_Complete);
1722   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1723     GD = GlobalDecl(DD, Dtor_Complete);
1724   else
1725     GD = GlobalDecl(cast<FunctionDecl>(DC));
1726   return GD;
1727 }
1728 
1729 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1730                                      const AbiTagList *AdditionalAbiTags) {
1731   const Decl *D = GD.getDecl();
1732   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1733   //              := Z <function encoding> E s [<discriminator>]
1734   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1735   //                 _ <entity name>
1736   // <discriminator> := _ <non-negative number>
1737   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1738   const RecordDecl *RD = GetLocalClassDecl(D);
1739   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1740 
1741   Out << 'Z';
1742 
1743   {
1744     AbiTagState LocalAbiTags(AbiTags);
1745 
1746     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1747       mangleObjCMethodName(MD);
1748     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1749       mangleBlockForPrefix(BD);
1750     else
1751       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1752 
1753     // Implicit ABI tags (from namespace) are not available in the following
1754     // entity; reset to actually emitted tags, which are available.
1755     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1756   }
1757 
1758   Out << 'E';
1759 
1760   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1761   // be a bug that is fixed in trunk.
1762 
1763   if (RD) {
1764     // The parameter number is omitted for the last parameter, 0 for the
1765     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1766     // <entity name> will of course contain a <closure-type-name>: Its
1767     // numbering will be local to the particular argument in which it appears
1768     // -- other default arguments do not affect its encoding.
1769     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1770     if (CXXRD && CXXRD->isLambda()) {
1771       if (const ParmVarDecl *Parm
1772               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1773         if (const FunctionDecl *Func
1774               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1775           Out << 'd';
1776           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1777           if (Num > 1)
1778             mangleNumber(Num - 2);
1779           Out << '_';
1780         }
1781       }
1782     }
1783 
1784     // Mangle the name relative to the closest enclosing function.
1785     // equality ok because RD derived from ND above
1786     if (D == RD)  {
1787       mangleUnqualifiedName(RD, AdditionalAbiTags);
1788     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1789       if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1790         mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1791       else
1792         manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1793       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1794       mangleUnqualifiedBlock(BD);
1795     } else {
1796       const NamedDecl *ND = cast<NamedDecl>(D);
1797       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1798                        true /*NoFunction*/);
1799     }
1800   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1801     // Mangle a block in a default parameter; see above explanation for
1802     // lambdas.
1803     if (const ParmVarDecl *Parm
1804             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1805       if (const FunctionDecl *Func
1806             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1807         Out << 'd';
1808         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1809         if (Num > 1)
1810           mangleNumber(Num - 2);
1811         Out << '_';
1812       }
1813     }
1814 
1815     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1816     mangleUnqualifiedBlock(BD);
1817   } else {
1818     mangleUnqualifiedName(GD, AdditionalAbiTags);
1819   }
1820 
1821   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1822     unsigned disc;
1823     if (Context.getNextDiscriminator(ND, disc)) {
1824       if (disc < 10)
1825         Out << '_' << disc;
1826       else
1827         Out << "__" << disc << '_';
1828     }
1829   }
1830 }
1831 
1832 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1833   if (GetLocalClassDecl(Block)) {
1834     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1835     return;
1836   }
1837   const DeclContext *DC = getEffectiveDeclContext(Block);
1838   if (isLocalContainerContext(DC)) {
1839     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1840     return;
1841   }
1842   if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1843     mangleClosurePrefix(PrefixND);
1844   else
1845     manglePrefix(DC);
1846   mangleUnqualifiedBlock(Block);
1847 }
1848 
1849 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1850   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1851   // <data-member-prefix> now, with no substitutions and no <template-args>.
1852   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1853     if (getASTContext().getLangOpts().getClangABICompat() <=
1854             LangOptions::ClangABI::Ver12 &&
1855         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1856         Context->getDeclContext()->isRecord()) {
1857       const auto *ND = cast<NamedDecl>(Context);
1858       if (ND->getIdentifier()) {
1859         mangleSourceNameWithAbiTags(ND);
1860         Out << 'M';
1861       }
1862     }
1863   }
1864 
1865   // If we have a block mangling number, use it.
1866   unsigned Number = Block->getBlockManglingNumber();
1867   // Otherwise, just make up a number. It doesn't matter what it is because
1868   // the symbol in question isn't externally visible.
1869   if (!Number)
1870     Number = Context.getBlockId(Block, false);
1871   else {
1872     // Stored mangling numbers are 1-based.
1873     --Number;
1874   }
1875   Out << "Ub";
1876   if (Number > 0)
1877     Out << Number - 1;
1878   Out << '_';
1879 }
1880 
1881 // <template-param-decl>
1882 //   ::= Ty                              # template type parameter
1883 //   ::= Tn <type>                       # template non-type parameter
1884 //   ::= Tt <template-param-decl>* E     # template template parameter
1885 //   ::= Tp <template-param-decl>        # template parameter pack
1886 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1887   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1888     if (Ty->isParameterPack())
1889       Out << "Tp";
1890     Out << "Ty";
1891   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1892     if (Tn->isExpandedParameterPack()) {
1893       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1894         Out << "Tn";
1895         mangleType(Tn->getExpansionType(I));
1896       }
1897     } else {
1898       QualType T = Tn->getType();
1899       if (Tn->isParameterPack()) {
1900         Out << "Tp";
1901         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1902           T = PackExpansion->getPattern();
1903       }
1904       Out << "Tn";
1905       mangleType(T);
1906     }
1907   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1908     if (Tt->isExpandedParameterPack()) {
1909       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1910            ++I) {
1911         Out << "Tt";
1912         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1913           mangleTemplateParamDecl(Param);
1914         Out << "E";
1915       }
1916     } else {
1917       if (Tt->isParameterPack())
1918         Out << "Tp";
1919       Out << "Tt";
1920       for (auto *Param : *Tt->getTemplateParameters())
1921         mangleTemplateParamDecl(Param);
1922       Out << "E";
1923     }
1924   }
1925 }
1926 
1927 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1928   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1929   // <data-member-prefix> now, with no substitutions.
1930   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1931     if (getASTContext().getLangOpts().getClangABICompat() <=
1932             LangOptions::ClangABI::Ver12 &&
1933         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1934         !isa<ParmVarDecl>(Context)) {
1935       if (const IdentifierInfo *Name
1936             = cast<NamedDecl>(Context)->getIdentifier()) {
1937         mangleSourceName(Name);
1938         const TemplateArgumentList *TemplateArgs = nullptr;
1939         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1940           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1941         Out << 'M';
1942       }
1943     }
1944   }
1945 
1946   Out << "Ul";
1947   mangleLambdaSig(Lambda);
1948   Out << "E";
1949 
1950   // The number is omitted for the first closure type with a given
1951   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1952   // (in lexical order) with that same <lambda-sig> and context.
1953   //
1954   // The AST keeps track of the number for us.
1955   //
1956   // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
1957   // and host-side compilations, an extra device mangle context may be created
1958   // if the host-side CXX ABI has different numbering for lambda. In such case,
1959   // if the mangle context is that device-side one, use the device-side lambda
1960   // mangling number for this lambda.
1961   llvm::Optional<unsigned> DeviceNumber =
1962       Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
1963   unsigned Number =
1964       DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
1965 
1966   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1967   if (Number > 1)
1968     mangleNumber(Number - 2);
1969   Out << '_';
1970 }
1971 
1972 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1973   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1974     mangleTemplateParamDecl(D);
1975   auto *Proto =
1976       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1977   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1978                          Lambda->getLambdaStaticInvoker());
1979 }
1980 
1981 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1982   switch (qualifier->getKind()) {
1983   case NestedNameSpecifier::Global:
1984     // nothing
1985     return;
1986 
1987   case NestedNameSpecifier::Super:
1988     llvm_unreachable("Can't mangle __super specifier");
1989 
1990   case NestedNameSpecifier::Namespace:
1991     mangleName(qualifier->getAsNamespace());
1992     return;
1993 
1994   case NestedNameSpecifier::NamespaceAlias:
1995     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1996     return;
1997 
1998   case NestedNameSpecifier::TypeSpec:
1999   case NestedNameSpecifier::TypeSpecWithTemplate:
2000     manglePrefix(QualType(qualifier->getAsType(), 0));
2001     return;
2002 
2003   case NestedNameSpecifier::Identifier:
2004     // Member expressions can have these without prefixes, but that
2005     // should end up in mangleUnresolvedPrefix instead.
2006     assert(qualifier->getPrefix());
2007     manglePrefix(qualifier->getPrefix());
2008 
2009     mangleSourceName(qualifier->getAsIdentifier());
2010     return;
2011   }
2012 
2013   llvm_unreachable("unexpected nested name specifier");
2014 }
2015 
2016 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2017   //  <prefix> ::= <prefix> <unqualified-name>
2018   //           ::= <template-prefix> <template-args>
2019   //           ::= <closure-prefix>
2020   //           ::= <template-param>
2021   //           ::= # empty
2022   //           ::= <substitution>
2023 
2024   assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl");
2025 
2026   if (DC->isTranslationUnit())
2027     return;
2028 
2029   if (NoFunction && isLocalContainerContext(DC))
2030     return;
2031 
2032   assert(!isLocalContainerContext(DC));
2033 
2034   const NamedDecl *ND = cast<NamedDecl>(DC);
2035   if (mangleSubstitution(ND))
2036     return;
2037 
2038   // Check if we have a template-prefix or a closure-prefix.
2039   const TemplateArgumentList *TemplateArgs = nullptr;
2040   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2041     mangleTemplatePrefix(TD);
2042     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2043   } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2044     mangleClosurePrefix(PrefixND, NoFunction);
2045     mangleUnqualifiedName(ND, nullptr);
2046   } else {
2047     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2048     mangleUnqualifiedName(ND, nullptr);
2049   }
2050 
2051   addSubstitution(ND);
2052 }
2053 
2054 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2055   // <template-prefix> ::= <prefix> <template unqualified-name>
2056   //                   ::= <template-param>
2057   //                   ::= <substitution>
2058   if (TemplateDecl *TD = Template.getAsTemplateDecl())
2059     return mangleTemplatePrefix(TD);
2060 
2061   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2062   assert(Dependent && "unexpected template name kind");
2063 
2064   // Clang 11 and before mangled the substitution for a dependent template name
2065   // after already having emitted (a substitution for) the prefix.
2066   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2067                        LangOptions::ClangABI::Ver11;
2068   if (!Clang11Compat && mangleSubstitution(Template))
2069     return;
2070 
2071   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2072     manglePrefix(Qualifier);
2073 
2074   if (Clang11Compat && mangleSubstitution(Template))
2075     return;
2076 
2077   if (const IdentifierInfo *Id = Dependent->getIdentifier())
2078     mangleSourceName(Id);
2079   else
2080     mangleOperatorName(Dependent->getOperator(), UnknownArity);
2081 
2082   addSubstitution(Template);
2083 }
2084 
2085 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2086                                           bool NoFunction) {
2087   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2088   // <template-prefix> ::= <prefix> <template unqualified-name>
2089   //                   ::= <template-param>
2090   //                   ::= <substitution>
2091   // <template-template-param> ::= <template-param>
2092   //                               <substitution>
2093 
2094   if (mangleSubstitution(ND))
2095     return;
2096 
2097   // <template-template-param> ::= <template-param>
2098   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2099     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2100   } else {
2101     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2102     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2103       mangleUnqualifiedName(GD, nullptr);
2104     else
2105       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
2106   }
2107 
2108   addSubstitution(ND);
2109 }
2110 
2111 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2112   if (getASTContext().getLangOpts().getClangABICompat() <=
2113       LangOptions::ClangABI::Ver12)
2114     return nullptr;
2115 
2116   const NamedDecl *Context = nullptr;
2117   if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2118     Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2119   } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2120     if (RD->isLambda())
2121       Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2122   }
2123   if (!Context)
2124     return nullptr;
2125 
2126   // Only lambdas within the initializer of a non-local variable or non-static
2127   // data member get a <closure-prefix>.
2128   if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2129       isa<FieldDecl>(Context))
2130     return Context;
2131 
2132   return nullptr;
2133 }
2134 
2135 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2136   //  <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2137   //                   ::= <template-prefix> <template-args> M
2138   if (mangleSubstitution(ND))
2139     return;
2140 
2141   const TemplateArgumentList *TemplateArgs = nullptr;
2142   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2143     mangleTemplatePrefix(TD, NoFunction);
2144     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2145   } else {
2146     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2147     mangleUnqualifiedName(ND, nullptr);
2148   }
2149 
2150   Out << 'M';
2151 
2152   addSubstitution(ND);
2153 }
2154 
2155 /// Mangles a template name under the production <type>.  Required for
2156 /// template template arguments.
2157 ///   <type> ::= <class-enum-type>
2158 ///          ::= <template-param>
2159 ///          ::= <substitution>
2160 void CXXNameMangler::mangleType(TemplateName TN) {
2161   if (mangleSubstitution(TN))
2162     return;
2163 
2164   TemplateDecl *TD = nullptr;
2165 
2166   switch (TN.getKind()) {
2167   case TemplateName::QualifiedTemplate:
2168     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
2169     goto HaveDecl;
2170 
2171   case TemplateName::Template:
2172     TD = TN.getAsTemplateDecl();
2173     goto HaveDecl;
2174 
2175   HaveDecl:
2176     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2177       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2178     else
2179       mangleName(TD);
2180     break;
2181 
2182   case TemplateName::OverloadedTemplate:
2183   case TemplateName::AssumedTemplate:
2184     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2185 
2186   case TemplateName::DependentTemplate: {
2187     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2188     assert(Dependent->isIdentifier());
2189 
2190     // <class-enum-type> ::= <name>
2191     // <name> ::= <nested-name>
2192     mangleUnresolvedPrefix(Dependent->getQualifier());
2193     mangleSourceName(Dependent->getIdentifier());
2194     break;
2195   }
2196 
2197   case TemplateName::SubstTemplateTemplateParm: {
2198     // Substituted template parameters are mangled as the substituted
2199     // template.  This will check for the substitution twice, which is
2200     // fine, but we have to return early so that we don't try to *add*
2201     // the substitution twice.
2202     SubstTemplateTemplateParmStorage *subst
2203       = TN.getAsSubstTemplateTemplateParm();
2204     mangleType(subst->getReplacement());
2205     return;
2206   }
2207 
2208   case TemplateName::SubstTemplateTemplateParmPack: {
2209     // FIXME: not clear how to mangle this!
2210     // template <template <class> class T...> class A {
2211     //   template <template <class> class U...> void foo(B<T,U> x...);
2212     // };
2213     Out << "_SUBSTPACK_";
2214     break;
2215   }
2216   }
2217 
2218   addSubstitution(TN);
2219 }
2220 
2221 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2222                                                     StringRef Prefix) {
2223   // Only certain other types are valid as prefixes;  enumerate them.
2224   switch (Ty->getTypeClass()) {
2225   case Type::Builtin:
2226   case Type::Complex:
2227   case Type::Adjusted:
2228   case Type::Decayed:
2229   case Type::Pointer:
2230   case Type::BlockPointer:
2231   case Type::LValueReference:
2232   case Type::RValueReference:
2233   case Type::MemberPointer:
2234   case Type::ConstantArray:
2235   case Type::IncompleteArray:
2236   case Type::VariableArray:
2237   case Type::DependentSizedArray:
2238   case Type::DependentAddressSpace:
2239   case Type::DependentVector:
2240   case Type::DependentSizedExtVector:
2241   case Type::Vector:
2242   case Type::ExtVector:
2243   case Type::ConstantMatrix:
2244   case Type::DependentSizedMatrix:
2245   case Type::FunctionProto:
2246   case Type::FunctionNoProto:
2247   case Type::Paren:
2248   case Type::Attributed:
2249   case Type::Auto:
2250   case Type::DeducedTemplateSpecialization:
2251   case Type::PackExpansion:
2252   case Type::ObjCObject:
2253   case Type::ObjCInterface:
2254   case Type::ObjCObjectPointer:
2255   case Type::ObjCTypeParam:
2256   case Type::Atomic:
2257   case Type::Pipe:
2258   case Type::MacroQualified:
2259   case Type::BitInt:
2260   case Type::DependentBitInt:
2261     llvm_unreachable("type is illegal as a nested name specifier");
2262 
2263   case Type::SubstTemplateTypeParmPack:
2264     // FIXME: not clear how to mangle this!
2265     // template <class T...> class A {
2266     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2267     // };
2268     Out << "_SUBSTPACK_";
2269     break;
2270 
2271   // <unresolved-type> ::= <template-param>
2272   //                   ::= <decltype>
2273   //                   ::= <template-template-param> <template-args>
2274   // (this last is not official yet)
2275   case Type::TypeOfExpr:
2276   case Type::TypeOf:
2277   case Type::Decltype:
2278   case Type::TemplateTypeParm:
2279   case Type::UnaryTransform:
2280   case Type::SubstTemplateTypeParm:
2281   unresolvedType:
2282     // Some callers want a prefix before the mangled type.
2283     Out << Prefix;
2284 
2285     // This seems to do everything we want.  It's not really
2286     // sanctioned for a substituted template parameter, though.
2287     mangleType(Ty);
2288 
2289     // We never want to print 'E' directly after an unresolved-type,
2290     // so we return directly.
2291     return true;
2292 
2293   case Type::Typedef:
2294     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2295     break;
2296 
2297   case Type::UnresolvedUsing:
2298     mangleSourceNameWithAbiTags(
2299         cast<UnresolvedUsingType>(Ty)->getDecl());
2300     break;
2301 
2302   case Type::Enum:
2303   case Type::Record:
2304     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2305     break;
2306 
2307   case Type::TemplateSpecialization: {
2308     const TemplateSpecializationType *TST =
2309         cast<TemplateSpecializationType>(Ty);
2310     TemplateName TN = TST->getTemplateName();
2311     switch (TN.getKind()) {
2312     case TemplateName::Template:
2313     case TemplateName::QualifiedTemplate: {
2314       TemplateDecl *TD = TN.getAsTemplateDecl();
2315 
2316       // If the base is a template template parameter, this is an
2317       // unresolved type.
2318       assert(TD && "no template for template specialization type");
2319       if (isa<TemplateTemplateParmDecl>(TD))
2320         goto unresolvedType;
2321 
2322       mangleSourceNameWithAbiTags(TD);
2323       break;
2324     }
2325 
2326     case TemplateName::OverloadedTemplate:
2327     case TemplateName::AssumedTemplate:
2328     case TemplateName::DependentTemplate:
2329       llvm_unreachable("invalid base for a template specialization type");
2330 
2331     case TemplateName::SubstTemplateTemplateParm: {
2332       SubstTemplateTemplateParmStorage *subst =
2333           TN.getAsSubstTemplateTemplateParm();
2334       mangleExistingSubstitution(subst->getReplacement());
2335       break;
2336     }
2337 
2338     case TemplateName::SubstTemplateTemplateParmPack: {
2339       // FIXME: not clear how to mangle this!
2340       // template <template <class U> class T...> class A {
2341       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2342       // };
2343       Out << "_SUBSTPACK_";
2344       break;
2345     }
2346     }
2347 
2348     // Note: we don't pass in the template name here. We are mangling the
2349     // original source-level template arguments, so we shouldn't consider
2350     // conversions to the corresponding template parameter.
2351     // FIXME: Other compilers mangle partially-resolved template arguments in
2352     // unresolved-qualifier-levels.
2353     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2354     break;
2355   }
2356 
2357   case Type::InjectedClassName:
2358     mangleSourceNameWithAbiTags(
2359         cast<InjectedClassNameType>(Ty)->getDecl());
2360     break;
2361 
2362   case Type::DependentName:
2363     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2364     break;
2365 
2366   case Type::DependentTemplateSpecialization: {
2367     const DependentTemplateSpecializationType *DTST =
2368         cast<DependentTemplateSpecializationType>(Ty);
2369     TemplateName Template = getASTContext().getDependentTemplateName(
2370         DTST->getQualifier(), DTST->getIdentifier());
2371     mangleSourceName(DTST->getIdentifier());
2372     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2373     break;
2374   }
2375 
2376   case Type::Using:
2377     return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(),
2378                                           Prefix);
2379   case Type::Elaborated:
2380     return mangleUnresolvedTypeOrSimpleId(
2381         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2382   }
2383 
2384   return false;
2385 }
2386 
2387 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2388   switch (Name.getNameKind()) {
2389   case DeclarationName::CXXConstructorName:
2390   case DeclarationName::CXXDestructorName:
2391   case DeclarationName::CXXDeductionGuideName:
2392   case DeclarationName::CXXUsingDirective:
2393   case DeclarationName::Identifier:
2394   case DeclarationName::ObjCMultiArgSelector:
2395   case DeclarationName::ObjCOneArgSelector:
2396   case DeclarationName::ObjCZeroArgSelector:
2397     llvm_unreachable("Not an operator name");
2398 
2399   case DeclarationName::CXXConversionFunctionName:
2400     // <operator-name> ::= cv <type>    # (cast)
2401     Out << "cv";
2402     mangleType(Name.getCXXNameType());
2403     break;
2404 
2405   case DeclarationName::CXXLiteralOperatorName:
2406     Out << "li";
2407     mangleSourceName(Name.getCXXLiteralIdentifier());
2408     return;
2409 
2410   case DeclarationName::CXXOperatorName:
2411     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2412     break;
2413   }
2414 }
2415 
2416 void
2417 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2418   switch (OO) {
2419   // <operator-name> ::= nw     # new
2420   case OO_New: Out << "nw"; break;
2421   //              ::= na        # new[]
2422   case OO_Array_New: Out << "na"; break;
2423   //              ::= dl        # delete
2424   case OO_Delete: Out << "dl"; break;
2425   //              ::= da        # delete[]
2426   case OO_Array_Delete: Out << "da"; break;
2427   //              ::= ps        # + (unary)
2428   //              ::= pl        # + (binary or unknown)
2429   case OO_Plus:
2430     Out << (Arity == 1? "ps" : "pl"); break;
2431   //              ::= ng        # - (unary)
2432   //              ::= mi        # - (binary or unknown)
2433   case OO_Minus:
2434     Out << (Arity == 1? "ng" : "mi"); break;
2435   //              ::= ad        # & (unary)
2436   //              ::= an        # & (binary or unknown)
2437   case OO_Amp:
2438     Out << (Arity == 1? "ad" : "an"); break;
2439   //              ::= de        # * (unary)
2440   //              ::= ml        # * (binary or unknown)
2441   case OO_Star:
2442     // Use binary when unknown.
2443     Out << (Arity == 1? "de" : "ml"); break;
2444   //              ::= co        # ~
2445   case OO_Tilde: Out << "co"; break;
2446   //              ::= dv        # /
2447   case OO_Slash: Out << "dv"; break;
2448   //              ::= rm        # %
2449   case OO_Percent: Out << "rm"; break;
2450   //              ::= or        # |
2451   case OO_Pipe: Out << "or"; break;
2452   //              ::= eo        # ^
2453   case OO_Caret: Out << "eo"; break;
2454   //              ::= aS        # =
2455   case OO_Equal: Out << "aS"; break;
2456   //              ::= pL        # +=
2457   case OO_PlusEqual: Out << "pL"; break;
2458   //              ::= mI        # -=
2459   case OO_MinusEqual: Out << "mI"; break;
2460   //              ::= mL        # *=
2461   case OO_StarEqual: Out << "mL"; break;
2462   //              ::= dV        # /=
2463   case OO_SlashEqual: Out << "dV"; break;
2464   //              ::= rM        # %=
2465   case OO_PercentEqual: Out << "rM"; break;
2466   //              ::= aN        # &=
2467   case OO_AmpEqual: Out << "aN"; break;
2468   //              ::= oR        # |=
2469   case OO_PipeEqual: Out << "oR"; break;
2470   //              ::= eO        # ^=
2471   case OO_CaretEqual: Out << "eO"; break;
2472   //              ::= ls        # <<
2473   case OO_LessLess: Out << "ls"; break;
2474   //              ::= rs        # >>
2475   case OO_GreaterGreater: Out << "rs"; break;
2476   //              ::= lS        # <<=
2477   case OO_LessLessEqual: Out << "lS"; break;
2478   //              ::= rS        # >>=
2479   case OO_GreaterGreaterEqual: Out << "rS"; break;
2480   //              ::= eq        # ==
2481   case OO_EqualEqual: Out << "eq"; break;
2482   //              ::= ne        # !=
2483   case OO_ExclaimEqual: Out << "ne"; break;
2484   //              ::= lt        # <
2485   case OO_Less: Out << "lt"; break;
2486   //              ::= gt        # >
2487   case OO_Greater: Out << "gt"; break;
2488   //              ::= le        # <=
2489   case OO_LessEqual: Out << "le"; break;
2490   //              ::= ge        # >=
2491   case OO_GreaterEqual: Out << "ge"; break;
2492   //              ::= nt        # !
2493   case OO_Exclaim: Out << "nt"; break;
2494   //              ::= aa        # &&
2495   case OO_AmpAmp: Out << "aa"; break;
2496   //              ::= oo        # ||
2497   case OO_PipePipe: Out << "oo"; break;
2498   //              ::= pp        # ++
2499   case OO_PlusPlus: Out << "pp"; break;
2500   //              ::= mm        # --
2501   case OO_MinusMinus: Out << "mm"; break;
2502   //              ::= cm        # ,
2503   case OO_Comma: Out << "cm"; break;
2504   //              ::= pm        # ->*
2505   case OO_ArrowStar: Out << "pm"; break;
2506   //              ::= pt        # ->
2507   case OO_Arrow: Out << "pt"; break;
2508   //              ::= cl        # ()
2509   case OO_Call: Out << "cl"; break;
2510   //              ::= ix        # []
2511   case OO_Subscript: Out << "ix"; break;
2512 
2513   //              ::= qu        # ?
2514   // The conditional operator can't be overloaded, but we still handle it when
2515   // mangling expressions.
2516   case OO_Conditional: Out << "qu"; break;
2517   // Proposal on cxx-abi-dev, 2015-10-21.
2518   //              ::= aw        # co_await
2519   case OO_Coawait: Out << "aw"; break;
2520   // Proposed in cxx-abi github issue 43.
2521   //              ::= ss        # <=>
2522   case OO_Spaceship: Out << "ss"; break;
2523 
2524   case OO_None:
2525   case NUM_OVERLOADED_OPERATORS:
2526     llvm_unreachable("Not an overloaded operator");
2527   }
2528 }
2529 
2530 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2531   // Vendor qualifiers come first and if they are order-insensitive they must
2532   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2533 
2534   // <type> ::= U <addrspace-expr>
2535   if (DAST) {
2536     Out << "U2ASI";
2537     mangleExpression(DAST->getAddrSpaceExpr());
2538     Out << "E";
2539   }
2540 
2541   // Address space qualifiers start with an ordinary letter.
2542   if (Quals.hasAddressSpace()) {
2543     // Address space extension:
2544     //
2545     //   <type> ::= U <target-addrspace>
2546     //   <type> ::= U <OpenCL-addrspace>
2547     //   <type> ::= U <CUDA-addrspace>
2548 
2549     SmallString<64> ASString;
2550     LangAS AS = Quals.getAddressSpace();
2551 
2552     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2553       //  <target-addrspace> ::= "AS" <address-space-number>
2554       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2555       if (TargetAS != 0 ||
2556           Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2557         ASString = "AS" + llvm::utostr(TargetAS);
2558     } else {
2559       switch (AS) {
2560       default: llvm_unreachable("Not a language specific address space");
2561       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2562       //                                "private"| "generic" | "device" |
2563       //                                "host" ]
2564       case LangAS::opencl_global:
2565         ASString = "CLglobal";
2566         break;
2567       case LangAS::opencl_global_device:
2568         ASString = "CLdevice";
2569         break;
2570       case LangAS::opencl_global_host:
2571         ASString = "CLhost";
2572         break;
2573       case LangAS::opencl_local:
2574         ASString = "CLlocal";
2575         break;
2576       case LangAS::opencl_constant:
2577         ASString = "CLconstant";
2578         break;
2579       case LangAS::opencl_private:
2580         ASString = "CLprivate";
2581         break;
2582       case LangAS::opencl_generic:
2583         ASString = "CLgeneric";
2584         break;
2585       //  <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2586       //                              "device" | "host" ]
2587       case LangAS::sycl_global:
2588         ASString = "SYglobal";
2589         break;
2590       case LangAS::sycl_global_device:
2591         ASString = "SYdevice";
2592         break;
2593       case LangAS::sycl_global_host:
2594         ASString = "SYhost";
2595         break;
2596       case LangAS::sycl_local:
2597         ASString = "SYlocal";
2598         break;
2599       case LangAS::sycl_private:
2600         ASString = "SYprivate";
2601         break;
2602       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2603       case LangAS::cuda_device:
2604         ASString = "CUdevice";
2605         break;
2606       case LangAS::cuda_constant:
2607         ASString = "CUconstant";
2608         break;
2609       case LangAS::cuda_shared:
2610         ASString = "CUshared";
2611         break;
2612       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2613       case LangAS::ptr32_sptr:
2614         ASString = "ptr32_sptr";
2615         break;
2616       case LangAS::ptr32_uptr:
2617         ASString = "ptr32_uptr";
2618         break;
2619       case LangAS::ptr64:
2620         ASString = "ptr64";
2621         break;
2622       }
2623     }
2624     if (!ASString.empty())
2625       mangleVendorQualifier(ASString);
2626   }
2627 
2628   // The ARC ownership qualifiers start with underscores.
2629   // Objective-C ARC Extension:
2630   //
2631   //   <type> ::= U "__strong"
2632   //   <type> ::= U "__weak"
2633   //   <type> ::= U "__autoreleasing"
2634   //
2635   // Note: we emit __weak first to preserve the order as
2636   // required by the Itanium ABI.
2637   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2638     mangleVendorQualifier("__weak");
2639 
2640   // __unaligned (from -fms-extensions)
2641   if (Quals.hasUnaligned())
2642     mangleVendorQualifier("__unaligned");
2643 
2644   // Remaining ARC ownership qualifiers.
2645   switch (Quals.getObjCLifetime()) {
2646   case Qualifiers::OCL_None:
2647     break;
2648 
2649   case Qualifiers::OCL_Weak:
2650     // Do nothing as we already handled this case above.
2651     break;
2652 
2653   case Qualifiers::OCL_Strong:
2654     mangleVendorQualifier("__strong");
2655     break;
2656 
2657   case Qualifiers::OCL_Autoreleasing:
2658     mangleVendorQualifier("__autoreleasing");
2659     break;
2660 
2661   case Qualifiers::OCL_ExplicitNone:
2662     // The __unsafe_unretained qualifier is *not* mangled, so that
2663     // __unsafe_unretained types in ARC produce the same manglings as the
2664     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2665     // better ABI compatibility.
2666     //
2667     // It's safe to do this because unqualified 'id' won't show up
2668     // in any type signatures that need to be mangled.
2669     break;
2670   }
2671 
2672   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2673   if (Quals.hasRestrict())
2674     Out << 'r';
2675   if (Quals.hasVolatile())
2676     Out << 'V';
2677   if (Quals.hasConst())
2678     Out << 'K';
2679 }
2680 
2681 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2682   Out << 'U' << name.size() << name;
2683 }
2684 
2685 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2686   // <ref-qualifier> ::= R                # lvalue reference
2687   //                 ::= O                # rvalue-reference
2688   switch (RefQualifier) {
2689   case RQ_None:
2690     break;
2691 
2692   case RQ_LValue:
2693     Out << 'R';
2694     break;
2695 
2696   case RQ_RValue:
2697     Out << 'O';
2698     break;
2699   }
2700 }
2701 
2702 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2703   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2704 }
2705 
2706 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2707                                 ASTContext &Ctx) {
2708   if (Quals)
2709     return true;
2710   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2711     return true;
2712   if (Ty->isOpenCLSpecificType())
2713     return true;
2714   if (Ty->isBuiltinType())
2715     return false;
2716   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2717   // substitution candidates.
2718   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2719       isa<AutoType>(Ty))
2720     return false;
2721   // A placeholder type for class template deduction is substitutable with
2722   // its corresponding template name; this is handled specially when mangling
2723   // the type.
2724   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2725     if (DeducedTST->getDeducedType().isNull())
2726       return false;
2727   return true;
2728 }
2729 
2730 void CXXNameMangler::mangleType(QualType T) {
2731   // If our type is instantiation-dependent but not dependent, we mangle
2732   // it as it was written in the source, removing any top-level sugar.
2733   // Otherwise, use the canonical type.
2734   //
2735   // FIXME: This is an approximation of the instantiation-dependent name
2736   // mangling rules, since we should really be using the type as written and
2737   // augmented via semantic analysis (i.e., with implicit conversions and
2738   // default template arguments) for any instantiation-dependent type.
2739   // Unfortunately, that requires several changes to our AST:
2740   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2741   //     uniqued, so that we can handle substitutions properly
2742   //   - Default template arguments will need to be represented in the
2743   //     TemplateSpecializationType, since they need to be mangled even though
2744   //     they aren't written.
2745   //   - Conversions on non-type template arguments need to be expressed, since
2746   //     they can affect the mangling of sizeof/alignof.
2747   //
2748   // FIXME: This is wrong when mapping to the canonical type for a dependent
2749   // type discards instantiation-dependent portions of the type, such as for:
2750   //
2751   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2752   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2753   //
2754   // It's also wrong in the opposite direction when instantiation-dependent,
2755   // canonically-equivalent types differ in some irrelevant portion of inner
2756   // type sugar. In such cases, we fail to form correct substitutions, eg:
2757   //
2758   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2759   //
2760   // We should instead canonicalize the non-instantiation-dependent parts,
2761   // regardless of whether the type as a whole is dependent or instantiation
2762   // dependent.
2763   if (!T->isInstantiationDependentType() || T->isDependentType())
2764     T = T.getCanonicalType();
2765   else {
2766     // Desugar any types that are purely sugar.
2767     do {
2768       // Don't desugar through template specialization types that aren't
2769       // type aliases. We need to mangle the template arguments as written.
2770       if (const TemplateSpecializationType *TST
2771                                       = dyn_cast<TemplateSpecializationType>(T))
2772         if (!TST->isTypeAlias())
2773           break;
2774 
2775       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2776       // instantation-dependent qualifiers. See
2777       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2778 
2779       QualType Desugared
2780         = T.getSingleStepDesugaredType(Context.getASTContext());
2781       if (Desugared == T)
2782         break;
2783 
2784       T = Desugared;
2785     } while (true);
2786   }
2787   SplitQualType split = T.split();
2788   Qualifiers quals = split.Quals;
2789   const Type *ty = split.Ty;
2790 
2791   bool isSubstitutable =
2792     isTypeSubstitutable(quals, ty, Context.getASTContext());
2793   if (isSubstitutable && mangleSubstitution(T))
2794     return;
2795 
2796   // If we're mangling a qualified array type, push the qualifiers to
2797   // the element type.
2798   if (quals && isa<ArrayType>(T)) {
2799     ty = Context.getASTContext().getAsArrayType(T);
2800     quals = Qualifiers();
2801 
2802     // Note that we don't update T: we want to add the
2803     // substitution at the original type.
2804   }
2805 
2806   if (quals || ty->isDependentAddressSpaceType()) {
2807     if (const DependentAddressSpaceType *DAST =
2808         dyn_cast<DependentAddressSpaceType>(ty)) {
2809       SplitQualType splitDAST = DAST->getPointeeType().split();
2810       mangleQualifiers(splitDAST.Quals, DAST);
2811       mangleType(QualType(splitDAST.Ty, 0));
2812     } else {
2813       mangleQualifiers(quals);
2814 
2815       // Recurse:  even if the qualified type isn't yet substitutable,
2816       // the unqualified type might be.
2817       mangleType(QualType(ty, 0));
2818     }
2819   } else {
2820     switch (ty->getTypeClass()) {
2821 #define ABSTRACT_TYPE(CLASS, PARENT)
2822 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2823     case Type::CLASS: \
2824       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2825       return;
2826 #define TYPE(CLASS, PARENT) \
2827     case Type::CLASS: \
2828       mangleType(static_cast<const CLASS##Type*>(ty)); \
2829       break;
2830 #include "clang/AST/TypeNodes.inc"
2831     }
2832   }
2833 
2834   // Add the substitution.
2835   if (isSubstitutable)
2836     addSubstitution(T);
2837 }
2838 
2839 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2840   if (!mangleStandardSubstitution(ND))
2841     mangleName(ND);
2842 }
2843 
2844 void CXXNameMangler::mangleType(const BuiltinType *T) {
2845   //  <type>         ::= <builtin-type>
2846   //  <builtin-type> ::= v  # void
2847   //                 ::= w  # wchar_t
2848   //                 ::= b  # bool
2849   //                 ::= c  # char
2850   //                 ::= a  # signed char
2851   //                 ::= h  # unsigned char
2852   //                 ::= s  # short
2853   //                 ::= t  # unsigned short
2854   //                 ::= i  # int
2855   //                 ::= j  # unsigned int
2856   //                 ::= l  # long
2857   //                 ::= m  # unsigned long
2858   //                 ::= x  # long long, __int64
2859   //                 ::= y  # unsigned long long, __int64
2860   //                 ::= n  # __int128
2861   //                 ::= o  # unsigned __int128
2862   //                 ::= f  # float
2863   //                 ::= d  # double
2864   //                 ::= e  # long double, __float80
2865   //                 ::= g  # __float128
2866   //                 ::= g  # __ibm128
2867   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2868   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2869   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2870   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2871   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2872   //                 ::= Di # char32_t
2873   //                 ::= Ds # char16_t
2874   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2875   //                 ::= u <source-name>    # vendor extended type
2876   std::string type_name;
2877   switch (T->getKind()) {
2878   case BuiltinType::Void:
2879     Out << 'v';
2880     break;
2881   case BuiltinType::Bool:
2882     Out << 'b';
2883     break;
2884   case BuiltinType::Char_U:
2885   case BuiltinType::Char_S:
2886     Out << 'c';
2887     break;
2888   case BuiltinType::UChar:
2889     Out << 'h';
2890     break;
2891   case BuiltinType::UShort:
2892     Out << 't';
2893     break;
2894   case BuiltinType::UInt:
2895     Out << 'j';
2896     break;
2897   case BuiltinType::ULong:
2898     Out << 'm';
2899     break;
2900   case BuiltinType::ULongLong:
2901     Out << 'y';
2902     break;
2903   case BuiltinType::UInt128:
2904     Out << 'o';
2905     break;
2906   case BuiltinType::SChar:
2907     Out << 'a';
2908     break;
2909   case BuiltinType::WChar_S:
2910   case BuiltinType::WChar_U:
2911     Out << 'w';
2912     break;
2913   case BuiltinType::Char8:
2914     Out << "Du";
2915     break;
2916   case BuiltinType::Char16:
2917     Out << "Ds";
2918     break;
2919   case BuiltinType::Char32:
2920     Out << "Di";
2921     break;
2922   case BuiltinType::Short:
2923     Out << 's';
2924     break;
2925   case BuiltinType::Int:
2926     Out << 'i';
2927     break;
2928   case BuiltinType::Long:
2929     Out << 'l';
2930     break;
2931   case BuiltinType::LongLong:
2932     Out << 'x';
2933     break;
2934   case BuiltinType::Int128:
2935     Out << 'n';
2936     break;
2937   case BuiltinType::Float16:
2938     Out << "DF16_";
2939     break;
2940   case BuiltinType::ShortAccum:
2941   case BuiltinType::Accum:
2942   case BuiltinType::LongAccum:
2943   case BuiltinType::UShortAccum:
2944   case BuiltinType::UAccum:
2945   case BuiltinType::ULongAccum:
2946   case BuiltinType::ShortFract:
2947   case BuiltinType::Fract:
2948   case BuiltinType::LongFract:
2949   case BuiltinType::UShortFract:
2950   case BuiltinType::UFract:
2951   case BuiltinType::ULongFract:
2952   case BuiltinType::SatShortAccum:
2953   case BuiltinType::SatAccum:
2954   case BuiltinType::SatLongAccum:
2955   case BuiltinType::SatUShortAccum:
2956   case BuiltinType::SatUAccum:
2957   case BuiltinType::SatULongAccum:
2958   case BuiltinType::SatShortFract:
2959   case BuiltinType::SatFract:
2960   case BuiltinType::SatLongFract:
2961   case BuiltinType::SatUShortFract:
2962   case BuiltinType::SatUFract:
2963   case BuiltinType::SatULongFract:
2964     llvm_unreachable("Fixed point types are disabled for c++");
2965   case BuiltinType::Half:
2966     Out << "Dh";
2967     break;
2968   case BuiltinType::Float:
2969     Out << 'f';
2970     break;
2971   case BuiltinType::Double:
2972     Out << 'd';
2973     break;
2974   case BuiltinType::LongDouble: {
2975     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2976                                    getASTContext().getLangOpts().OpenMPIsDevice
2977                                ? getASTContext().getAuxTargetInfo()
2978                                : &getASTContext().getTargetInfo();
2979     Out << TI->getLongDoubleMangling();
2980     break;
2981   }
2982   case BuiltinType::Float128: {
2983     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2984                                    getASTContext().getLangOpts().OpenMPIsDevice
2985                                ? getASTContext().getAuxTargetInfo()
2986                                : &getASTContext().getTargetInfo();
2987     Out << TI->getFloat128Mangling();
2988     break;
2989   }
2990   case BuiltinType::BFloat16: {
2991     const TargetInfo *TI = &getASTContext().getTargetInfo();
2992     Out << TI->getBFloat16Mangling();
2993     break;
2994   }
2995   case BuiltinType::Ibm128: {
2996     const TargetInfo *TI = &getASTContext().getTargetInfo();
2997     Out << TI->getIbm128Mangling();
2998     break;
2999   }
3000   case BuiltinType::NullPtr:
3001     Out << "Dn";
3002     break;
3003 
3004 #define BUILTIN_TYPE(Id, SingletonId)
3005 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3006   case BuiltinType::Id:
3007 #include "clang/AST/BuiltinTypes.def"
3008   case BuiltinType::Dependent:
3009     if (!NullOut)
3010       llvm_unreachable("mangling a placeholder type");
3011     break;
3012   case BuiltinType::ObjCId:
3013     Out << "11objc_object";
3014     break;
3015   case BuiltinType::ObjCClass:
3016     Out << "10objc_class";
3017     break;
3018   case BuiltinType::ObjCSel:
3019     Out << "13objc_selector";
3020     break;
3021 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3022   case BuiltinType::Id: \
3023     type_name = "ocl_" #ImgType "_" #Suffix; \
3024     Out << type_name.size() << type_name; \
3025     break;
3026 #include "clang/Basic/OpenCLImageTypes.def"
3027   case BuiltinType::OCLSampler:
3028     Out << "11ocl_sampler";
3029     break;
3030   case BuiltinType::OCLEvent:
3031     Out << "9ocl_event";
3032     break;
3033   case BuiltinType::OCLClkEvent:
3034     Out << "12ocl_clkevent";
3035     break;
3036   case BuiltinType::OCLQueue:
3037     Out << "9ocl_queue";
3038     break;
3039   case BuiltinType::OCLReserveID:
3040     Out << "13ocl_reserveid";
3041     break;
3042 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3043   case BuiltinType::Id: \
3044     type_name = "ocl_" #ExtType; \
3045     Out << type_name.size() << type_name; \
3046     break;
3047 #include "clang/Basic/OpenCLExtensionTypes.def"
3048   // The SVE types are effectively target-specific.  The mangling scheme
3049   // is defined in the appendices to the Procedure Call Standard for the
3050   // Arm Architecture.
3051 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
3052                         ElBits, IsSigned, IsFP, IsBF)                          \
3053   case BuiltinType::Id:                                                        \
3054     type_name = MangledName;                                                   \
3055     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3056         << type_name;                                                          \
3057     break;
3058 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3059   case BuiltinType::Id:                                                        \
3060     type_name = MangledName;                                                   \
3061     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3062         << type_name;                                                          \
3063     break;
3064 #include "clang/Basic/AArch64SVEACLETypes.def"
3065 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3066   case BuiltinType::Id: \
3067     type_name = #Name; \
3068     Out << 'u' << type_name.size() << type_name; \
3069     break;
3070 #include "clang/Basic/PPCTypes.def"
3071     // TODO: Check the mangling scheme for RISC-V V.
3072 #define RVV_TYPE(Name, Id, SingletonId)                                        \
3073   case BuiltinType::Id:                                                        \
3074     type_name = Name;                                                          \
3075     Out << 'u' << type_name.size() << type_name;                               \
3076     break;
3077 #include "clang/Basic/RISCVVTypes.def"
3078   }
3079 }
3080 
3081 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3082   switch (CC) {
3083   case CC_C:
3084     return "";
3085 
3086   case CC_X86VectorCall:
3087   case CC_X86Pascal:
3088   case CC_X86RegCall:
3089   case CC_AAPCS:
3090   case CC_AAPCS_VFP:
3091   case CC_AArch64VectorCall:
3092   case CC_IntelOclBicc:
3093   case CC_SpirFunction:
3094   case CC_OpenCLKernel:
3095   case CC_PreserveMost:
3096   case CC_PreserveAll:
3097     // FIXME: we should be mangling all of the above.
3098     return "";
3099 
3100   case CC_X86ThisCall:
3101     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3102     // used explicitly. At this point, we don't have that much information in
3103     // the AST, since clang tends to bake the convention into the canonical
3104     // function type. thiscall only rarely used explicitly, so don't mangle it
3105     // for now.
3106     return "";
3107 
3108   case CC_X86StdCall:
3109     return "stdcall";
3110   case CC_X86FastCall:
3111     return "fastcall";
3112   case CC_X86_64SysV:
3113     return "sysv_abi";
3114   case CC_Win64:
3115     return "ms_abi";
3116   case CC_Swift:
3117     return "swiftcall";
3118   case CC_SwiftAsync:
3119     return "swiftasynccall";
3120   }
3121   llvm_unreachable("bad calling convention");
3122 }
3123 
3124 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3125   // Fast path.
3126   if (T->getExtInfo() == FunctionType::ExtInfo())
3127     return;
3128 
3129   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3130   // This will get more complicated in the future if we mangle other
3131   // things here; but for now, since we mangle ns_returns_retained as
3132   // a qualifier on the result type, we can get away with this:
3133   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3134   if (!CCQualifier.empty())
3135     mangleVendorQualifier(CCQualifier);
3136 
3137   // FIXME: regparm
3138   // FIXME: noreturn
3139 }
3140 
3141 void
3142 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3143   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3144 
3145   // Note that these are *not* substitution candidates.  Demanglers might
3146   // have trouble with this if the parameter type is fully substituted.
3147 
3148   switch (PI.getABI()) {
3149   case ParameterABI::Ordinary:
3150     break;
3151 
3152   // All of these start with "swift", so they come before "ns_consumed".
3153   case ParameterABI::SwiftContext:
3154   case ParameterABI::SwiftAsyncContext:
3155   case ParameterABI::SwiftErrorResult:
3156   case ParameterABI::SwiftIndirectResult:
3157     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3158     break;
3159   }
3160 
3161   if (PI.isConsumed())
3162     mangleVendorQualifier("ns_consumed");
3163 
3164   if (PI.isNoEscape())
3165     mangleVendorQualifier("noescape");
3166 }
3167 
3168 // <type>          ::= <function-type>
3169 // <function-type> ::= [<CV-qualifiers>] F [Y]
3170 //                      <bare-function-type> [<ref-qualifier>] E
3171 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3172   mangleExtFunctionInfo(T);
3173 
3174   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
3175   // e.g. "const" in "int (A::*)() const".
3176   mangleQualifiers(T->getMethodQuals());
3177 
3178   // Mangle instantiation-dependent exception-specification, if present,
3179   // per cxx-abi-dev proposal on 2016-10-11.
3180   if (T->hasInstantiationDependentExceptionSpec()) {
3181     if (isComputedNoexcept(T->getExceptionSpecType())) {
3182       Out << "DO";
3183       mangleExpression(T->getNoexceptExpr());
3184       Out << "E";
3185     } else {
3186       assert(T->getExceptionSpecType() == EST_Dynamic);
3187       Out << "Dw";
3188       for (auto ExceptTy : T->exceptions())
3189         mangleType(ExceptTy);
3190       Out << "E";
3191     }
3192   } else if (T->isNothrow()) {
3193     Out << "Do";
3194   }
3195 
3196   Out << 'F';
3197 
3198   // FIXME: We don't have enough information in the AST to produce the 'Y'
3199   // encoding for extern "C" function types.
3200   mangleBareFunctionType(T, /*MangleReturnType=*/true);
3201 
3202   // Mangle the ref-qualifier, if present.
3203   mangleRefQualifier(T->getRefQualifier());
3204 
3205   Out << 'E';
3206 }
3207 
3208 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3209   // Function types without prototypes can arise when mangling a function type
3210   // within an overloadable function in C. We mangle these as the absence of any
3211   // parameter types (not even an empty parameter list).
3212   Out << 'F';
3213 
3214   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3215 
3216   FunctionTypeDepth.enterResultType();
3217   mangleType(T->getReturnType());
3218   FunctionTypeDepth.leaveResultType();
3219 
3220   FunctionTypeDepth.pop(saved);
3221   Out << 'E';
3222 }
3223 
3224 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3225                                             bool MangleReturnType,
3226                                             const FunctionDecl *FD) {
3227   // Record that we're in a function type.  See mangleFunctionParam
3228   // for details on what we're trying to achieve here.
3229   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3230 
3231   // <bare-function-type> ::= <signature type>+
3232   if (MangleReturnType) {
3233     FunctionTypeDepth.enterResultType();
3234 
3235     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3236     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3237       mangleVendorQualifier("ns_returns_retained");
3238 
3239     // Mangle the return type without any direct ARC ownership qualifiers.
3240     QualType ReturnTy = Proto->getReturnType();
3241     if (ReturnTy.getObjCLifetime()) {
3242       auto SplitReturnTy = ReturnTy.split();
3243       SplitReturnTy.Quals.removeObjCLifetime();
3244       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3245     }
3246     mangleType(ReturnTy);
3247 
3248     FunctionTypeDepth.leaveResultType();
3249   }
3250 
3251   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3252     //   <builtin-type> ::= v   # void
3253     Out << 'v';
3254 
3255     FunctionTypeDepth.pop(saved);
3256     return;
3257   }
3258 
3259   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3260   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3261     // Mangle extended parameter info as order-sensitive qualifiers here.
3262     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3263       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3264     }
3265 
3266     // Mangle the type.
3267     QualType ParamTy = Proto->getParamType(I);
3268     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3269 
3270     if (FD) {
3271       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3272         // Attr can only take 1 character, so we can hardcode the length below.
3273         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3274         if (Attr->isDynamic())
3275           Out << "U25pass_dynamic_object_size" << Attr->getType();
3276         else
3277           Out << "U17pass_object_size" << Attr->getType();
3278       }
3279     }
3280   }
3281 
3282   FunctionTypeDepth.pop(saved);
3283 
3284   // <builtin-type>      ::= z  # ellipsis
3285   if (Proto->isVariadic())
3286     Out << 'z';
3287 }
3288 
3289 // <type>            ::= <class-enum-type>
3290 // <class-enum-type> ::= <name>
3291 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3292   mangleName(T->getDecl());
3293 }
3294 
3295 // <type>            ::= <class-enum-type>
3296 // <class-enum-type> ::= <name>
3297 void CXXNameMangler::mangleType(const EnumType *T) {
3298   mangleType(static_cast<const TagType*>(T));
3299 }
3300 void CXXNameMangler::mangleType(const RecordType *T) {
3301   mangleType(static_cast<const TagType*>(T));
3302 }
3303 void CXXNameMangler::mangleType(const TagType *T) {
3304   mangleName(T->getDecl());
3305 }
3306 
3307 // <type>       ::= <array-type>
3308 // <array-type> ::= A <positive dimension number> _ <element type>
3309 //              ::= A [<dimension expression>] _ <element type>
3310 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3311   Out << 'A' << T->getSize() << '_';
3312   mangleType(T->getElementType());
3313 }
3314 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3315   Out << 'A';
3316   // decayed vla types (size 0) will just be skipped.
3317   if (T->getSizeExpr())
3318     mangleExpression(T->getSizeExpr());
3319   Out << '_';
3320   mangleType(T->getElementType());
3321 }
3322 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3323   Out << 'A';
3324   // A DependentSizedArrayType might not have size expression as below
3325   //
3326   // template<int ...N> int arr[] = {N...};
3327   if (T->getSizeExpr())
3328     mangleExpression(T->getSizeExpr());
3329   Out << '_';
3330   mangleType(T->getElementType());
3331 }
3332 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3333   Out << "A_";
3334   mangleType(T->getElementType());
3335 }
3336 
3337 // <type>                   ::= <pointer-to-member-type>
3338 // <pointer-to-member-type> ::= M <class type> <member type>
3339 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3340   Out << 'M';
3341   mangleType(QualType(T->getClass(), 0));
3342   QualType PointeeType = T->getPointeeType();
3343   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3344     mangleType(FPT);
3345 
3346     // Itanium C++ ABI 5.1.8:
3347     //
3348     //   The type of a non-static member function is considered to be different,
3349     //   for the purposes of substitution, from the type of a namespace-scope or
3350     //   static member function whose type appears similar. The types of two
3351     //   non-static member functions are considered to be different, for the
3352     //   purposes of substitution, if the functions are members of different
3353     //   classes. In other words, for the purposes of substitution, the class of
3354     //   which the function is a member is considered part of the type of
3355     //   function.
3356 
3357     // Given that we already substitute member function pointers as a
3358     // whole, the net effect of this rule is just to unconditionally
3359     // suppress substitution on the function type in a member pointer.
3360     // We increment the SeqID here to emulate adding an entry to the
3361     // substitution table.
3362     ++SeqID;
3363   } else
3364     mangleType(PointeeType);
3365 }
3366 
3367 // <type>           ::= <template-param>
3368 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3369   mangleTemplateParameter(T->getDepth(), T->getIndex());
3370 }
3371 
3372 // <type>           ::= <template-param>
3373 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3374   // FIXME: not clear how to mangle this!
3375   // template <class T...> class A {
3376   //   template <class U...> void foo(T(*)(U) x...);
3377   // };
3378   Out << "_SUBSTPACK_";
3379 }
3380 
3381 // <type> ::= P <type>   # pointer-to
3382 void CXXNameMangler::mangleType(const PointerType *T) {
3383   Out << 'P';
3384   mangleType(T->getPointeeType());
3385 }
3386 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3387   Out << 'P';
3388   mangleType(T->getPointeeType());
3389 }
3390 
3391 // <type> ::= R <type>   # reference-to
3392 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3393   Out << 'R';
3394   mangleType(T->getPointeeType());
3395 }
3396 
3397 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3398 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3399   Out << 'O';
3400   mangleType(T->getPointeeType());
3401 }
3402 
3403 // <type> ::= C <type>   # complex pair (C 2000)
3404 void CXXNameMangler::mangleType(const ComplexType *T) {
3405   Out << 'C';
3406   mangleType(T->getElementType());
3407 }
3408 
3409 // ARM's ABI for Neon vector types specifies that they should be mangled as
3410 // if they are structs (to match ARM's initial implementation).  The
3411 // vector type must be one of the special types predefined by ARM.
3412 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3413   QualType EltType = T->getElementType();
3414   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3415   const char *EltName = nullptr;
3416   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3417     switch (cast<BuiltinType>(EltType)->getKind()) {
3418     case BuiltinType::SChar:
3419     case BuiltinType::UChar:
3420       EltName = "poly8_t";
3421       break;
3422     case BuiltinType::Short:
3423     case BuiltinType::UShort:
3424       EltName = "poly16_t";
3425       break;
3426     case BuiltinType::LongLong:
3427     case BuiltinType::ULongLong:
3428       EltName = "poly64_t";
3429       break;
3430     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3431     }
3432   } else {
3433     switch (cast<BuiltinType>(EltType)->getKind()) {
3434     case BuiltinType::SChar:     EltName = "int8_t"; break;
3435     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3436     case BuiltinType::Short:     EltName = "int16_t"; break;
3437     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3438     case BuiltinType::Int:       EltName = "int32_t"; break;
3439     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3440     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3441     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3442     case BuiltinType::Double:    EltName = "float64_t"; break;
3443     case BuiltinType::Float:     EltName = "float32_t"; break;
3444     case BuiltinType::Half:      EltName = "float16_t"; break;
3445     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3446     default:
3447       llvm_unreachable("unexpected Neon vector element type");
3448     }
3449   }
3450   const char *BaseName = nullptr;
3451   unsigned BitSize = (T->getNumElements() *
3452                       getASTContext().getTypeSize(EltType));
3453   if (BitSize == 64)
3454     BaseName = "__simd64_";
3455   else {
3456     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3457     BaseName = "__simd128_";
3458   }
3459   Out << strlen(BaseName) + strlen(EltName);
3460   Out << BaseName << EltName;
3461 }
3462 
3463 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3464   DiagnosticsEngine &Diags = Context.getDiags();
3465   unsigned DiagID = Diags.getCustomDiagID(
3466       DiagnosticsEngine::Error,
3467       "cannot mangle this dependent neon vector type yet");
3468   Diags.Report(T->getAttributeLoc(), DiagID);
3469 }
3470 
3471 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3472   switch (EltType->getKind()) {
3473   case BuiltinType::SChar:
3474     return "Int8";
3475   case BuiltinType::Short:
3476     return "Int16";
3477   case BuiltinType::Int:
3478     return "Int32";
3479   case BuiltinType::Long:
3480   case BuiltinType::LongLong:
3481     return "Int64";
3482   case BuiltinType::UChar:
3483     return "Uint8";
3484   case BuiltinType::UShort:
3485     return "Uint16";
3486   case BuiltinType::UInt:
3487     return "Uint32";
3488   case BuiltinType::ULong:
3489   case BuiltinType::ULongLong:
3490     return "Uint64";
3491   case BuiltinType::Half:
3492     return "Float16";
3493   case BuiltinType::Float:
3494     return "Float32";
3495   case BuiltinType::Double:
3496     return "Float64";
3497   case BuiltinType::BFloat16:
3498     return "Bfloat16";
3499   default:
3500     llvm_unreachable("Unexpected vector element base type");
3501   }
3502 }
3503 
3504 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3505 // the equivalent internal name. The vector type must be one of the special
3506 // types predefined by ARM.
3507 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3508   QualType EltType = T->getElementType();
3509   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3510   unsigned BitSize =
3511       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3512   (void)BitSize; // Silence warning.
3513 
3514   assert((BitSize == 64 || BitSize == 128) &&
3515          "Neon vector type not 64 or 128 bits");
3516 
3517   StringRef EltName;
3518   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3519     switch (cast<BuiltinType>(EltType)->getKind()) {
3520     case BuiltinType::UChar:
3521       EltName = "Poly8";
3522       break;
3523     case BuiltinType::UShort:
3524       EltName = "Poly16";
3525       break;
3526     case BuiltinType::ULong:
3527     case BuiltinType::ULongLong:
3528       EltName = "Poly64";
3529       break;
3530     default:
3531       llvm_unreachable("unexpected Neon polynomial vector element type");
3532     }
3533   } else
3534     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3535 
3536   std::string TypeName =
3537       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3538   Out << TypeName.length() << TypeName;
3539 }
3540 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3541   DiagnosticsEngine &Diags = Context.getDiags();
3542   unsigned DiagID = Diags.getCustomDiagID(
3543       DiagnosticsEngine::Error,
3544       "cannot mangle this dependent neon vector type yet");
3545   Diags.Report(T->getAttributeLoc(), DiagID);
3546 }
3547 
3548 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3549 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3550 // type as the sizeless variants.
3551 //
3552 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3553 //
3554 //   '__SVE_VLS<<type>, <vector length>>'
3555 //
3556 // Combining the existing SVE type and a specific vector length (in bits).
3557 // For example:
3558 //
3559 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3560 //
3561 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3562 //
3563 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3564 //
3565 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3566 //
3567 // The latest ACLE specification (00bet5) does not contain details of this
3568 // mangling scheme, it will be specified in the next revision. The mangling
3569 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3570 // for the Arm Architecture, see
3571 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling
3572 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3573   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3574           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3575          "expected fixed-length SVE vector!");
3576 
3577   QualType EltType = T->getElementType();
3578   assert(EltType->isBuiltinType() &&
3579          "expected builtin type for fixed-length SVE vector!");
3580 
3581   StringRef TypeName;
3582   switch (cast<BuiltinType>(EltType)->getKind()) {
3583   case BuiltinType::SChar:
3584     TypeName = "__SVInt8_t";
3585     break;
3586   case BuiltinType::UChar: {
3587     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3588       TypeName = "__SVUint8_t";
3589     else
3590       TypeName = "__SVBool_t";
3591     break;
3592   }
3593   case BuiltinType::Short:
3594     TypeName = "__SVInt16_t";
3595     break;
3596   case BuiltinType::UShort:
3597     TypeName = "__SVUint16_t";
3598     break;
3599   case BuiltinType::Int:
3600     TypeName = "__SVInt32_t";
3601     break;
3602   case BuiltinType::UInt:
3603     TypeName = "__SVUint32_t";
3604     break;
3605   case BuiltinType::Long:
3606     TypeName = "__SVInt64_t";
3607     break;
3608   case BuiltinType::ULong:
3609     TypeName = "__SVUint64_t";
3610     break;
3611   case BuiltinType::Half:
3612     TypeName = "__SVFloat16_t";
3613     break;
3614   case BuiltinType::Float:
3615     TypeName = "__SVFloat32_t";
3616     break;
3617   case BuiltinType::Double:
3618     TypeName = "__SVFloat64_t";
3619     break;
3620   case BuiltinType::BFloat16:
3621     TypeName = "__SVBfloat16_t";
3622     break;
3623   default:
3624     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3625   }
3626 
3627   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3628 
3629   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3630     VecSizeInBits *= 8;
3631 
3632   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3633       << VecSizeInBits << "EE";
3634 }
3635 
3636 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3637     const DependentVectorType *T) {
3638   DiagnosticsEngine &Diags = Context.getDiags();
3639   unsigned DiagID = Diags.getCustomDiagID(
3640       DiagnosticsEngine::Error,
3641       "cannot mangle this dependent fixed-length SVE vector type yet");
3642   Diags.Report(T->getAttributeLoc(), DiagID);
3643 }
3644 
3645 // GNU extension: vector types
3646 // <type>                  ::= <vector-type>
3647 // <vector-type>           ::= Dv <positive dimension number> _
3648 //                                    <extended element type>
3649 //                         ::= Dv [<dimension expression>] _ <element type>
3650 // <extended element type> ::= <element type>
3651 //                         ::= p # AltiVec vector pixel
3652 //                         ::= b # Altivec vector bool
3653 void CXXNameMangler::mangleType(const VectorType *T) {
3654   if ((T->getVectorKind() == VectorType::NeonVector ||
3655        T->getVectorKind() == VectorType::NeonPolyVector)) {
3656     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3657     llvm::Triple::ArchType Arch =
3658         getASTContext().getTargetInfo().getTriple().getArch();
3659     if ((Arch == llvm::Triple::aarch64 ||
3660          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3661       mangleAArch64NeonVectorType(T);
3662     else
3663       mangleNeonVectorType(T);
3664     return;
3665   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3666              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3667     mangleAArch64FixedSveVectorType(T);
3668     return;
3669   }
3670   Out << "Dv" << T->getNumElements() << '_';
3671   if (T->getVectorKind() == VectorType::AltiVecPixel)
3672     Out << 'p';
3673   else if (T->getVectorKind() == VectorType::AltiVecBool)
3674     Out << 'b';
3675   else
3676     mangleType(T->getElementType());
3677 }
3678 
3679 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3680   if ((T->getVectorKind() == VectorType::NeonVector ||
3681        T->getVectorKind() == VectorType::NeonPolyVector)) {
3682     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3683     llvm::Triple::ArchType Arch =
3684         getASTContext().getTargetInfo().getTriple().getArch();
3685     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3686         !Target.isOSDarwin())
3687       mangleAArch64NeonVectorType(T);
3688     else
3689       mangleNeonVectorType(T);
3690     return;
3691   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3692              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3693     mangleAArch64FixedSveVectorType(T);
3694     return;
3695   }
3696 
3697   Out << "Dv";
3698   mangleExpression(T->getSizeExpr());
3699   Out << '_';
3700   if (T->getVectorKind() == VectorType::AltiVecPixel)
3701     Out << 'p';
3702   else if (T->getVectorKind() == VectorType::AltiVecBool)
3703     Out << 'b';
3704   else
3705     mangleType(T->getElementType());
3706 }
3707 
3708 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3709   mangleType(static_cast<const VectorType*>(T));
3710 }
3711 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3712   Out << "Dv";
3713   mangleExpression(T->getSizeExpr());
3714   Out << '_';
3715   mangleType(T->getElementType());
3716 }
3717 
3718 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3719   // Mangle matrix types as a vendor extended type:
3720   // u<Len>matrix_typeI<Rows><Columns><element type>E
3721 
3722   StringRef VendorQualifier = "matrix_type";
3723   Out << "u" << VendorQualifier.size() << VendorQualifier;
3724 
3725   Out << "I";
3726   auto &ASTCtx = getASTContext();
3727   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3728   llvm::APSInt Rows(BitWidth);
3729   Rows = T->getNumRows();
3730   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3731   llvm::APSInt Columns(BitWidth);
3732   Columns = T->getNumColumns();
3733   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3734   mangleType(T->getElementType());
3735   Out << "E";
3736 }
3737 
3738 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3739   // Mangle matrix types as a vendor extended type:
3740   // u<Len>matrix_typeI<row expr><column expr><element type>E
3741   StringRef VendorQualifier = "matrix_type";
3742   Out << "u" << VendorQualifier.size() << VendorQualifier;
3743 
3744   Out << "I";
3745   mangleTemplateArgExpr(T->getRowExpr());
3746   mangleTemplateArgExpr(T->getColumnExpr());
3747   mangleType(T->getElementType());
3748   Out << "E";
3749 }
3750 
3751 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3752   SplitQualType split = T->getPointeeType().split();
3753   mangleQualifiers(split.Quals, T);
3754   mangleType(QualType(split.Ty, 0));
3755 }
3756 
3757 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3758   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3759   Out << "Dp";
3760   mangleType(T->getPattern());
3761 }
3762 
3763 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3764   mangleSourceName(T->getDecl()->getIdentifier());
3765 }
3766 
3767 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3768   // Treat __kindof as a vendor extended type qualifier.
3769   if (T->isKindOfType())
3770     Out << "U8__kindof";
3771 
3772   if (!T->qual_empty()) {
3773     // Mangle protocol qualifiers.
3774     SmallString<64> QualStr;
3775     llvm::raw_svector_ostream QualOS(QualStr);
3776     QualOS << "objcproto";
3777     for (const auto *I : T->quals()) {
3778       StringRef name = I->getName();
3779       QualOS << name.size() << name;
3780     }
3781     Out << 'U' << QualStr.size() << QualStr;
3782   }
3783 
3784   mangleType(T->getBaseType());
3785 
3786   if (T->isSpecialized()) {
3787     // Mangle type arguments as I <type>+ E
3788     Out << 'I';
3789     for (auto typeArg : T->getTypeArgs())
3790       mangleType(typeArg);
3791     Out << 'E';
3792   }
3793 }
3794 
3795 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3796   Out << "U13block_pointer";
3797   mangleType(T->getPointeeType());
3798 }
3799 
3800 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3801   // Mangle injected class name types as if the user had written the
3802   // specialization out fully.  It may not actually be possible to see
3803   // this mangling, though.
3804   mangleType(T->getInjectedSpecializationType());
3805 }
3806 
3807 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3808   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3809     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3810   } else {
3811     if (mangleSubstitution(QualType(T, 0)))
3812       return;
3813 
3814     mangleTemplatePrefix(T->getTemplateName());
3815 
3816     // FIXME: GCC does not appear to mangle the template arguments when
3817     // the template in question is a dependent template name. Should we
3818     // emulate that badness?
3819     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3820     addSubstitution(QualType(T, 0));
3821   }
3822 }
3823 
3824 void CXXNameMangler::mangleType(const DependentNameType *T) {
3825   // Proposal by cxx-abi-dev, 2014-03-26
3826   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3827   //                                 # dependent elaborated type specifier using
3828   //                                 # 'typename'
3829   //                   ::= Ts <name> # dependent elaborated type specifier using
3830   //                                 # 'struct' or 'class'
3831   //                   ::= Tu <name> # dependent elaborated type specifier using
3832   //                                 # 'union'
3833   //                   ::= Te <name> # dependent elaborated type specifier using
3834   //                                 # 'enum'
3835   switch (T->getKeyword()) {
3836     case ETK_None:
3837     case ETK_Typename:
3838       break;
3839     case ETK_Struct:
3840     case ETK_Class:
3841     case ETK_Interface:
3842       Out << "Ts";
3843       break;
3844     case ETK_Union:
3845       Out << "Tu";
3846       break;
3847     case ETK_Enum:
3848       Out << "Te";
3849       break;
3850   }
3851   // Typename types are always nested
3852   Out << 'N';
3853   manglePrefix(T->getQualifier());
3854   mangleSourceName(T->getIdentifier());
3855   Out << 'E';
3856 }
3857 
3858 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3859   // Dependently-scoped template types are nested if they have a prefix.
3860   Out << 'N';
3861 
3862   // TODO: avoid making this TemplateName.
3863   TemplateName Prefix =
3864     getASTContext().getDependentTemplateName(T->getQualifier(),
3865                                              T->getIdentifier());
3866   mangleTemplatePrefix(Prefix);
3867 
3868   // FIXME: GCC does not appear to mangle the template arguments when
3869   // the template in question is a dependent template name. Should we
3870   // emulate that badness?
3871   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3872   Out << 'E';
3873 }
3874 
3875 void CXXNameMangler::mangleType(const TypeOfType *T) {
3876   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3877   // "extension with parameters" mangling.
3878   Out << "u6typeof";
3879 }
3880 
3881 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3882   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3883   // "extension with parameters" mangling.
3884   Out << "u6typeof";
3885 }
3886 
3887 void CXXNameMangler::mangleType(const DecltypeType *T) {
3888   Expr *E = T->getUnderlyingExpr();
3889 
3890   // type ::= Dt <expression> E  # decltype of an id-expression
3891   //                             #   or class member access
3892   //      ::= DT <expression> E  # decltype of an expression
3893 
3894   // This purports to be an exhaustive list of id-expressions and
3895   // class member accesses.  Note that we do not ignore parentheses;
3896   // parentheses change the semantics of decltype for these
3897   // expressions (and cause the mangler to use the other form).
3898   if (isa<DeclRefExpr>(E) ||
3899       isa<MemberExpr>(E) ||
3900       isa<UnresolvedLookupExpr>(E) ||
3901       isa<DependentScopeDeclRefExpr>(E) ||
3902       isa<CXXDependentScopeMemberExpr>(E) ||
3903       isa<UnresolvedMemberExpr>(E))
3904     Out << "Dt";
3905   else
3906     Out << "DT";
3907   mangleExpression(E);
3908   Out << 'E';
3909 }
3910 
3911 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3912   // If this is dependent, we need to record that. If not, we simply
3913   // mangle it as the underlying type since they are equivalent.
3914   if (T->isDependentType()) {
3915     Out << 'U';
3916 
3917     switch (T->getUTTKind()) {
3918       case UnaryTransformType::EnumUnderlyingType:
3919         Out << "3eut";
3920         break;
3921     }
3922   }
3923 
3924   mangleType(T->getBaseType());
3925 }
3926 
3927 void CXXNameMangler::mangleType(const AutoType *T) {
3928   assert(T->getDeducedType().isNull() &&
3929          "Deduced AutoType shouldn't be handled here!");
3930   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3931          "shouldn't need to mangle __auto_type!");
3932   // <builtin-type> ::= Da # auto
3933   //                ::= Dc # decltype(auto)
3934   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3935 }
3936 
3937 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3938   QualType Deduced = T->getDeducedType();
3939   if (!Deduced.isNull())
3940     return mangleType(Deduced);
3941 
3942   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
3943   assert(TD && "shouldn't form deduced TST unless we know we have a template");
3944 
3945   if (mangleSubstitution(TD))
3946     return;
3947 
3948   mangleName(GlobalDecl(TD));
3949   addSubstitution(TD);
3950 }
3951 
3952 void CXXNameMangler::mangleType(const AtomicType *T) {
3953   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3954   // (Until there's a standardized mangling...)
3955   Out << "U7_Atomic";
3956   mangleType(T->getValueType());
3957 }
3958 
3959 void CXXNameMangler::mangleType(const PipeType *T) {
3960   // Pipe type mangling rules are described in SPIR 2.0 specification
3961   // A.1 Data types and A.3 Summary of changes
3962   // <type> ::= 8ocl_pipe
3963   Out << "8ocl_pipe";
3964 }
3965 
3966 void CXXNameMangler::mangleType(const BitIntType *T) {
3967   // 5.1.5.2 Builtin types
3968   // <type> ::= DB <number | instantiation-dependent expression> _
3969   //        ::= DU <number | instantiation-dependent expression> _
3970   Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_";
3971 }
3972 
3973 void CXXNameMangler::mangleType(const DependentBitIntType *T) {
3974   // 5.1.5.2 Builtin types
3975   // <type> ::= DB <number | instantiation-dependent expression> _
3976   //        ::= DU <number | instantiation-dependent expression> _
3977   Out << "D" << (T->isUnsigned() ? "U" : "B");
3978   mangleExpression(T->getNumBitsExpr());
3979   Out << "_";
3980 }
3981 
3982 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3983                                           const llvm::APSInt &Value) {
3984   //  <expr-primary> ::= L <type> <value number> E # integer literal
3985   Out << 'L';
3986 
3987   mangleType(T);
3988   if (T->isBooleanType()) {
3989     // Boolean values are encoded as 0/1.
3990     Out << (Value.getBoolValue() ? '1' : '0');
3991   } else {
3992     mangleNumber(Value);
3993   }
3994   Out << 'E';
3995 
3996 }
3997 
3998 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3999   // Ignore member expressions involving anonymous unions.
4000   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4001     if (!RT->getDecl()->isAnonymousStructOrUnion())
4002       break;
4003     const auto *ME = dyn_cast<MemberExpr>(Base);
4004     if (!ME)
4005       break;
4006     Base = ME->getBase();
4007     IsArrow = ME->isArrow();
4008   }
4009 
4010   if (Base->isImplicitCXXThis()) {
4011     // Note: GCC mangles member expressions to the implicit 'this' as
4012     // *this., whereas we represent them as this->. The Itanium C++ ABI
4013     // does not specify anything here, so we follow GCC.
4014     Out << "dtdefpT";
4015   } else {
4016     Out << (IsArrow ? "pt" : "dt");
4017     mangleExpression(Base);
4018   }
4019 }
4020 
4021 /// Mangles a member expression.
4022 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4023                                       bool isArrow,
4024                                       NestedNameSpecifier *qualifier,
4025                                       NamedDecl *firstQualifierLookup,
4026                                       DeclarationName member,
4027                                       const TemplateArgumentLoc *TemplateArgs,
4028                                       unsigned NumTemplateArgs,
4029                                       unsigned arity) {
4030   // <expression> ::= dt <expression> <unresolved-name>
4031   //              ::= pt <expression> <unresolved-name>
4032   if (base)
4033     mangleMemberExprBase(base, isArrow);
4034   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4035 }
4036 
4037 /// Look at the callee of the given call expression and determine if
4038 /// it's a parenthesized id-expression which would have triggered ADL
4039 /// otherwise.
4040 static bool isParenthesizedADLCallee(const CallExpr *call) {
4041   const Expr *callee = call->getCallee();
4042   const Expr *fn = callee->IgnoreParens();
4043 
4044   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
4045   // too, but for those to appear in the callee, it would have to be
4046   // parenthesized.
4047   if (callee == fn) return false;
4048 
4049   // Must be an unresolved lookup.
4050   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4051   if (!lookup) return false;
4052 
4053   assert(!lookup->requiresADL());
4054 
4055   // Must be an unqualified lookup.
4056   if (lookup->getQualifier()) return false;
4057 
4058   // Must not have found a class member.  Note that if one is a class
4059   // member, they're all class members.
4060   if (lookup->getNumDecls() > 0 &&
4061       (*lookup->decls_begin())->isCXXClassMember())
4062     return false;
4063 
4064   // Otherwise, ADL would have been triggered.
4065   return true;
4066 }
4067 
4068 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4069   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4070   Out << CastEncoding;
4071   mangleType(ECE->getType());
4072   mangleExpression(ECE->getSubExpr());
4073 }
4074 
4075 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4076   if (auto *Syntactic = InitList->getSyntacticForm())
4077     InitList = Syntactic;
4078   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4079     mangleExpression(InitList->getInit(i));
4080 }
4081 
4082 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4083                                       bool AsTemplateArg) {
4084   // <expression> ::= <unary operator-name> <expression>
4085   //              ::= <binary operator-name> <expression> <expression>
4086   //              ::= <trinary operator-name> <expression> <expression> <expression>
4087   //              ::= cv <type> expression           # conversion with one argument
4088   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4089   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
4090   //              ::= sc <type> <expression>         # static_cast<type> (expression)
4091   //              ::= cc <type> <expression>         # const_cast<type> (expression)
4092   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
4093   //              ::= st <type>                      # sizeof (a type)
4094   //              ::= at <type>                      # alignof (a type)
4095   //              ::= <template-param>
4096   //              ::= <function-param>
4097   //              ::= fpT                            # 'this' expression (part of <function-param>)
4098   //              ::= sr <type> <unqualified-name>                   # dependent name
4099   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
4100   //              ::= ds <expression> <expression>                   # expr.*expr
4101   //              ::= sZ <template-param>                            # size of a parameter pack
4102   //              ::= sZ <function-param>    # size of a function parameter pack
4103   //              ::= u <source-name> <template-arg>* E # vendor extended expression
4104   //              ::= <expr-primary>
4105   // <expr-primary> ::= L <type> <value number> E    # integer literal
4106   //                ::= L <type> <value float> E     # floating literal
4107   //                ::= L <type> <string type> E     # string literal
4108   //                ::= L <nullptr type> E           # nullptr literal "LDnE"
4109   //                ::= L <pointer type> 0 E         # null pointer template argument
4110   //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
4111   //                ::= L <mangled-name> E           # external name
4112   QualType ImplicitlyConvertedToType;
4113 
4114   // A top-level expression that's not <expr-primary> needs to be wrapped in
4115   // X...E in a template arg.
4116   bool IsPrimaryExpr = true;
4117   auto NotPrimaryExpr = [&] {
4118     if (AsTemplateArg && IsPrimaryExpr)
4119       Out << 'X';
4120     IsPrimaryExpr = false;
4121   };
4122 
4123   auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4124     switch (D->getKind()) {
4125     default:
4126       //  <expr-primary> ::= L <mangled-name> E # external name
4127       Out << 'L';
4128       mangle(D);
4129       Out << 'E';
4130       break;
4131 
4132     case Decl::ParmVar:
4133       NotPrimaryExpr();
4134       mangleFunctionParam(cast<ParmVarDecl>(D));
4135       break;
4136 
4137     case Decl::EnumConstant: {
4138       // <expr-primary>
4139       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4140       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4141       break;
4142     }
4143 
4144     case Decl::NonTypeTemplateParm:
4145       NotPrimaryExpr();
4146       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4147       mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4148       break;
4149     }
4150   };
4151 
4152   // 'goto recurse' is used when handling a simple "unwrapping" node which
4153   // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4154   // to be preserved.
4155 recurse:
4156   switch (E->getStmtClass()) {
4157   case Expr::NoStmtClass:
4158 #define ABSTRACT_STMT(Type)
4159 #define EXPR(Type, Base)
4160 #define STMT(Type, Base) \
4161   case Expr::Type##Class:
4162 #include "clang/AST/StmtNodes.inc"
4163     // fallthrough
4164 
4165   // These all can only appear in local or variable-initialization
4166   // contexts and so should never appear in a mangling.
4167   case Expr::AddrLabelExprClass:
4168   case Expr::DesignatedInitUpdateExprClass:
4169   case Expr::ImplicitValueInitExprClass:
4170   case Expr::ArrayInitLoopExprClass:
4171   case Expr::ArrayInitIndexExprClass:
4172   case Expr::NoInitExprClass:
4173   case Expr::ParenListExprClass:
4174   case Expr::MSPropertyRefExprClass:
4175   case Expr::MSPropertySubscriptExprClass:
4176   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4177   case Expr::RecoveryExprClass:
4178   case Expr::OMPArraySectionExprClass:
4179   case Expr::OMPArrayShapingExprClass:
4180   case Expr::OMPIteratorExprClass:
4181   case Expr::CXXInheritedCtorInitExprClass:
4182     llvm_unreachable("unexpected statement kind");
4183 
4184   case Expr::ConstantExprClass:
4185     E = cast<ConstantExpr>(E)->getSubExpr();
4186     goto recurse;
4187 
4188   // FIXME: invent manglings for all these.
4189   case Expr::BlockExprClass:
4190   case Expr::ChooseExprClass:
4191   case Expr::CompoundLiteralExprClass:
4192   case Expr::ExtVectorElementExprClass:
4193   case Expr::GenericSelectionExprClass:
4194   case Expr::ObjCEncodeExprClass:
4195   case Expr::ObjCIsaExprClass:
4196   case Expr::ObjCIvarRefExprClass:
4197   case Expr::ObjCMessageExprClass:
4198   case Expr::ObjCPropertyRefExprClass:
4199   case Expr::ObjCProtocolExprClass:
4200   case Expr::ObjCSelectorExprClass:
4201   case Expr::ObjCStringLiteralClass:
4202   case Expr::ObjCBoxedExprClass:
4203   case Expr::ObjCArrayLiteralClass:
4204   case Expr::ObjCDictionaryLiteralClass:
4205   case Expr::ObjCSubscriptRefExprClass:
4206   case Expr::ObjCIndirectCopyRestoreExprClass:
4207   case Expr::ObjCAvailabilityCheckExprClass:
4208   case Expr::OffsetOfExprClass:
4209   case Expr::PredefinedExprClass:
4210   case Expr::ShuffleVectorExprClass:
4211   case Expr::ConvertVectorExprClass:
4212   case Expr::StmtExprClass:
4213   case Expr::TypeTraitExprClass:
4214   case Expr::RequiresExprClass:
4215   case Expr::ArrayTypeTraitExprClass:
4216   case Expr::ExpressionTraitExprClass:
4217   case Expr::VAArgExprClass:
4218   case Expr::CUDAKernelCallExprClass:
4219   case Expr::AsTypeExprClass:
4220   case Expr::PseudoObjectExprClass:
4221   case Expr::AtomicExprClass:
4222   case Expr::SourceLocExprClass:
4223   case Expr::BuiltinBitCastExprClass:
4224   {
4225     NotPrimaryExpr();
4226     if (!NullOut) {
4227       // As bad as this diagnostic is, it's better than crashing.
4228       DiagnosticsEngine &Diags = Context.getDiags();
4229       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4230                                        "cannot yet mangle expression type %0");
4231       Diags.Report(E->getExprLoc(), DiagID)
4232         << E->getStmtClassName() << E->getSourceRange();
4233       return;
4234     }
4235     break;
4236   }
4237 
4238   case Expr::CXXUuidofExprClass: {
4239     NotPrimaryExpr();
4240     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4241     // As of clang 12, uuidof uses the vendor extended expression
4242     // mangling. Previously, it used a special-cased nonstandard extension.
4243     if (Context.getASTContext().getLangOpts().getClangABICompat() >
4244         LangOptions::ClangABI::Ver11) {
4245       Out << "u8__uuidof";
4246       if (UE->isTypeOperand())
4247         mangleType(UE->getTypeOperand(Context.getASTContext()));
4248       else
4249         mangleTemplateArgExpr(UE->getExprOperand());
4250       Out << 'E';
4251     } else {
4252       if (UE->isTypeOperand()) {
4253         QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4254         Out << "u8__uuidoft";
4255         mangleType(UuidT);
4256       } else {
4257         Expr *UuidExp = UE->getExprOperand();
4258         Out << "u8__uuidofz";
4259         mangleExpression(UuidExp);
4260       }
4261     }
4262     break;
4263   }
4264 
4265   // Even gcc-4.5 doesn't mangle this.
4266   case Expr::BinaryConditionalOperatorClass: {
4267     NotPrimaryExpr();
4268     DiagnosticsEngine &Diags = Context.getDiags();
4269     unsigned DiagID =
4270       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4271                 "?: operator with omitted middle operand cannot be mangled");
4272     Diags.Report(E->getExprLoc(), DiagID)
4273       << E->getStmtClassName() << E->getSourceRange();
4274     return;
4275   }
4276 
4277   // These are used for internal purposes and cannot be meaningfully mangled.
4278   case Expr::OpaqueValueExprClass:
4279     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4280 
4281   case Expr::InitListExprClass: {
4282     NotPrimaryExpr();
4283     Out << "il";
4284     mangleInitListElements(cast<InitListExpr>(E));
4285     Out << "E";
4286     break;
4287   }
4288 
4289   case Expr::DesignatedInitExprClass: {
4290     NotPrimaryExpr();
4291     auto *DIE = cast<DesignatedInitExpr>(E);
4292     for (const auto &Designator : DIE->designators()) {
4293       if (Designator.isFieldDesignator()) {
4294         Out << "di";
4295         mangleSourceName(Designator.getFieldName());
4296       } else if (Designator.isArrayDesignator()) {
4297         Out << "dx";
4298         mangleExpression(DIE->getArrayIndex(Designator));
4299       } else {
4300         assert(Designator.isArrayRangeDesignator() &&
4301                "unknown designator kind");
4302         Out << "dX";
4303         mangleExpression(DIE->getArrayRangeStart(Designator));
4304         mangleExpression(DIE->getArrayRangeEnd(Designator));
4305       }
4306     }
4307     mangleExpression(DIE->getInit());
4308     break;
4309   }
4310 
4311   case Expr::CXXDefaultArgExprClass:
4312     E = cast<CXXDefaultArgExpr>(E)->getExpr();
4313     goto recurse;
4314 
4315   case Expr::CXXDefaultInitExprClass:
4316     E = cast<CXXDefaultInitExpr>(E)->getExpr();
4317     goto recurse;
4318 
4319   case Expr::CXXStdInitializerListExprClass:
4320     E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4321     goto recurse;
4322 
4323   case Expr::SubstNonTypeTemplateParmExprClass:
4324     E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4325     goto recurse;
4326 
4327   case Expr::UserDefinedLiteralClass:
4328     // We follow g++'s approach of mangling a UDL as a call to the literal
4329     // operator.
4330   case Expr::CXXMemberCallExprClass: // fallthrough
4331   case Expr::CallExprClass: {
4332     NotPrimaryExpr();
4333     const CallExpr *CE = cast<CallExpr>(E);
4334 
4335     // <expression> ::= cp <simple-id> <expression>* E
4336     // We use this mangling only when the call would use ADL except
4337     // for being parenthesized.  Per discussion with David
4338     // Vandervoorde, 2011.04.25.
4339     if (isParenthesizedADLCallee(CE)) {
4340       Out << "cp";
4341       // The callee here is a parenthesized UnresolvedLookupExpr with
4342       // no qualifier and should always get mangled as a <simple-id>
4343       // anyway.
4344 
4345     // <expression> ::= cl <expression>* E
4346     } else {
4347       Out << "cl";
4348     }
4349 
4350     unsigned CallArity = CE->getNumArgs();
4351     for (const Expr *Arg : CE->arguments())
4352       if (isa<PackExpansionExpr>(Arg))
4353         CallArity = UnknownArity;
4354 
4355     mangleExpression(CE->getCallee(), CallArity);
4356     for (const Expr *Arg : CE->arguments())
4357       mangleExpression(Arg);
4358     Out << 'E';
4359     break;
4360   }
4361 
4362   case Expr::CXXNewExprClass: {
4363     NotPrimaryExpr();
4364     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4365     if (New->isGlobalNew()) Out << "gs";
4366     Out << (New->isArray() ? "na" : "nw");
4367     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4368            E = New->placement_arg_end(); I != E; ++I)
4369       mangleExpression(*I);
4370     Out << '_';
4371     mangleType(New->getAllocatedType());
4372     if (New->hasInitializer()) {
4373       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4374         Out << "il";
4375       else
4376         Out << "pi";
4377       const Expr *Init = New->getInitializer();
4378       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4379         // Directly inline the initializers.
4380         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4381                                                   E = CCE->arg_end();
4382              I != E; ++I)
4383           mangleExpression(*I);
4384       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4385         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4386           mangleExpression(PLE->getExpr(i));
4387       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4388                  isa<InitListExpr>(Init)) {
4389         // Only take InitListExprs apart for list-initialization.
4390         mangleInitListElements(cast<InitListExpr>(Init));
4391       } else
4392         mangleExpression(Init);
4393     }
4394     Out << 'E';
4395     break;
4396   }
4397 
4398   case Expr::CXXPseudoDestructorExprClass: {
4399     NotPrimaryExpr();
4400     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4401     if (const Expr *Base = PDE->getBase())
4402       mangleMemberExprBase(Base, PDE->isArrow());
4403     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4404     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4405       if (Qualifier) {
4406         mangleUnresolvedPrefix(Qualifier,
4407                                /*recursive=*/true);
4408         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4409         Out << 'E';
4410       } else {
4411         Out << "sr";
4412         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4413           Out << 'E';
4414       }
4415     } else if (Qualifier) {
4416       mangleUnresolvedPrefix(Qualifier);
4417     }
4418     // <base-unresolved-name> ::= dn <destructor-name>
4419     Out << "dn";
4420     QualType DestroyedType = PDE->getDestroyedType();
4421     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4422     break;
4423   }
4424 
4425   case Expr::MemberExprClass: {
4426     NotPrimaryExpr();
4427     const MemberExpr *ME = cast<MemberExpr>(E);
4428     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4429                      ME->getQualifier(), nullptr,
4430                      ME->getMemberDecl()->getDeclName(),
4431                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4432                      Arity);
4433     break;
4434   }
4435 
4436   case Expr::UnresolvedMemberExprClass: {
4437     NotPrimaryExpr();
4438     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4439     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4440                      ME->isArrow(), ME->getQualifier(), nullptr,
4441                      ME->getMemberName(),
4442                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4443                      Arity);
4444     break;
4445   }
4446 
4447   case Expr::CXXDependentScopeMemberExprClass: {
4448     NotPrimaryExpr();
4449     const CXXDependentScopeMemberExpr *ME
4450       = cast<CXXDependentScopeMemberExpr>(E);
4451     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4452                      ME->isArrow(), ME->getQualifier(),
4453                      ME->getFirstQualifierFoundInScope(),
4454                      ME->getMember(),
4455                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4456                      Arity);
4457     break;
4458   }
4459 
4460   case Expr::UnresolvedLookupExprClass: {
4461     NotPrimaryExpr();
4462     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4463     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4464                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4465                          Arity);
4466     break;
4467   }
4468 
4469   case Expr::CXXUnresolvedConstructExprClass: {
4470     NotPrimaryExpr();
4471     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4472     unsigned N = CE->getNumArgs();
4473 
4474     if (CE->isListInitialization()) {
4475       assert(N == 1 && "unexpected form for list initialization");
4476       auto *IL = cast<InitListExpr>(CE->getArg(0));
4477       Out << "tl";
4478       mangleType(CE->getType());
4479       mangleInitListElements(IL);
4480       Out << "E";
4481       break;
4482     }
4483 
4484     Out << "cv";
4485     mangleType(CE->getType());
4486     if (N != 1) Out << '_';
4487     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4488     if (N != 1) Out << 'E';
4489     break;
4490   }
4491 
4492   case Expr::CXXConstructExprClass: {
4493     // An implicit cast is silent, thus may contain <expr-primary>.
4494     const auto *CE = cast<CXXConstructExpr>(E);
4495     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4496       assert(
4497           CE->getNumArgs() >= 1 &&
4498           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4499           "implicit CXXConstructExpr must have one argument");
4500       E = cast<CXXConstructExpr>(E)->getArg(0);
4501       goto recurse;
4502     }
4503     NotPrimaryExpr();
4504     Out << "il";
4505     for (auto *E : CE->arguments())
4506       mangleExpression(E);
4507     Out << "E";
4508     break;
4509   }
4510 
4511   case Expr::CXXTemporaryObjectExprClass: {
4512     NotPrimaryExpr();
4513     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4514     unsigned N = CE->getNumArgs();
4515     bool List = CE->isListInitialization();
4516 
4517     if (List)
4518       Out << "tl";
4519     else
4520       Out << "cv";
4521     mangleType(CE->getType());
4522     if (!List && N != 1)
4523       Out << '_';
4524     if (CE->isStdInitListInitialization()) {
4525       // We implicitly created a std::initializer_list<T> for the first argument
4526       // of a constructor of type U in an expression of the form U{a, b, c}.
4527       // Strip all the semantic gunk off the initializer list.
4528       auto *SILE =
4529           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4530       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4531       mangleInitListElements(ILE);
4532     } else {
4533       for (auto *E : CE->arguments())
4534         mangleExpression(E);
4535     }
4536     if (List || N != 1)
4537       Out << 'E';
4538     break;
4539   }
4540 
4541   case Expr::CXXScalarValueInitExprClass:
4542     NotPrimaryExpr();
4543     Out << "cv";
4544     mangleType(E->getType());
4545     Out << "_E";
4546     break;
4547 
4548   case Expr::CXXNoexceptExprClass:
4549     NotPrimaryExpr();
4550     Out << "nx";
4551     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4552     break;
4553 
4554   case Expr::UnaryExprOrTypeTraitExprClass: {
4555     // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4556     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4557 
4558     if (!SAE->isInstantiationDependent()) {
4559       // Itanium C++ ABI:
4560       //   If the operand of a sizeof or alignof operator is not
4561       //   instantiation-dependent it is encoded as an integer literal
4562       //   reflecting the result of the operator.
4563       //
4564       //   If the result of the operator is implicitly converted to a known
4565       //   integer type, that type is used for the literal; otherwise, the type
4566       //   of std::size_t or std::ptrdiff_t is used.
4567       QualType T = (ImplicitlyConvertedToType.isNull() ||
4568                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4569                                                     : ImplicitlyConvertedToType;
4570       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4571       mangleIntegerLiteral(T, V);
4572       break;
4573     }
4574 
4575     NotPrimaryExpr(); // But otherwise, they are not.
4576 
4577     auto MangleAlignofSizeofArg = [&] {
4578       if (SAE->isArgumentType()) {
4579         Out << 't';
4580         mangleType(SAE->getArgumentType());
4581       } else {
4582         Out << 'z';
4583         mangleExpression(SAE->getArgumentExpr());
4584       }
4585     };
4586 
4587     switch(SAE->getKind()) {
4588     case UETT_SizeOf:
4589       Out << 's';
4590       MangleAlignofSizeofArg();
4591       break;
4592     case UETT_PreferredAlignOf:
4593       // As of clang 12, we mangle __alignof__ differently than alignof. (They
4594       // have acted differently since Clang 8, but were previously mangled the
4595       // same.)
4596       if (Context.getASTContext().getLangOpts().getClangABICompat() >
4597           LangOptions::ClangABI::Ver11) {
4598         Out << "u11__alignof__";
4599         if (SAE->isArgumentType())
4600           mangleType(SAE->getArgumentType());
4601         else
4602           mangleTemplateArgExpr(SAE->getArgumentExpr());
4603         Out << 'E';
4604         break;
4605       }
4606       LLVM_FALLTHROUGH;
4607     case UETT_AlignOf:
4608       Out << 'a';
4609       MangleAlignofSizeofArg();
4610       break;
4611     case UETT_VecStep: {
4612       DiagnosticsEngine &Diags = Context.getDiags();
4613       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4614                                      "cannot yet mangle vec_step expression");
4615       Diags.Report(DiagID);
4616       return;
4617     }
4618     case UETT_OpenMPRequiredSimdAlign: {
4619       DiagnosticsEngine &Diags = Context.getDiags();
4620       unsigned DiagID = Diags.getCustomDiagID(
4621           DiagnosticsEngine::Error,
4622           "cannot yet mangle __builtin_omp_required_simd_align expression");
4623       Diags.Report(DiagID);
4624       return;
4625     }
4626     }
4627     break;
4628   }
4629 
4630   case Expr::CXXThrowExprClass: {
4631     NotPrimaryExpr();
4632     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4633     //  <expression> ::= tw <expression>  # throw expression
4634     //               ::= tr               # rethrow
4635     if (TE->getSubExpr()) {
4636       Out << "tw";
4637       mangleExpression(TE->getSubExpr());
4638     } else {
4639       Out << "tr";
4640     }
4641     break;
4642   }
4643 
4644   case Expr::CXXTypeidExprClass: {
4645     NotPrimaryExpr();
4646     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4647     //  <expression> ::= ti <type>        # typeid (type)
4648     //               ::= te <expression>  # typeid (expression)
4649     if (TIE->isTypeOperand()) {
4650       Out << "ti";
4651       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4652     } else {
4653       Out << "te";
4654       mangleExpression(TIE->getExprOperand());
4655     }
4656     break;
4657   }
4658 
4659   case Expr::CXXDeleteExprClass: {
4660     NotPrimaryExpr();
4661     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4662     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4663     //               ::= [gs] da <expression>  # [::] delete [] expr
4664     if (DE->isGlobalDelete()) Out << "gs";
4665     Out << (DE->isArrayForm() ? "da" : "dl");
4666     mangleExpression(DE->getArgument());
4667     break;
4668   }
4669 
4670   case Expr::UnaryOperatorClass: {
4671     NotPrimaryExpr();
4672     const UnaryOperator *UO = cast<UnaryOperator>(E);
4673     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4674                        /*Arity=*/1);
4675     mangleExpression(UO->getSubExpr());
4676     break;
4677   }
4678 
4679   case Expr::ArraySubscriptExprClass: {
4680     NotPrimaryExpr();
4681     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4682 
4683     // Array subscript is treated as a syntactically weird form of
4684     // binary operator.
4685     Out << "ix";
4686     mangleExpression(AE->getLHS());
4687     mangleExpression(AE->getRHS());
4688     break;
4689   }
4690 
4691   case Expr::MatrixSubscriptExprClass: {
4692     NotPrimaryExpr();
4693     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4694     Out << "ixix";
4695     mangleExpression(ME->getBase());
4696     mangleExpression(ME->getRowIdx());
4697     mangleExpression(ME->getColumnIdx());
4698     break;
4699   }
4700 
4701   case Expr::CompoundAssignOperatorClass: // fallthrough
4702   case Expr::BinaryOperatorClass: {
4703     NotPrimaryExpr();
4704     const BinaryOperator *BO = cast<BinaryOperator>(E);
4705     if (BO->getOpcode() == BO_PtrMemD)
4706       Out << "ds";
4707     else
4708       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4709                          /*Arity=*/2);
4710     mangleExpression(BO->getLHS());
4711     mangleExpression(BO->getRHS());
4712     break;
4713   }
4714 
4715   case Expr::CXXRewrittenBinaryOperatorClass: {
4716     NotPrimaryExpr();
4717     // The mangled form represents the original syntax.
4718     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4719         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4720     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4721                        /*Arity=*/2);
4722     mangleExpression(Decomposed.LHS);
4723     mangleExpression(Decomposed.RHS);
4724     break;
4725   }
4726 
4727   case Expr::ConditionalOperatorClass: {
4728     NotPrimaryExpr();
4729     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4730     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4731     mangleExpression(CO->getCond());
4732     mangleExpression(CO->getLHS(), Arity);
4733     mangleExpression(CO->getRHS(), Arity);
4734     break;
4735   }
4736 
4737   case Expr::ImplicitCastExprClass: {
4738     ImplicitlyConvertedToType = E->getType();
4739     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4740     goto recurse;
4741   }
4742 
4743   case Expr::ObjCBridgedCastExprClass: {
4744     NotPrimaryExpr();
4745     // Mangle ownership casts as a vendor extended operator __bridge,
4746     // __bridge_transfer, or __bridge_retain.
4747     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4748     Out << "v1U" << Kind.size() << Kind;
4749     mangleCastExpression(E, "cv");
4750     break;
4751   }
4752 
4753   case Expr::CStyleCastExprClass:
4754     NotPrimaryExpr();
4755     mangleCastExpression(E, "cv");
4756     break;
4757 
4758   case Expr::CXXFunctionalCastExprClass: {
4759     NotPrimaryExpr();
4760     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4761     // FIXME: Add isImplicit to CXXConstructExpr.
4762     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4763       if (CCE->getParenOrBraceRange().isInvalid())
4764         Sub = CCE->getArg(0)->IgnoreImplicit();
4765     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4766       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4767     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4768       Out << "tl";
4769       mangleType(E->getType());
4770       mangleInitListElements(IL);
4771       Out << "E";
4772     } else {
4773       mangleCastExpression(E, "cv");
4774     }
4775     break;
4776   }
4777 
4778   case Expr::CXXStaticCastExprClass:
4779     NotPrimaryExpr();
4780     mangleCastExpression(E, "sc");
4781     break;
4782   case Expr::CXXDynamicCastExprClass:
4783     NotPrimaryExpr();
4784     mangleCastExpression(E, "dc");
4785     break;
4786   case Expr::CXXReinterpretCastExprClass:
4787     NotPrimaryExpr();
4788     mangleCastExpression(E, "rc");
4789     break;
4790   case Expr::CXXConstCastExprClass:
4791     NotPrimaryExpr();
4792     mangleCastExpression(E, "cc");
4793     break;
4794   case Expr::CXXAddrspaceCastExprClass:
4795     NotPrimaryExpr();
4796     mangleCastExpression(E, "ac");
4797     break;
4798 
4799   case Expr::CXXOperatorCallExprClass: {
4800     NotPrimaryExpr();
4801     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4802     unsigned NumArgs = CE->getNumArgs();
4803     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4804     // (the enclosing MemberExpr covers the syntactic portion).
4805     if (CE->getOperator() != OO_Arrow)
4806       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4807     // Mangle the arguments.
4808     for (unsigned i = 0; i != NumArgs; ++i)
4809       mangleExpression(CE->getArg(i));
4810     break;
4811   }
4812 
4813   case Expr::ParenExprClass:
4814     E = cast<ParenExpr>(E)->getSubExpr();
4815     goto recurse;
4816 
4817   case Expr::ConceptSpecializationExprClass: {
4818     //  <expr-primary> ::= L <mangled-name> E # external name
4819     Out << "L_Z";
4820     auto *CSE = cast<ConceptSpecializationExpr>(E);
4821     mangleTemplateName(CSE->getNamedConcept(),
4822                        CSE->getTemplateArguments().data(),
4823                        CSE->getTemplateArguments().size());
4824     Out << 'E';
4825     break;
4826   }
4827 
4828   case Expr::DeclRefExprClass:
4829     // MangleDeclRefExpr helper handles primary-vs-nonprimary
4830     MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4831     break;
4832 
4833   case Expr::SubstNonTypeTemplateParmPackExprClass:
4834     NotPrimaryExpr();
4835     // FIXME: not clear how to mangle this!
4836     // template <unsigned N...> class A {
4837     //   template <class U...> void foo(U (&x)[N]...);
4838     // };
4839     Out << "_SUBSTPACK_";
4840     break;
4841 
4842   case Expr::FunctionParmPackExprClass: {
4843     NotPrimaryExpr();
4844     // FIXME: not clear how to mangle this!
4845     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4846     Out << "v110_SUBSTPACK";
4847     MangleDeclRefExpr(FPPE->getParameterPack());
4848     break;
4849   }
4850 
4851   case Expr::DependentScopeDeclRefExprClass: {
4852     NotPrimaryExpr();
4853     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4854     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4855                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4856                          Arity);
4857     break;
4858   }
4859 
4860   case Expr::CXXBindTemporaryExprClass:
4861     E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4862     goto recurse;
4863 
4864   case Expr::ExprWithCleanupsClass:
4865     E = cast<ExprWithCleanups>(E)->getSubExpr();
4866     goto recurse;
4867 
4868   case Expr::FloatingLiteralClass: {
4869     // <expr-primary>
4870     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4871     mangleFloatLiteral(FL->getType(), FL->getValue());
4872     break;
4873   }
4874 
4875   case Expr::FixedPointLiteralClass:
4876     // Currently unimplemented -- might be <expr-primary> in future?
4877     mangleFixedPointLiteral();
4878     break;
4879 
4880   case Expr::CharacterLiteralClass:
4881     // <expr-primary>
4882     Out << 'L';
4883     mangleType(E->getType());
4884     Out << cast<CharacterLiteral>(E)->getValue();
4885     Out << 'E';
4886     break;
4887 
4888   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4889   case Expr::ObjCBoolLiteralExprClass:
4890     // <expr-primary>
4891     Out << "Lb";
4892     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4893     Out << 'E';
4894     break;
4895 
4896   case Expr::CXXBoolLiteralExprClass:
4897     // <expr-primary>
4898     Out << "Lb";
4899     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4900     Out << 'E';
4901     break;
4902 
4903   case Expr::IntegerLiteralClass: {
4904     // <expr-primary>
4905     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4906     if (E->getType()->isSignedIntegerType())
4907       Value.setIsSigned(true);
4908     mangleIntegerLiteral(E->getType(), Value);
4909     break;
4910   }
4911 
4912   case Expr::ImaginaryLiteralClass: {
4913     // <expr-primary>
4914     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4915     // Mangle as if a complex literal.
4916     // Proposal from David Vandevoorde, 2010.06.30.
4917     Out << 'L';
4918     mangleType(E->getType());
4919     if (const FloatingLiteral *Imag =
4920           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4921       // Mangle a floating-point zero of the appropriate type.
4922       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4923       Out << '_';
4924       mangleFloat(Imag->getValue());
4925     } else {
4926       Out << "0_";
4927       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4928       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4929         Value.setIsSigned(true);
4930       mangleNumber(Value);
4931     }
4932     Out << 'E';
4933     break;
4934   }
4935 
4936   case Expr::StringLiteralClass: {
4937     // <expr-primary>
4938     // Revised proposal from David Vandervoorde, 2010.07.15.
4939     Out << 'L';
4940     assert(isa<ConstantArrayType>(E->getType()));
4941     mangleType(E->getType());
4942     Out << 'E';
4943     break;
4944   }
4945 
4946   case Expr::GNUNullExprClass:
4947     // <expr-primary>
4948     // Mangle as if an integer literal 0.
4949     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4950     break;
4951 
4952   case Expr::CXXNullPtrLiteralExprClass: {
4953     // <expr-primary>
4954     Out << "LDnE";
4955     break;
4956   }
4957 
4958   case Expr::LambdaExprClass: {
4959     // A lambda-expression can't appear in the signature of an
4960     // externally-visible declaration, so there's no standard mangling for
4961     // this, but mangling as a literal of the closure type seems reasonable.
4962     Out << "L";
4963     mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
4964     Out << "E";
4965     break;
4966   }
4967 
4968   case Expr::PackExpansionExprClass:
4969     NotPrimaryExpr();
4970     Out << "sp";
4971     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4972     break;
4973 
4974   case Expr::SizeOfPackExprClass: {
4975     NotPrimaryExpr();
4976     auto *SPE = cast<SizeOfPackExpr>(E);
4977     if (SPE->isPartiallySubstituted()) {
4978       Out << "sP";
4979       for (const auto &A : SPE->getPartialArguments())
4980         mangleTemplateArg(A, false);
4981       Out << "E";
4982       break;
4983     }
4984 
4985     Out << "sZ";
4986     const NamedDecl *Pack = SPE->getPack();
4987     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4988       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4989     else if (const NonTypeTemplateParmDecl *NTTP
4990                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4991       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4992     else if (const TemplateTemplateParmDecl *TempTP
4993                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4994       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4995     else
4996       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4997     break;
4998   }
4999 
5000   case Expr::MaterializeTemporaryExprClass:
5001     E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5002     goto recurse;
5003 
5004   case Expr::CXXFoldExprClass: {
5005     NotPrimaryExpr();
5006     auto *FE = cast<CXXFoldExpr>(E);
5007     if (FE->isLeftFold())
5008       Out << (FE->getInit() ? "fL" : "fl");
5009     else
5010       Out << (FE->getInit() ? "fR" : "fr");
5011 
5012     if (FE->getOperator() == BO_PtrMemD)
5013       Out << "ds";
5014     else
5015       mangleOperatorName(
5016           BinaryOperator::getOverloadedOperator(FE->getOperator()),
5017           /*Arity=*/2);
5018 
5019     if (FE->getLHS())
5020       mangleExpression(FE->getLHS());
5021     if (FE->getRHS())
5022       mangleExpression(FE->getRHS());
5023     break;
5024   }
5025 
5026   case Expr::CXXThisExprClass:
5027     NotPrimaryExpr();
5028     Out << "fpT";
5029     break;
5030 
5031   case Expr::CoawaitExprClass:
5032     // FIXME: Propose a non-vendor mangling.
5033     NotPrimaryExpr();
5034     Out << "v18co_await";
5035     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5036     break;
5037 
5038   case Expr::DependentCoawaitExprClass:
5039     // FIXME: Propose a non-vendor mangling.
5040     NotPrimaryExpr();
5041     Out << "v18co_await";
5042     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5043     break;
5044 
5045   case Expr::CoyieldExprClass:
5046     // FIXME: Propose a non-vendor mangling.
5047     NotPrimaryExpr();
5048     Out << "v18co_yield";
5049     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5050     break;
5051   case Expr::SYCLUniqueStableNameExprClass: {
5052     const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5053     NotPrimaryExpr();
5054 
5055     Out << "u33__builtin_sycl_unique_stable_name";
5056     mangleType(USN->getTypeSourceInfo()->getType());
5057 
5058     Out << "E";
5059     break;
5060   }
5061   }
5062 
5063   if (AsTemplateArg && !IsPrimaryExpr)
5064     Out << 'E';
5065 }
5066 
5067 /// Mangle an expression which refers to a parameter variable.
5068 ///
5069 /// <expression>     ::= <function-param>
5070 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
5071 /// <function-param> ::= fp <top-level CV-qualifiers>
5072 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
5073 /// <function-param> ::= fL <L-1 non-negative number>
5074 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
5075 /// <function-param> ::= fL <L-1 non-negative number>
5076 ///                      p <top-level CV-qualifiers>
5077 ///                      <I-1 non-negative number> _         # L > 0, I > 0
5078 ///
5079 /// L is the nesting depth of the parameter, defined as 1 if the
5080 /// parameter comes from the innermost function prototype scope
5081 /// enclosing the current context, 2 if from the next enclosing
5082 /// function prototype scope, and so on, with one special case: if
5083 /// we've processed the full parameter clause for the innermost
5084 /// function type, then L is one less.  This definition conveniently
5085 /// makes it irrelevant whether a function's result type was written
5086 /// trailing or leading, but is otherwise overly complicated; the
5087 /// numbering was first designed without considering references to
5088 /// parameter in locations other than return types, and then the
5089 /// mangling had to be generalized without changing the existing
5090 /// manglings.
5091 ///
5092 /// I is the zero-based index of the parameter within its parameter
5093 /// declaration clause.  Note that the original ABI document describes
5094 /// this using 1-based ordinals.
5095 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5096   unsigned parmDepth = parm->getFunctionScopeDepth();
5097   unsigned parmIndex = parm->getFunctionScopeIndex();
5098 
5099   // Compute 'L'.
5100   // parmDepth does not include the declaring function prototype.
5101   // FunctionTypeDepth does account for that.
5102   assert(parmDepth < FunctionTypeDepth.getDepth());
5103   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5104   if (FunctionTypeDepth.isInResultType())
5105     nestingDepth--;
5106 
5107   if (nestingDepth == 0) {
5108     Out << "fp";
5109   } else {
5110     Out << "fL" << (nestingDepth - 1) << 'p';
5111   }
5112 
5113   // Top-level qualifiers.  We don't have to worry about arrays here,
5114   // because parameters declared as arrays should already have been
5115   // transformed to have pointer type. FIXME: apparently these don't
5116   // get mangled if used as an rvalue of a known non-class type?
5117   assert(!parm->getType()->isArrayType()
5118          && "parameter's type is still an array type?");
5119 
5120   if (const DependentAddressSpaceType *DAST =
5121       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5122     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5123   } else {
5124     mangleQualifiers(parm->getType().getQualifiers());
5125   }
5126 
5127   // Parameter index.
5128   if (parmIndex != 0) {
5129     Out << (parmIndex - 1);
5130   }
5131   Out << '_';
5132 }
5133 
5134 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5135                                        const CXXRecordDecl *InheritedFrom) {
5136   // <ctor-dtor-name> ::= C1  # complete object constructor
5137   //                  ::= C2  # base object constructor
5138   //                  ::= CI1 <type> # complete inheriting constructor
5139   //                  ::= CI2 <type> # base inheriting constructor
5140   //
5141   // In addition, C5 is a comdat name with C1 and C2 in it.
5142   Out << 'C';
5143   if (InheritedFrom)
5144     Out << 'I';
5145   switch (T) {
5146   case Ctor_Complete:
5147     Out << '1';
5148     break;
5149   case Ctor_Base:
5150     Out << '2';
5151     break;
5152   case Ctor_Comdat:
5153     Out << '5';
5154     break;
5155   case Ctor_DefaultClosure:
5156   case Ctor_CopyingClosure:
5157     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5158   }
5159   if (InheritedFrom)
5160     mangleName(InheritedFrom);
5161 }
5162 
5163 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5164   // <ctor-dtor-name> ::= D0  # deleting destructor
5165   //                  ::= D1  # complete object destructor
5166   //                  ::= D2  # base object destructor
5167   //
5168   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5169   switch (T) {
5170   case Dtor_Deleting:
5171     Out << "D0";
5172     break;
5173   case Dtor_Complete:
5174     Out << "D1";
5175     break;
5176   case Dtor_Base:
5177     Out << "D2";
5178     break;
5179   case Dtor_Comdat:
5180     Out << "D5";
5181     break;
5182   }
5183 }
5184 
5185 namespace {
5186 // Helper to provide ancillary information on a template used to mangle its
5187 // arguments.
5188 struct TemplateArgManglingInfo {
5189   TemplateDecl *ResolvedTemplate = nullptr;
5190   bool SeenPackExpansionIntoNonPack = false;
5191   const NamedDecl *UnresolvedExpandedPack = nullptr;
5192 
5193   TemplateArgManglingInfo(TemplateName TN) {
5194     if (TemplateDecl *TD = TN.getAsTemplateDecl())
5195       ResolvedTemplate = TD;
5196   }
5197 
5198   /// Do we need to mangle template arguments with exactly correct types?
5199   ///
5200   /// This should be called exactly once for each parameter / argument pair, in
5201   /// order.
5202   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5203     // We need correct types when the template-name is unresolved or when it
5204     // names a template that is able to be overloaded.
5205     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5206       return true;
5207 
5208     // Move to the next parameter.
5209     const NamedDecl *Param = UnresolvedExpandedPack;
5210     if (!Param) {
5211       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5212              "no parameter for argument");
5213       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5214 
5215       // If we reach an expanded parameter pack whose argument isn't in pack
5216       // form, that means Sema couldn't figure out which arguments belonged to
5217       // it, because it contains a pack expansion. Track the expanded pack for
5218       // all further template arguments until we hit that pack expansion.
5219       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5220         assert(getExpandedPackSize(Param) &&
5221                "failed to form pack argument for parameter pack");
5222         UnresolvedExpandedPack = Param;
5223       }
5224     }
5225 
5226     // If we encounter a pack argument that is expanded into a non-pack
5227     // parameter, we can no longer track parameter / argument correspondence,
5228     // and need to use exact types from this point onwards.
5229     if (Arg.isPackExpansion() &&
5230         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5231       SeenPackExpansionIntoNonPack = true;
5232       return true;
5233     }
5234 
5235     // We need exact types for function template arguments because they might be
5236     // overloaded on template parameter type. As a special case, a member
5237     // function template of a generic lambda is not overloadable.
5238     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5239       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5240       if (!RD || !RD->isGenericLambda())
5241         return true;
5242     }
5243 
5244     // Otherwise, we only need a correct type if the parameter has a deduced
5245     // type.
5246     //
5247     // Note: for an expanded parameter pack, getType() returns the type prior
5248     // to expansion. We could ask for the expanded type with getExpansionType(),
5249     // but it doesn't matter because substitution and expansion don't affect
5250     // whether a deduced type appears in the type.
5251     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5252     return NTTP && NTTP->getType()->getContainedDeducedType();
5253   }
5254 };
5255 }
5256 
5257 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5258                                         const TemplateArgumentLoc *TemplateArgs,
5259                                         unsigned NumTemplateArgs) {
5260   // <template-args> ::= I <template-arg>+ E
5261   Out << 'I';
5262   TemplateArgManglingInfo Info(TN);
5263   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5264     mangleTemplateArg(TemplateArgs[i].getArgument(),
5265                       Info.needExactType(i, TemplateArgs[i].getArgument()));
5266   Out << 'E';
5267 }
5268 
5269 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5270                                         const TemplateArgumentList &AL) {
5271   // <template-args> ::= I <template-arg>+ E
5272   Out << 'I';
5273   TemplateArgManglingInfo Info(TN);
5274   for (unsigned i = 0, e = AL.size(); i != e; ++i)
5275     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5276   Out << 'E';
5277 }
5278 
5279 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5280                                         const TemplateArgument *TemplateArgs,
5281                                         unsigned NumTemplateArgs) {
5282   // <template-args> ::= I <template-arg>+ E
5283   Out << 'I';
5284   TemplateArgManglingInfo Info(TN);
5285   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5286     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5287   Out << 'E';
5288 }
5289 
5290 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5291   // <template-arg> ::= <type>              # type or template
5292   //                ::= X <expression> E    # expression
5293   //                ::= <expr-primary>      # simple expressions
5294   //                ::= J <template-arg>* E # argument pack
5295   if (!A.isInstantiationDependent() || A.isDependent())
5296     A = Context.getASTContext().getCanonicalTemplateArgument(A);
5297 
5298   switch (A.getKind()) {
5299   case TemplateArgument::Null:
5300     llvm_unreachable("Cannot mangle NULL template argument");
5301 
5302   case TemplateArgument::Type:
5303     mangleType(A.getAsType());
5304     break;
5305   case TemplateArgument::Template:
5306     // This is mangled as <type>.
5307     mangleType(A.getAsTemplate());
5308     break;
5309   case TemplateArgument::TemplateExpansion:
5310     // <type>  ::= Dp <type>          # pack expansion (C++0x)
5311     Out << "Dp";
5312     mangleType(A.getAsTemplateOrTemplatePattern());
5313     break;
5314   case TemplateArgument::Expression:
5315     mangleTemplateArgExpr(A.getAsExpr());
5316     break;
5317   case TemplateArgument::Integral:
5318     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5319     break;
5320   case TemplateArgument::Declaration: {
5321     //  <expr-primary> ::= L <mangled-name> E # external name
5322     ValueDecl *D = A.getAsDecl();
5323 
5324     // Template parameter objects are modeled by reproducing a source form
5325     // produced as if by aggregate initialization.
5326     if (A.getParamTypeForDecl()->isRecordType()) {
5327       auto *TPO = cast<TemplateParamObjectDecl>(D);
5328       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5329                                TPO->getValue(), /*TopLevel=*/true,
5330                                NeedExactType);
5331       break;
5332     }
5333 
5334     ASTContext &Ctx = Context.getASTContext();
5335     APValue Value;
5336     if (D->isCXXInstanceMember())
5337       // Simple pointer-to-member with no conversion.
5338       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5339     else if (D->getType()->isArrayType() &&
5340              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5341                                 A.getParamTypeForDecl()) &&
5342              Ctx.getLangOpts().getClangABICompat() >
5343                  LangOptions::ClangABI::Ver11)
5344       // Build a value corresponding to this implicit array-to-pointer decay.
5345       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5346                       {APValue::LValuePathEntry::ArrayIndex(0)},
5347                       /*OnePastTheEnd=*/false);
5348     else
5349       // Regular pointer or reference to a declaration.
5350       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5351                       ArrayRef<APValue::LValuePathEntry>(),
5352                       /*OnePastTheEnd=*/false);
5353     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5354                              NeedExactType);
5355     break;
5356   }
5357   case TemplateArgument::NullPtr: {
5358     mangleNullPointer(A.getNullPtrType());
5359     break;
5360   }
5361   case TemplateArgument::Pack: {
5362     //  <template-arg> ::= J <template-arg>* E
5363     Out << 'J';
5364     for (const auto &P : A.pack_elements())
5365       mangleTemplateArg(P, NeedExactType);
5366     Out << 'E';
5367   }
5368   }
5369 }
5370 
5371 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5372   ASTContext &Ctx = Context.getASTContext();
5373   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5374     mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5375     return;
5376   }
5377 
5378   // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5379   // correctly in cases where the template argument was
5380   // constructed from an expression rather than an already-evaluated
5381   // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5382   // 'Li0E'.
5383   //
5384   // We did special-case DeclRefExpr to attempt to DTRT for that one
5385   // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5386   // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5387   // the proper 'Xfp_E'.
5388   E = E->IgnoreParenImpCasts();
5389   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5390     const ValueDecl *D = DRE->getDecl();
5391     if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5392       Out << 'L';
5393       mangle(D);
5394       Out << 'E';
5395       return;
5396     }
5397   }
5398   Out << 'X';
5399   mangleExpression(E);
5400   Out << 'E';
5401 }
5402 
5403 /// Determine whether a given value is equivalent to zero-initialization for
5404 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5405 ///
5406 /// Note that this is not in general equivalent to determining whether the
5407 /// value has an all-zeroes bit pattern.
5408 static bool isZeroInitialized(QualType T, const APValue &V) {
5409   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5410   // pathological cases due to using this, but it's a little awkward
5411   // to do this in linear time in general.
5412   switch (V.getKind()) {
5413   case APValue::None:
5414   case APValue::Indeterminate:
5415   case APValue::AddrLabelDiff:
5416     return false;
5417 
5418   case APValue::Struct: {
5419     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5420     assert(RD && "unexpected type for record value");
5421     unsigned I = 0;
5422     for (const CXXBaseSpecifier &BS : RD->bases()) {
5423       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5424         return false;
5425       ++I;
5426     }
5427     I = 0;
5428     for (const FieldDecl *FD : RD->fields()) {
5429       if (!FD->isUnnamedBitfield() &&
5430           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5431         return false;
5432       ++I;
5433     }
5434     return true;
5435   }
5436 
5437   case APValue::Union: {
5438     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5439     assert(RD && "unexpected type for union value");
5440     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5441     for (const FieldDecl *FD : RD->fields()) {
5442       if (!FD->isUnnamedBitfield())
5443         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5444                isZeroInitialized(FD->getType(), V.getUnionValue());
5445     }
5446     // If there are no fields (other than unnamed bitfields), the value is
5447     // necessarily zero-initialized.
5448     return true;
5449   }
5450 
5451   case APValue::Array: {
5452     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5453     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5454       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5455         return false;
5456     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5457   }
5458 
5459   case APValue::Vector: {
5460     const VectorType *VT = T->castAs<VectorType>();
5461     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5462       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5463         return false;
5464     return true;
5465   }
5466 
5467   case APValue::Int:
5468     return !V.getInt();
5469 
5470   case APValue::Float:
5471     return V.getFloat().isPosZero();
5472 
5473   case APValue::FixedPoint:
5474     return !V.getFixedPoint().getValue();
5475 
5476   case APValue::ComplexFloat:
5477     return V.getComplexFloatReal().isPosZero() &&
5478            V.getComplexFloatImag().isPosZero();
5479 
5480   case APValue::ComplexInt:
5481     return !V.getComplexIntReal() && !V.getComplexIntImag();
5482 
5483   case APValue::LValue:
5484     return V.isNullPointer();
5485 
5486   case APValue::MemberPointer:
5487     return !V.getMemberPointerDecl();
5488   }
5489 
5490   llvm_unreachable("Unhandled APValue::ValueKind enum");
5491 }
5492 
5493 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5494   QualType T = LV.getLValueBase().getType();
5495   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5496     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5497       T = AT->getElementType();
5498     else if (const FieldDecl *FD =
5499                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5500       T = FD->getType();
5501     else
5502       T = Ctx.getRecordType(
5503           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5504   }
5505   return T;
5506 }
5507 
5508 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5509                                               bool TopLevel,
5510                                               bool NeedExactType) {
5511   // Ignore all top-level cv-qualifiers, to match GCC.
5512   Qualifiers Quals;
5513   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5514 
5515   // A top-level expression that's not a primary expression is wrapped in X...E.
5516   bool IsPrimaryExpr = true;
5517   auto NotPrimaryExpr = [&] {
5518     if (TopLevel && IsPrimaryExpr)
5519       Out << 'X';
5520     IsPrimaryExpr = false;
5521   };
5522 
5523   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5524   switch (V.getKind()) {
5525   case APValue::None:
5526   case APValue::Indeterminate:
5527     Out << 'L';
5528     mangleType(T);
5529     Out << 'E';
5530     break;
5531 
5532   case APValue::AddrLabelDiff:
5533     llvm_unreachable("unexpected value kind in template argument");
5534 
5535   case APValue::Struct: {
5536     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5537     assert(RD && "unexpected type for record value");
5538 
5539     // Drop trailing zero-initialized elements.
5540     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
5541                                                     RD->field_end());
5542     while (
5543         !Fields.empty() &&
5544         (Fields.back()->isUnnamedBitfield() ||
5545          isZeroInitialized(Fields.back()->getType(),
5546                            V.getStructField(Fields.back()->getFieldIndex())))) {
5547       Fields.pop_back();
5548     }
5549     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5550     if (Fields.empty()) {
5551       while (!Bases.empty() &&
5552              isZeroInitialized(Bases.back().getType(),
5553                                V.getStructBase(Bases.size() - 1)))
5554         Bases = Bases.drop_back();
5555     }
5556 
5557     // <expression> ::= tl <type> <braced-expression>* E
5558     NotPrimaryExpr();
5559     Out << "tl";
5560     mangleType(T);
5561     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5562       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5563     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5564       if (Fields[I]->isUnnamedBitfield())
5565         continue;
5566       mangleValueInTemplateArg(Fields[I]->getType(),
5567                                V.getStructField(Fields[I]->getFieldIndex()),
5568                                false);
5569     }
5570     Out << 'E';
5571     break;
5572   }
5573 
5574   case APValue::Union: {
5575     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5576     const FieldDecl *FD = V.getUnionField();
5577 
5578     if (!FD) {
5579       Out << 'L';
5580       mangleType(T);
5581       Out << 'E';
5582       break;
5583     }
5584 
5585     // <braced-expression> ::= di <field source-name> <braced-expression>
5586     NotPrimaryExpr();
5587     Out << "tl";
5588     mangleType(T);
5589     if (!isZeroInitialized(T, V)) {
5590       Out << "di";
5591       mangleSourceName(FD->getIdentifier());
5592       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5593     }
5594     Out << 'E';
5595     break;
5596   }
5597 
5598   case APValue::Array: {
5599     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5600 
5601     NotPrimaryExpr();
5602     Out << "tl";
5603     mangleType(T);
5604 
5605     // Drop trailing zero-initialized elements.
5606     unsigned N = V.getArraySize();
5607     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5608       N = V.getArrayInitializedElts();
5609       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5610         --N;
5611     }
5612 
5613     for (unsigned I = 0; I != N; ++I) {
5614       const APValue &Elem = I < V.getArrayInitializedElts()
5615                                 ? V.getArrayInitializedElt(I)
5616                                 : V.getArrayFiller();
5617       mangleValueInTemplateArg(ElemT, Elem, false);
5618     }
5619     Out << 'E';
5620     break;
5621   }
5622 
5623   case APValue::Vector: {
5624     const VectorType *VT = T->castAs<VectorType>();
5625 
5626     NotPrimaryExpr();
5627     Out << "tl";
5628     mangleType(T);
5629     unsigned N = V.getVectorLength();
5630     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5631       --N;
5632     for (unsigned I = 0; I != N; ++I)
5633       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5634     Out << 'E';
5635     break;
5636   }
5637 
5638   case APValue::Int:
5639     mangleIntegerLiteral(T, V.getInt());
5640     break;
5641 
5642   case APValue::Float:
5643     mangleFloatLiteral(T, V.getFloat());
5644     break;
5645 
5646   case APValue::FixedPoint:
5647     mangleFixedPointLiteral();
5648     break;
5649 
5650   case APValue::ComplexFloat: {
5651     const ComplexType *CT = T->castAs<ComplexType>();
5652     NotPrimaryExpr();
5653     Out << "tl";
5654     mangleType(T);
5655     if (!V.getComplexFloatReal().isPosZero() ||
5656         !V.getComplexFloatImag().isPosZero())
5657       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5658     if (!V.getComplexFloatImag().isPosZero())
5659       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5660     Out << 'E';
5661     break;
5662   }
5663 
5664   case APValue::ComplexInt: {
5665     const ComplexType *CT = T->castAs<ComplexType>();
5666     NotPrimaryExpr();
5667     Out << "tl";
5668     mangleType(T);
5669     if (V.getComplexIntReal().getBoolValue() ||
5670         V.getComplexIntImag().getBoolValue())
5671       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5672     if (V.getComplexIntImag().getBoolValue())
5673       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5674     Out << 'E';
5675     break;
5676   }
5677 
5678   case APValue::LValue: {
5679     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5680     assert((T->isPointerType() || T->isReferenceType()) &&
5681            "unexpected type for LValue template arg");
5682 
5683     if (V.isNullPointer()) {
5684       mangleNullPointer(T);
5685       break;
5686     }
5687 
5688     APValue::LValueBase B = V.getLValueBase();
5689     if (!B) {
5690       // Non-standard mangling for integer cast to a pointer; this can only
5691       // occur as an extension.
5692       CharUnits Offset = V.getLValueOffset();
5693       if (Offset.isZero()) {
5694         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5695         // a cast, because L <type> 0 E means something else.
5696         NotPrimaryExpr();
5697         Out << "rc";
5698         mangleType(T);
5699         Out << "Li0E";
5700         if (TopLevel)
5701           Out << 'E';
5702       } else {
5703         Out << "L";
5704         mangleType(T);
5705         Out << Offset.getQuantity() << 'E';
5706       }
5707       break;
5708     }
5709 
5710     ASTContext &Ctx = Context.getASTContext();
5711 
5712     enum { Base, Offset, Path } Kind;
5713     if (!V.hasLValuePath()) {
5714       // Mangle as (T*)((char*)&base + N).
5715       if (T->isReferenceType()) {
5716         NotPrimaryExpr();
5717         Out << "decvP";
5718         mangleType(T->getPointeeType());
5719       } else {
5720         NotPrimaryExpr();
5721         Out << "cv";
5722         mangleType(T);
5723       }
5724       Out << "plcvPcad";
5725       Kind = Offset;
5726     } else {
5727       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5728         NotPrimaryExpr();
5729         // A final conversion to the template parameter's type is usually
5730         // folded into the 'so' mangling, but we can't do that for 'void*'
5731         // parameters without introducing collisions.
5732         if (NeedExactType && T->isVoidPointerType()) {
5733           Out << "cv";
5734           mangleType(T);
5735         }
5736         if (T->isPointerType())
5737           Out << "ad";
5738         Out << "so";
5739         mangleType(T->isVoidPointerType()
5740                        ? getLValueType(Ctx, V).getUnqualifiedType()
5741                        : T->getPointeeType());
5742         Kind = Path;
5743       } else {
5744         if (NeedExactType &&
5745             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5746             Ctx.getLangOpts().getClangABICompat() >
5747                 LangOptions::ClangABI::Ver11) {
5748           NotPrimaryExpr();
5749           Out << "cv";
5750           mangleType(T);
5751         }
5752         if (T->isPointerType()) {
5753           NotPrimaryExpr();
5754           Out << "ad";
5755         }
5756         Kind = Base;
5757       }
5758     }
5759 
5760     QualType TypeSoFar = B.getType();
5761     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5762       Out << 'L';
5763       mangle(VD);
5764       Out << 'E';
5765     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5766       NotPrimaryExpr();
5767       mangleExpression(E);
5768     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5769       NotPrimaryExpr();
5770       Out << "ti";
5771       mangleType(QualType(TI.getType(), 0));
5772     } else {
5773       // We should never see dynamic allocations here.
5774       llvm_unreachable("unexpected lvalue base kind in template argument");
5775     }
5776 
5777     switch (Kind) {
5778     case Base:
5779       break;
5780 
5781     case Offset:
5782       Out << 'L';
5783       mangleType(Ctx.getPointerDiffType());
5784       mangleNumber(V.getLValueOffset().getQuantity());
5785       Out << 'E';
5786       break;
5787 
5788     case Path:
5789       // <expression> ::= so <referent type> <expr> [<offset number>]
5790       //                  <union-selector>* [p] E
5791       if (!V.getLValueOffset().isZero())
5792         mangleNumber(V.getLValueOffset().getQuantity());
5793 
5794       // We model a past-the-end array pointer as array indexing with index N,
5795       // not with the "past the end" flag. Compensate for that.
5796       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5797 
5798       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5799         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5800           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5801             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5802           TypeSoFar = AT->getElementType();
5803         } else {
5804           const Decl *D = E.getAsBaseOrMember().getPointer();
5805           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5806             // <union-selector> ::= _ <number>
5807             if (FD->getParent()->isUnion()) {
5808               Out << '_';
5809               if (FD->getFieldIndex())
5810                 Out << (FD->getFieldIndex() - 1);
5811             }
5812             TypeSoFar = FD->getType();
5813           } else {
5814             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5815           }
5816         }
5817       }
5818 
5819       if (OnePastTheEnd)
5820         Out << 'p';
5821       Out << 'E';
5822       break;
5823     }
5824 
5825     break;
5826   }
5827 
5828   case APValue::MemberPointer:
5829     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5830     if (!V.getMemberPointerDecl()) {
5831       mangleNullPointer(T);
5832       break;
5833     }
5834 
5835     ASTContext &Ctx = Context.getASTContext();
5836 
5837     NotPrimaryExpr();
5838     if (!V.getMemberPointerPath().empty()) {
5839       Out << "mc";
5840       mangleType(T);
5841     } else if (NeedExactType &&
5842                !Ctx.hasSameType(
5843                    T->castAs<MemberPointerType>()->getPointeeType(),
5844                    V.getMemberPointerDecl()->getType()) &&
5845                Ctx.getLangOpts().getClangABICompat() >
5846                    LangOptions::ClangABI::Ver11) {
5847       Out << "cv";
5848       mangleType(T);
5849     }
5850     Out << "adL";
5851     mangle(V.getMemberPointerDecl());
5852     Out << 'E';
5853     if (!V.getMemberPointerPath().empty()) {
5854       CharUnits Offset =
5855           Context.getASTContext().getMemberPointerPathAdjustment(V);
5856       if (!Offset.isZero())
5857         mangleNumber(Offset.getQuantity());
5858       Out << 'E';
5859     }
5860     break;
5861   }
5862 
5863   if (TopLevel && !IsPrimaryExpr)
5864     Out << 'E';
5865 }
5866 
5867 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5868   // <template-param> ::= T_    # first template parameter
5869   //                  ::= T <parameter-2 non-negative number> _
5870   //                  ::= TL <L-1 non-negative number> __
5871   //                  ::= TL <L-1 non-negative number> _
5872   //                         <parameter-2 non-negative number> _
5873   //
5874   // The latter two manglings are from a proposal here:
5875   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5876   Out << 'T';
5877   if (Depth != 0)
5878     Out << 'L' << (Depth - 1) << '_';
5879   if (Index != 0)
5880     Out << (Index - 1);
5881   Out << '_';
5882 }
5883 
5884 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5885   if (SeqID == 0) {
5886     // Nothing.
5887   } else if (SeqID == 1) {
5888     Out << '0';
5889   } else {
5890     SeqID--;
5891 
5892     // <seq-id> is encoded in base-36, using digits and upper case letters.
5893     char Buffer[7]; // log(2**32) / log(36) ~= 7
5894     MutableArrayRef<char> BufferRef(Buffer);
5895     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5896 
5897     for (; SeqID != 0; SeqID /= 36) {
5898       unsigned C = SeqID % 36;
5899       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5900     }
5901 
5902     Out.write(I.base(), I - BufferRef.rbegin());
5903   }
5904   Out << '_';
5905 }
5906 
5907 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5908   bool result = mangleSubstitution(tname);
5909   assert(result && "no existing substitution for template name");
5910   (void) result;
5911 }
5912 
5913 // <substitution> ::= S <seq-id> _
5914 //                ::= S_
5915 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5916   // Try one of the standard substitutions first.
5917   if (mangleStandardSubstitution(ND))
5918     return true;
5919 
5920   ND = cast<NamedDecl>(ND->getCanonicalDecl());
5921   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5922 }
5923 
5924 /// Determine whether the given type has any qualifiers that are relevant for
5925 /// substitutions.
5926 static bool hasMangledSubstitutionQualifiers(QualType T) {
5927   Qualifiers Qs = T.getQualifiers();
5928   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5929 }
5930 
5931 bool CXXNameMangler::mangleSubstitution(QualType T) {
5932   if (!hasMangledSubstitutionQualifiers(T)) {
5933     if (const RecordType *RT = T->getAs<RecordType>())
5934       return mangleSubstitution(RT->getDecl());
5935   }
5936 
5937   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5938 
5939   return mangleSubstitution(TypePtr);
5940 }
5941 
5942 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5943   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5944     return mangleSubstitution(TD);
5945 
5946   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5947   return mangleSubstitution(
5948                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5949 }
5950 
5951 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5952   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5953   if (I == Substitutions.end())
5954     return false;
5955 
5956   unsigned SeqID = I->second;
5957   Out << 'S';
5958   mangleSeqID(SeqID);
5959 
5960   return true;
5961 }
5962 
5963 /// Returns whether S is a template specialization of std::Name with a single
5964 /// argument of type A.
5965 static bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A) {
5966   if (S.isNull())
5967     return false;
5968 
5969   const RecordType *RT = S->getAs<RecordType>();
5970   if (!RT)
5971     return false;
5972 
5973   const ClassTemplateSpecializationDecl *SD =
5974     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5975   if (!SD || !SD->getIdentifier()->isStr(Name))
5976     return false;
5977 
5978   if (!isStdNamespace(getEffectiveDeclContext(SD)))
5979     return false;
5980 
5981   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5982   if (TemplateArgs.size() != 1)
5983     return false;
5984 
5985   if (TemplateArgs[0].getAsType() != A)
5986     return false;
5987 
5988   return true;
5989 }
5990 
5991 /// Returns whether SD is a template specialization std::Name<char,
5992 /// std::char_traits<char> [, std::allocator<char>]>
5993 /// HasAllocator controls whether the 3rd template argument is needed.
5994 static bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD,
5995                                     llvm::StringRef Name, bool HasAllocator) {
5996   if (!SD->getIdentifier()->isStr(Name))
5997     return false;
5998 
5999   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6000   if (TemplateArgs.size() != (HasAllocator ? 3 : 2))
6001     return false;
6002 
6003   QualType A = TemplateArgs[0].getAsType();
6004   if (A.isNull())
6005     return false;
6006   // Plain 'char' is named Char_S or Char_U depending on the target ABI.
6007   if (!A->isSpecificBuiltinType(BuiltinType::Char_S) &&
6008       !A->isSpecificBuiltinType(BuiltinType::Char_U))
6009     return false;
6010 
6011   if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A))
6012     return false;
6013 
6014   if (HasAllocator &&
6015       !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A))
6016     return false;
6017 
6018   return true;
6019 }
6020 
6021 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
6022   // <substitution> ::= St # ::std::
6023   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
6024     if (isStd(NS)) {
6025       Out << "St";
6026       return true;
6027     }
6028     return false;
6029   }
6030 
6031   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
6032     if (!isStdNamespace(getEffectiveDeclContext(TD)))
6033       return false;
6034 
6035     // <substitution> ::= Sa # ::std::allocator
6036     if (TD->getIdentifier()->isStr("allocator")) {
6037       Out << "Sa";
6038       return true;
6039     }
6040 
6041     // <<substitution> ::= Sb # ::std::basic_string
6042     if (TD->getIdentifier()->isStr("basic_string")) {
6043       Out << "Sb";
6044       return true;
6045     }
6046     return false;
6047   }
6048 
6049   if (const ClassTemplateSpecializationDecl *SD =
6050         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6051     if (!isStdNamespace(getEffectiveDeclContext(SD)))
6052       return false;
6053 
6054     //    <substitution> ::= Ss # ::std::basic_string<char,
6055     //                            ::std::char_traits<char>,
6056     //                            ::std::allocator<char> >
6057     if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) {
6058       Out << "Ss";
6059       return true;
6060     }
6061 
6062     //    <substitution> ::= Si # ::std::basic_istream<char,
6063     //                            ::std::char_traits<char> >
6064     if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) {
6065       Out << "Si";
6066       return true;
6067     }
6068 
6069     //    <substitution> ::= So # ::std::basic_ostream<char,
6070     //                            ::std::char_traits<char> >
6071     if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) {
6072       Out << "So";
6073       return true;
6074     }
6075 
6076     //    <substitution> ::= Sd # ::std::basic_iostream<char,
6077     //                            ::std::char_traits<char> >
6078     if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) {
6079       Out << "Sd";
6080       return true;
6081     }
6082     return false;
6083   }
6084 
6085   return false;
6086 }
6087 
6088 void CXXNameMangler::addSubstitution(QualType T) {
6089   if (!hasMangledSubstitutionQualifiers(T)) {
6090     if (const RecordType *RT = T->getAs<RecordType>()) {
6091       addSubstitution(RT->getDecl());
6092       return;
6093     }
6094   }
6095 
6096   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6097   addSubstitution(TypePtr);
6098 }
6099 
6100 void CXXNameMangler::addSubstitution(TemplateName Template) {
6101   if (TemplateDecl *TD = Template.getAsTemplateDecl())
6102     return addSubstitution(TD);
6103 
6104   Template = Context.getASTContext().getCanonicalTemplateName(Template);
6105   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6106 }
6107 
6108 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
6109   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
6110   Substitutions[Ptr] = SeqID++;
6111 }
6112 
6113 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
6114   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
6115   if (Other->SeqID > SeqID) {
6116     Substitutions.swap(Other->Substitutions);
6117     SeqID = Other->SeqID;
6118   }
6119 }
6120 
6121 CXXNameMangler::AbiTagList
6122 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
6123   // When derived abi tags are disabled there is no need to make any list.
6124   if (DisableDerivedAbiTags)
6125     return AbiTagList();
6126 
6127   llvm::raw_null_ostream NullOutStream;
6128   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
6129   TrackReturnTypeTags.disableDerivedAbiTags();
6130 
6131   const FunctionProtoType *Proto =
6132       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
6133   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
6134   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
6135   TrackReturnTypeTags.mangleType(Proto->getReturnType());
6136   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
6137   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
6138 
6139   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6140 }
6141 
6142 CXXNameMangler::AbiTagList
6143 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
6144   // When derived abi tags are disabled there is no need to make any list.
6145   if (DisableDerivedAbiTags)
6146     return AbiTagList();
6147 
6148   llvm::raw_null_ostream NullOutStream;
6149   CXXNameMangler TrackVariableType(*this, NullOutStream);
6150   TrackVariableType.disableDerivedAbiTags();
6151 
6152   TrackVariableType.mangleType(VD->getType());
6153 
6154   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6155 }
6156 
6157 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
6158                                        const VarDecl *VD) {
6159   llvm::raw_null_ostream NullOutStream;
6160   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
6161   TrackAbiTags.mangle(VD);
6162   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
6163 }
6164 
6165 //
6166 
6167 /// Mangles the name of the declaration D and emits that name to the given
6168 /// output stream.
6169 ///
6170 /// If the declaration D requires a mangled name, this routine will emit that
6171 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
6172 /// and this routine will return false. In this case, the caller should just
6173 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
6174 /// name.
6175 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
6176                                              raw_ostream &Out) {
6177   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
6178   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
6179          "Invalid mangleName() call, argument is not a variable or function!");
6180 
6181   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
6182                                  getASTContext().getSourceManager(),
6183                                  "Mangling declaration");
6184 
6185   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
6186     auto Type = GD.getCtorType();
6187     CXXNameMangler Mangler(*this, Out, CD, Type);
6188     return Mangler.mangle(GlobalDecl(CD, Type));
6189   }
6190 
6191   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
6192     auto Type = GD.getDtorType();
6193     CXXNameMangler Mangler(*this, Out, DD, Type);
6194     return Mangler.mangle(GlobalDecl(DD, Type));
6195   }
6196 
6197   CXXNameMangler Mangler(*this, Out, D);
6198   Mangler.mangle(GD);
6199 }
6200 
6201 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
6202                                                    raw_ostream &Out) {
6203   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
6204   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
6205 }
6206 
6207 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
6208                                                    raw_ostream &Out) {
6209   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
6210   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
6211 }
6212 
6213 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
6214                                            const ThunkInfo &Thunk,
6215                                            raw_ostream &Out) {
6216   //  <special-name> ::= T <call-offset> <base encoding>
6217   //                      # base is the nominal target function of thunk
6218   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
6219   //                      # base is the nominal target function of thunk
6220   //                      # first call-offset is 'this' adjustment
6221   //                      # second call-offset is result adjustment
6222 
6223   assert(!isa<CXXDestructorDecl>(MD) &&
6224          "Use mangleCXXDtor for destructor decls!");
6225   CXXNameMangler Mangler(*this, Out);
6226   Mangler.getStream() << "_ZT";
6227   if (!Thunk.Return.isEmpty())
6228     Mangler.getStream() << 'c';
6229 
6230   // Mangle the 'this' pointer adjustment.
6231   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
6232                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
6233 
6234   // Mangle the return pointer adjustment if there is one.
6235   if (!Thunk.Return.isEmpty())
6236     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
6237                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
6238 
6239   Mangler.mangleFunctionEncoding(MD);
6240 }
6241 
6242 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
6243     const CXXDestructorDecl *DD, CXXDtorType Type,
6244     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
6245   //  <special-name> ::= T <call-offset> <base encoding>
6246   //                      # base is the nominal target function of thunk
6247   CXXNameMangler Mangler(*this, Out, DD, Type);
6248   Mangler.getStream() << "_ZT";
6249 
6250   // Mangle the 'this' pointer adjustment.
6251   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
6252                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
6253 
6254   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
6255 }
6256 
6257 /// Returns the mangled name for a guard variable for the passed in VarDecl.
6258 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
6259                                                          raw_ostream &Out) {
6260   //  <special-name> ::= GV <object name>       # Guard variable for one-time
6261   //                                            # initialization
6262   CXXNameMangler Mangler(*this, Out);
6263   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
6264   // be a bug that is fixed in trunk.
6265   Mangler.getStream() << "_ZGV";
6266   Mangler.mangleName(D);
6267 }
6268 
6269 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
6270                                                         raw_ostream &Out) {
6271   // These symbols are internal in the Itanium ABI, so the names don't matter.
6272   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
6273   // avoid duplicate symbols.
6274   Out << "__cxx_global_var_init";
6275 }
6276 
6277 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
6278                                                              raw_ostream &Out) {
6279   // Prefix the mangling of D with __dtor_.
6280   CXXNameMangler Mangler(*this, Out);
6281   Mangler.getStream() << "__dtor_";
6282   if (shouldMangleDeclName(D))
6283     Mangler.mangle(D);
6284   else
6285     Mangler.getStream() << D->getName();
6286 }
6287 
6288 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
6289                                                            raw_ostream &Out) {
6290   // Clang generates these internal-linkage functions as part of its
6291   // implementation of the XL ABI.
6292   CXXNameMangler Mangler(*this, Out);
6293   Mangler.getStream() << "__finalize_";
6294   if (shouldMangleDeclName(D))
6295     Mangler.mangle(D);
6296   else
6297     Mangler.getStream() << D->getName();
6298 }
6299 
6300 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
6301     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6302   CXXNameMangler Mangler(*this, Out);
6303   Mangler.getStream() << "__filt_";
6304   if (shouldMangleDeclName(EnclosingDecl))
6305     Mangler.mangle(EnclosingDecl);
6306   else
6307     Mangler.getStream() << EnclosingDecl->getName();
6308 }
6309 
6310 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
6311     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6312   CXXNameMangler Mangler(*this, Out);
6313   Mangler.getStream() << "__fin_";
6314   if (shouldMangleDeclName(EnclosingDecl))
6315     Mangler.mangle(EnclosingDecl);
6316   else
6317     Mangler.getStream() << EnclosingDecl->getName();
6318 }
6319 
6320 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
6321                                                             raw_ostream &Out) {
6322   //  <special-name> ::= TH <object name>
6323   CXXNameMangler Mangler(*this, Out);
6324   Mangler.getStream() << "_ZTH";
6325   Mangler.mangleName(D);
6326 }
6327 
6328 void
6329 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
6330                                                           raw_ostream &Out) {
6331   //  <special-name> ::= TW <object name>
6332   CXXNameMangler Mangler(*this, Out);
6333   Mangler.getStream() << "_ZTW";
6334   Mangler.mangleName(D);
6335 }
6336 
6337 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
6338                                                         unsigned ManglingNumber,
6339                                                         raw_ostream &Out) {
6340   // We match the GCC mangling here.
6341   //  <special-name> ::= GR <object name>
6342   CXXNameMangler Mangler(*this, Out);
6343   Mangler.getStream() << "_ZGR";
6344   Mangler.mangleName(D);
6345   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
6346   Mangler.mangleSeqID(ManglingNumber - 1);
6347 }
6348 
6349 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
6350                                                raw_ostream &Out) {
6351   // <special-name> ::= TV <type>  # virtual table
6352   CXXNameMangler Mangler(*this, Out);
6353   Mangler.getStream() << "_ZTV";
6354   Mangler.mangleNameOrStandardSubstitution(RD);
6355 }
6356 
6357 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6358                                             raw_ostream &Out) {
6359   // <special-name> ::= TT <type>  # VTT structure
6360   CXXNameMangler Mangler(*this, Out);
6361   Mangler.getStream() << "_ZTT";
6362   Mangler.mangleNameOrStandardSubstitution(RD);
6363 }
6364 
6365 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6366                                                    int64_t Offset,
6367                                                    const CXXRecordDecl *Type,
6368                                                    raw_ostream &Out) {
6369   // <special-name> ::= TC <type> <offset number> _ <base type>
6370   CXXNameMangler Mangler(*this, Out);
6371   Mangler.getStream() << "_ZTC";
6372   Mangler.mangleNameOrStandardSubstitution(RD);
6373   Mangler.getStream() << Offset;
6374   Mangler.getStream() << '_';
6375   Mangler.mangleNameOrStandardSubstitution(Type);
6376 }
6377 
6378 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6379   // <special-name> ::= TI <type>  # typeinfo structure
6380   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6381   CXXNameMangler Mangler(*this, Out);
6382   Mangler.getStream() << "_ZTI";
6383   Mangler.mangleType(Ty);
6384 }
6385 
6386 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6387                                                  raw_ostream &Out) {
6388   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6389   CXXNameMangler Mangler(*this, Out);
6390   Mangler.getStream() << "_ZTS";
6391   Mangler.mangleType(Ty);
6392 }
6393 
6394 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6395   mangleCXXRTTIName(Ty, Out);
6396 }
6397 
6398 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6399   llvm_unreachable("Can't mangle string literals");
6400 }
6401 
6402 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6403                                                raw_ostream &Out) {
6404   CXXNameMangler Mangler(*this, Out);
6405   Mangler.mangleLambdaSig(Lambda);
6406 }
6407 
6408 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
6409                                                    DiagnosticsEngine &Diags) {
6410   return new ItaniumMangleContextImpl(
6411       Context, Diags,
6412       [](ASTContext &, const NamedDecl *) -> llvm::Optional<unsigned> {
6413         return llvm::None;
6414       });
6415 }
6416 
6417 ItaniumMangleContext *
6418 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags,
6419                              DiscriminatorOverrideTy DiscriminatorOverride) {
6420   return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride);
6421 }
6422