1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace clang;
39 
40 namespace {
41 
42 /// Retrieve the declaration context that should be used when mangling the given
43 /// declaration.
44 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
45   // The ABI assumes that lambda closure types that occur within
46   // default arguments live in the context of the function. However, due to
47   // the way in which Clang parses and creates function declarations, this is
48   // not the case: the lambda closure type ends up living in the context
49   // where the function itself resides, because the function declaration itself
50   // had not yet been created. Fix the context here.
51   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
52     if (RD->isLambda())
53       if (ParmVarDecl *ContextParam
54             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
55         return ContextParam->getDeclContext();
56   }
57 
58   // Perform the same check for block literals.
59   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
60     if (ParmVarDecl *ContextParam
61           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
62       return ContextParam->getDeclContext();
63   }
64 
65   const DeclContext *DC = D->getDeclContext();
66   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
67       isa<OMPDeclareMapperDecl>(DC)) {
68     return getEffectiveDeclContext(cast<Decl>(DC));
69   }
70 
71   if (const auto *VD = dyn_cast<VarDecl>(D))
72     if (VD->isExternC())
73       return VD->getASTContext().getTranslationUnitDecl();
74 
75   if (const auto *FD = dyn_cast<FunctionDecl>(D))
76     if (FD->isExternC())
77       return FD->getASTContext().getTranslationUnitDecl();
78 
79   return DC->getRedeclContext();
80 }
81 
82 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
83   return getEffectiveDeclContext(cast<Decl>(DC));
84 }
85 
86 static bool isLocalContainerContext(const DeclContext *DC) {
87   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
88 }
89 
90 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
91   const DeclContext *DC = getEffectiveDeclContext(D);
92   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
93     if (isLocalContainerContext(DC))
94       return dyn_cast<RecordDecl>(D);
95     D = cast<Decl>(DC);
96     DC = getEffectiveDeclContext(D);
97   }
98   return nullptr;
99 }
100 
101 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
102   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
103     return ftd->getTemplatedDecl();
104 
105   return fn;
106 }
107 
108 static const NamedDecl *getStructor(const NamedDecl *decl) {
109   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
110   return (fn ? getStructor(fn) : decl);
111 }
112 
113 static bool isLambda(const NamedDecl *ND) {
114   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
115   if (!Record)
116     return false;
117 
118   return Record->isLambda();
119 }
120 
121 static const unsigned UnknownArity = ~0U;
122 
123 class ItaniumMangleContextImpl : public ItaniumMangleContext {
124   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
125   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
126   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
127 
128 public:
129   explicit ItaniumMangleContextImpl(ASTContext &Context,
130                                     DiagnosticsEngine &Diags)
131       : ItaniumMangleContext(Context, Diags) {}
132 
133   /// @name Mangler Entry Points
134   /// @{
135 
136   bool shouldMangleCXXName(const NamedDecl *D) override;
137   bool shouldMangleStringLiteral(const StringLiteral *) override {
138     return false;
139   }
140   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
141   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
142                    raw_ostream &) override;
143   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
144                           const ThisAdjustment &ThisAdjustment,
145                           raw_ostream &) override;
146   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
147                                 raw_ostream &) override;
148   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
149   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
150   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
151                            const CXXRecordDecl *Type, raw_ostream &) override;
152   void mangleCXXRTTI(QualType T, raw_ostream &) override;
153   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
154   void mangleTypeName(QualType T, raw_ostream &) override;
155 
156   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
157   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
158   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
159   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
160   void mangleDynamicAtExitDestructor(const VarDecl *D,
161                                      raw_ostream &Out) override;
162   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
163   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
164                                  raw_ostream &Out) override;
165   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
166                              raw_ostream &Out) override;
167   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
168   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
169                                        raw_ostream &) override;
170 
171   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
172 
173   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
174 
175   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
176     // Lambda closure types are already numbered.
177     if (isLambda(ND))
178       return false;
179 
180     // Anonymous tags are already numbered.
181     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
182       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
183         return false;
184     }
185 
186     // Use the canonical number for externally visible decls.
187     if (ND->isExternallyVisible()) {
188       unsigned discriminator = getASTContext().getManglingNumber(ND);
189       if (discriminator == 1)
190         return false;
191       disc = discriminator - 2;
192       return true;
193     }
194 
195     // Make up a reasonable number for internal decls.
196     unsigned &discriminator = Uniquifier[ND];
197     if (!discriminator) {
198       const DeclContext *DC = getEffectiveDeclContext(ND);
199       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
200     }
201     if (discriminator == 1)
202       return false;
203     disc = discriminator-2;
204     return true;
205   }
206   /// @}
207 };
208 
209 /// Manage the mangling of a single name.
210 class CXXNameMangler {
211   ItaniumMangleContextImpl &Context;
212   raw_ostream &Out;
213   bool NullOut = false;
214   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
215   /// This mode is used when mangler creates another mangler recursively to
216   /// calculate ABI tags for the function return value or the variable type.
217   /// Also it is required to avoid infinite recursion in some cases.
218   bool DisableDerivedAbiTags = false;
219 
220   /// The "structor" is the top-level declaration being mangled, if
221   /// that's not a template specialization; otherwise it's the pattern
222   /// for that specialization.
223   const NamedDecl *Structor;
224   unsigned StructorType;
225 
226   /// The next substitution sequence number.
227   unsigned SeqID;
228 
229   class FunctionTypeDepthState {
230     unsigned Bits;
231 
232     enum { InResultTypeMask = 1 };
233 
234   public:
235     FunctionTypeDepthState() : Bits(0) {}
236 
237     /// The number of function types we're inside.
238     unsigned getDepth() const {
239       return Bits >> 1;
240     }
241 
242     /// True if we're in the return type of the innermost function type.
243     bool isInResultType() const {
244       return Bits & InResultTypeMask;
245     }
246 
247     FunctionTypeDepthState push() {
248       FunctionTypeDepthState tmp = *this;
249       Bits = (Bits & ~InResultTypeMask) + 2;
250       return tmp;
251     }
252 
253     void enterResultType() {
254       Bits |= InResultTypeMask;
255     }
256 
257     void leaveResultType() {
258       Bits &= ~InResultTypeMask;
259     }
260 
261     void pop(FunctionTypeDepthState saved) {
262       assert(getDepth() == saved.getDepth() + 1);
263       Bits = saved.Bits;
264     }
265 
266   } FunctionTypeDepth;
267 
268   // abi_tag is a gcc attribute, taking one or more strings called "tags".
269   // The goal is to annotate against which version of a library an object was
270   // built and to be able to provide backwards compatibility ("dual abi").
271   // For more information see docs/ItaniumMangleAbiTags.rst.
272   typedef SmallVector<StringRef, 4> AbiTagList;
273 
274   // State to gather all implicit and explicit tags used in a mangled name.
275   // Must always have an instance of this while emitting any name to keep
276   // track.
277   class AbiTagState final {
278   public:
279     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
280       Parent = LinkHead;
281       LinkHead = this;
282     }
283 
284     // No copy, no move.
285     AbiTagState(const AbiTagState &) = delete;
286     AbiTagState &operator=(const AbiTagState &) = delete;
287 
288     ~AbiTagState() { pop(); }
289 
290     void write(raw_ostream &Out, const NamedDecl *ND,
291                const AbiTagList *AdditionalAbiTags) {
292       ND = cast<NamedDecl>(ND->getCanonicalDecl());
293       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
294         assert(
295             !AdditionalAbiTags &&
296             "only function and variables need a list of additional abi tags");
297         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
298           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
299             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
300                                AbiTag->tags().end());
301           }
302           // Don't emit abi tags for namespaces.
303           return;
304         }
305       }
306 
307       AbiTagList TagList;
308       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
309         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
310                            AbiTag->tags().end());
311         TagList.insert(TagList.end(), AbiTag->tags().begin(),
312                        AbiTag->tags().end());
313       }
314 
315       if (AdditionalAbiTags) {
316         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
317                            AdditionalAbiTags->end());
318         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
319                        AdditionalAbiTags->end());
320       }
321 
322       llvm::sort(TagList);
323       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
324 
325       writeSortedUniqueAbiTags(Out, TagList);
326     }
327 
328     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
329     void setUsedAbiTags(const AbiTagList &AbiTags) {
330       UsedAbiTags = AbiTags;
331     }
332 
333     const AbiTagList &getEmittedAbiTags() const {
334       return EmittedAbiTags;
335     }
336 
337     const AbiTagList &getSortedUniqueUsedAbiTags() {
338       llvm::sort(UsedAbiTags);
339       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
340                         UsedAbiTags.end());
341       return UsedAbiTags;
342     }
343 
344   private:
345     //! All abi tags used implicitly or explicitly.
346     AbiTagList UsedAbiTags;
347     //! All explicit abi tags (i.e. not from namespace).
348     AbiTagList EmittedAbiTags;
349 
350     AbiTagState *&LinkHead;
351     AbiTagState *Parent = nullptr;
352 
353     void pop() {
354       assert(LinkHead == this &&
355              "abi tag link head must point to us on destruction");
356       if (Parent) {
357         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
358                                    UsedAbiTags.begin(), UsedAbiTags.end());
359         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
360                                       EmittedAbiTags.begin(),
361                                       EmittedAbiTags.end());
362       }
363       LinkHead = Parent;
364     }
365 
366     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
367       for (const auto &Tag : AbiTags) {
368         EmittedAbiTags.push_back(Tag);
369         Out << "B";
370         Out << Tag.size();
371         Out << Tag;
372       }
373     }
374   };
375 
376   AbiTagState *AbiTags = nullptr;
377   AbiTagState AbiTagsRoot;
378 
379   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
380   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
381 
382   ASTContext &getASTContext() const { return Context.getASTContext(); }
383 
384 public:
385   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
386                  const NamedDecl *D = nullptr, bool NullOut_ = false)
387     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
388       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
389     // These can't be mangled without a ctor type or dtor type.
390     assert(!D || (!isa<CXXDestructorDecl>(D) &&
391                   !isa<CXXConstructorDecl>(D)));
392   }
393   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
394                  const CXXConstructorDecl *D, CXXCtorType Type)
395     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
396       SeqID(0), AbiTagsRoot(AbiTags) { }
397   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
398                  const CXXDestructorDecl *D, CXXDtorType Type)
399     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
400       SeqID(0), AbiTagsRoot(AbiTags) { }
401 
402   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
403       : Context(Outer.Context), Out(Out_), NullOut(false),
404         Structor(Outer.Structor), StructorType(Outer.StructorType),
405         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
406         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
407 
408   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
409       : Context(Outer.Context), Out(Out_), NullOut(true),
410         Structor(Outer.Structor), StructorType(Outer.StructorType),
411         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
412         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
413 
414   raw_ostream &getStream() { return Out; }
415 
416   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
417   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
418 
419   void mangle(GlobalDecl GD);
420   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
421   void mangleNumber(const llvm::APSInt &I);
422   void mangleNumber(int64_t Number);
423   void mangleFloat(const llvm::APFloat &F);
424   void mangleFunctionEncoding(GlobalDecl GD);
425   void mangleSeqID(unsigned SeqID);
426   void mangleName(GlobalDecl GD);
427   void mangleType(QualType T);
428   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
429   void mangleLambdaSig(const CXXRecordDecl *Lambda);
430 
431 private:
432 
433   bool mangleSubstitution(const NamedDecl *ND);
434   bool mangleSubstitution(QualType T);
435   bool mangleSubstitution(TemplateName Template);
436   bool mangleSubstitution(uintptr_t Ptr);
437 
438   void mangleExistingSubstitution(TemplateName name);
439 
440   bool mangleStandardSubstitution(const NamedDecl *ND);
441 
442   void addSubstitution(const NamedDecl *ND) {
443     ND = cast<NamedDecl>(ND->getCanonicalDecl());
444 
445     addSubstitution(reinterpret_cast<uintptr_t>(ND));
446   }
447   void addSubstitution(QualType T);
448   void addSubstitution(TemplateName Template);
449   void addSubstitution(uintptr_t Ptr);
450   // Destructive copy substitutions from other mangler.
451   void extendSubstitutions(CXXNameMangler* Other);
452 
453   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
454                               bool recursive = false);
455   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
456                             DeclarationName name,
457                             const TemplateArgumentLoc *TemplateArgs,
458                             unsigned NumTemplateArgs,
459                             unsigned KnownArity = UnknownArity);
460 
461   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
462 
463   void mangleNameWithAbiTags(GlobalDecl GD,
464                              const AbiTagList *AdditionalAbiTags);
465   void mangleModuleName(const Module *M);
466   void mangleModuleNamePrefix(StringRef Name);
467   void mangleTemplateName(const TemplateDecl *TD,
468                           const TemplateArgument *TemplateArgs,
469                           unsigned NumTemplateArgs);
470   void mangleUnqualifiedName(GlobalDecl GD,
471                              const AbiTagList *AdditionalAbiTags) {
472     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
473                           AdditionalAbiTags);
474   }
475   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
476                              unsigned KnownArity,
477                              const AbiTagList *AdditionalAbiTags);
478   void mangleUnscopedName(GlobalDecl GD,
479                           const AbiTagList *AdditionalAbiTags);
480   void mangleUnscopedTemplateName(GlobalDecl GD,
481                                   const AbiTagList *AdditionalAbiTags);
482   void mangleSourceName(const IdentifierInfo *II);
483   void mangleRegCallName(const IdentifierInfo *II);
484   void mangleDeviceStubName(const IdentifierInfo *II);
485   void mangleSourceNameWithAbiTags(
486       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
487   void mangleLocalName(GlobalDecl GD,
488                        const AbiTagList *AdditionalAbiTags);
489   void mangleBlockForPrefix(const BlockDecl *Block);
490   void mangleUnqualifiedBlock(const BlockDecl *Block);
491   void mangleTemplateParamDecl(const NamedDecl *Decl);
492   void mangleLambda(const CXXRecordDecl *Lambda);
493   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
494                         const AbiTagList *AdditionalAbiTags,
495                         bool NoFunction=false);
496   void mangleNestedName(const TemplateDecl *TD,
497                         const TemplateArgument *TemplateArgs,
498                         unsigned NumTemplateArgs);
499   void manglePrefix(NestedNameSpecifier *qualifier);
500   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
501   void manglePrefix(QualType type);
502   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
503   void mangleTemplatePrefix(TemplateName Template);
504   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
505                                       StringRef Prefix = "");
506   void mangleOperatorName(DeclarationName Name, unsigned Arity);
507   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
508   void mangleVendorQualifier(StringRef qualifier);
509   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
510   void mangleRefQualifier(RefQualifierKind RefQualifier);
511 
512   void mangleObjCMethodName(const ObjCMethodDecl *MD);
513 
514   // Declare manglers for every type class.
515 #define ABSTRACT_TYPE(CLASS, PARENT)
516 #define NON_CANONICAL_TYPE(CLASS, PARENT)
517 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
518 #include "clang/AST/TypeNodes.inc"
519 
520   void mangleType(const TagType*);
521   void mangleType(TemplateName);
522   static StringRef getCallingConvQualifierName(CallingConv CC);
523   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
524   void mangleExtFunctionInfo(const FunctionType *T);
525   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
526                               const FunctionDecl *FD = nullptr);
527   void mangleNeonVectorType(const VectorType *T);
528   void mangleNeonVectorType(const DependentVectorType *T);
529   void mangleAArch64NeonVectorType(const VectorType *T);
530   void mangleAArch64NeonVectorType(const DependentVectorType *T);
531   void mangleAArch64FixedSveVectorType(const VectorType *T);
532   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
533 
534   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
535   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
536   void mangleFixedPointLiteral();
537   void mangleNullPointer(QualType T);
538 
539   void mangleMemberExprBase(const Expr *base, bool isArrow);
540   void mangleMemberExpr(const Expr *base, bool isArrow,
541                         NestedNameSpecifier *qualifier,
542                         NamedDecl *firstQualifierLookup,
543                         DeclarationName name,
544                         const TemplateArgumentLoc *TemplateArgs,
545                         unsigned NumTemplateArgs,
546                         unsigned knownArity);
547   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
548   void mangleInitListElements(const InitListExpr *InitList);
549   void mangleDeclRefExpr(const NamedDecl *D);
550   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
551   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
552   void mangleCXXDtorType(CXXDtorType T);
553 
554   void mangleTemplateArgs(TemplateName TN,
555                           const TemplateArgumentLoc *TemplateArgs,
556                           unsigned NumTemplateArgs);
557   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
558                           unsigned NumTemplateArgs);
559   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
560   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
561   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
562                                 bool NeedExactType = false);
563 
564   void mangleTemplateParameter(unsigned Depth, unsigned Index);
565 
566   void mangleFunctionParam(const ParmVarDecl *parm);
567 
568   void writeAbiTags(const NamedDecl *ND,
569                     const AbiTagList *AdditionalAbiTags);
570 
571   // Returns sorted unique list of ABI tags.
572   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
573   // Returns sorted unique list of ABI tags.
574   AbiTagList makeVariableTypeTags(const VarDecl *VD);
575 };
576 
577 }
578 
579 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
580   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
581   if (FD) {
582     LanguageLinkage L = FD->getLanguageLinkage();
583     // Overloadable functions need mangling.
584     if (FD->hasAttr<OverloadableAttr>())
585       return true;
586 
587     // "main" is not mangled.
588     if (FD->isMain())
589       return false;
590 
591     // The Windows ABI expects that we would never mangle "typical"
592     // user-defined entry points regardless of visibility or freestanding-ness.
593     //
594     // N.B. This is distinct from asking about "main".  "main" has a lot of
595     // special rules associated with it in the standard while these
596     // user-defined entry points are outside of the purview of the standard.
597     // For example, there can be only one definition for "main" in a standards
598     // compliant program; however nothing forbids the existence of wmain and
599     // WinMain in the same translation unit.
600     if (FD->isMSVCRTEntryPoint())
601       return false;
602 
603     // C++ functions and those whose names are not a simple identifier need
604     // mangling.
605     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
606       return true;
607 
608     // C functions are not mangled.
609     if (L == CLanguageLinkage)
610       return false;
611   }
612 
613   // Otherwise, no mangling is done outside C++ mode.
614   if (!getASTContext().getLangOpts().CPlusPlus)
615     return false;
616 
617   const VarDecl *VD = dyn_cast<VarDecl>(D);
618   if (VD && !isa<DecompositionDecl>(D)) {
619     // C variables are not mangled.
620     if (VD->isExternC())
621       return false;
622 
623     // Variables at global scope with non-internal linkage are not mangled
624     const DeclContext *DC = getEffectiveDeclContext(D);
625     // Check for extern variable declared locally.
626     if (DC->isFunctionOrMethod() && D->hasLinkage())
627       while (!DC->isNamespace() && !DC->isTranslationUnit())
628         DC = getEffectiveParentContext(DC);
629     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
630         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
631         !isa<VarTemplateSpecializationDecl>(D))
632       return false;
633   }
634 
635   return true;
636 }
637 
638 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
639                                   const AbiTagList *AdditionalAbiTags) {
640   assert(AbiTags && "require AbiTagState");
641   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
642 }
643 
644 void CXXNameMangler::mangleSourceNameWithAbiTags(
645     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
646   mangleSourceName(ND->getIdentifier());
647   writeAbiTags(ND, AdditionalAbiTags);
648 }
649 
650 void CXXNameMangler::mangle(GlobalDecl GD) {
651   // <mangled-name> ::= _Z <encoding>
652   //            ::= <data name>
653   //            ::= <special-name>
654   Out << "_Z";
655   if (isa<FunctionDecl>(GD.getDecl()))
656     mangleFunctionEncoding(GD);
657   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
658                BindingDecl>(GD.getDecl()))
659     mangleName(GD);
660   else if (const IndirectFieldDecl *IFD =
661                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
662     mangleName(IFD->getAnonField());
663   else
664     llvm_unreachable("unexpected kind of global decl");
665 }
666 
667 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
668   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
669   // <encoding> ::= <function name> <bare-function-type>
670 
671   // Don't mangle in the type if this isn't a decl we should typically mangle.
672   if (!Context.shouldMangleDeclName(FD)) {
673     mangleName(GD);
674     return;
675   }
676 
677   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
678   if (ReturnTypeAbiTags.empty()) {
679     // There are no tags for return type, the simplest case.
680     mangleName(GD);
681     mangleFunctionEncodingBareType(FD);
682     return;
683   }
684 
685   // Mangle function name and encoding to temporary buffer.
686   // We have to output name and encoding to the same mangler to get the same
687   // substitution as it will be in final mangling.
688   SmallString<256> FunctionEncodingBuf;
689   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
690   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
691   // Output name of the function.
692   FunctionEncodingMangler.disableDerivedAbiTags();
693   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
694 
695   // Remember length of the function name in the buffer.
696   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
697   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
698 
699   // Get tags from return type that are not present in function name or
700   // encoding.
701   const AbiTagList &UsedAbiTags =
702       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
703   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
704   AdditionalAbiTags.erase(
705       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
706                           UsedAbiTags.begin(), UsedAbiTags.end(),
707                           AdditionalAbiTags.begin()),
708       AdditionalAbiTags.end());
709 
710   // Output name with implicit tags and function encoding from temporary buffer.
711   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
712   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
713 
714   // Function encoding could create new substitutions so we have to add
715   // temp mangled substitutions to main mangler.
716   extendSubstitutions(&FunctionEncodingMangler);
717 }
718 
719 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
720   if (FD->hasAttr<EnableIfAttr>()) {
721     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
722     Out << "Ua9enable_ifI";
723     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
724                                  E = FD->getAttrs().end();
725          I != E; ++I) {
726       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
727       if (!EIA)
728         continue;
729       Out << 'X';
730       mangleExpression(EIA->getCond());
731       Out << 'E';
732     }
733     Out << 'E';
734     FunctionTypeDepth.pop(Saved);
735   }
736 
737   // When mangling an inheriting constructor, the bare function type used is
738   // that of the inherited constructor.
739   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
740     if (auto Inherited = CD->getInheritedConstructor())
741       FD = Inherited.getConstructor();
742 
743   // Whether the mangling of a function type includes the return type depends on
744   // the context and the nature of the function. The rules for deciding whether
745   // the return type is included are:
746   //
747   //   1. Template functions (names or types) have return types encoded, with
748   //   the exceptions listed below.
749   //   2. Function types not appearing as part of a function name mangling,
750   //   e.g. parameters, pointer types, etc., have return type encoded, with the
751   //   exceptions listed below.
752   //   3. Non-template function names do not have return types encoded.
753   //
754   // The exceptions mentioned in (1) and (2) above, for which the return type is
755   // never included, are
756   //   1. Constructors.
757   //   2. Destructors.
758   //   3. Conversion operator functions, e.g. operator int.
759   bool MangleReturnType = false;
760   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
761     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
762           isa<CXXConversionDecl>(FD)))
763       MangleReturnType = true;
764 
765     // Mangle the type of the primary template.
766     FD = PrimaryTemplate->getTemplatedDecl();
767   }
768 
769   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
770                          MangleReturnType, FD);
771 }
772 
773 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
774   while (isa<LinkageSpecDecl>(DC)) {
775     DC = getEffectiveParentContext(DC);
776   }
777 
778   return DC;
779 }
780 
781 /// Return whether a given namespace is the 'std' namespace.
782 static bool isStd(const NamespaceDecl *NS) {
783   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
784                                 ->isTranslationUnit())
785     return false;
786 
787   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
788   return II && II->isStr("std");
789 }
790 
791 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
792 // namespace.
793 static bool isStdNamespace(const DeclContext *DC) {
794   if (!DC->isNamespace())
795     return false;
796 
797   return isStd(cast<NamespaceDecl>(DC));
798 }
799 
800 static const GlobalDecl
801 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
802   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
803   // Check if we have a function template.
804   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
805     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
806       TemplateArgs = FD->getTemplateSpecializationArgs();
807       return GD.getWithDecl(TD);
808     }
809   }
810 
811   // Check if we have a class template.
812   if (const ClassTemplateSpecializationDecl *Spec =
813         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
814     TemplateArgs = &Spec->getTemplateArgs();
815     return GD.getWithDecl(Spec->getSpecializedTemplate());
816   }
817 
818   // Check if we have a variable template.
819   if (const VarTemplateSpecializationDecl *Spec =
820           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
821     TemplateArgs = &Spec->getTemplateArgs();
822     return GD.getWithDecl(Spec->getSpecializedTemplate());
823   }
824 
825   return GlobalDecl();
826 }
827 
828 static TemplateName asTemplateName(GlobalDecl GD) {
829   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
830   return TemplateName(const_cast<TemplateDecl*>(TD));
831 }
832 
833 void CXXNameMangler::mangleName(GlobalDecl GD) {
834   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
835   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
836     // Variables should have implicit tags from its type.
837     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
838     if (VariableTypeAbiTags.empty()) {
839       // Simple case no variable type tags.
840       mangleNameWithAbiTags(VD, nullptr);
841       return;
842     }
843 
844     // Mangle variable name to null stream to collect tags.
845     llvm::raw_null_ostream NullOutStream;
846     CXXNameMangler VariableNameMangler(*this, NullOutStream);
847     VariableNameMangler.disableDerivedAbiTags();
848     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
849 
850     // Get tags from variable type that are not present in its name.
851     const AbiTagList &UsedAbiTags =
852         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
853     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
854     AdditionalAbiTags.erase(
855         std::set_difference(VariableTypeAbiTags.begin(),
856                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
857                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
858         AdditionalAbiTags.end());
859 
860     // Output name with implicit tags.
861     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
862   } else {
863     mangleNameWithAbiTags(GD, nullptr);
864   }
865 }
866 
867 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
868                                            const AbiTagList *AdditionalAbiTags) {
869   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
870   //  <name> ::= [<module-name>] <nested-name>
871   //         ::= [<module-name>] <unscoped-name>
872   //         ::= [<module-name>] <unscoped-template-name> <template-args>
873   //         ::= <local-name>
874   //
875   const DeclContext *DC = getEffectiveDeclContext(ND);
876 
877   // If this is an extern variable declared locally, the relevant DeclContext
878   // is that of the containing namespace, or the translation unit.
879   // FIXME: This is a hack; extern variables declared locally should have
880   // a proper semantic declaration context!
881   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
882     while (!DC->isNamespace() && !DC->isTranslationUnit())
883       DC = getEffectiveParentContext(DC);
884   else if (GetLocalClassDecl(ND)) {
885     mangleLocalName(GD, AdditionalAbiTags);
886     return;
887   }
888 
889   DC = IgnoreLinkageSpecDecls(DC);
890 
891   if (isLocalContainerContext(DC)) {
892     mangleLocalName(GD, AdditionalAbiTags);
893     return;
894   }
895 
896   // Do not mangle the owning module for an external linkage declaration.
897   // This enables backwards-compatibility with non-modular code, and is
898   // a valid choice since conflicts are not permitted by C++ Modules TS
899   // [basic.def.odr]/6.2.
900   if (!ND->hasExternalFormalLinkage())
901     if (Module *M = ND->getOwningModuleForLinkage())
902       mangleModuleName(M);
903 
904   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
905     // Check if we have a template.
906     const TemplateArgumentList *TemplateArgs = nullptr;
907     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
908       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
909       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
910       return;
911     }
912 
913     mangleUnscopedName(GD, AdditionalAbiTags);
914     return;
915   }
916 
917   mangleNestedName(GD, DC, AdditionalAbiTags);
918 }
919 
920 void CXXNameMangler::mangleModuleName(const Module *M) {
921   // Implement the C++ Modules TS name mangling proposal; see
922   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
923   //
924   //   <module-name> ::= W <unscoped-name>+ E
925   //                 ::= W <module-subst> <unscoped-name>* E
926   Out << 'W';
927   mangleModuleNamePrefix(M->Name);
928   Out << 'E';
929 }
930 
931 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
932   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
933   //                 ::= W <seq-id - 10> _   # otherwise
934   auto It = ModuleSubstitutions.find(Name);
935   if (It != ModuleSubstitutions.end()) {
936     if (It->second < 10)
937       Out << '_' << static_cast<char>('0' + It->second);
938     else
939       Out << 'W' << (It->second - 10) << '_';
940     return;
941   }
942 
943   // FIXME: Preserve hierarchy in module names rather than flattening
944   // them to strings; use Module*s as substitution keys.
945   auto Parts = Name.rsplit('.');
946   if (Parts.second.empty())
947     Parts.second = Parts.first;
948   else
949     mangleModuleNamePrefix(Parts.first);
950 
951   Out << Parts.second.size() << Parts.second;
952   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
953 }
954 
955 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
956                                         const TemplateArgument *TemplateArgs,
957                                         unsigned NumTemplateArgs) {
958   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
959 
960   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
961     mangleUnscopedTemplateName(TD, nullptr);
962     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
963   } else {
964     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
965   }
966 }
967 
968 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
969                                         const AbiTagList *AdditionalAbiTags) {
970   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
971   //  <unscoped-name> ::= <unqualified-name>
972   //                  ::= St <unqualified-name>   # ::std::
973 
974   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
975     Out << "St";
976 
977   mangleUnqualifiedName(GD, AdditionalAbiTags);
978 }
979 
980 void CXXNameMangler::mangleUnscopedTemplateName(
981     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
982   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
983   //     <unscoped-template-name> ::= <unscoped-name>
984   //                              ::= <substitution>
985   if (mangleSubstitution(ND))
986     return;
987 
988   // <template-template-param> ::= <template-param>
989   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
990     assert(!AdditionalAbiTags &&
991            "template template param cannot have abi tags");
992     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
993   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
994     mangleUnscopedName(GD, AdditionalAbiTags);
995   } else {
996     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
997   }
998 
999   addSubstitution(ND);
1000 }
1001 
1002 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1003   // ABI:
1004   //   Floating-point literals are encoded using a fixed-length
1005   //   lowercase hexadecimal string corresponding to the internal
1006   //   representation (IEEE on Itanium), high-order bytes first,
1007   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1008   //   on Itanium.
1009   // The 'without leading zeroes' thing seems to be an editorial
1010   // mistake; see the discussion on cxx-abi-dev beginning on
1011   // 2012-01-16.
1012 
1013   // Our requirements here are just barely weird enough to justify
1014   // using a custom algorithm instead of post-processing APInt::toString().
1015 
1016   llvm::APInt valueBits = f.bitcastToAPInt();
1017   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1018   assert(numCharacters != 0);
1019 
1020   // Allocate a buffer of the right number of characters.
1021   SmallVector<char, 20> buffer(numCharacters);
1022 
1023   // Fill the buffer left-to-right.
1024   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1025     // The bit-index of the next hex digit.
1026     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1027 
1028     // Project out 4 bits starting at 'digitIndex'.
1029     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1030     hexDigit >>= (digitBitIndex % 64);
1031     hexDigit &= 0xF;
1032 
1033     // Map that over to a lowercase hex digit.
1034     static const char charForHex[16] = {
1035       '0', '1', '2', '3', '4', '5', '6', '7',
1036       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1037     };
1038     buffer[stringIndex] = charForHex[hexDigit];
1039   }
1040 
1041   Out.write(buffer.data(), numCharacters);
1042 }
1043 
1044 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1045   Out << 'L';
1046   mangleType(T);
1047   mangleFloat(V);
1048   Out << 'E';
1049 }
1050 
1051 void CXXNameMangler::mangleFixedPointLiteral() {
1052   DiagnosticsEngine &Diags = Context.getDiags();
1053   unsigned DiagID = Diags.getCustomDiagID(
1054       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1055   Diags.Report(DiagID);
1056 }
1057 
1058 void CXXNameMangler::mangleNullPointer(QualType T) {
1059   //  <expr-primary> ::= L <type> 0 E
1060   Out << 'L';
1061   mangleType(T);
1062   Out << "0E";
1063 }
1064 
1065 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1066   if (Value.isSigned() && Value.isNegative()) {
1067     Out << 'n';
1068     Value.abs().print(Out, /*signed*/ false);
1069   } else {
1070     Value.print(Out, /*signed*/ false);
1071   }
1072 }
1073 
1074 void CXXNameMangler::mangleNumber(int64_t Number) {
1075   //  <number> ::= [n] <non-negative decimal integer>
1076   if (Number < 0) {
1077     Out << 'n';
1078     Number = -Number;
1079   }
1080 
1081   Out << Number;
1082 }
1083 
1084 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1085   //  <call-offset>  ::= h <nv-offset> _
1086   //                 ::= v <v-offset> _
1087   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1088   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1089   //                      # virtual base override, with vcall offset
1090   if (!Virtual) {
1091     Out << 'h';
1092     mangleNumber(NonVirtual);
1093     Out << '_';
1094     return;
1095   }
1096 
1097   Out << 'v';
1098   mangleNumber(NonVirtual);
1099   Out << '_';
1100   mangleNumber(Virtual);
1101   Out << '_';
1102 }
1103 
1104 void CXXNameMangler::manglePrefix(QualType type) {
1105   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1106     if (!mangleSubstitution(QualType(TST, 0))) {
1107       mangleTemplatePrefix(TST->getTemplateName());
1108 
1109       // FIXME: GCC does not appear to mangle the template arguments when
1110       // the template in question is a dependent template name. Should we
1111       // emulate that badness?
1112       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1113                          TST->getNumArgs());
1114       addSubstitution(QualType(TST, 0));
1115     }
1116   } else if (const auto *DTST =
1117                  type->getAs<DependentTemplateSpecializationType>()) {
1118     if (!mangleSubstitution(QualType(DTST, 0))) {
1119       TemplateName Template = getASTContext().getDependentTemplateName(
1120           DTST->getQualifier(), DTST->getIdentifier());
1121       mangleTemplatePrefix(Template);
1122 
1123       // FIXME: GCC does not appear to mangle the template arguments when
1124       // the template in question is a dependent template name. Should we
1125       // emulate that badness?
1126       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1127       addSubstitution(QualType(DTST, 0));
1128     }
1129   } else {
1130     // We use the QualType mangle type variant here because it handles
1131     // substitutions.
1132     mangleType(type);
1133   }
1134 }
1135 
1136 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1137 ///
1138 /// \param recursive - true if this is being called recursively,
1139 ///   i.e. if there is more prefix "to the right".
1140 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1141                                             bool recursive) {
1142 
1143   // x, ::x
1144   // <unresolved-name> ::= [gs] <base-unresolved-name>
1145 
1146   // T::x / decltype(p)::x
1147   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1148 
1149   // T::N::x /decltype(p)::N::x
1150   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1151   //                       <base-unresolved-name>
1152 
1153   // A::x, N::y, A<T>::z; "gs" means leading "::"
1154   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1155   //                       <base-unresolved-name>
1156 
1157   switch (qualifier->getKind()) {
1158   case NestedNameSpecifier::Global:
1159     Out << "gs";
1160 
1161     // We want an 'sr' unless this is the entire NNS.
1162     if (recursive)
1163       Out << "sr";
1164 
1165     // We never want an 'E' here.
1166     return;
1167 
1168   case NestedNameSpecifier::Super:
1169     llvm_unreachable("Can't mangle __super specifier");
1170 
1171   case NestedNameSpecifier::Namespace:
1172     if (qualifier->getPrefix())
1173       mangleUnresolvedPrefix(qualifier->getPrefix(),
1174                              /*recursive*/ true);
1175     else
1176       Out << "sr";
1177     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1178     break;
1179   case NestedNameSpecifier::NamespaceAlias:
1180     if (qualifier->getPrefix())
1181       mangleUnresolvedPrefix(qualifier->getPrefix(),
1182                              /*recursive*/ true);
1183     else
1184       Out << "sr";
1185     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1186     break;
1187 
1188   case NestedNameSpecifier::TypeSpec:
1189   case NestedNameSpecifier::TypeSpecWithTemplate: {
1190     const Type *type = qualifier->getAsType();
1191 
1192     // We only want to use an unresolved-type encoding if this is one of:
1193     //   - a decltype
1194     //   - a template type parameter
1195     //   - a template template parameter with arguments
1196     // In all of these cases, we should have no prefix.
1197     if (qualifier->getPrefix()) {
1198       mangleUnresolvedPrefix(qualifier->getPrefix(),
1199                              /*recursive*/ true);
1200     } else {
1201       // Otherwise, all the cases want this.
1202       Out << "sr";
1203     }
1204 
1205     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1206       return;
1207 
1208     break;
1209   }
1210 
1211   case NestedNameSpecifier::Identifier:
1212     // Member expressions can have these without prefixes.
1213     if (qualifier->getPrefix())
1214       mangleUnresolvedPrefix(qualifier->getPrefix(),
1215                              /*recursive*/ true);
1216     else
1217       Out << "sr";
1218 
1219     mangleSourceName(qualifier->getAsIdentifier());
1220     // An Identifier has no type information, so we can't emit abi tags for it.
1221     break;
1222   }
1223 
1224   // If this was the innermost part of the NNS, and we fell out to
1225   // here, append an 'E'.
1226   if (!recursive)
1227     Out << 'E';
1228 }
1229 
1230 /// Mangle an unresolved-name, which is generally used for names which
1231 /// weren't resolved to specific entities.
1232 void CXXNameMangler::mangleUnresolvedName(
1233     NestedNameSpecifier *qualifier, DeclarationName name,
1234     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1235     unsigned knownArity) {
1236   if (qualifier) mangleUnresolvedPrefix(qualifier);
1237   switch (name.getNameKind()) {
1238     // <base-unresolved-name> ::= <simple-id>
1239     case DeclarationName::Identifier:
1240       mangleSourceName(name.getAsIdentifierInfo());
1241       break;
1242     // <base-unresolved-name> ::= dn <destructor-name>
1243     case DeclarationName::CXXDestructorName:
1244       Out << "dn";
1245       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1246       break;
1247     // <base-unresolved-name> ::= on <operator-name>
1248     case DeclarationName::CXXConversionFunctionName:
1249     case DeclarationName::CXXLiteralOperatorName:
1250     case DeclarationName::CXXOperatorName:
1251       Out << "on";
1252       mangleOperatorName(name, knownArity);
1253       break;
1254     case DeclarationName::CXXConstructorName:
1255       llvm_unreachable("Can't mangle a constructor name!");
1256     case DeclarationName::CXXUsingDirective:
1257       llvm_unreachable("Can't mangle a using directive name!");
1258     case DeclarationName::CXXDeductionGuideName:
1259       llvm_unreachable("Can't mangle a deduction guide name!");
1260     case DeclarationName::ObjCMultiArgSelector:
1261     case DeclarationName::ObjCOneArgSelector:
1262     case DeclarationName::ObjCZeroArgSelector:
1263       llvm_unreachable("Can't mangle Objective-C selector names here!");
1264   }
1265 
1266   // The <simple-id> and on <operator-name> productions end in an optional
1267   // <template-args>.
1268   if (TemplateArgs)
1269     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1270 }
1271 
1272 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1273                                            DeclarationName Name,
1274                                            unsigned KnownArity,
1275                                            const AbiTagList *AdditionalAbiTags) {
1276   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1277   unsigned Arity = KnownArity;
1278   //  <unqualified-name> ::= <operator-name>
1279   //                     ::= <ctor-dtor-name>
1280   //                     ::= <source-name>
1281   switch (Name.getNameKind()) {
1282   case DeclarationName::Identifier: {
1283     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1284 
1285     // We mangle decomposition declarations as the names of their bindings.
1286     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1287       // FIXME: Non-standard mangling for decomposition declarations:
1288       //
1289       //  <unqualified-name> ::= DC <source-name>* E
1290       //
1291       // These can never be referenced across translation units, so we do
1292       // not need a cross-vendor mangling for anything other than demanglers.
1293       // Proposed on cxx-abi-dev on 2016-08-12
1294       Out << "DC";
1295       for (auto *BD : DD->bindings())
1296         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1297       Out << 'E';
1298       writeAbiTags(ND, AdditionalAbiTags);
1299       break;
1300     }
1301 
1302     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1303       // We follow MSVC in mangling GUID declarations as if they were variables
1304       // with a particular reserved name. Continue the pretense here.
1305       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1306       llvm::raw_svector_ostream GUIDOS(GUID);
1307       Context.mangleMSGuidDecl(GD, GUIDOS);
1308       Out << GUID.size() << GUID;
1309       break;
1310     }
1311 
1312     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1313       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1314       Out << "TA";
1315       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1316                                TPO->getValue(), /*TopLevel=*/true);
1317       break;
1318     }
1319 
1320     if (II) {
1321       // Match GCC's naming convention for internal linkage symbols, for
1322       // symbols that are not actually visible outside of this TU. GCC
1323       // distinguishes between internal and external linkage symbols in
1324       // its mangling, to support cases like this that were valid C++ prior
1325       // to DR426:
1326       //
1327       //   void test() { extern void foo(); }
1328       //   static void foo();
1329       //
1330       // Don't bother with the L marker for names in anonymous namespaces; the
1331       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1332       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1333       // implying internal linkage.
1334       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1335           !ND->isExternallyVisible() &&
1336           getEffectiveDeclContext(ND)->isFileContext() &&
1337           !ND->isInAnonymousNamespace())
1338         Out << 'L';
1339 
1340       auto *FD = dyn_cast<FunctionDecl>(ND);
1341       bool IsRegCall = FD &&
1342                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1343                            clang::CC_X86RegCall;
1344       bool IsDeviceStub =
1345           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1346           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1347       if (IsDeviceStub)
1348         mangleDeviceStubName(II);
1349       else if (IsRegCall)
1350         mangleRegCallName(II);
1351       else
1352         mangleSourceName(II);
1353 
1354       writeAbiTags(ND, AdditionalAbiTags);
1355       break;
1356     }
1357 
1358     // Otherwise, an anonymous entity.  We must have a declaration.
1359     assert(ND && "mangling empty name without declaration");
1360 
1361     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1362       if (NS->isAnonymousNamespace()) {
1363         // This is how gcc mangles these names.
1364         Out << "12_GLOBAL__N_1";
1365         break;
1366       }
1367     }
1368 
1369     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1370       // We must have an anonymous union or struct declaration.
1371       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1372 
1373       // Itanium C++ ABI 5.1.2:
1374       //
1375       //   For the purposes of mangling, the name of an anonymous union is
1376       //   considered to be the name of the first named data member found by a
1377       //   pre-order, depth-first, declaration-order walk of the data members of
1378       //   the anonymous union. If there is no such data member (i.e., if all of
1379       //   the data members in the union are unnamed), then there is no way for
1380       //   a program to refer to the anonymous union, and there is therefore no
1381       //   need to mangle its name.
1382       assert(RD->isAnonymousStructOrUnion()
1383              && "Expected anonymous struct or union!");
1384       const FieldDecl *FD = RD->findFirstNamedDataMember();
1385 
1386       // It's actually possible for various reasons for us to get here
1387       // with an empty anonymous struct / union.  Fortunately, it
1388       // doesn't really matter what name we generate.
1389       if (!FD) break;
1390       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1391 
1392       mangleSourceName(FD->getIdentifier());
1393       // Not emitting abi tags: internal name anyway.
1394       break;
1395     }
1396 
1397     // Class extensions have no name as a category, and it's possible
1398     // for them to be the semantic parent of certain declarations
1399     // (primarily, tag decls defined within declarations).  Such
1400     // declarations will always have internal linkage, so the name
1401     // doesn't really matter, but we shouldn't crash on them.  For
1402     // safety, just handle all ObjC containers here.
1403     if (isa<ObjCContainerDecl>(ND))
1404       break;
1405 
1406     // We must have an anonymous struct.
1407     const TagDecl *TD = cast<TagDecl>(ND);
1408     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1409       assert(TD->getDeclContext() == D->getDeclContext() &&
1410              "Typedef should not be in another decl context!");
1411       assert(D->getDeclName().getAsIdentifierInfo() &&
1412              "Typedef was not named!");
1413       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1414       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1415       // Explicit abi tags are still possible; take from underlying type, not
1416       // from typedef.
1417       writeAbiTags(TD, nullptr);
1418       break;
1419     }
1420 
1421     // <unnamed-type-name> ::= <closure-type-name>
1422     //
1423     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1424     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1425     //     # Parameter types or 'v' for 'void'.
1426     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1427       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1428         assert(!AdditionalAbiTags &&
1429                "Lambda type cannot have additional abi tags");
1430         mangleLambda(Record);
1431         break;
1432       }
1433     }
1434 
1435     if (TD->isExternallyVisible()) {
1436       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1437       Out << "Ut";
1438       if (UnnamedMangle > 1)
1439         Out << UnnamedMangle - 2;
1440       Out << '_';
1441       writeAbiTags(TD, AdditionalAbiTags);
1442       break;
1443     }
1444 
1445     // Get a unique id for the anonymous struct. If it is not a real output
1446     // ID doesn't matter so use fake one.
1447     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1448 
1449     // Mangle it as a source name in the form
1450     // [n] $_<id>
1451     // where n is the length of the string.
1452     SmallString<8> Str;
1453     Str += "$_";
1454     Str += llvm::utostr(AnonStructId);
1455 
1456     Out << Str.size();
1457     Out << Str;
1458     break;
1459   }
1460 
1461   case DeclarationName::ObjCZeroArgSelector:
1462   case DeclarationName::ObjCOneArgSelector:
1463   case DeclarationName::ObjCMultiArgSelector:
1464     llvm_unreachable("Can't mangle Objective-C selector names here!");
1465 
1466   case DeclarationName::CXXConstructorName: {
1467     const CXXRecordDecl *InheritedFrom = nullptr;
1468     TemplateName InheritedTemplateName;
1469     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1470     if (auto Inherited =
1471             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1472       InheritedFrom = Inherited.getConstructor()->getParent();
1473       InheritedTemplateName =
1474           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1475       InheritedTemplateArgs =
1476           Inherited.getConstructor()->getTemplateSpecializationArgs();
1477     }
1478 
1479     if (ND == Structor)
1480       // If the named decl is the C++ constructor we're mangling, use the type
1481       // we were given.
1482       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1483     else
1484       // Otherwise, use the complete constructor name. This is relevant if a
1485       // class with a constructor is declared within a constructor.
1486       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1487 
1488     // FIXME: The template arguments are part of the enclosing prefix or
1489     // nested-name, but it's more convenient to mangle them here.
1490     if (InheritedTemplateArgs)
1491       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1492 
1493     writeAbiTags(ND, AdditionalAbiTags);
1494     break;
1495   }
1496 
1497   case DeclarationName::CXXDestructorName:
1498     if (ND == Structor)
1499       // If the named decl is the C++ destructor we're mangling, use the type we
1500       // were given.
1501       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1502     else
1503       // Otherwise, use the complete destructor name. This is relevant if a
1504       // class with a destructor is declared within a destructor.
1505       mangleCXXDtorType(Dtor_Complete);
1506     writeAbiTags(ND, AdditionalAbiTags);
1507     break;
1508 
1509   case DeclarationName::CXXOperatorName:
1510     if (ND && Arity == UnknownArity) {
1511       Arity = cast<FunctionDecl>(ND)->getNumParams();
1512 
1513       // If we have a member function, we need to include the 'this' pointer.
1514       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1515         if (!MD->isStatic())
1516           Arity++;
1517     }
1518     LLVM_FALLTHROUGH;
1519   case DeclarationName::CXXConversionFunctionName:
1520   case DeclarationName::CXXLiteralOperatorName:
1521     mangleOperatorName(Name, Arity);
1522     writeAbiTags(ND, AdditionalAbiTags);
1523     break;
1524 
1525   case DeclarationName::CXXDeductionGuideName:
1526     llvm_unreachable("Can't mangle a deduction guide name!");
1527 
1528   case DeclarationName::CXXUsingDirective:
1529     llvm_unreachable("Can't mangle a using directive name!");
1530   }
1531 }
1532 
1533 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1534   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1535   // <number> ::= [n] <non-negative decimal integer>
1536   // <identifier> ::= <unqualified source code identifier>
1537   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1538       << II->getName();
1539 }
1540 
1541 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1542   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1543   // <number> ::= [n] <non-negative decimal integer>
1544   // <identifier> ::= <unqualified source code identifier>
1545   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1546       << II->getName();
1547 }
1548 
1549 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1550   // <source-name> ::= <positive length number> <identifier>
1551   // <number> ::= [n] <non-negative decimal integer>
1552   // <identifier> ::= <unqualified source code identifier>
1553   Out << II->getLength() << II->getName();
1554 }
1555 
1556 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1557                                       const DeclContext *DC,
1558                                       const AbiTagList *AdditionalAbiTags,
1559                                       bool NoFunction) {
1560   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1561   // <nested-name>
1562   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1563   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1564   //       <template-args> E
1565 
1566   Out << 'N';
1567   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1568     Qualifiers MethodQuals = Method->getMethodQualifiers();
1569     // We do not consider restrict a distinguishing attribute for overloading
1570     // purposes so we must not mangle it.
1571     MethodQuals.removeRestrict();
1572     mangleQualifiers(MethodQuals);
1573     mangleRefQualifier(Method->getRefQualifier());
1574   }
1575 
1576   // Check if we have a template.
1577   const TemplateArgumentList *TemplateArgs = nullptr;
1578   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1579     mangleTemplatePrefix(TD, NoFunction);
1580     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1581   }
1582   else {
1583     manglePrefix(DC, NoFunction);
1584     mangleUnqualifiedName(GD, AdditionalAbiTags);
1585   }
1586 
1587   Out << 'E';
1588 }
1589 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1590                                       const TemplateArgument *TemplateArgs,
1591                                       unsigned NumTemplateArgs) {
1592   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1593 
1594   Out << 'N';
1595 
1596   mangleTemplatePrefix(TD);
1597   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1598 
1599   Out << 'E';
1600 }
1601 
1602 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1603   GlobalDecl GD;
1604   // The Itanium spec says:
1605   // For entities in constructors and destructors, the mangling of the
1606   // complete object constructor or destructor is used as the base function
1607   // name, i.e. the C1 or D1 version.
1608   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1609     GD = GlobalDecl(CD, Ctor_Complete);
1610   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1611     GD = GlobalDecl(DD, Dtor_Complete);
1612   else
1613     GD = GlobalDecl(cast<FunctionDecl>(DC));
1614   return GD;
1615 }
1616 
1617 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1618                                      const AbiTagList *AdditionalAbiTags) {
1619   const Decl *D = GD.getDecl();
1620   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1621   //              := Z <function encoding> E s [<discriminator>]
1622   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1623   //                 _ <entity name>
1624   // <discriminator> := _ <non-negative number>
1625   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1626   const RecordDecl *RD = GetLocalClassDecl(D);
1627   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1628 
1629   Out << 'Z';
1630 
1631   {
1632     AbiTagState LocalAbiTags(AbiTags);
1633 
1634     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1635       mangleObjCMethodName(MD);
1636     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1637       mangleBlockForPrefix(BD);
1638     else
1639       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1640 
1641     // Implicit ABI tags (from namespace) are not available in the following
1642     // entity; reset to actually emitted tags, which are available.
1643     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1644   }
1645 
1646   Out << 'E';
1647 
1648   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1649   // be a bug that is fixed in trunk.
1650 
1651   if (RD) {
1652     // The parameter number is omitted for the last parameter, 0 for the
1653     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1654     // <entity name> will of course contain a <closure-type-name>: Its
1655     // numbering will be local to the particular argument in which it appears
1656     // -- other default arguments do not affect its encoding.
1657     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1658     if (CXXRD && CXXRD->isLambda()) {
1659       if (const ParmVarDecl *Parm
1660               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1661         if (const FunctionDecl *Func
1662               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1663           Out << 'd';
1664           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1665           if (Num > 1)
1666             mangleNumber(Num - 2);
1667           Out << '_';
1668         }
1669       }
1670     }
1671 
1672     // Mangle the name relative to the closest enclosing function.
1673     // equality ok because RD derived from ND above
1674     if (D == RD)  {
1675       mangleUnqualifiedName(RD, AdditionalAbiTags);
1676     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1677       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1678       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1679       mangleUnqualifiedBlock(BD);
1680     } else {
1681       const NamedDecl *ND = cast<NamedDecl>(D);
1682       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1683                        true /*NoFunction*/);
1684     }
1685   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1686     // Mangle a block in a default parameter; see above explanation for
1687     // lambdas.
1688     if (const ParmVarDecl *Parm
1689             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1690       if (const FunctionDecl *Func
1691             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1692         Out << 'd';
1693         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1694         if (Num > 1)
1695           mangleNumber(Num - 2);
1696         Out << '_';
1697       }
1698     }
1699 
1700     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1701     mangleUnqualifiedBlock(BD);
1702   } else {
1703     mangleUnqualifiedName(GD, AdditionalAbiTags);
1704   }
1705 
1706   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1707     unsigned disc;
1708     if (Context.getNextDiscriminator(ND, disc)) {
1709       if (disc < 10)
1710         Out << '_' << disc;
1711       else
1712         Out << "__" << disc << '_';
1713     }
1714   }
1715 }
1716 
1717 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1718   if (GetLocalClassDecl(Block)) {
1719     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1720     return;
1721   }
1722   const DeclContext *DC = getEffectiveDeclContext(Block);
1723   if (isLocalContainerContext(DC)) {
1724     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1725     return;
1726   }
1727   manglePrefix(getEffectiveDeclContext(Block));
1728   mangleUnqualifiedBlock(Block);
1729 }
1730 
1731 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1732   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1733     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1734         Context->getDeclContext()->isRecord()) {
1735       const auto *ND = cast<NamedDecl>(Context);
1736       if (ND->getIdentifier()) {
1737         mangleSourceNameWithAbiTags(ND);
1738         Out << 'M';
1739       }
1740     }
1741   }
1742 
1743   // If we have a block mangling number, use it.
1744   unsigned Number = Block->getBlockManglingNumber();
1745   // Otherwise, just make up a number. It doesn't matter what it is because
1746   // the symbol in question isn't externally visible.
1747   if (!Number)
1748     Number = Context.getBlockId(Block, false);
1749   else {
1750     // Stored mangling numbers are 1-based.
1751     --Number;
1752   }
1753   Out << "Ub";
1754   if (Number > 0)
1755     Out << Number - 1;
1756   Out << '_';
1757 }
1758 
1759 // <template-param-decl>
1760 //   ::= Ty                              # template type parameter
1761 //   ::= Tn <type>                       # template non-type parameter
1762 //   ::= Tt <template-param-decl>* E     # template template parameter
1763 //   ::= Tp <template-param-decl>        # template parameter pack
1764 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1765   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1766     if (Ty->isParameterPack())
1767       Out << "Tp";
1768     Out << "Ty";
1769   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1770     if (Tn->isExpandedParameterPack()) {
1771       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1772         Out << "Tn";
1773         mangleType(Tn->getExpansionType(I));
1774       }
1775     } else {
1776       QualType T = Tn->getType();
1777       if (Tn->isParameterPack()) {
1778         Out << "Tp";
1779         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1780           T = PackExpansion->getPattern();
1781       }
1782       Out << "Tn";
1783       mangleType(T);
1784     }
1785   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1786     if (Tt->isExpandedParameterPack()) {
1787       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1788            ++I) {
1789         Out << "Tt";
1790         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1791           mangleTemplateParamDecl(Param);
1792         Out << "E";
1793       }
1794     } else {
1795       if (Tt->isParameterPack())
1796         Out << "Tp";
1797       Out << "Tt";
1798       for (auto *Param : *Tt->getTemplateParameters())
1799         mangleTemplateParamDecl(Param);
1800       Out << "E";
1801     }
1802   }
1803 }
1804 
1805 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1806   // If the context of a closure type is an initializer for a class member
1807   // (static or nonstatic), it is encoded in a qualified name with a final
1808   // <prefix> of the form:
1809   //
1810   //   <data-member-prefix> := <member source-name> M
1811   //
1812   // Technically, the data-member-prefix is part of the <prefix>. However,
1813   // since a closure type will always be mangled with a prefix, it's easier
1814   // to emit that last part of the prefix here.
1815   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1816     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1817         !isa<ParmVarDecl>(Context)) {
1818       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1819       // reasonable mangling here.
1820       if (const IdentifierInfo *Name
1821             = cast<NamedDecl>(Context)->getIdentifier()) {
1822         mangleSourceName(Name);
1823         const TemplateArgumentList *TemplateArgs = nullptr;
1824         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1825           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1826         Out << 'M';
1827       }
1828     }
1829   }
1830 
1831   Out << "Ul";
1832   mangleLambdaSig(Lambda);
1833   Out << "E";
1834 
1835   // The number is omitted for the first closure type with a given
1836   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1837   // (in lexical order) with that same <lambda-sig> and context.
1838   //
1839   // The AST keeps track of the number for us.
1840   unsigned Number = Lambda->getLambdaManglingNumber();
1841   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1842   if (Number > 1)
1843     mangleNumber(Number - 2);
1844   Out << '_';
1845 }
1846 
1847 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1848   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1849     mangleTemplateParamDecl(D);
1850   auto *Proto =
1851       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1852   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1853                          Lambda->getLambdaStaticInvoker());
1854 }
1855 
1856 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1857   switch (qualifier->getKind()) {
1858   case NestedNameSpecifier::Global:
1859     // nothing
1860     return;
1861 
1862   case NestedNameSpecifier::Super:
1863     llvm_unreachable("Can't mangle __super specifier");
1864 
1865   case NestedNameSpecifier::Namespace:
1866     mangleName(qualifier->getAsNamespace());
1867     return;
1868 
1869   case NestedNameSpecifier::NamespaceAlias:
1870     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1871     return;
1872 
1873   case NestedNameSpecifier::TypeSpec:
1874   case NestedNameSpecifier::TypeSpecWithTemplate:
1875     manglePrefix(QualType(qualifier->getAsType(), 0));
1876     return;
1877 
1878   case NestedNameSpecifier::Identifier:
1879     // Member expressions can have these without prefixes, but that
1880     // should end up in mangleUnresolvedPrefix instead.
1881     assert(qualifier->getPrefix());
1882     manglePrefix(qualifier->getPrefix());
1883 
1884     mangleSourceName(qualifier->getAsIdentifier());
1885     return;
1886   }
1887 
1888   llvm_unreachable("unexpected nested name specifier");
1889 }
1890 
1891 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1892   //  <prefix> ::= <prefix> <unqualified-name>
1893   //           ::= <template-prefix> <template-args>
1894   //           ::= <template-param>
1895   //           ::= # empty
1896   //           ::= <substitution>
1897 
1898   DC = IgnoreLinkageSpecDecls(DC);
1899 
1900   if (DC->isTranslationUnit())
1901     return;
1902 
1903   if (NoFunction && isLocalContainerContext(DC))
1904     return;
1905 
1906   assert(!isLocalContainerContext(DC));
1907 
1908   const NamedDecl *ND = cast<NamedDecl>(DC);
1909   if (mangleSubstitution(ND))
1910     return;
1911 
1912   // Check if we have a template.
1913   const TemplateArgumentList *TemplateArgs = nullptr;
1914   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
1915     mangleTemplatePrefix(TD);
1916     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1917   } else {
1918     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1919     mangleUnqualifiedName(ND, nullptr);
1920   }
1921 
1922   addSubstitution(ND);
1923 }
1924 
1925 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1926   // <template-prefix> ::= <prefix> <template unqualified-name>
1927   //                   ::= <template-param>
1928   //                   ::= <substitution>
1929   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1930     return mangleTemplatePrefix(TD);
1931 
1932   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1933   assert(Dependent && "unexpected template name kind");
1934 
1935   // Clang 11 and before mangled the substitution for a dependent template name
1936   // after already having emitted (a substitution for) the prefix.
1937   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
1938                        LangOptions::ClangABI::Ver11;
1939   if (!Clang11Compat && mangleSubstitution(Template))
1940     return;
1941 
1942   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1943     manglePrefix(Qualifier);
1944 
1945   if (Clang11Compat && mangleSubstitution(Template))
1946     return;
1947 
1948   if (const IdentifierInfo *Id = Dependent->getIdentifier())
1949     mangleSourceName(Id);
1950   else
1951     mangleOperatorName(Dependent->getOperator(), UnknownArity);
1952 
1953   addSubstitution(Template);
1954 }
1955 
1956 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
1957                                           bool NoFunction) {
1958   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1959   // <template-prefix> ::= <prefix> <template unqualified-name>
1960   //                   ::= <template-param>
1961   //                   ::= <substitution>
1962   // <template-template-param> ::= <template-param>
1963   //                               <substitution>
1964 
1965   if (mangleSubstitution(ND))
1966     return;
1967 
1968   // <template-template-param> ::= <template-param>
1969   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1970     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1971   } else {
1972     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1973     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1974       mangleUnqualifiedName(GD, nullptr);
1975     else
1976       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
1977   }
1978 
1979   addSubstitution(ND);
1980 }
1981 
1982 /// Mangles a template name under the production <type>.  Required for
1983 /// template template arguments.
1984 ///   <type> ::= <class-enum-type>
1985 ///          ::= <template-param>
1986 ///          ::= <substitution>
1987 void CXXNameMangler::mangleType(TemplateName TN) {
1988   if (mangleSubstitution(TN))
1989     return;
1990 
1991   TemplateDecl *TD = nullptr;
1992 
1993   switch (TN.getKind()) {
1994   case TemplateName::QualifiedTemplate:
1995     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1996     goto HaveDecl;
1997 
1998   case TemplateName::Template:
1999     TD = TN.getAsTemplateDecl();
2000     goto HaveDecl;
2001 
2002   HaveDecl:
2003     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2004       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2005     else
2006       mangleName(TD);
2007     break;
2008 
2009   case TemplateName::OverloadedTemplate:
2010   case TemplateName::AssumedTemplate:
2011     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2012 
2013   case TemplateName::DependentTemplate: {
2014     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2015     assert(Dependent->isIdentifier());
2016 
2017     // <class-enum-type> ::= <name>
2018     // <name> ::= <nested-name>
2019     mangleUnresolvedPrefix(Dependent->getQualifier());
2020     mangleSourceName(Dependent->getIdentifier());
2021     break;
2022   }
2023 
2024   case TemplateName::SubstTemplateTemplateParm: {
2025     // Substituted template parameters are mangled as the substituted
2026     // template.  This will check for the substitution twice, which is
2027     // fine, but we have to return early so that we don't try to *add*
2028     // the substitution twice.
2029     SubstTemplateTemplateParmStorage *subst
2030       = TN.getAsSubstTemplateTemplateParm();
2031     mangleType(subst->getReplacement());
2032     return;
2033   }
2034 
2035   case TemplateName::SubstTemplateTemplateParmPack: {
2036     // FIXME: not clear how to mangle this!
2037     // template <template <class> class T...> class A {
2038     //   template <template <class> class U...> void foo(B<T,U> x...);
2039     // };
2040     Out << "_SUBSTPACK_";
2041     break;
2042   }
2043   }
2044 
2045   addSubstitution(TN);
2046 }
2047 
2048 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2049                                                     StringRef Prefix) {
2050   // Only certain other types are valid as prefixes;  enumerate them.
2051   switch (Ty->getTypeClass()) {
2052   case Type::Builtin:
2053   case Type::Complex:
2054   case Type::Adjusted:
2055   case Type::Decayed:
2056   case Type::Pointer:
2057   case Type::BlockPointer:
2058   case Type::LValueReference:
2059   case Type::RValueReference:
2060   case Type::MemberPointer:
2061   case Type::ConstantArray:
2062   case Type::IncompleteArray:
2063   case Type::VariableArray:
2064   case Type::DependentSizedArray:
2065   case Type::DependentAddressSpace:
2066   case Type::DependentVector:
2067   case Type::DependentSizedExtVector:
2068   case Type::Vector:
2069   case Type::ExtVector:
2070   case Type::ConstantMatrix:
2071   case Type::DependentSizedMatrix:
2072   case Type::FunctionProto:
2073   case Type::FunctionNoProto:
2074   case Type::Paren:
2075   case Type::Attributed:
2076   case Type::Auto:
2077   case Type::DeducedTemplateSpecialization:
2078   case Type::PackExpansion:
2079   case Type::ObjCObject:
2080   case Type::ObjCInterface:
2081   case Type::ObjCObjectPointer:
2082   case Type::ObjCTypeParam:
2083   case Type::Atomic:
2084   case Type::Pipe:
2085   case Type::MacroQualified:
2086   case Type::ExtInt:
2087   case Type::DependentExtInt:
2088     llvm_unreachable("type is illegal as a nested name specifier");
2089 
2090   case Type::SubstTemplateTypeParmPack:
2091     // FIXME: not clear how to mangle this!
2092     // template <class T...> class A {
2093     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2094     // };
2095     Out << "_SUBSTPACK_";
2096     break;
2097 
2098   // <unresolved-type> ::= <template-param>
2099   //                   ::= <decltype>
2100   //                   ::= <template-template-param> <template-args>
2101   // (this last is not official yet)
2102   case Type::TypeOfExpr:
2103   case Type::TypeOf:
2104   case Type::Decltype:
2105   case Type::TemplateTypeParm:
2106   case Type::UnaryTransform:
2107   case Type::SubstTemplateTypeParm:
2108   unresolvedType:
2109     // Some callers want a prefix before the mangled type.
2110     Out << Prefix;
2111 
2112     // This seems to do everything we want.  It's not really
2113     // sanctioned for a substituted template parameter, though.
2114     mangleType(Ty);
2115 
2116     // We never want to print 'E' directly after an unresolved-type,
2117     // so we return directly.
2118     return true;
2119 
2120   case Type::Typedef:
2121     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2122     break;
2123 
2124   case Type::UnresolvedUsing:
2125     mangleSourceNameWithAbiTags(
2126         cast<UnresolvedUsingType>(Ty)->getDecl());
2127     break;
2128 
2129   case Type::Enum:
2130   case Type::Record:
2131     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2132     break;
2133 
2134   case Type::TemplateSpecialization: {
2135     const TemplateSpecializationType *TST =
2136         cast<TemplateSpecializationType>(Ty);
2137     TemplateName TN = TST->getTemplateName();
2138     switch (TN.getKind()) {
2139     case TemplateName::Template:
2140     case TemplateName::QualifiedTemplate: {
2141       TemplateDecl *TD = TN.getAsTemplateDecl();
2142 
2143       // If the base is a template template parameter, this is an
2144       // unresolved type.
2145       assert(TD && "no template for template specialization type");
2146       if (isa<TemplateTemplateParmDecl>(TD))
2147         goto unresolvedType;
2148 
2149       mangleSourceNameWithAbiTags(TD);
2150       break;
2151     }
2152 
2153     case TemplateName::OverloadedTemplate:
2154     case TemplateName::AssumedTemplate:
2155     case TemplateName::DependentTemplate:
2156       llvm_unreachable("invalid base for a template specialization type");
2157 
2158     case TemplateName::SubstTemplateTemplateParm: {
2159       SubstTemplateTemplateParmStorage *subst =
2160           TN.getAsSubstTemplateTemplateParm();
2161       mangleExistingSubstitution(subst->getReplacement());
2162       break;
2163     }
2164 
2165     case TemplateName::SubstTemplateTemplateParmPack: {
2166       // FIXME: not clear how to mangle this!
2167       // template <template <class U> class T...> class A {
2168       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2169       // };
2170       Out << "_SUBSTPACK_";
2171       break;
2172     }
2173     }
2174 
2175     // Note: we don't pass in the template name here. We are mangling the
2176     // original source-level template arguments, so we shouldn't consider
2177     // conversions to the corresponding template parameter.
2178     // FIXME: Other compilers mangle partially-resolved template arguments in
2179     // unresolved-qualifier-levels.
2180     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2181     break;
2182   }
2183 
2184   case Type::InjectedClassName:
2185     mangleSourceNameWithAbiTags(
2186         cast<InjectedClassNameType>(Ty)->getDecl());
2187     break;
2188 
2189   case Type::DependentName:
2190     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2191     break;
2192 
2193   case Type::DependentTemplateSpecialization: {
2194     const DependentTemplateSpecializationType *DTST =
2195         cast<DependentTemplateSpecializationType>(Ty);
2196     TemplateName Template = getASTContext().getDependentTemplateName(
2197         DTST->getQualifier(), DTST->getIdentifier());
2198     mangleSourceName(DTST->getIdentifier());
2199     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2200     break;
2201   }
2202 
2203   case Type::Elaborated:
2204     return mangleUnresolvedTypeOrSimpleId(
2205         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2206   }
2207 
2208   return false;
2209 }
2210 
2211 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2212   switch (Name.getNameKind()) {
2213   case DeclarationName::CXXConstructorName:
2214   case DeclarationName::CXXDestructorName:
2215   case DeclarationName::CXXDeductionGuideName:
2216   case DeclarationName::CXXUsingDirective:
2217   case DeclarationName::Identifier:
2218   case DeclarationName::ObjCMultiArgSelector:
2219   case DeclarationName::ObjCOneArgSelector:
2220   case DeclarationName::ObjCZeroArgSelector:
2221     llvm_unreachable("Not an operator name");
2222 
2223   case DeclarationName::CXXConversionFunctionName:
2224     // <operator-name> ::= cv <type>    # (cast)
2225     Out << "cv";
2226     mangleType(Name.getCXXNameType());
2227     break;
2228 
2229   case DeclarationName::CXXLiteralOperatorName:
2230     Out << "li";
2231     mangleSourceName(Name.getCXXLiteralIdentifier());
2232     return;
2233 
2234   case DeclarationName::CXXOperatorName:
2235     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2236     break;
2237   }
2238 }
2239 
2240 void
2241 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2242   switch (OO) {
2243   // <operator-name> ::= nw     # new
2244   case OO_New: Out << "nw"; break;
2245   //              ::= na        # new[]
2246   case OO_Array_New: Out << "na"; break;
2247   //              ::= dl        # delete
2248   case OO_Delete: Out << "dl"; break;
2249   //              ::= da        # delete[]
2250   case OO_Array_Delete: Out << "da"; break;
2251   //              ::= ps        # + (unary)
2252   //              ::= pl        # + (binary or unknown)
2253   case OO_Plus:
2254     Out << (Arity == 1? "ps" : "pl"); break;
2255   //              ::= ng        # - (unary)
2256   //              ::= mi        # - (binary or unknown)
2257   case OO_Minus:
2258     Out << (Arity == 1? "ng" : "mi"); break;
2259   //              ::= ad        # & (unary)
2260   //              ::= an        # & (binary or unknown)
2261   case OO_Amp:
2262     Out << (Arity == 1? "ad" : "an"); break;
2263   //              ::= de        # * (unary)
2264   //              ::= ml        # * (binary or unknown)
2265   case OO_Star:
2266     // Use binary when unknown.
2267     Out << (Arity == 1? "de" : "ml"); break;
2268   //              ::= co        # ~
2269   case OO_Tilde: Out << "co"; break;
2270   //              ::= dv        # /
2271   case OO_Slash: Out << "dv"; break;
2272   //              ::= rm        # %
2273   case OO_Percent: Out << "rm"; break;
2274   //              ::= or        # |
2275   case OO_Pipe: Out << "or"; break;
2276   //              ::= eo        # ^
2277   case OO_Caret: Out << "eo"; break;
2278   //              ::= aS        # =
2279   case OO_Equal: Out << "aS"; break;
2280   //              ::= pL        # +=
2281   case OO_PlusEqual: Out << "pL"; break;
2282   //              ::= mI        # -=
2283   case OO_MinusEqual: Out << "mI"; break;
2284   //              ::= mL        # *=
2285   case OO_StarEqual: Out << "mL"; break;
2286   //              ::= dV        # /=
2287   case OO_SlashEqual: Out << "dV"; break;
2288   //              ::= rM        # %=
2289   case OO_PercentEqual: Out << "rM"; break;
2290   //              ::= aN        # &=
2291   case OO_AmpEqual: Out << "aN"; break;
2292   //              ::= oR        # |=
2293   case OO_PipeEqual: Out << "oR"; break;
2294   //              ::= eO        # ^=
2295   case OO_CaretEqual: Out << "eO"; break;
2296   //              ::= ls        # <<
2297   case OO_LessLess: Out << "ls"; break;
2298   //              ::= rs        # >>
2299   case OO_GreaterGreater: Out << "rs"; break;
2300   //              ::= lS        # <<=
2301   case OO_LessLessEqual: Out << "lS"; break;
2302   //              ::= rS        # >>=
2303   case OO_GreaterGreaterEqual: Out << "rS"; break;
2304   //              ::= eq        # ==
2305   case OO_EqualEqual: Out << "eq"; break;
2306   //              ::= ne        # !=
2307   case OO_ExclaimEqual: Out << "ne"; break;
2308   //              ::= lt        # <
2309   case OO_Less: Out << "lt"; break;
2310   //              ::= gt        # >
2311   case OO_Greater: Out << "gt"; break;
2312   //              ::= le        # <=
2313   case OO_LessEqual: Out << "le"; break;
2314   //              ::= ge        # >=
2315   case OO_GreaterEqual: Out << "ge"; break;
2316   //              ::= nt        # !
2317   case OO_Exclaim: Out << "nt"; break;
2318   //              ::= aa        # &&
2319   case OO_AmpAmp: Out << "aa"; break;
2320   //              ::= oo        # ||
2321   case OO_PipePipe: Out << "oo"; break;
2322   //              ::= pp        # ++
2323   case OO_PlusPlus: Out << "pp"; break;
2324   //              ::= mm        # --
2325   case OO_MinusMinus: Out << "mm"; break;
2326   //              ::= cm        # ,
2327   case OO_Comma: Out << "cm"; break;
2328   //              ::= pm        # ->*
2329   case OO_ArrowStar: Out << "pm"; break;
2330   //              ::= pt        # ->
2331   case OO_Arrow: Out << "pt"; break;
2332   //              ::= cl        # ()
2333   case OO_Call: Out << "cl"; break;
2334   //              ::= ix        # []
2335   case OO_Subscript: Out << "ix"; break;
2336 
2337   //              ::= qu        # ?
2338   // The conditional operator can't be overloaded, but we still handle it when
2339   // mangling expressions.
2340   case OO_Conditional: Out << "qu"; break;
2341   // Proposal on cxx-abi-dev, 2015-10-21.
2342   //              ::= aw        # co_await
2343   case OO_Coawait: Out << "aw"; break;
2344   // Proposed in cxx-abi github issue 43.
2345   //              ::= ss        # <=>
2346   case OO_Spaceship: Out << "ss"; break;
2347 
2348   case OO_None:
2349   case NUM_OVERLOADED_OPERATORS:
2350     llvm_unreachable("Not an overloaded operator");
2351   }
2352 }
2353 
2354 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2355   // Vendor qualifiers come first and if they are order-insensitive they must
2356   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2357 
2358   // <type> ::= U <addrspace-expr>
2359   if (DAST) {
2360     Out << "U2ASI";
2361     mangleExpression(DAST->getAddrSpaceExpr());
2362     Out << "E";
2363   }
2364 
2365   // Address space qualifiers start with an ordinary letter.
2366   if (Quals.hasAddressSpace()) {
2367     // Address space extension:
2368     //
2369     //   <type> ::= U <target-addrspace>
2370     //   <type> ::= U <OpenCL-addrspace>
2371     //   <type> ::= U <CUDA-addrspace>
2372 
2373     SmallString<64> ASString;
2374     LangAS AS = Quals.getAddressSpace();
2375 
2376     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2377       //  <target-addrspace> ::= "AS" <address-space-number>
2378       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2379       if (TargetAS != 0)
2380         ASString = "AS" + llvm::utostr(TargetAS);
2381     } else {
2382       switch (AS) {
2383       default: llvm_unreachable("Not a language specific address space");
2384       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2385       //                                "private"| "generic" | "device" |
2386       //                                "host" ]
2387       case LangAS::opencl_global:
2388         ASString = "CLglobal";
2389         break;
2390       case LangAS::opencl_global_device:
2391         ASString = "CLdevice";
2392         break;
2393       case LangAS::opencl_global_host:
2394         ASString = "CLhost";
2395         break;
2396       case LangAS::opencl_local:
2397         ASString = "CLlocal";
2398         break;
2399       case LangAS::opencl_constant:
2400         ASString = "CLconstant";
2401         break;
2402       case LangAS::opencl_private:
2403         ASString = "CLprivate";
2404         break;
2405       case LangAS::opencl_generic:
2406         ASString = "CLgeneric";
2407         break;
2408       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2409       case LangAS::cuda_device:
2410         ASString = "CUdevice";
2411         break;
2412       case LangAS::cuda_constant:
2413         ASString = "CUconstant";
2414         break;
2415       case LangAS::cuda_shared:
2416         ASString = "CUshared";
2417         break;
2418       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2419       case LangAS::ptr32_sptr:
2420         ASString = "ptr32_sptr";
2421         break;
2422       case LangAS::ptr32_uptr:
2423         ASString = "ptr32_uptr";
2424         break;
2425       case LangAS::ptr64:
2426         ASString = "ptr64";
2427         break;
2428       }
2429     }
2430     if (!ASString.empty())
2431       mangleVendorQualifier(ASString);
2432   }
2433 
2434   // The ARC ownership qualifiers start with underscores.
2435   // Objective-C ARC Extension:
2436   //
2437   //   <type> ::= U "__strong"
2438   //   <type> ::= U "__weak"
2439   //   <type> ::= U "__autoreleasing"
2440   //
2441   // Note: we emit __weak first to preserve the order as
2442   // required by the Itanium ABI.
2443   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2444     mangleVendorQualifier("__weak");
2445 
2446   // __unaligned (from -fms-extensions)
2447   if (Quals.hasUnaligned())
2448     mangleVendorQualifier("__unaligned");
2449 
2450   // Remaining ARC ownership qualifiers.
2451   switch (Quals.getObjCLifetime()) {
2452   case Qualifiers::OCL_None:
2453     break;
2454 
2455   case Qualifiers::OCL_Weak:
2456     // Do nothing as we already handled this case above.
2457     break;
2458 
2459   case Qualifiers::OCL_Strong:
2460     mangleVendorQualifier("__strong");
2461     break;
2462 
2463   case Qualifiers::OCL_Autoreleasing:
2464     mangleVendorQualifier("__autoreleasing");
2465     break;
2466 
2467   case Qualifiers::OCL_ExplicitNone:
2468     // The __unsafe_unretained qualifier is *not* mangled, so that
2469     // __unsafe_unretained types in ARC produce the same manglings as the
2470     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2471     // better ABI compatibility.
2472     //
2473     // It's safe to do this because unqualified 'id' won't show up
2474     // in any type signatures that need to be mangled.
2475     break;
2476   }
2477 
2478   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2479   if (Quals.hasRestrict())
2480     Out << 'r';
2481   if (Quals.hasVolatile())
2482     Out << 'V';
2483   if (Quals.hasConst())
2484     Out << 'K';
2485 }
2486 
2487 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2488   Out << 'U' << name.size() << name;
2489 }
2490 
2491 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2492   // <ref-qualifier> ::= R                # lvalue reference
2493   //                 ::= O                # rvalue-reference
2494   switch (RefQualifier) {
2495   case RQ_None:
2496     break;
2497 
2498   case RQ_LValue:
2499     Out << 'R';
2500     break;
2501 
2502   case RQ_RValue:
2503     Out << 'O';
2504     break;
2505   }
2506 }
2507 
2508 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2509   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2510 }
2511 
2512 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2513                                 ASTContext &Ctx) {
2514   if (Quals)
2515     return true;
2516   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2517     return true;
2518   if (Ty->isOpenCLSpecificType())
2519     return true;
2520   if (Ty->isBuiltinType())
2521     return false;
2522   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2523   // substitution candidates.
2524   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2525       isa<AutoType>(Ty))
2526     return false;
2527   // A placeholder type for class template deduction is substitutable with
2528   // its corresponding template name; this is handled specially when mangling
2529   // the type.
2530   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2531     if (DeducedTST->getDeducedType().isNull())
2532       return false;
2533   return true;
2534 }
2535 
2536 void CXXNameMangler::mangleType(QualType T) {
2537   // If our type is instantiation-dependent but not dependent, we mangle
2538   // it as it was written in the source, removing any top-level sugar.
2539   // Otherwise, use the canonical type.
2540   //
2541   // FIXME: This is an approximation of the instantiation-dependent name
2542   // mangling rules, since we should really be using the type as written and
2543   // augmented via semantic analysis (i.e., with implicit conversions and
2544   // default template arguments) for any instantiation-dependent type.
2545   // Unfortunately, that requires several changes to our AST:
2546   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2547   //     uniqued, so that we can handle substitutions properly
2548   //   - Default template arguments will need to be represented in the
2549   //     TemplateSpecializationType, since they need to be mangled even though
2550   //     they aren't written.
2551   //   - Conversions on non-type template arguments need to be expressed, since
2552   //     they can affect the mangling of sizeof/alignof.
2553   //
2554   // FIXME: This is wrong when mapping to the canonical type for a dependent
2555   // type discards instantiation-dependent portions of the type, such as for:
2556   //
2557   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2558   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2559   //
2560   // It's also wrong in the opposite direction when instantiation-dependent,
2561   // canonically-equivalent types differ in some irrelevant portion of inner
2562   // type sugar. In such cases, we fail to form correct substitutions, eg:
2563   //
2564   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2565   //
2566   // We should instead canonicalize the non-instantiation-dependent parts,
2567   // regardless of whether the type as a whole is dependent or instantiation
2568   // dependent.
2569   if (!T->isInstantiationDependentType() || T->isDependentType())
2570     T = T.getCanonicalType();
2571   else {
2572     // Desugar any types that are purely sugar.
2573     do {
2574       // Don't desugar through template specialization types that aren't
2575       // type aliases. We need to mangle the template arguments as written.
2576       if (const TemplateSpecializationType *TST
2577                                       = dyn_cast<TemplateSpecializationType>(T))
2578         if (!TST->isTypeAlias())
2579           break;
2580 
2581       QualType Desugared
2582         = T.getSingleStepDesugaredType(Context.getASTContext());
2583       if (Desugared == T)
2584         break;
2585 
2586       T = Desugared;
2587     } while (true);
2588   }
2589   SplitQualType split = T.split();
2590   Qualifiers quals = split.Quals;
2591   const Type *ty = split.Ty;
2592 
2593   bool isSubstitutable =
2594     isTypeSubstitutable(quals, ty, Context.getASTContext());
2595   if (isSubstitutable && mangleSubstitution(T))
2596     return;
2597 
2598   // If we're mangling a qualified array type, push the qualifiers to
2599   // the element type.
2600   if (quals && isa<ArrayType>(T)) {
2601     ty = Context.getASTContext().getAsArrayType(T);
2602     quals = Qualifiers();
2603 
2604     // Note that we don't update T: we want to add the
2605     // substitution at the original type.
2606   }
2607 
2608   if (quals || ty->isDependentAddressSpaceType()) {
2609     if (const DependentAddressSpaceType *DAST =
2610         dyn_cast<DependentAddressSpaceType>(ty)) {
2611       SplitQualType splitDAST = DAST->getPointeeType().split();
2612       mangleQualifiers(splitDAST.Quals, DAST);
2613       mangleType(QualType(splitDAST.Ty, 0));
2614     } else {
2615       mangleQualifiers(quals);
2616 
2617       // Recurse:  even if the qualified type isn't yet substitutable,
2618       // the unqualified type might be.
2619       mangleType(QualType(ty, 0));
2620     }
2621   } else {
2622     switch (ty->getTypeClass()) {
2623 #define ABSTRACT_TYPE(CLASS, PARENT)
2624 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2625     case Type::CLASS: \
2626       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2627       return;
2628 #define TYPE(CLASS, PARENT) \
2629     case Type::CLASS: \
2630       mangleType(static_cast<const CLASS##Type*>(ty)); \
2631       break;
2632 #include "clang/AST/TypeNodes.inc"
2633     }
2634   }
2635 
2636   // Add the substitution.
2637   if (isSubstitutable)
2638     addSubstitution(T);
2639 }
2640 
2641 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2642   if (!mangleStandardSubstitution(ND))
2643     mangleName(ND);
2644 }
2645 
2646 void CXXNameMangler::mangleType(const BuiltinType *T) {
2647   //  <type>         ::= <builtin-type>
2648   //  <builtin-type> ::= v  # void
2649   //                 ::= w  # wchar_t
2650   //                 ::= b  # bool
2651   //                 ::= c  # char
2652   //                 ::= a  # signed char
2653   //                 ::= h  # unsigned char
2654   //                 ::= s  # short
2655   //                 ::= t  # unsigned short
2656   //                 ::= i  # int
2657   //                 ::= j  # unsigned int
2658   //                 ::= l  # long
2659   //                 ::= m  # unsigned long
2660   //                 ::= x  # long long, __int64
2661   //                 ::= y  # unsigned long long, __int64
2662   //                 ::= n  # __int128
2663   //                 ::= o  # unsigned __int128
2664   //                 ::= f  # float
2665   //                 ::= d  # double
2666   //                 ::= e  # long double, __float80
2667   //                 ::= g  # __float128
2668   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2669   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2670   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2671   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2672   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2673   //                 ::= Di # char32_t
2674   //                 ::= Ds # char16_t
2675   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2676   //                 ::= u <source-name>    # vendor extended type
2677   std::string type_name;
2678   switch (T->getKind()) {
2679   case BuiltinType::Void:
2680     Out << 'v';
2681     break;
2682   case BuiltinType::Bool:
2683     Out << 'b';
2684     break;
2685   case BuiltinType::Char_U:
2686   case BuiltinType::Char_S:
2687     Out << 'c';
2688     break;
2689   case BuiltinType::UChar:
2690     Out << 'h';
2691     break;
2692   case BuiltinType::UShort:
2693     Out << 't';
2694     break;
2695   case BuiltinType::UInt:
2696     Out << 'j';
2697     break;
2698   case BuiltinType::ULong:
2699     Out << 'm';
2700     break;
2701   case BuiltinType::ULongLong:
2702     Out << 'y';
2703     break;
2704   case BuiltinType::UInt128:
2705     Out << 'o';
2706     break;
2707   case BuiltinType::SChar:
2708     Out << 'a';
2709     break;
2710   case BuiltinType::WChar_S:
2711   case BuiltinType::WChar_U:
2712     Out << 'w';
2713     break;
2714   case BuiltinType::Char8:
2715     Out << "Du";
2716     break;
2717   case BuiltinType::Char16:
2718     Out << "Ds";
2719     break;
2720   case BuiltinType::Char32:
2721     Out << "Di";
2722     break;
2723   case BuiltinType::Short:
2724     Out << 's';
2725     break;
2726   case BuiltinType::Int:
2727     Out << 'i';
2728     break;
2729   case BuiltinType::Long:
2730     Out << 'l';
2731     break;
2732   case BuiltinType::LongLong:
2733     Out << 'x';
2734     break;
2735   case BuiltinType::Int128:
2736     Out << 'n';
2737     break;
2738   case BuiltinType::Float16:
2739     Out << "DF16_";
2740     break;
2741   case BuiltinType::ShortAccum:
2742   case BuiltinType::Accum:
2743   case BuiltinType::LongAccum:
2744   case BuiltinType::UShortAccum:
2745   case BuiltinType::UAccum:
2746   case BuiltinType::ULongAccum:
2747   case BuiltinType::ShortFract:
2748   case BuiltinType::Fract:
2749   case BuiltinType::LongFract:
2750   case BuiltinType::UShortFract:
2751   case BuiltinType::UFract:
2752   case BuiltinType::ULongFract:
2753   case BuiltinType::SatShortAccum:
2754   case BuiltinType::SatAccum:
2755   case BuiltinType::SatLongAccum:
2756   case BuiltinType::SatUShortAccum:
2757   case BuiltinType::SatUAccum:
2758   case BuiltinType::SatULongAccum:
2759   case BuiltinType::SatShortFract:
2760   case BuiltinType::SatFract:
2761   case BuiltinType::SatLongFract:
2762   case BuiltinType::SatUShortFract:
2763   case BuiltinType::SatUFract:
2764   case BuiltinType::SatULongFract:
2765     llvm_unreachable("Fixed point types are disabled for c++");
2766   case BuiltinType::Half:
2767     Out << "Dh";
2768     break;
2769   case BuiltinType::Float:
2770     Out << 'f';
2771     break;
2772   case BuiltinType::Double:
2773     Out << 'd';
2774     break;
2775   case BuiltinType::LongDouble: {
2776     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2777                                    getASTContext().getLangOpts().OpenMPIsDevice
2778                                ? getASTContext().getAuxTargetInfo()
2779                                : &getASTContext().getTargetInfo();
2780     Out << TI->getLongDoubleMangling();
2781     break;
2782   }
2783   case BuiltinType::Float128: {
2784     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2785                                    getASTContext().getLangOpts().OpenMPIsDevice
2786                                ? getASTContext().getAuxTargetInfo()
2787                                : &getASTContext().getTargetInfo();
2788     Out << TI->getFloat128Mangling();
2789     break;
2790   }
2791   case BuiltinType::BFloat16: {
2792     const TargetInfo *TI = &getASTContext().getTargetInfo();
2793     Out << TI->getBFloat16Mangling();
2794     break;
2795   }
2796   case BuiltinType::NullPtr:
2797     Out << "Dn";
2798     break;
2799 
2800 #define BUILTIN_TYPE(Id, SingletonId)
2801 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2802   case BuiltinType::Id:
2803 #include "clang/AST/BuiltinTypes.def"
2804   case BuiltinType::Dependent:
2805     if (!NullOut)
2806       llvm_unreachable("mangling a placeholder type");
2807     break;
2808   case BuiltinType::ObjCId:
2809     Out << "11objc_object";
2810     break;
2811   case BuiltinType::ObjCClass:
2812     Out << "10objc_class";
2813     break;
2814   case BuiltinType::ObjCSel:
2815     Out << "13objc_selector";
2816     break;
2817 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2818   case BuiltinType::Id: \
2819     type_name = "ocl_" #ImgType "_" #Suffix; \
2820     Out << type_name.size() << type_name; \
2821     break;
2822 #include "clang/Basic/OpenCLImageTypes.def"
2823   case BuiltinType::OCLSampler:
2824     Out << "11ocl_sampler";
2825     break;
2826   case BuiltinType::OCLEvent:
2827     Out << "9ocl_event";
2828     break;
2829   case BuiltinType::OCLClkEvent:
2830     Out << "12ocl_clkevent";
2831     break;
2832   case BuiltinType::OCLQueue:
2833     Out << "9ocl_queue";
2834     break;
2835   case BuiltinType::OCLReserveID:
2836     Out << "13ocl_reserveid";
2837     break;
2838 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2839   case BuiltinType::Id: \
2840     type_name = "ocl_" #ExtType; \
2841     Out << type_name.size() << type_name; \
2842     break;
2843 #include "clang/Basic/OpenCLExtensionTypes.def"
2844   // The SVE types are effectively target-specific.  The mangling scheme
2845   // is defined in the appendices to the Procedure Call Standard for the
2846   // Arm Architecture.
2847 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
2848                         ElBits, IsSigned, IsFP, IsBF)                          \
2849   case BuiltinType::Id:                                                        \
2850     type_name = MangledName;                                                   \
2851     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2852         << type_name;                                                          \
2853     break;
2854 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
2855   case BuiltinType::Id:                                                        \
2856     type_name = MangledName;                                                   \
2857     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2858         << type_name;                                                          \
2859     break;
2860 #include "clang/Basic/AArch64SVEACLETypes.def"
2861 #define PPC_VECTOR_TYPE(Name, Id, Size) \
2862   case BuiltinType::Id: \
2863     type_name = #Name; \
2864     Out << 'u' << type_name.size() << type_name; \
2865     break;
2866 #include "clang/Basic/PPCTypes.def"
2867   }
2868 }
2869 
2870 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2871   switch (CC) {
2872   case CC_C:
2873     return "";
2874 
2875   case CC_X86VectorCall:
2876   case CC_X86Pascal:
2877   case CC_X86RegCall:
2878   case CC_AAPCS:
2879   case CC_AAPCS_VFP:
2880   case CC_AArch64VectorCall:
2881   case CC_IntelOclBicc:
2882   case CC_SpirFunction:
2883   case CC_OpenCLKernel:
2884   case CC_PreserveMost:
2885   case CC_PreserveAll:
2886     // FIXME: we should be mangling all of the above.
2887     return "";
2888 
2889   case CC_X86ThisCall:
2890     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2891     // used explicitly. At this point, we don't have that much information in
2892     // the AST, since clang tends to bake the convention into the canonical
2893     // function type. thiscall only rarely used explicitly, so don't mangle it
2894     // for now.
2895     return "";
2896 
2897   case CC_X86StdCall:
2898     return "stdcall";
2899   case CC_X86FastCall:
2900     return "fastcall";
2901   case CC_X86_64SysV:
2902     return "sysv_abi";
2903   case CC_Win64:
2904     return "ms_abi";
2905   case CC_Swift:
2906     return "swiftcall";
2907   }
2908   llvm_unreachable("bad calling convention");
2909 }
2910 
2911 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2912   // Fast path.
2913   if (T->getExtInfo() == FunctionType::ExtInfo())
2914     return;
2915 
2916   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2917   // This will get more complicated in the future if we mangle other
2918   // things here; but for now, since we mangle ns_returns_retained as
2919   // a qualifier on the result type, we can get away with this:
2920   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2921   if (!CCQualifier.empty())
2922     mangleVendorQualifier(CCQualifier);
2923 
2924   // FIXME: regparm
2925   // FIXME: noreturn
2926 }
2927 
2928 void
2929 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2930   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2931 
2932   // Note that these are *not* substitution candidates.  Demanglers might
2933   // have trouble with this if the parameter type is fully substituted.
2934 
2935   switch (PI.getABI()) {
2936   case ParameterABI::Ordinary:
2937     break;
2938 
2939   // All of these start with "swift", so they come before "ns_consumed".
2940   case ParameterABI::SwiftContext:
2941   case ParameterABI::SwiftErrorResult:
2942   case ParameterABI::SwiftIndirectResult:
2943     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2944     break;
2945   }
2946 
2947   if (PI.isConsumed())
2948     mangleVendorQualifier("ns_consumed");
2949 
2950   if (PI.isNoEscape())
2951     mangleVendorQualifier("noescape");
2952 }
2953 
2954 // <type>          ::= <function-type>
2955 // <function-type> ::= [<CV-qualifiers>] F [Y]
2956 //                      <bare-function-type> [<ref-qualifier>] E
2957 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2958   mangleExtFunctionInfo(T);
2959 
2960   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2961   // e.g. "const" in "int (A::*)() const".
2962   mangleQualifiers(T->getMethodQuals());
2963 
2964   // Mangle instantiation-dependent exception-specification, if present,
2965   // per cxx-abi-dev proposal on 2016-10-11.
2966   if (T->hasInstantiationDependentExceptionSpec()) {
2967     if (isComputedNoexcept(T->getExceptionSpecType())) {
2968       Out << "DO";
2969       mangleExpression(T->getNoexceptExpr());
2970       Out << "E";
2971     } else {
2972       assert(T->getExceptionSpecType() == EST_Dynamic);
2973       Out << "Dw";
2974       for (auto ExceptTy : T->exceptions())
2975         mangleType(ExceptTy);
2976       Out << "E";
2977     }
2978   } else if (T->isNothrow()) {
2979     Out << "Do";
2980   }
2981 
2982   Out << 'F';
2983 
2984   // FIXME: We don't have enough information in the AST to produce the 'Y'
2985   // encoding for extern "C" function types.
2986   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2987 
2988   // Mangle the ref-qualifier, if present.
2989   mangleRefQualifier(T->getRefQualifier());
2990 
2991   Out << 'E';
2992 }
2993 
2994 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2995   // Function types without prototypes can arise when mangling a function type
2996   // within an overloadable function in C. We mangle these as the absence of any
2997   // parameter types (not even an empty parameter list).
2998   Out << 'F';
2999 
3000   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3001 
3002   FunctionTypeDepth.enterResultType();
3003   mangleType(T->getReturnType());
3004   FunctionTypeDepth.leaveResultType();
3005 
3006   FunctionTypeDepth.pop(saved);
3007   Out << 'E';
3008 }
3009 
3010 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3011                                             bool MangleReturnType,
3012                                             const FunctionDecl *FD) {
3013   // Record that we're in a function type.  See mangleFunctionParam
3014   // for details on what we're trying to achieve here.
3015   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3016 
3017   // <bare-function-type> ::= <signature type>+
3018   if (MangleReturnType) {
3019     FunctionTypeDepth.enterResultType();
3020 
3021     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3022     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3023       mangleVendorQualifier("ns_returns_retained");
3024 
3025     // Mangle the return type without any direct ARC ownership qualifiers.
3026     QualType ReturnTy = Proto->getReturnType();
3027     if (ReturnTy.getObjCLifetime()) {
3028       auto SplitReturnTy = ReturnTy.split();
3029       SplitReturnTy.Quals.removeObjCLifetime();
3030       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3031     }
3032     mangleType(ReturnTy);
3033 
3034     FunctionTypeDepth.leaveResultType();
3035   }
3036 
3037   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3038     //   <builtin-type> ::= v   # void
3039     Out << 'v';
3040 
3041     FunctionTypeDepth.pop(saved);
3042     return;
3043   }
3044 
3045   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3046   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3047     // Mangle extended parameter info as order-sensitive qualifiers here.
3048     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3049       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3050     }
3051 
3052     // Mangle the type.
3053     QualType ParamTy = Proto->getParamType(I);
3054     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3055 
3056     if (FD) {
3057       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3058         // Attr can only take 1 character, so we can hardcode the length below.
3059         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3060         if (Attr->isDynamic())
3061           Out << "U25pass_dynamic_object_size" << Attr->getType();
3062         else
3063           Out << "U17pass_object_size" << Attr->getType();
3064       }
3065     }
3066   }
3067 
3068   FunctionTypeDepth.pop(saved);
3069 
3070   // <builtin-type>      ::= z  # ellipsis
3071   if (Proto->isVariadic())
3072     Out << 'z';
3073 }
3074 
3075 // <type>            ::= <class-enum-type>
3076 // <class-enum-type> ::= <name>
3077 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3078   mangleName(T->getDecl());
3079 }
3080 
3081 // <type>            ::= <class-enum-type>
3082 // <class-enum-type> ::= <name>
3083 void CXXNameMangler::mangleType(const EnumType *T) {
3084   mangleType(static_cast<const TagType*>(T));
3085 }
3086 void CXXNameMangler::mangleType(const RecordType *T) {
3087   mangleType(static_cast<const TagType*>(T));
3088 }
3089 void CXXNameMangler::mangleType(const TagType *T) {
3090   mangleName(T->getDecl());
3091 }
3092 
3093 // <type>       ::= <array-type>
3094 // <array-type> ::= A <positive dimension number> _ <element type>
3095 //              ::= A [<dimension expression>] _ <element type>
3096 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3097   Out << 'A' << T->getSize() << '_';
3098   mangleType(T->getElementType());
3099 }
3100 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3101   Out << 'A';
3102   // decayed vla types (size 0) will just be skipped.
3103   if (T->getSizeExpr())
3104     mangleExpression(T->getSizeExpr());
3105   Out << '_';
3106   mangleType(T->getElementType());
3107 }
3108 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3109   Out << 'A';
3110   mangleExpression(T->getSizeExpr());
3111   Out << '_';
3112   mangleType(T->getElementType());
3113 }
3114 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3115   Out << "A_";
3116   mangleType(T->getElementType());
3117 }
3118 
3119 // <type>                   ::= <pointer-to-member-type>
3120 // <pointer-to-member-type> ::= M <class type> <member type>
3121 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3122   Out << 'M';
3123   mangleType(QualType(T->getClass(), 0));
3124   QualType PointeeType = T->getPointeeType();
3125   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3126     mangleType(FPT);
3127 
3128     // Itanium C++ ABI 5.1.8:
3129     //
3130     //   The type of a non-static member function is considered to be different,
3131     //   for the purposes of substitution, from the type of a namespace-scope or
3132     //   static member function whose type appears similar. The types of two
3133     //   non-static member functions are considered to be different, for the
3134     //   purposes of substitution, if the functions are members of different
3135     //   classes. In other words, for the purposes of substitution, the class of
3136     //   which the function is a member is considered part of the type of
3137     //   function.
3138 
3139     // Given that we already substitute member function pointers as a
3140     // whole, the net effect of this rule is just to unconditionally
3141     // suppress substitution on the function type in a member pointer.
3142     // We increment the SeqID here to emulate adding an entry to the
3143     // substitution table.
3144     ++SeqID;
3145   } else
3146     mangleType(PointeeType);
3147 }
3148 
3149 // <type>           ::= <template-param>
3150 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3151   mangleTemplateParameter(T->getDepth(), T->getIndex());
3152 }
3153 
3154 // <type>           ::= <template-param>
3155 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3156   // FIXME: not clear how to mangle this!
3157   // template <class T...> class A {
3158   //   template <class U...> void foo(T(*)(U) x...);
3159   // };
3160   Out << "_SUBSTPACK_";
3161 }
3162 
3163 // <type> ::= P <type>   # pointer-to
3164 void CXXNameMangler::mangleType(const PointerType *T) {
3165   Out << 'P';
3166   mangleType(T->getPointeeType());
3167 }
3168 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3169   Out << 'P';
3170   mangleType(T->getPointeeType());
3171 }
3172 
3173 // <type> ::= R <type>   # reference-to
3174 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3175   Out << 'R';
3176   mangleType(T->getPointeeType());
3177 }
3178 
3179 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3180 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3181   Out << 'O';
3182   mangleType(T->getPointeeType());
3183 }
3184 
3185 // <type> ::= C <type>   # complex pair (C 2000)
3186 void CXXNameMangler::mangleType(const ComplexType *T) {
3187   Out << 'C';
3188   mangleType(T->getElementType());
3189 }
3190 
3191 // ARM's ABI for Neon vector types specifies that they should be mangled as
3192 // if they are structs (to match ARM's initial implementation).  The
3193 // vector type must be one of the special types predefined by ARM.
3194 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3195   QualType EltType = T->getElementType();
3196   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3197   const char *EltName = nullptr;
3198   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3199     switch (cast<BuiltinType>(EltType)->getKind()) {
3200     case BuiltinType::SChar:
3201     case BuiltinType::UChar:
3202       EltName = "poly8_t";
3203       break;
3204     case BuiltinType::Short:
3205     case BuiltinType::UShort:
3206       EltName = "poly16_t";
3207       break;
3208     case BuiltinType::LongLong:
3209     case BuiltinType::ULongLong:
3210       EltName = "poly64_t";
3211       break;
3212     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3213     }
3214   } else {
3215     switch (cast<BuiltinType>(EltType)->getKind()) {
3216     case BuiltinType::SChar:     EltName = "int8_t"; break;
3217     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3218     case BuiltinType::Short:     EltName = "int16_t"; break;
3219     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3220     case BuiltinType::Int:       EltName = "int32_t"; break;
3221     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3222     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3223     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3224     case BuiltinType::Double:    EltName = "float64_t"; break;
3225     case BuiltinType::Float:     EltName = "float32_t"; break;
3226     case BuiltinType::Half:      EltName = "float16_t"; break;
3227     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3228     default:
3229       llvm_unreachable("unexpected Neon vector element type");
3230     }
3231   }
3232   const char *BaseName = nullptr;
3233   unsigned BitSize = (T->getNumElements() *
3234                       getASTContext().getTypeSize(EltType));
3235   if (BitSize == 64)
3236     BaseName = "__simd64_";
3237   else {
3238     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3239     BaseName = "__simd128_";
3240   }
3241   Out << strlen(BaseName) + strlen(EltName);
3242   Out << BaseName << EltName;
3243 }
3244 
3245 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3246   DiagnosticsEngine &Diags = Context.getDiags();
3247   unsigned DiagID = Diags.getCustomDiagID(
3248       DiagnosticsEngine::Error,
3249       "cannot mangle this dependent neon vector type yet");
3250   Diags.Report(T->getAttributeLoc(), DiagID);
3251 }
3252 
3253 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3254   switch (EltType->getKind()) {
3255   case BuiltinType::SChar:
3256     return "Int8";
3257   case BuiltinType::Short:
3258     return "Int16";
3259   case BuiltinType::Int:
3260     return "Int32";
3261   case BuiltinType::Long:
3262   case BuiltinType::LongLong:
3263     return "Int64";
3264   case BuiltinType::UChar:
3265     return "Uint8";
3266   case BuiltinType::UShort:
3267     return "Uint16";
3268   case BuiltinType::UInt:
3269     return "Uint32";
3270   case BuiltinType::ULong:
3271   case BuiltinType::ULongLong:
3272     return "Uint64";
3273   case BuiltinType::Half:
3274     return "Float16";
3275   case BuiltinType::Float:
3276     return "Float32";
3277   case BuiltinType::Double:
3278     return "Float64";
3279   case BuiltinType::BFloat16:
3280     return "Bfloat16";
3281   default:
3282     llvm_unreachable("Unexpected vector element base type");
3283   }
3284 }
3285 
3286 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3287 // the equivalent internal name. The vector type must be one of the special
3288 // types predefined by ARM.
3289 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3290   QualType EltType = T->getElementType();
3291   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3292   unsigned BitSize =
3293       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3294   (void)BitSize; // Silence warning.
3295 
3296   assert((BitSize == 64 || BitSize == 128) &&
3297          "Neon vector type not 64 or 128 bits");
3298 
3299   StringRef EltName;
3300   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3301     switch (cast<BuiltinType>(EltType)->getKind()) {
3302     case BuiltinType::UChar:
3303       EltName = "Poly8";
3304       break;
3305     case BuiltinType::UShort:
3306       EltName = "Poly16";
3307       break;
3308     case BuiltinType::ULong:
3309     case BuiltinType::ULongLong:
3310       EltName = "Poly64";
3311       break;
3312     default:
3313       llvm_unreachable("unexpected Neon polynomial vector element type");
3314     }
3315   } else
3316     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3317 
3318   std::string TypeName =
3319       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3320   Out << TypeName.length() << TypeName;
3321 }
3322 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3323   DiagnosticsEngine &Diags = Context.getDiags();
3324   unsigned DiagID = Diags.getCustomDiagID(
3325       DiagnosticsEngine::Error,
3326       "cannot mangle this dependent neon vector type yet");
3327   Diags.Report(T->getAttributeLoc(), DiagID);
3328 }
3329 
3330 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3331 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3332 // type as the sizeless variants.
3333 //
3334 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3335 //
3336 //   '__SVE_VLS<<type>, <vector length>>'
3337 //
3338 // Combining the existing SVE type and a specific vector length (in bits).
3339 // For example:
3340 //
3341 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3342 //
3343 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3344 //
3345 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3346 //
3347 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3348 //
3349 // The latest ACLE specification (00bet5) does not contain details of this
3350 // mangling scheme, it will be specified in the next revision. The mangling
3351 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3352 // for the Arm Architecture, see
3353 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
3354 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3355   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3356           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3357          "expected fixed-length SVE vector!");
3358 
3359   QualType EltType = T->getElementType();
3360   assert(EltType->isBuiltinType() &&
3361          "expected builtin type for fixed-length SVE vector!");
3362 
3363   StringRef TypeName;
3364   switch (cast<BuiltinType>(EltType)->getKind()) {
3365   case BuiltinType::SChar:
3366     TypeName = "__SVInt8_t";
3367     break;
3368   case BuiltinType::UChar: {
3369     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3370       TypeName = "__SVUint8_t";
3371     else
3372       TypeName = "__SVBool_t";
3373     break;
3374   }
3375   case BuiltinType::Short:
3376     TypeName = "__SVInt16_t";
3377     break;
3378   case BuiltinType::UShort:
3379     TypeName = "__SVUint16_t";
3380     break;
3381   case BuiltinType::Int:
3382     TypeName = "__SVInt32_t";
3383     break;
3384   case BuiltinType::UInt:
3385     TypeName = "__SVUint32_t";
3386     break;
3387   case BuiltinType::Long:
3388     TypeName = "__SVInt64_t";
3389     break;
3390   case BuiltinType::ULong:
3391     TypeName = "__SVUint64_t";
3392     break;
3393   case BuiltinType::Half:
3394     TypeName = "__SVFloat16_t";
3395     break;
3396   case BuiltinType::Float:
3397     TypeName = "__SVFloat32_t";
3398     break;
3399   case BuiltinType::Double:
3400     TypeName = "__SVFloat64_t";
3401     break;
3402   case BuiltinType::BFloat16:
3403     TypeName = "__SVBfloat16_t";
3404     break;
3405   default:
3406     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3407   }
3408 
3409   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3410 
3411   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3412     VecSizeInBits *= 8;
3413 
3414   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3415       << VecSizeInBits << "EE";
3416 }
3417 
3418 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3419     const DependentVectorType *T) {
3420   DiagnosticsEngine &Diags = Context.getDiags();
3421   unsigned DiagID = Diags.getCustomDiagID(
3422       DiagnosticsEngine::Error,
3423       "cannot mangle this dependent fixed-length SVE vector type yet");
3424   Diags.Report(T->getAttributeLoc(), DiagID);
3425 }
3426 
3427 // GNU extension: vector types
3428 // <type>                  ::= <vector-type>
3429 // <vector-type>           ::= Dv <positive dimension number> _
3430 //                                    <extended element type>
3431 //                         ::= Dv [<dimension expression>] _ <element type>
3432 // <extended element type> ::= <element type>
3433 //                         ::= p # AltiVec vector pixel
3434 //                         ::= b # Altivec vector bool
3435 void CXXNameMangler::mangleType(const VectorType *T) {
3436   if ((T->getVectorKind() == VectorType::NeonVector ||
3437        T->getVectorKind() == VectorType::NeonPolyVector)) {
3438     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3439     llvm::Triple::ArchType Arch =
3440         getASTContext().getTargetInfo().getTriple().getArch();
3441     if ((Arch == llvm::Triple::aarch64 ||
3442          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3443       mangleAArch64NeonVectorType(T);
3444     else
3445       mangleNeonVectorType(T);
3446     return;
3447   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3448              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3449     mangleAArch64FixedSveVectorType(T);
3450     return;
3451   }
3452   Out << "Dv" << T->getNumElements() << '_';
3453   if (T->getVectorKind() == VectorType::AltiVecPixel)
3454     Out << 'p';
3455   else if (T->getVectorKind() == VectorType::AltiVecBool)
3456     Out << 'b';
3457   else
3458     mangleType(T->getElementType());
3459 }
3460 
3461 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3462   if ((T->getVectorKind() == VectorType::NeonVector ||
3463        T->getVectorKind() == VectorType::NeonPolyVector)) {
3464     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3465     llvm::Triple::ArchType Arch =
3466         getASTContext().getTargetInfo().getTriple().getArch();
3467     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3468         !Target.isOSDarwin())
3469       mangleAArch64NeonVectorType(T);
3470     else
3471       mangleNeonVectorType(T);
3472     return;
3473   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3474              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3475     mangleAArch64FixedSveVectorType(T);
3476     return;
3477   }
3478 
3479   Out << "Dv";
3480   mangleExpression(T->getSizeExpr());
3481   Out << '_';
3482   if (T->getVectorKind() == VectorType::AltiVecPixel)
3483     Out << 'p';
3484   else if (T->getVectorKind() == VectorType::AltiVecBool)
3485     Out << 'b';
3486   else
3487     mangleType(T->getElementType());
3488 }
3489 
3490 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3491   mangleType(static_cast<const VectorType*>(T));
3492 }
3493 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3494   Out << "Dv";
3495   mangleExpression(T->getSizeExpr());
3496   Out << '_';
3497   mangleType(T->getElementType());
3498 }
3499 
3500 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3501   // Mangle matrix types as a vendor extended type:
3502   // u<Len>matrix_typeI<Rows><Columns><element type>E
3503 
3504   StringRef VendorQualifier = "matrix_type";
3505   Out << "u" << VendorQualifier.size() << VendorQualifier;
3506 
3507   Out << "I";
3508   auto &ASTCtx = getASTContext();
3509   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3510   llvm::APSInt Rows(BitWidth);
3511   Rows = T->getNumRows();
3512   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3513   llvm::APSInt Columns(BitWidth);
3514   Columns = T->getNumColumns();
3515   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3516   mangleType(T->getElementType());
3517   Out << "E";
3518 }
3519 
3520 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3521   // Mangle matrix types as a vendor extended type:
3522   // u<Len>matrix_typeI<row expr><column expr><element type>E
3523   StringRef VendorQualifier = "matrix_type";
3524   Out << "u" << VendorQualifier.size() << VendorQualifier;
3525 
3526   Out << "I";
3527   mangleTemplateArg(T->getRowExpr(), false);
3528   mangleTemplateArg(T->getColumnExpr(), false);
3529   mangleType(T->getElementType());
3530   Out << "E";
3531 }
3532 
3533 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3534   SplitQualType split = T->getPointeeType().split();
3535   mangleQualifiers(split.Quals, T);
3536   mangleType(QualType(split.Ty, 0));
3537 }
3538 
3539 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3540   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3541   Out << "Dp";
3542   mangleType(T->getPattern());
3543 }
3544 
3545 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3546   mangleSourceName(T->getDecl()->getIdentifier());
3547 }
3548 
3549 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3550   // Treat __kindof as a vendor extended type qualifier.
3551   if (T->isKindOfType())
3552     Out << "U8__kindof";
3553 
3554   if (!T->qual_empty()) {
3555     // Mangle protocol qualifiers.
3556     SmallString<64> QualStr;
3557     llvm::raw_svector_ostream QualOS(QualStr);
3558     QualOS << "objcproto";
3559     for (const auto *I : T->quals()) {
3560       StringRef name = I->getName();
3561       QualOS << name.size() << name;
3562     }
3563     Out << 'U' << QualStr.size() << QualStr;
3564   }
3565 
3566   mangleType(T->getBaseType());
3567 
3568   if (T->isSpecialized()) {
3569     // Mangle type arguments as I <type>+ E
3570     Out << 'I';
3571     for (auto typeArg : T->getTypeArgs())
3572       mangleType(typeArg);
3573     Out << 'E';
3574   }
3575 }
3576 
3577 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3578   Out << "U13block_pointer";
3579   mangleType(T->getPointeeType());
3580 }
3581 
3582 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3583   // Mangle injected class name types as if the user had written the
3584   // specialization out fully.  It may not actually be possible to see
3585   // this mangling, though.
3586   mangleType(T->getInjectedSpecializationType());
3587 }
3588 
3589 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3590   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3591     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3592   } else {
3593     if (mangleSubstitution(QualType(T, 0)))
3594       return;
3595 
3596     mangleTemplatePrefix(T->getTemplateName());
3597 
3598     // FIXME: GCC does not appear to mangle the template arguments when
3599     // the template in question is a dependent template name. Should we
3600     // emulate that badness?
3601     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3602     addSubstitution(QualType(T, 0));
3603   }
3604 }
3605 
3606 void CXXNameMangler::mangleType(const DependentNameType *T) {
3607   // Proposal by cxx-abi-dev, 2014-03-26
3608   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3609   //                                 # dependent elaborated type specifier using
3610   //                                 # 'typename'
3611   //                   ::= Ts <name> # dependent elaborated type specifier using
3612   //                                 # 'struct' or 'class'
3613   //                   ::= Tu <name> # dependent elaborated type specifier using
3614   //                                 # 'union'
3615   //                   ::= Te <name> # dependent elaborated type specifier using
3616   //                                 # 'enum'
3617   switch (T->getKeyword()) {
3618     case ETK_None:
3619     case ETK_Typename:
3620       break;
3621     case ETK_Struct:
3622     case ETK_Class:
3623     case ETK_Interface:
3624       Out << "Ts";
3625       break;
3626     case ETK_Union:
3627       Out << "Tu";
3628       break;
3629     case ETK_Enum:
3630       Out << "Te";
3631       break;
3632   }
3633   // Typename types are always nested
3634   Out << 'N';
3635   manglePrefix(T->getQualifier());
3636   mangleSourceName(T->getIdentifier());
3637   Out << 'E';
3638 }
3639 
3640 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3641   // Dependently-scoped template types are nested if they have a prefix.
3642   Out << 'N';
3643 
3644   // TODO: avoid making this TemplateName.
3645   TemplateName Prefix =
3646     getASTContext().getDependentTemplateName(T->getQualifier(),
3647                                              T->getIdentifier());
3648   mangleTemplatePrefix(Prefix);
3649 
3650   // FIXME: GCC does not appear to mangle the template arguments when
3651   // the template in question is a dependent template name. Should we
3652   // emulate that badness?
3653   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3654   Out << 'E';
3655 }
3656 
3657 void CXXNameMangler::mangleType(const TypeOfType *T) {
3658   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3659   // "extension with parameters" mangling.
3660   Out << "u6typeof";
3661 }
3662 
3663 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3664   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3665   // "extension with parameters" mangling.
3666   Out << "u6typeof";
3667 }
3668 
3669 void CXXNameMangler::mangleType(const DecltypeType *T) {
3670   Expr *E = T->getUnderlyingExpr();
3671 
3672   // type ::= Dt <expression> E  # decltype of an id-expression
3673   //                             #   or class member access
3674   //      ::= DT <expression> E  # decltype of an expression
3675 
3676   // This purports to be an exhaustive list of id-expressions and
3677   // class member accesses.  Note that we do not ignore parentheses;
3678   // parentheses change the semantics of decltype for these
3679   // expressions (and cause the mangler to use the other form).
3680   if (isa<DeclRefExpr>(E) ||
3681       isa<MemberExpr>(E) ||
3682       isa<UnresolvedLookupExpr>(E) ||
3683       isa<DependentScopeDeclRefExpr>(E) ||
3684       isa<CXXDependentScopeMemberExpr>(E) ||
3685       isa<UnresolvedMemberExpr>(E))
3686     Out << "Dt";
3687   else
3688     Out << "DT";
3689   mangleExpression(E);
3690   Out << 'E';
3691 }
3692 
3693 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3694   // If this is dependent, we need to record that. If not, we simply
3695   // mangle it as the underlying type since they are equivalent.
3696   if (T->isDependentType()) {
3697     Out << 'U';
3698 
3699     switch (T->getUTTKind()) {
3700       case UnaryTransformType::EnumUnderlyingType:
3701         Out << "3eut";
3702         break;
3703     }
3704   }
3705 
3706   mangleType(T->getBaseType());
3707 }
3708 
3709 void CXXNameMangler::mangleType(const AutoType *T) {
3710   assert(T->getDeducedType().isNull() &&
3711          "Deduced AutoType shouldn't be handled here!");
3712   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3713          "shouldn't need to mangle __auto_type!");
3714   // <builtin-type> ::= Da # auto
3715   //                ::= Dc # decltype(auto)
3716   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3717 }
3718 
3719 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3720   QualType Deduced = T->getDeducedType();
3721   if (!Deduced.isNull())
3722     return mangleType(Deduced);
3723 
3724   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
3725   assert(TD && "shouldn't form deduced TST unless we know we have a template");
3726 
3727   if (mangleSubstitution(TD))
3728     return;
3729 
3730   mangleName(GlobalDecl(TD));
3731   addSubstitution(TD);
3732 }
3733 
3734 void CXXNameMangler::mangleType(const AtomicType *T) {
3735   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3736   // (Until there's a standardized mangling...)
3737   Out << "U7_Atomic";
3738   mangleType(T->getValueType());
3739 }
3740 
3741 void CXXNameMangler::mangleType(const PipeType *T) {
3742   // Pipe type mangling rules are described in SPIR 2.0 specification
3743   // A.1 Data types and A.3 Summary of changes
3744   // <type> ::= 8ocl_pipe
3745   Out << "8ocl_pipe";
3746 }
3747 
3748 void CXXNameMangler::mangleType(const ExtIntType *T) {
3749   Out << "U7_ExtInt";
3750   llvm::APSInt BW(32, true);
3751   BW = T->getNumBits();
3752   TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3753   mangleTemplateArgs(TemplateName(), &TA, 1);
3754   if (T->isUnsigned())
3755     Out << "j";
3756   else
3757     Out << "i";
3758 }
3759 
3760 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3761   Out << "U7_ExtInt";
3762   TemplateArgument TA(T->getNumBitsExpr());
3763   mangleTemplateArgs(TemplateName(), &TA, 1);
3764   if (T->isUnsigned())
3765     Out << "j";
3766   else
3767     Out << "i";
3768 }
3769 
3770 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3771                                           const llvm::APSInt &Value) {
3772   //  <expr-primary> ::= L <type> <value number> E # integer literal
3773   Out << 'L';
3774 
3775   mangleType(T);
3776   if (T->isBooleanType()) {
3777     // Boolean values are encoded as 0/1.
3778     Out << (Value.getBoolValue() ? '1' : '0');
3779   } else {
3780     mangleNumber(Value);
3781   }
3782   Out << 'E';
3783 
3784 }
3785 
3786 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3787   // Ignore member expressions involving anonymous unions.
3788   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3789     if (!RT->getDecl()->isAnonymousStructOrUnion())
3790       break;
3791     const auto *ME = dyn_cast<MemberExpr>(Base);
3792     if (!ME)
3793       break;
3794     Base = ME->getBase();
3795     IsArrow = ME->isArrow();
3796   }
3797 
3798   if (Base->isImplicitCXXThis()) {
3799     // Note: GCC mangles member expressions to the implicit 'this' as
3800     // *this., whereas we represent them as this->. The Itanium C++ ABI
3801     // does not specify anything here, so we follow GCC.
3802     Out << "dtdefpT";
3803   } else {
3804     Out << (IsArrow ? "pt" : "dt");
3805     mangleExpression(Base);
3806   }
3807 }
3808 
3809 /// Mangles a member expression.
3810 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3811                                       bool isArrow,
3812                                       NestedNameSpecifier *qualifier,
3813                                       NamedDecl *firstQualifierLookup,
3814                                       DeclarationName member,
3815                                       const TemplateArgumentLoc *TemplateArgs,
3816                                       unsigned NumTemplateArgs,
3817                                       unsigned arity) {
3818   // <expression> ::= dt <expression> <unresolved-name>
3819   //              ::= pt <expression> <unresolved-name>
3820   if (base)
3821     mangleMemberExprBase(base, isArrow);
3822   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3823 }
3824 
3825 /// Look at the callee of the given call expression and determine if
3826 /// it's a parenthesized id-expression which would have triggered ADL
3827 /// otherwise.
3828 static bool isParenthesizedADLCallee(const CallExpr *call) {
3829   const Expr *callee = call->getCallee();
3830   const Expr *fn = callee->IgnoreParens();
3831 
3832   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3833   // too, but for those to appear in the callee, it would have to be
3834   // parenthesized.
3835   if (callee == fn) return false;
3836 
3837   // Must be an unresolved lookup.
3838   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3839   if (!lookup) return false;
3840 
3841   assert(!lookup->requiresADL());
3842 
3843   // Must be an unqualified lookup.
3844   if (lookup->getQualifier()) return false;
3845 
3846   // Must not have found a class member.  Note that if one is a class
3847   // member, they're all class members.
3848   if (lookup->getNumDecls() > 0 &&
3849       (*lookup->decls_begin())->isCXXClassMember())
3850     return false;
3851 
3852   // Otherwise, ADL would have been triggered.
3853   return true;
3854 }
3855 
3856 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3857   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3858   Out << CastEncoding;
3859   mangleType(ECE->getType());
3860   mangleExpression(ECE->getSubExpr());
3861 }
3862 
3863 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3864   if (auto *Syntactic = InitList->getSyntacticForm())
3865     InitList = Syntactic;
3866   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3867     mangleExpression(InitList->getInit(i));
3868 }
3869 
3870 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3871   switch (D->getKind()) {
3872   default:
3873     //  <expr-primary> ::= L <mangled-name> E # external name
3874     Out << 'L';
3875     mangle(D);
3876     Out << 'E';
3877     break;
3878 
3879   case Decl::ParmVar:
3880     mangleFunctionParam(cast<ParmVarDecl>(D));
3881     break;
3882 
3883   case Decl::EnumConstant: {
3884     const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3885     mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3886     break;
3887   }
3888 
3889   case Decl::NonTypeTemplateParm:
3890     const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3891     mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3892     break;
3893   }
3894 }
3895 
3896 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3897   // <expression> ::= <unary operator-name> <expression>
3898   //              ::= <binary operator-name> <expression> <expression>
3899   //              ::= <trinary operator-name> <expression> <expression> <expression>
3900   //              ::= cv <type> expression           # conversion with one argument
3901   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3902   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3903   //              ::= sc <type> <expression>         # static_cast<type> (expression)
3904   //              ::= cc <type> <expression>         # const_cast<type> (expression)
3905   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3906   //              ::= st <type>                      # sizeof (a type)
3907   //              ::= at <type>                      # alignof (a type)
3908   //              ::= <template-param>
3909   //              ::= <function-param>
3910   //              ::= sr <type> <unqualified-name>                   # dependent name
3911   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3912   //              ::= ds <expression> <expression>                   # expr.*expr
3913   //              ::= sZ <template-param>                            # size of a parameter pack
3914   //              ::= sZ <function-param>    # size of a function parameter pack
3915   //              ::= <expr-primary>
3916   // <expr-primary> ::= L <type> <value number> E    # integer literal
3917   //                ::= L <type <value float> E      # floating literal
3918   //                ::= L <mangled-name> E           # external name
3919   //                ::= fpT                          # 'this' expression
3920   QualType ImplicitlyConvertedToType;
3921 
3922 recurse:
3923   switch (E->getStmtClass()) {
3924   case Expr::NoStmtClass:
3925 #define ABSTRACT_STMT(Type)
3926 #define EXPR(Type, Base)
3927 #define STMT(Type, Base) \
3928   case Expr::Type##Class:
3929 #include "clang/AST/StmtNodes.inc"
3930     // fallthrough
3931 
3932   // These all can only appear in local or variable-initialization
3933   // contexts and so should never appear in a mangling.
3934   case Expr::AddrLabelExprClass:
3935   case Expr::DesignatedInitUpdateExprClass:
3936   case Expr::ImplicitValueInitExprClass:
3937   case Expr::ArrayInitLoopExprClass:
3938   case Expr::ArrayInitIndexExprClass:
3939   case Expr::NoInitExprClass:
3940   case Expr::ParenListExprClass:
3941   case Expr::LambdaExprClass:
3942   case Expr::MSPropertyRefExprClass:
3943   case Expr::MSPropertySubscriptExprClass:
3944   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3945   case Expr::RecoveryExprClass:
3946   case Expr::OMPArraySectionExprClass:
3947   case Expr::OMPArrayShapingExprClass:
3948   case Expr::OMPIteratorExprClass:
3949   case Expr::CXXInheritedCtorInitExprClass:
3950     llvm_unreachable("unexpected statement kind");
3951 
3952   case Expr::ConstantExprClass:
3953     E = cast<ConstantExpr>(E)->getSubExpr();
3954     goto recurse;
3955 
3956   // FIXME: invent manglings for all these.
3957   case Expr::BlockExprClass:
3958   case Expr::ChooseExprClass:
3959   case Expr::CompoundLiteralExprClass:
3960   case Expr::ExtVectorElementExprClass:
3961   case Expr::GenericSelectionExprClass:
3962   case Expr::ObjCEncodeExprClass:
3963   case Expr::ObjCIsaExprClass:
3964   case Expr::ObjCIvarRefExprClass:
3965   case Expr::ObjCMessageExprClass:
3966   case Expr::ObjCPropertyRefExprClass:
3967   case Expr::ObjCProtocolExprClass:
3968   case Expr::ObjCSelectorExprClass:
3969   case Expr::ObjCStringLiteralClass:
3970   case Expr::ObjCBoxedExprClass:
3971   case Expr::ObjCArrayLiteralClass:
3972   case Expr::ObjCDictionaryLiteralClass:
3973   case Expr::ObjCSubscriptRefExprClass:
3974   case Expr::ObjCIndirectCopyRestoreExprClass:
3975   case Expr::ObjCAvailabilityCheckExprClass:
3976   case Expr::OffsetOfExprClass:
3977   case Expr::PredefinedExprClass:
3978   case Expr::ShuffleVectorExprClass:
3979   case Expr::ConvertVectorExprClass:
3980   case Expr::StmtExprClass:
3981   case Expr::TypeTraitExprClass:
3982   case Expr::RequiresExprClass:
3983   case Expr::ArrayTypeTraitExprClass:
3984   case Expr::ExpressionTraitExprClass:
3985   case Expr::VAArgExprClass:
3986   case Expr::CUDAKernelCallExprClass:
3987   case Expr::AsTypeExprClass:
3988   case Expr::PseudoObjectExprClass:
3989   case Expr::AtomicExprClass:
3990   case Expr::SourceLocExprClass:
3991   case Expr::BuiltinBitCastExprClass:
3992   {
3993     if (!NullOut) {
3994       // As bad as this diagnostic is, it's better than crashing.
3995       DiagnosticsEngine &Diags = Context.getDiags();
3996       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3997                                        "cannot yet mangle expression type %0");
3998       Diags.Report(E->getExprLoc(), DiagID)
3999         << E->getStmtClassName() << E->getSourceRange();
4000     }
4001     break;
4002   }
4003 
4004   case Expr::CXXUuidofExprClass: {
4005     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4006     if (UE->isTypeOperand()) {
4007       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4008       Out << "u8__uuidoft";
4009       mangleType(UuidT);
4010     } else {
4011       Expr *UuidExp = UE->getExprOperand();
4012       Out << "u8__uuidofz";
4013       mangleExpression(UuidExp, Arity);
4014     }
4015     break;
4016   }
4017 
4018   // Even gcc-4.5 doesn't mangle this.
4019   case Expr::BinaryConditionalOperatorClass: {
4020     DiagnosticsEngine &Diags = Context.getDiags();
4021     unsigned DiagID =
4022       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4023                 "?: operator with omitted middle operand cannot be mangled");
4024     Diags.Report(E->getExprLoc(), DiagID)
4025       << E->getStmtClassName() << E->getSourceRange();
4026     break;
4027   }
4028 
4029   // These are used for internal purposes and cannot be meaningfully mangled.
4030   case Expr::OpaqueValueExprClass:
4031     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4032 
4033   case Expr::InitListExprClass: {
4034     Out << "il";
4035     mangleInitListElements(cast<InitListExpr>(E));
4036     Out << "E";
4037     break;
4038   }
4039 
4040   case Expr::DesignatedInitExprClass: {
4041     auto *DIE = cast<DesignatedInitExpr>(E);
4042     for (const auto &Designator : DIE->designators()) {
4043       if (Designator.isFieldDesignator()) {
4044         Out << "di";
4045         mangleSourceName(Designator.getFieldName());
4046       } else if (Designator.isArrayDesignator()) {
4047         Out << "dx";
4048         mangleExpression(DIE->getArrayIndex(Designator));
4049       } else {
4050         assert(Designator.isArrayRangeDesignator() &&
4051                "unknown designator kind");
4052         Out << "dX";
4053         mangleExpression(DIE->getArrayRangeStart(Designator));
4054         mangleExpression(DIE->getArrayRangeEnd(Designator));
4055       }
4056     }
4057     mangleExpression(DIE->getInit());
4058     break;
4059   }
4060 
4061   case Expr::CXXDefaultArgExprClass:
4062     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
4063     break;
4064 
4065   case Expr::CXXDefaultInitExprClass:
4066     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
4067     break;
4068 
4069   case Expr::CXXStdInitializerListExprClass:
4070     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
4071     break;
4072 
4073   case Expr::SubstNonTypeTemplateParmExprClass:
4074     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
4075                      Arity);
4076     break;
4077 
4078   case Expr::UserDefinedLiteralClass:
4079     // We follow g++'s approach of mangling a UDL as a call to the literal
4080     // operator.
4081   case Expr::CXXMemberCallExprClass: // fallthrough
4082   case Expr::CallExprClass: {
4083     const CallExpr *CE = cast<CallExpr>(E);
4084 
4085     // <expression> ::= cp <simple-id> <expression>* E
4086     // We use this mangling only when the call would use ADL except
4087     // for being parenthesized.  Per discussion with David
4088     // Vandervoorde, 2011.04.25.
4089     if (isParenthesizedADLCallee(CE)) {
4090       Out << "cp";
4091       // The callee here is a parenthesized UnresolvedLookupExpr with
4092       // no qualifier and should always get mangled as a <simple-id>
4093       // anyway.
4094 
4095     // <expression> ::= cl <expression>* E
4096     } else {
4097       Out << "cl";
4098     }
4099 
4100     unsigned CallArity = CE->getNumArgs();
4101     for (const Expr *Arg : CE->arguments())
4102       if (isa<PackExpansionExpr>(Arg))
4103         CallArity = UnknownArity;
4104 
4105     mangleExpression(CE->getCallee(), CallArity);
4106     for (const Expr *Arg : CE->arguments())
4107       mangleExpression(Arg);
4108     Out << 'E';
4109     break;
4110   }
4111 
4112   case Expr::CXXNewExprClass: {
4113     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4114     if (New->isGlobalNew()) Out << "gs";
4115     Out << (New->isArray() ? "na" : "nw");
4116     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4117            E = New->placement_arg_end(); I != E; ++I)
4118       mangleExpression(*I);
4119     Out << '_';
4120     mangleType(New->getAllocatedType());
4121     if (New->hasInitializer()) {
4122       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4123         Out << "il";
4124       else
4125         Out << "pi";
4126       const Expr *Init = New->getInitializer();
4127       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4128         // Directly inline the initializers.
4129         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4130                                                   E = CCE->arg_end();
4131              I != E; ++I)
4132           mangleExpression(*I);
4133       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4134         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4135           mangleExpression(PLE->getExpr(i));
4136       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4137                  isa<InitListExpr>(Init)) {
4138         // Only take InitListExprs apart for list-initialization.
4139         mangleInitListElements(cast<InitListExpr>(Init));
4140       } else
4141         mangleExpression(Init);
4142     }
4143     Out << 'E';
4144     break;
4145   }
4146 
4147   case Expr::CXXPseudoDestructorExprClass: {
4148     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4149     if (const Expr *Base = PDE->getBase())
4150       mangleMemberExprBase(Base, PDE->isArrow());
4151     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4152     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4153       if (Qualifier) {
4154         mangleUnresolvedPrefix(Qualifier,
4155                                /*recursive=*/true);
4156         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4157         Out << 'E';
4158       } else {
4159         Out << "sr";
4160         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4161           Out << 'E';
4162       }
4163     } else if (Qualifier) {
4164       mangleUnresolvedPrefix(Qualifier);
4165     }
4166     // <base-unresolved-name> ::= dn <destructor-name>
4167     Out << "dn";
4168     QualType DestroyedType = PDE->getDestroyedType();
4169     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4170     break;
4171   }
4172 
4173   case Expr::MemberExprClass: {
4174     const MemberExpr *ME = cast<MemberExpr>(E);
4175     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4176                      ME->getQualifier(), nullptr,
4177                      ME->getMemberDecl()->getDeclName(),
4178                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4179                      Arity);
4180     break;
4181   }
4182 
4183   case Expr::UnresolvedMemberExprClass: {
4184     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4185     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4186                      ME->isArrow(), ME->getQualifier(), nullptr,
4187                      ME->getMemberName(),
4188                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4189                      Arity);
4190     break;
4191   }
4192 
4193   case Expr::CXXDependentScopeMemberExprClass: {
4194     const CXXDependentScopeMemberExpr *ME
4195       = cast<CXXDependentScopeMemberExpr>(E);
4196     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4197                      ME->isArrow(), ME->getQualifier(),
4198                      ME->getFirstQualifierFoundInScope(),
4199                      ME->getMember(),
4200                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4201                      Arity);
4202     break;
4203   }
4204 
4205   case Expr::UnresolvedLookupExprClass: {
4206     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4207     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4208                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4209                          Arity);
4210     break;
4211   }
4212 
4213   case Expr::CXXUnresolvedConstructExprClass: {
4214     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4215     unsigned N = CE->getNumArgs();
4216 
4217     if (CE->isListInitialization()) {
4218       assert(N == 1 && "unexpected form for list initialization");
4219       auto *IL = cast<InitListExpr>(CE->getArg(0));
4220       Out << "tl";
4221       mangleType(CE->getType());
4222       mangleInitListElements(IL);
4223       Out << "E";
4224       return;
4225     }
4226 
4227     Out << "cv";
4228     mangleType(CE->getType());
4229     if (N != 1) Out << '_';
4230     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4231     if (N != 1) Out << 'E';
4232     break;
4233   }
4234 
4235   case Expr::CXXConstructExprClass: {
4236     const auto *CE = cast<CXXConstructExpr>(E);
4237     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4238       assert(
4239           CE->getNumArgs() >= 1 &&
4240           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4241           "implicit CXXConstructExpr must have one argument");
4242       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
4243     }
4244     Out << "il";
4245     for (auto *E : CE->arguments())
4246       mangleExpression(E);
4247     Out << "E";
4248     break;
4249   }
4250 
4251   case Expr::CXXTemporaryObjectExprClass: {
4252     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4253     unsigned N = CE->getNumArgs();
4254     bool List = CE->isListInitialization();
4255 
4256     if (List)
4257       Out << "tl";
4258     else
4259       Out << "cv";
4260     mangleType(CE->getType());
4261     if (!List && N != 1)
4262       Out << '_';
4263     if (CE->isStdInitListInitialization()) {
4264       // We implicitly created a std::initializer_list<T> for the first argument
4265       // of a constructor of type U in an expression of the form U{a, b, c}.
4266       // Strip all the semantic gunk off the initializer list.
4267       auto *SILE =
4268           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4269       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4270       mangleInitListElements(ILE);
4271     } else {
4272       for (auto *E : CE->arguments())
4273         mangleExpression(E);
4274     }
4275     if (List || N != 1)
4276       Out << 'E';
4277     break;
4278   }
4279 
4280   case Expr::CXXScalarValueInitExprClass:
4281     Out << "cv";
4282     mangleType(E->getType());
4283     Out << "_E";
4284     break;
4285 
4286   case Expr::CXXNoexceptExprClass:
4287     Out << "nx";
4288     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4289     break;
4290 
4291   case Expr::UnaryExprOrTypeTraitExprClass: {
4292     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4293 
4294     if (!SAE->isInstantiationDependent()) {
4295       // Itanium C++ ABI:
4296       //   If the operand of a sizeof or alignof operator is not
4297       //   instantiation-dependent it is encoded as an integer literal
4298       //   reflecting the result of the operator.
4299       //
4300       //   If the result of the operator is implicitly converted to a known
4301       //   integer type, that type is used for the literal; otherwise, the type
4302       //   of std::size_t or std::ptrdiff_t is used.
4303       QualType T = (ImplicitlyConvertedToType.isNull() ||
4304                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4305                                                     : ImplicitlyConvertedToType;
4306       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4307       mangleIntegerLiteral(T, V);
4308       break;
4309     }
4310 
4311     switch(SAE->getKind()) {
4312     case UETT_SizeOf:
4313       Out << 's';
4314       break;
4315     case UETT_PreferredAlignOf:
4316     case UETT_AlignOf:
4317       Out << 'a';
4318       break;
4319     case UETT_VecStep: {
4320       DiagnosticsEngine &Diags = Context.getDiags();
4321       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4322                                      "cannot yet mangle vec_step expression");
4323       Diags.Report(DiagID);
4324       return;
4325     }
4326     case UETT_OpenMPRequiredSimdAlign: {
4327       DiagnosticsEngine &Diags = Context.getDiags();
4328       unsigned DiagID = Diags.getCustomDiagID(
4329           DiagnosticsEngine::Error,
4330           "cannot yet mangle __builtin_omp_required_simd_align expression");
4331       Diags.Report(DiagID);
4332       return;
4333     }
4334     }
4335     if (SAE->isArgumentType()) {
4336       Out << 't';
4337       mangleType(SAE->getArgumentType());
4338     } else {
4339       Out << 'z';
4340       mangleExpression(SAE->getArgumentExpr());
4341     }
4342     break;
4343   }
4344 
4345   case Expr::CXXThrowExprClass: {
4346     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4347     //  <expression> ::= tw <expression>  # throw expression
4348     //               ::= tr               # rethrow
4349     if (TE->getSubExpr()) {
4350       Out << "tw";
4351       mangleExpression(TE->getSubExpr());
4352     } else {
4353       Out << "tr";
4354     }
4355     break;
4356   }
4357 
4358   case Expr::CXXTypeidExprClass: {
4359     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4360     //  <expression> ::= ti <type>        # typeid (type)
4361     //               ::= te <expression>  # typeid (expression)
4362     if (TIE->isTypeOperand()) {
4363       Out << "ti";
4364       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4365     } else {
4366       Out << "te";
4367       mangleExpression(TIE->getExprOperand());
4368     }
4369     break;
4370   }
4371 
4372   case Expr::CXXDeleteExprClass: {
4373     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4374     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4375     //               ::= [gs] da <expression>  # [::] delete [] expr
4376     if (DE->isGlobalDelete()) Out << "gs";
4377     Out << (DE->isArrayForm() ? "da" : "dl");
4378     mangleExpression(DE->getArgument());
4379     break;
4380   }
4381 
4382   case Expr::UnaryOperatorClass: {
4383     const UnaryOperator *UO = cast<UnaryOperator>(E);
4384     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4385                        /*Arity=*/1);
4386     mangleExpression(UO->getSubExpr());
4387     break;
4388   }
4389 
4390   case Expr::ArraySubscriptExprClass: {
4391     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4392 
4393     // Array subscript is treated as a syntactically weird form of
4394     // binary operator.
4395     Out << "ix";
4396     mangleExpression(AE->getLHS());
4397     mangleExpression(AE->getRHS());
4398     break;
4399   }
4400 
4401   case Expr::MatrixSubscriptExprClass: {
4402     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4403     Out << "ixix";
4404     mangleExpression(ME->getBase());
4405     mangleExpression(ME->getRowIdx());
4406     mangleExpression(ME->getColumnIdx());
4407     break;
4408   }
4409 
4410   case Expr::CompoundAssignOperatorClass: // fallthrough
4411   case Expr::BinaryOperatorClass: {
4412     const BinaryOperator *BO = cast<BinaryOperator>(E);
4413     if (BO->getOpcode() == BO_PtrMemD)
4414       Out << "ds";
4415     else
4416       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4417                          /*Arity=*/2);
4418     mangleExpression(BO->getLHS());
4419     mangleExpression(BO->getRHS());
4420     break;
4421   }
4422 
4423   case Expr::CXXRewrittenBinaryOperatorClass: {
4424     // The mangled form represents the original syntax.
4425     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4426         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4427     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4428                        /*Arity=*/2);
4429     mangleExpression(Decomposed.LHS);
4430     mangleExpression(Decomposed.RHS);
4431     break;
4432   }
4433 
4434   case Expr::ConditionalOperatorClass: {
4435     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4436     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4437     mangleExpression(CO->getCond());
4438     mangleExpression(CO->getLHS(), Arity);
4439     mangleExpression(CO->getRHS(), Arity);
4440     break;
4441   }
4442 
4443   case Expr::ImplicitCastExprClass: {
4444     ImplicitlyConvertedToType = E->getType();
4445     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4446     goto recurse;
4447   }
4448 
4449   case Expr::ObjCBridgedCastExprClass: {
4450     // Mangle ownership casts as a vendor extended operator __bridge,
4451     // __bridge_transfer, or __bridge_retain.
4452     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4453     Out << "v1U" << Kind.size() << Kind;
4454   }
4455   // Fall through to mangle the cast itself.
4456   LLVM_FALLTHROUGH;
4457 
4458   case Expr::CStyleCastExprClass:
4459     mangleCastExpression(E, "cv");
4460     break;
4461 
4462   case Expr::CXXFunctionalCastExprClass: {
4463     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4464     // FIXME: Add isImplicit to CXXConstructExpr.
4465     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4466       if (CCE->getParenOrBraceRange().isInvalid())
4467         Sub = CCE->getArg(0)->IgnoreImplicit();
4468     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4469       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4470     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4471       Out << "tl";
4472       mangleType(E->getType());
4473       mangleInitListElements(IL);
4474       Out << "E";
4475     } else {
4476       mangleCastExpression(E, "cv");
4477     }
4478     break;
4479   }
4480 
4481   case Expr::CXXStaticCastExprClass:
4482     mangleCastExpression(E, "sc");
4483     break;
4484   case Expr::CXXDynamicCastExprClass:
4485     mangleCastExpression(E, "dc");
4486     break;
4487   case Expr::CXXReinterpretCastExprClass:
4488     mangleCastExpression(E, "rc");
4489     break;
4490   case Expr::CXXConstCastExprClass:
4491     mangleCastExpression(E, "cc");
4492     break;
4493   case Expr::CXXAddrspaceCastExprClass:
4494     mangleCastExpression(E, "ac");
4495     break;
4496 
4497   case Expr::CXXOperatorCallExprClass: {
4498     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4499     unsigned NumArgs = CE->getNumArgs();
4500     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4501     // (the enclosing MemberExpr covers the syntactic portion).
4502     if (CE->getOperator() != OO_Arrow)
4503       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4504     // Mangle the arguments.
4505     for (unsigned i = 0; i != NumArgs; ++i)
4506       mangleExpression(CE->getArg(i));
4507     break;
4508   }
4509 
4510   case Expr::ParenExprClass:
4511     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4512     break;
4513 
4514 
4515   case Expr::ConceptSpecializationExprClass: {
4516     //  <expr-primary> ::= L <mangled-name> E # external name
4517     Out << "L_Z";
4518     auto *CSE = cast<ConceptSpecializationExpr>(E);
4519     mangleTemplateName(CSE->getNamedConcept(),
4520                        CSE->getTemplateArguments().data(),
4521                        CSE->getTemplateArguments().size());
4522     Out << 'E';
4523     break;
4524   }
4525 
4526   case Expr::DeclRefExprClass:
4527     mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4528     break;
4529 
4530   case Expr::SubstNonTypeTemplateParmPackExprClass:
4531     // FIXME: not clear how to mangle this!
4532     // template <unsigned N...> class A {
4533     //   template <class U...> void foo(U (&x)[N]...);
4534     // };
4535     Out << "_SUBSTPACK_";
4536     break;
4537 
4538   case Expr::FunctionParmPackExprClass: {
4539     // FIXME: not clear how to mangle this!
4540     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4541     Out << "v110_SUBSTPACK";
4542     mangleDeclRefExpr(FPPE->getParameterPack());
4543     break;
4544   }
4545 
4546   case Expr::DependentScopeDeclRefExprClass: {
4547     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4548     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4549                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4550                          Arity);
4551     break;
4552   }
4553 
4554   case Expr::CXXBindTemporaryExprClass:
4555     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4556     break;
4557 
4558   case Expr::ExprWithCleanupsClass:
4559     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4560     break;
4561 
4562   case Expr::FloatingLiteralClass: {
4563     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4564     mangleFloatLiteral(FL->getType(), FL->getValue());
4565     break;
4566   }
4567 
4568   case Expr::FixedPointLiteralClass:
4569     mangleFixedPointLiteral();
4570     break;
4571 
4572   case Expr::CharacterLiteralClass:
4573     Out << 'L';
4574     mangleType(E->getType());
4575     Out << cast<CharacterLiteral>(E)->getValue();
4576     Out << 'E';
4577     break;
4578 
4579   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4580   case Expr::ObjCBoolLiteralExprClass:
4581     Out << "Lb";
4582     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4583     Out << 'E';
4584     break;
4585 
4586   case Expr::CXXBoolLiteralExprClass:
4587     Out << "Lb";
4588     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4589     Out << 'E';
4590     break;
4591 
4592   case Expr::IntegerLiteralClass: {
4593     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4594     if (E->getType()->isSignedIntegerType())
4595       Value.setIsSigned(true);
4596     mangleIntegerLiteral(E->getType(), Value);
4597     break;
4598   }
4599 
4600   case Expr::ImaginaryLiteralClass: {
4601     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4602     // Mangle as if a complex literal.
4603     // Proposal from David Vandevoorde, 2010.06.30.
4604     Out << 'L';
4605     mangleType(E->getType());
4606     if (const FloatingLiteral *Imag =
4607           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4608       // Mangle a floating-point zero of the appropriate type.
4609       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4610       Out << '_';
4611       mangleFloat(Imag->getValue());
4612     } else {
4613       Out << "0_";
4614       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4615       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4616         Value.setIsSigned(true);
4617       mangleNumber(Value);
4618     }
4619     Out << 'E';
4620     break;
4621   }
4622 
4623   case Expr::StringLiteralClass: {
4624     // Revised proposal from David Vandervoorde, 2010.07.15.
4625     Out << 'L';
4626     assert(isa<ConstantArrayType>(E->getType()));
4627     mangleType(E->getType());
4628     Out << 'E';
4629     break;
4630   }
4631 
4632   case Expr::GNUNullExprClass:
4633     // Mangle as if an integer literal 0.
4634     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4635     break;
4636 
4637   case Expr::CXXNullPtrLiteralExprClass: {
4638     Out << "LDnE";
4639     break;
4640   }
4641 
4642   case Expr::PackExpansionExprClass:
4643     Out << "sp";
4644     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4645     break;
4646 
4647   case Expr::SizeOfPackExprClass: {
4648     auto *SPE = cast<SizeOfPackExpr>(E);
4649     if (SPE->isPartiallySubstituted()) {
4650       Out << "sP";
4651       for (const auto &A : SPE->getPartialArguments())
4652         mangleTemplateArg(A, false);
4653       Out << "E";
4654       break;
4655     }
4656 
4657     Out << "sZ";
4658     const NamedDecl *Pack = SPE->getPack();
4659     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4660       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4661     else if (const NonTypeTemplateParmDecl *NTTP
4662                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4663       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4664     else if (const TemplateTemplateParmDecl *TempTP
4665                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4666       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4667     else
4668       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4669     break;
4670   }
4671 
4672   case Expr::MaterializeTemporaryExprClass: {
4673     mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
4674     break;
4675   }
4676 
4677   case Expr::CXXFoldExprClass: {
4678     auto *FE = cast<CXXFoldExpr>(E);
4679     if (FE->isLeftFold())
4680       Out << (FE->getInit() ? "fL" : "fl");
4681     else
4682       Out << (FE->getInit() ? "fR" : "fr");
4683 
4684     if (FE->getOperator() == BO_PtrMemD)
4685       Out << "ds";
4686     else
4687       mangleOperatorName(
4688           BinaryOperator::getOverloadedOperator(FE->getOperator()),
4689           /*Arity=*/2);
4690 
4691     if (FE->getLHS())
4692       mangleExpression(FE->getLHS());
4693     if (FE->getRHS())
4694       mangleExpression(FE->getRHS());
4695     break;
4696   }
4697 
4698   case Expr::CXXThisExprClass:
4699     Out << "fpT";
4700     break;
4701 
4702   case Expr::CoawaitExprClass:
4703     // FIXME: Propose a non-vendor mangling.
4704     Out << "v18co_await";
4705     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4706     break;
4707 
4708   case Expr::DependentCoawaitExprClass:
4709     // FIXME: Propose a non-vendor mangling.
4710     Out << "v18co_await";
4711     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4712     break;
4713 
4714   case Expr::CoyieldExprClass:
4715     // FIXME: Propose a non-vendor mangling.
4716     Out << "v18co_yield";
4717     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4718     break;
4719   }
4720 }
4721 
4722 /// Mangle an expression which refers to a parameter variable.
4723 ///
4724 /// <expression>     ::= <function-param>
4725 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4726 /// <function-param> ::= fp <top-level CV-qualifiers>
4727 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4728 /// <function-param> ::= fL <L-1 non-negative number>
4729 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4730 /// <function-param> ::= fL <L-1 non-negative number>
4731 ///                      p <top-level CV-qualifiers>
4732 ///                      <I-1 non-negative number> _         # L > 0, I > 0
4733 ///
4734 /// L is the nesting depth of the parameter, defined as 1 if the
4735 /// parameter comes from the innermost function prototype scope
4736 /// enclosing the current context, 2 if from the next enclosing
4737 /// function prototype scope, and so on, with one special case: if
4738 /// we've processed the full parameter clause for the innermost
4739 /// function type, then L is one less.  This definition conveniently
4740 /// makes it irrelevant whether a function's result type was written
4741 /// trailing or leading, but is otherwise overly complicated; the
4742 /// numbering was first designed without considering references to
4743 /// parameter in locations other than return types, and then the
4744 /// mangling had to be generalized without changing the existing
4745 /// manglings.
4746 ///
4747 /// I is the zero-based index of the parameter within its parameter
4748 /// declaration clause.  Note that the original ABI document describes
4749 /// this using 1-based ordinals.
4750 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4751   unsigned parmDepth = parm->getFunctionScopeDepth();
4752   unsigned parmIndex = parm->getFunctionScopeIndex();
4753 
4754   // Compute 'L'.
4755   // parmDepth does not include the declaring function prototype.
4756   // FunctionTypeDepth does account for that.
4757   assert(parmDepth < FunctionTypeDepth.getDepth());
4758   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4759   if (FunctionTypeDepth.isInResultType())
4760     nestingDepth--;
4761 
4762   if (nestingDepth == 0) {
4763     Out << "fp";
4764   } else {
4765     Out << "fL" << (nestingDepth - 1) << 'p';
4766   }
4767 
4768   // Top-level qualifiers.  We don't have to worry about arrays here,
4769   // because parameters declared as arrays should already have been
4770   // transformed to have pointer type. FIXME: apparently these don't
4771   // get mangled if used as an rvalue of a known non-class type?
4772   assert(!parm->getType()->isArrayType()
4773          && "parameter's type is still an array type?");
4774 
4775   if (const DependentAddressSpaceType *DAST =
4776       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4777     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4778   } else {
4779     mangleQualifiers(parm->getType().getQualifiers());
4780   }
4781 
4782   // Parameter index.
4783   if (parmIndex != 0) {
4784     Out << (parmIndex - 1);
4785   }
4786   Out << '_';
4787 }
4788 
4789 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4790                                        const CXXRecordDecl *InheritedFrom) {
4791   // <ctor-dtor-name> ::= C1  # complete object constructor
4792   //                  ::= C2  # base object constructor
4793   //                  ::= CI1 <type> # complete inheriting constructor
4794   //                  ::= CI2 <type> # base inheriting constructor
4795   //
4796   // In addition, C5 is a comdat name with C1 and C2 in it.
4797   Out << 'C';
4798   if (InheritedFrom)
4799     Out << 'I';
4800   switch (T) {
4801   case Ctor_Complete:
4802     Out << '1';
4803     break;
4804   case Ctor_Base:
4805     Out << '2';
4806     break;
4807   case Ctor_Comdat:
4808     Out << '5';
4809     break;
4810   case Ctor_DefaultClosure:
4811   case Ctor_CopyingClosure:
4812     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4813   }
4814   if (InheritedFrom)
4815     mangleName(InheritedFrom);
4816 }
4817 
4818 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4819   // <ctor-dtor-name> ::= D0  # deleting destructor
4820   //                  ::= D1  # complete object destructor
4821   //                  ::= D2  # base object destructor
4822   //
4823   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4824   switch (T) {
4825   case Dtor_Deleting:
4826     Out << "D0";
4827     break;
4828   case Dtor_Complete:
4829     Out << "D1";
4830     break;
4831   case Dtor_Base:
4832     Out << "D2";
4833     break;
4834   case Dtor_Comdat:
4835     Out << "D5";
4836     break;
4837   }
4838 }
4839 
4840 namespace {
4841 // Helper to provide ancillary information on a template used to mangle its
4842 // arguments.
4843 struct TemplateArgManglingInfo {
4844   TemplateDecl *ResolvedTemplate = nullptr;
4845   bool SeenPackExpansionIntoNonPack = false;
4846   const NamedDecl *UnresolvedExpandedPack = nullptr;
4847 
4848   TemplateArgManglingInfo(TemplateName TN) {
4849     if (TemplateDecl *TD = TN.getAsTemplateDecl())
4850       ResolvedTemplate = TD;
4851   }
4852 
4853   /// Do we need to mangle template arguments with exactly correct types?
4854   ///
4855   /// This should be called exactly once for each parameter / argument pair, in
4856   /// order.
4857   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
4858     // We need correct types when the template-name is unresolved or when it
4859     // names a template that is able to be overloaded.
4860     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
4861       return true;
4862 
4863     // Move to the next parameter.
4864     const NamedDecl *Param = UnresolvedExpandedPack;
4865     if (!Param) {
4866       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
4867              "no parameter for argument");
4868       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
4869 
4870       // If we reach an expanded parameter pack whose argument isn't in pack
4871       // form, that means Sema couldn't figure out which arguments belonged to
4872       // it, because it contains a pack expansion. Track the expanded pack for
4873       // all further template arguments until we hit that pack expansion.
4874       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
4875         assert(getExpandedPackSize(Param) &&
4876                "failed to form pack argument for parameter pack");
4877         UnresolvedExpandedPack = Param;
4878       }
4879     }
4880 
4881     // If we encounter a pack argument that is expanded into a non-pack
4882     // parameter, we can no longer track parameter / argument correspondence,
4883     // and need to use exact types from this point onwards.
4884     if (Arg.isPackExpansion() &&
4885         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
4886       SeenPackExpansionIntoNonPack = true;
4887       return true;
4888     }
4889 
4890     // We need exact types for function template arguments because they might be
4891     // overloaded on template parameter type. As a special case, a member
4892     // function template of a generic lambda is not overloadable.
4893     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
4894       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
4895       if (!RD || !RD->isGenericLambda())
4896         return true;
4897     }
4898 
4899     // Otherwise, we only need a correct type if the parameter has a deduced
4900     // type.
4901     //
4902     // Note: for an expanded parameter pack, getType() returns the type prior
4903     // to expansion. We could ask for the expanded type with getExpansionType(),
4904     // but it doesn't matter because substitution and expansion don't affect
4905     // whether a deduced type appears in the type.
4906     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
4907     return NTTP && NTTP->getType()->getContainedDeducedType();
4908   }
4909 };
4910 }
4911 
4912 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
4913                                         const TemplateArgumentLoc *TemplateArgs,
4914                                         unsigned NumTemplateArgs) {
4915   // <template-args> ::= I <template-arg>+ E
4916   Out << 'I';
4917   TemplateArgManglingInfo Info(TN);
4918   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4919     mangleTemplateArg(TemplateArgs[i].getArgument(),
4920                       Info.needExactType(i, TemplateArgs[i].getArgument()));
4921   Out << 'E';
4922 }
4923 
4924 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
4925                                         const TemplateArgumentList &AL) {
4926   // <template-args> ::= I <template-arg>+ E
4927   Out << 'I';
4928   TemplateArgManglingInfo Info(TN);
4929   for (unsigned i = 0, e = AL.size(); i != e; ++i)
4930     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
4931   Out << 'E';
4932 }
4933 
4934 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
4935                                         const TemplateArgument *TemplateArgs,
4936                                         unsigned NumTemplateArgs) {
4937   // <template-args> ::= I <template-arg>+ E
4938   Out << 'I';
4939   TemplateArgManglingInfo Info(TN);
4940   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4941     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
4942   Out << 'E';
4943 }
4944 
4945 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
4946   // <template-arg> ::= <type>              # type or template
4947   //                ::= X <expression> E    # expression
4948   //                ::= <expr-primary>      # simple expressions
4949   //                ::= J <template-arg>* E # argument pack
4950   if (!A.isInstantiationDependent() || A.isDependent())
4951     A = Context.getASTContext().getCanonicalTemplateArgument(A);
4952 
4953   switch (A.getKind()) {
4954   case TemplateArgument::Null:
4955     llvm_unreachable("Cannot mangle NULL template argument");
4956 
4957   case TemplateArgument::Type:
4958     mangleType(A.getAsType());
4959     break;
4960   case TemplateArgument::Template:
4961     // This is mangled as <type>.
4962     mangleType(A.getAsTemplate());
4963     break;
4964   case TemplateArgument::TemplateExpansion:
4965     // <type>  ::= Dp <type>          # pack expansion (C++0x)
4966     Out << "Dp";
4967     mangleType(A.getAsTemplateOrTemplatePattern());
4968     break;
4969   case TemplateArgument::Expression: {
4970     // It's possible to end up with a DeclRefExpr here in certain
4971     // dependent cases, in which case we should mangle as a
4972     // declaration.
4973     const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4974     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4975       const ValueDecl *D = DRE->getDecl();
4976       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4977         Out << 'L';
4978         mangle(D);
4979         Out << 'E';
4980         break;
4981       }
4982     }
4983 
4984     Out << 'X';
4985     mangleExpression(E);
4986     Out << 'E';
4987     break;
4988   }
4989   case TemplateArgument::Integral:
4990     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4991     break;
4992   case TemplateArgument::Declaration: {
4993     //  <expr-primary> ::= L <mangled-name> E # external name
4994     ValueDecl *D = A.getAsDecl();
4995 
4996     // Template parameter objects are modeled by reproducing a source form
4997     // produced as if by aggregate initialization.
4998     if (A.getParamTypeForDecl()->isRecordType()) {
4999       auto *TPO = cast<TemplateParamObjectDecl>(D);
5000       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5001                                TPO->getValue(), /*TopLevel=*/true,
5002                                NeedExactType);
5003       break;
5004     }
5005 
5006     ASTContext &Ctx = Context.getASTContext();
5007     APValue Value;
5008     if (D->isCXXInstanceMember())
5009       // Simple pointer-to-member with no conversion.
5010       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5011     else if (D->getType()->isArrayType() &&
5012              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5013                                 A.getParamTypeForDecl()) &&
5014              Ctx.getLangOpts().getClangABICompat() >
5015                  LangOptions::ClangABI::Ver11)
5016       // Build a value corresponding to this implicit array-to-pointer decay.
5017       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5018                       {APValue::LValuePathEntry::ArrayIndex(0)},
5019                       /*OnePastTheEnd=*/false);
5020     else
5021       // Regular pointer or reference to a declaration.
5022       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5023                       ArrayRef<APValue::LValuePathEntry>(),
5024                       /*OnePastTheEnd=*/false);
5025     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5026                              NeedExactType);
5027     break;
5028   }
5029   case TemplateArgument::NullPtr: {
5030     mangleNullPointer(A.getNullPtrType());
5031     break;
5032   }
5033   case TemplateArgument::Pack: {
5034     //  <template-arg> ::= J <template-arg>* E
5035     Out << 'J';
5036     for (const auto &P : A.pack_elements())
5037       mangleTemplateArg(P, NeedExactType);
5038     Out << 'E';
5039   }
5040   }
5041 }
5042 
5043 /// Determine whether a given value is equivalent to zero-initialization for
5044 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5045 ///
5046 /// Note that this is not in general equivalent to determining whether the
5047 /// value has an all-zeroes bit pattern.
5048 static bool isZeroInitialized(QualType T, const APValue &V) {
5049   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5050   // pathological cases due to using this, but it's a little awkward
5051   // to do this in linear time in general.
5052   switch (V.getKind()) {
5053   case APValue::None:
5054   case APValue::Indeterminate:
5055   case APValue::AddrLabelDiff:
5056     return false;
5057 
5058   case APValue::Struct: {
5059     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5060     assert(RD && "unexpected type for record value");
5061     unsigned I = 0;
5062     for (const CXXBaseSpecifier &BS : RD->bases()) {
5063       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5064         return false;
5065       ++I;
5066     }
5067     I = 0;
5068     for (const FieldDecl *FD : RD->fields()) {
5069       if (!FD->isUnnamedBitfield() &&
5070           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5071         return false;
5072       ++I;
5073     }
5074     return true;
5075   }
5076 
5077   case APValue::Union: {
5078     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5079     assert(RD && "unexpected type for union value");
5080     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5081     for (const FieldDecl *FD : RD->fields()) {
5082       if (!FD->isUnnamedBitfield())
5083         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5084                isZeroInitialized(FD->getType(), V.getUnionValue());
5085     }
5086     // If there are no fields (other than unnamed bitfields), the value is
5087     // necessarily zero-initialized.
5088     return true;
5089   }
5090 
5091   case APValue::Array: {
5092     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5093     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5094       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5095         return false;
5096     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5097   }
5098 
5099   case APValue::Vector: {
5100     const VectorType *VT = T->castAs<VectorType>();
5101     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5102       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5103         return false;
5104     return true;
5105   }
5106 
5107   case APValue::Int:
5108     return !V.getInt();
5109 
5110   case APValue::Float:
5111     return V.getFloat().isPosZero();
5112 
5113   case APValue::FixedPoint:
5114     return !V.getFixedPoint().getValue();
5115 
5116   case APValue::ComplexFloat:
5117     return V.getComplexFloatReal().isPosZero() &&
5118            V.getComplexFloatImag().isPosZero();
5119 
5120   case APValue::ComplexInt:
5121     return !V.getComplexIntReal() && !V.getComplexIntImag();
5122 
5123   case APValue::LValue:
5124     return V.isNullPointer();
5125 
5126   case APValue::MemberPointer:
5127     return !V.getMemberPointerDecl();
5128   }
5129 
5130   llvm_unreachable("Unhandled APValue::ValueKind enum");
5131 }
5132 
5133 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5134   QualType T = LV.getLValueBase().getType();
5135   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5136     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5137       T = AT->getElementType();
5138     else if (const FieldDecl *FD =
5139                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5140       T = FD->getType();
5141     else
5142       T = Ctx.getRecordType(
5143           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5144   }
5145   return T;
5146 }
5147 
5148 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5149                                               bool TopLevel,
5150                                               bool NeedExactType) {
5151   // Ignore all top-level cv-qualifiers, to match GCC.
5152   Qualifiers Quals;
5153   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5154 
5155   // A top-level expression that's not a primary expression is wrapped in X...E.
5156   bool IsPrimaryExpr = true;
5157   auto NotPrimaryExpr = [&] {
5158     if (TopLevel && IsPrimaryExpr)
5159       Out << 'X';
5160     IsPrimaryExpr = false;
5161   };
5162 
5163   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5164   switch (V.getKind()) {
5165   case APValue::None:
5166   case APValue::Indeterminate:
5167     Out << 'L';
5168     mangleType(T);
5169     Out << 'E';
5170     break;
5171 
5172   case APValue::AddrLabelDiff:
5173     llvm_unreachable("unexpected value kind in template argument");
5174 
5175   case APValue::Struct: {
5176     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5177     assert(RD && "unexpected type for record value");
5178 
5179     // Drop trailing zero-initialized elements.
5180     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
5181                                                     RD->field_end());
5182     while (
5183         !Fields.empty() &&
5184         (Fields.back()->isUnnamedBitfield() ||
5185          isZeroInitialized(Fields.back()->getType(),
5186                            V.getStructField(Fields.back()->getFieldIndex())))) {
5187       Fields.pop_back();
5188     }
5189     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5190     if (Fields.empty()) {
5191       while (!Bases.empty() &&
5192              isZeroInitialized(Bases.back().getType(),
5193                                V.getStructBase(Bases.size() - 1)))
5194         Bases = Bases.drop_back();
5195     }
5196 
5197     // <expression> ::= tl <type> <braced-expression>* E
5198     NotPrimaryExpr();
5199     Out << "tl";
5200     mangleType(T);
5201     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5202       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5203     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5204       if (Fields[I]->isUnnamedBitfield())
5205         continue;
5206       mangleValueInTemplateArg(Fields[I]->getType(),
5207                                V.getStructField(Fields[I]->getFieldIndex()),
5208                                false);
5209     }
5210     Out << 'E';
5211     break;
5212   }
5213 
5214   case APValue::Union: {
5215     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5216     const FieldDecl *FD = V.getUnionField();
5217 
5218     if (!FD) {
5219       Out << 'L';
5220       mangleType(T);
5221       Out << 'E';
5222       break;
5223     }
5224 
5225     // <braced-expression> ::= di <field source-name> <braced-expression>
5226     NotPrimaryExpr();
5227     Out << "tl";
5228     mangleType(T);
5229     if (!isZeroInitialized(T, V)) {
5230       Out << "di";
5231       mangleSourceName(FD->getIdentifier());
5232       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5233     }
5234     Out << 'E';
5235     break;
5236   }
5237 
5238   case APValue::Array: {
5239     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5240 
5241     NotPrimaryExpr();
5242     Out << "tl";
5243     mangleType(T);
5244 
5245     // Drop trailing zero-initialized elements.
5246     unsigned N = V.getArraySize();
5247     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5248       N = V.getArrayInitializedElts();
5249       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5250         --N;
5251     }
5252 
5253     for (unsigned I = 0; I != N; ++I) {
5254       const APValue &Elem = I < V.getArrayInitializedElts()
5255                                 ? V.getArrayInitializedElt(I)
5256                                 : V.getArrayFiller();
5257       mangleValueInTemplateArg(ElemT, Elem, false);
5258     }
5259     Out << 'E';
5260     break;
5261   }
5262 
5263   case APValue::Vector: {
5264     const VectorType *VT = T->castAs<VectorType>();
5265 
5266     NotPrimaryExpr();
5267     Out << "tl";
5268     mangleType(T);
5269     unsigned N = V.getVectorLength();
5270     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5271       --N;
5272     for (unsigned I = 0; I != N; ++I)
5273       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5274     Out << 'E';
5275     break;
5276   }
5277 
5278   case APValue::Int:
5279     mangleIntegerLiteral(T, V.getInt());
5280     break;
5281 
5282   case APValue::Float:
5283     mangleFloatLiteral(T, V.getFloat());
5284     break;
5285 
5286   case APValue::FixedPoint:
5287     mangleFixedPointLiteral();
5288     break;
5289 
5290   case APValue::ComplexFloat: {
5291     const ComplexType *CT = T->castAs<ComplexType>();
5292     NotPrimaryExpr();
5293     Out << "tl";
5294     mangleType(T);
5295     if (!V.getComplexFloatReal().isPosZero() ||
5296         !V.getComplexFloatImag().isPosZero())
5297       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5298     if (!V.getComplexFloatImag().isPosZero())
5299       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5300     Out << 'E';
5301     break;
5302   }
5303 
5304   case APValue::ComplexInt: {
5305     const ComplexType *CT = T->castAs<ComplexType>();
5306     NotPrimaryExpr();
5307     Out << "tl";
5308     mangleType(T);
5309     if (V.getComplexIntReal().getBoolValue() ||
5310         V.getComplexIntImag().getBoolValue())
5311       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5312     if (V.getComplexIntImag().getBoolValue())
5313       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5314     Out << 'E';
5315     break;
5316   }
5317 
5318   case APValue::LValue: {
5319     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5320     assert((T->isPointerType() || T->isReferenceType()) &&
5321            "unexpected type for LValue template arg");
5322 
5323     if (V.isNullPointer()) {
5324       mangleNullPointer(T);
5325       break;
5326     }
5327 
5328     APValue::LValueBase B = V.getLValueBase();
5329     if (!B) {
5330       // Non-standard mangling for integer cast to a pointer; this can only
5331       // occur as an extension.
5332       CharUnits Offset = V.getLValueOffset();
5333       if (Offset.isZero()) {
5334         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5335         // a cast, because L <type> 0 E means something else.
5336         NotPrimaryExpr();
5337         Out << "rc";
5338         mangleType(T);
5339         Out << "Li0E";
5340         if (TopLevel)
5341           Out << 'E';
5342       } else {
5343         Out << "L";
5344         mangleType(T);
5345         Out << Offset.getQuantity() << 'E';
5346       }
5347       break;
5348     }
5349 
5350     ASTContext &Ctx = Context.getASTContext();
5351 
5352     enum { Base, Offset, Path } Kind;
5353     if (!V.hasLValuePath()) {
5354       // Mangle as (T*)((char*)&base + N).
5355       if (T->isReferenceType()) {
5356         NotPrimaryExpr();
5357         Out << "decvP";
5358         mangleType(T->getPointeeType());
5359       } else {
5360         NotPrimaryExpr();
5361         Out << "cv";
5362         mangleType(T);
5363       }
5364       Out << "plcvPcad";
5365       Kind = Offset;
5366     } else {
5367       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5368         NotPrimaryExpr();
5369         // A final conversion to the template parameter's type is usually
5370         // folded into the 'so' mangling, but we can't do that for 'void*'
5371         // parameters without introducing collisions.
5372         if (NeedExactType && T->isVoidPointerType()) {
5373           Out << "cv";
5374           mangleType(T);
5375         }
5376         if (T->isPointerType())
5377           Out << "ad";
5378         Out << "so";
5379         mangleType(T->isVoidPointerType()
5380                        ? getLValueType(Ctx, V).getUnqualifiedType()
5381                        : T->getPointeeType());
5382         Kind = Path;
5383       } else {
5384         if (NeedExactType &&
5385             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5386             Ctx.getLangOpts().getClangABICompat() >
5387                 LangOptions::ClangABI::Ver11) {
5388           NotPrimaryExpr();
5389           Out << "cv";
5390           mangleType(T);
5391         }
5392         if (T->isPointerType()) {
5393           NotPrimaryExpr();
5394           Out << "ad";
5395         }
5396         Kind = Base;
5397       }
5398     }
5399 
5400     QualType TypeSoFar = B.getType();
5401     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5402       Out << 'L';
5403       mangle(VD);
5404       Out << 'E';
5405     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5406       NotPrimaryExpr();
5407       mangleExpression(E);
5408     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5409       NotPrimaryExpr();
5410       Out << "ti";
5411       mangleType(QualType(TI.getType(), 0));
5412     } else {
5413       // We should never see dynamic allocations here.
5414       llvm_unreachable("unexpected lvalue base kind in template argument");
5415     }
5416 
5417     switch (Kind) {
5418     case Base:
5419       break;
5420 
5421     case Offset:
5422       Out << 'L';
5423       mangleType(Ctx.getPointerDiffType());
5424       mangleNumber(V.getLValueOffset().getQuantity());
5425       Out << 'E';
5426       break;
5427 
5428     case Path:
5429       // <expression> ::= so <referent type> <expr> [<offset number>]
5430       //                  <union-selector>* [p] E
5431       if (!V.getLValueOffset().isZero())
5432         mangleNumber(V.getLValueOffset().getQuantity());
5433 
5434       // We model a past-the-end array pointer as array indexing with index N,
5435       // not with the "past the end" flag. Compensate for that.
5436       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5437 
5438       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5439         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5440           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5441             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5442           TypeSoFar = AT->getElementType();
5443         } else {
5444           const Decl *D = E.getAsBaseOrMember().getPointer();
5445           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5446             // <union-selector> ::= _ <number>
5447             if (FD->getParent()->isUnion()) {
5448               Out << '_';
5449               if (FD->getFieldIndex())
5450                 Out << (FD->getFieldIndex() - 1);
5451             }
5452             TypeSoFar = FD->getType();
5453           } else {
5454             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5455           }
5456         }
5457       }
5458 
5459       if (OnePastTheEnd)
5460         Out << 'p';
5461       Out << 'E';
5462       break;
5463     }
5464 
5465     break;
5466   }
5467 
5468   case APValue::MemberPointer:
5469     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5470     if (!V.getMemberPointerDecl()) {
5471       mangleNullPointer(T);
5472       break;
5473     }
5474 
5475     ASTContext &Ctx = Context.getASTContext();
5476 
5477     NotPrimaryExpr();
5478     if (!V.getMemberPointerPath().empty()) {
5479       Out << "mc";
5480       mangleType(T);
5481     } else if (NeedExactType &&
5482                !Ctx.hasSameType(
5483                    T->castAs<MemberPointerType>()->getPointeeType(),
5484                    V.getMemberPointerDecl()->getType()) &&
5485                Ctx.getLangOpts().getClangABICompat() >
5486                    LangOptions::ClangABI::Ver11) {
5487       Out << "cv";
5488       mangleType(T);
5489     }
5490     Out << "adL";
5491     mangle(V.getMemberPointerDecl());
5492     Out << 'E';
5493     if (!V.getMemberPointerPath().empty()) {
5494       CharUnits Offset =
5495           Context.getASTContext().getMemberPointerPathAdjustment(V);
5496       if (!Offset.isZero())
5497         mangleNumber(Offset.getQuantity());
5498       Out << 'E';
5499     }
5500     break;
5501   }
5502 
5503   if (TopLevel && !IsPrimaryExpr)
5504     Out << 'E';
5505 }
5506 
5507 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5508   // <template-param> ::= T_    # first template parameter
5509   //                  ::= T <parameter-2 non-negative number> _
5510   //                  ::= TL <L-1 non-negative number> __
5511   //                  ::= TL <L-1 non-negative number> _
5512   //                         <parameter-2 non-negative number> _
5513   //
5514   // The latter two manglings are from a proposal here:
5515   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5516   Out << 'T';
5517   if (Depth != 0)
5518     Out << 'L' << (Depth - 1) << '_';
5519   if (Index != 0)
5520     Out << (Index - 1);
5521   Out << '_';
5522 }
5523 
5524 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5525   if (SeqID == 1)
5526     Out << '0';
5527   else if (SeqID > 1) {
5528     SeqID--;
5529 
5530     // <seq-id> is encoded in base-36, using digits and upper case letters.
5531     char Buffer[7]; // log(2**32) / log(36) ~= 7
5532     MutableArrayRef<char> BufferRef(Buffer);
5533     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5534 
5535     for (; SeqID != 0; SeqID /= 36) {
5536       unsigned C = SeqID % 36;
5537       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5538     }
5539 
5540     Out.write(I.base(), I - BufferRef.rbegin());
5541   }
5542   Out << '_';
5543 }
5544 
5545 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5546   bool result = mangleSubstitution(tname);
5547   assert(result && "no existing substitution for template name");
5548   (void) result;
5549 }
5550 
5551 // <substitution> ::= S <seq-id> _
5552 //                ::= S_
5553 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5554   // Try one of the standard substitutions first.
5555   if (mangleStandardSubstitution(ND))
5556     return true;
5557 
5558   ND = cast<NamedDecl>(ND->getCanonicalDecl());
5559   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5560 }
5561 
5562 /// Determine whether the given type has any qualifiers that are relevant for
5563 /// substitutions.
5564 static bool hasMangledSubstitutionQualifiers(QualType T) {
5565   Qualifiers Qs = T.getQualifiers();
5566   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5567 }
5568 
5569 bool CXXNameMangler::mangleSubstitution(QualType T) {
5570   if (!hasMangledSubstitutionQualifiers(T)) {
5571     if (const RecordType *RT = T->getAs<RecordType>())
5572       return mangleSubstitution(RT->getDecl());
5573   }
5574 
5575   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5576 
5577   return mangleSubstitution(TypePtr);
5578 }
5579 
5580 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5581   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5582     return mangleSubstitution(TD);
5583 
5584   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5585   return mangleSubstitution(
5586                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5587 }
5588 
5589 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5590   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5591   if (I == Substitutions.end())
5592     return false;
5593 
5594   unsigned SeqID = I->second;
5595   Out << 'S';
5596   mangleSeqID(SeqID);
5597 
5598   return true;
5599 }
5600 
5601 static bool isCharType(QualType T) {
5602   if (T.isNull())
5603     return false;
5604 
5605   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
5606     T->isSpecificBuiltinType(BuiltinType::Char_U);
5607 }
5608 
5609 /// Returns whether a given type is a template specialization of a given name
5610 /// with a single argument of type char.
5611 static bool isCharSpecialization(QualType T, const char *Name) {
5612   if (T.isNull())
5613     return false;
5614 
5615   const RecordType *RT = T->getAs<RecordType>();
5616   if (!RT)
5617     return false;
5618 
5619   const ClassTemplateSpecializationDecl *SD =
5620     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5621   if (!SD)
5622     return false;
5623 
5624   if (!isStdNamespace(getEffectiveDeclContext(SD)))
5625     return false;
5626 
5627   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5628   if (TemplateArgs.size() != 1)
5629     return false;
5630 
5631   if (!isCharType(TemplateArgs[0].getAsType()))
5632     return false;
5633 
5634   return SD->getIdentifier()->getName() == Name;
5635 }
5636 
5637 template <std::size_t StrLen>
5638 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
5639                                        const char (&Str)[StrLen]) {
5640   if (!SD->getIdentifier()->isStr(Str))
5641     return false;
5642 
5643   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5644   if (TemplateArgs.size() != 2)
5645     return false;
5646 
5647   if (!isCharType(TemplateArgs[0].getAsType()))
5648     return false;
5649 
5650   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5651     return false;
5652 
5653   return true;
5654 }
5655 
5656 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
5657   // <substitution> ::= St # ::std::
5658   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
5659     if (isStd(NS)) {
5660       Out << "St";
5661       return true;
5662     }
5663   }
5664 
5665   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
5666     if (!isStdNamespace(getEffectiveDeclContext(TD)))
5667       return false;
5668 
5669     // <substitution> ::= Sa # ::std::allocator
5670     if (TD->getIdentifier()->isStr("allocator")) {
5671       Out << "Sa";
5672       return true;
5673     }
5674 
5675     // <<substitution> ::= Sb # ::std::basic_string
5676     if (TD->getIdentifier()->isStr("basic_string")) {
5677       Out << "Sb";
5678       return true;
5679     }
5680   }
5681 
5682   if (const ClassTemplateSpecializationDecl *SD =
5683         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
5684     if (!isStdNamespace(getEffectiveDeclContext(SD)))
5685       return false;
5686 
5687     //    <substitution> ::= Ss # ::std::basic_string<char,
5688     //                            ::std::char_traits<char>,
5689     //                            ::std::allocator<char> >
5690     if (SD->getIdentifier()->isStr("basic_string")) {
5691       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5692 
5693       if (TemplateArgs.size() != 3)
5694         return false;
5695 
5696       if (!isCharType(TemplateArgs[0].getAsType()))
5697         return false;
5698 
5699       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5700         return false;
5701 
5702       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
5703         return false;
5704 
5705       Out << "Ss";
5706       return true;
5707     }
5708 
5709     //    <substitution> ::= Si # ::std::basic_istream<char,
5710     //                            ::std::char_traits<char> >
5711     if (isStreamCharSpecialization(SD, "basic_istream")) {
5712       Out << "Si";
5713       return true;
5714     }
5715 
5716     //    <substitution> ::= So # ::std::basic_ostream<char,
5717     //                            ::std::char_traits<char> >
5718     if (isStreamCharSpecialization(SD, "basic_ostream")) {
5719       Out << "So";
5720       return true;
5721     }
5722 
5723     //    <substitution> ::= Sd # ::std::basic_iostream<char,
5724     //                            ::std::char_traits<char> >
5725     if (isStreamCharSpecialization(SD, "basic_iostream")) {
5726       Out << "Sd";
5727       return true;
5728     }
5729   }
5730   return false;
5731 }
5732 
5733 void CXXNameMangler::addSubstitution(QualType T) {
5734   if (!hasMangledSubstitutionQualifiers(T)) {
5735     if (const RecordType *RT = T->getAs<RecordType>()) {
5736       addSubstitution(RT->getDecl());
5737       return;
5738     }
5739   }
5740 
5741   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5742   addSubstitution(TypePtr);
5743 }
5744 
5745 void CXXNameMangler::addSubstitution(TemplateName Template) {
5746   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5747     return addSubstitution(TD);
5748 
5749   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5750   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5751 }
5752 
5753 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
5754   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
5755   Substitutions[Ptr] = SeqID++;
5756 }
5757 
5758 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
5759   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
5760   if (Other->SeqID > SeqID) {
5761     Substitutions.swap(Other->Substitutions);
5762     SeqID = Other->SeqID;
5763   }
5764 }
5765 
5766 CXXNameMangler::AbiTagList
5767 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
5768   // When derived abi tags are disabled there is no need to make any list.
5769   if (DisableDerivedAbiTags)
5770     return AbiTagList();
5771 
5772   llvm::raw_null_ostream NullOutStream;
5773   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
5774   TrackReturnTypeTags.disableDerivedAbiTags();
5775 
5776   const FunctionProtoType *Proto =
5777       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
5778   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
5779   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
5780   TrackReturnTypeTags.mangleType(Proto->getReturnType());
5781   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
5782   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
5783 
5784   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5785 }
5786 
5787 CXXNameMangler::AbiTagList
5788 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
5789   // When derived abi tags are disabled there is no need to make any list.
5790   if (DisableDerivedAbiTags)
5791     return AbiTagList();
5792 
5793   llvm::raw_null_ostream NullOutStream;
5794   CXXNameMangler TrackVariableType(*this, NullOutStream);
5795   TrackVariableType.disableDerivedAbiTags();
5796 
5797   TrackVariableType.mangleType(VD->getType());
5798 
5799   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5800 }
5801 
5802 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
5803                                        const VarDecl *VD) {
5804   llvm::raw_null_ostream NullOutStream;
5805   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
5806   TrackAbiTags.mangle(VD);
5807   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
5808 }
5809 
5810 //
5811 
5812 /// Mangles the name of the declaration D and emits that name to the given
5813 /// output stream.
5814 ///
5815 /// If the declaration D requires a mangled name, this routine will emit that
5816 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
5817 /// and this routine will return false. In this case, the caller should just
5818 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
5819 /// name.
5820 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
5821                                              raw_ostream &Out) {
5822   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
5823   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
5824          "Invalid mangleName() call, argument is not a variable or function!");
5825 
5826   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
5827                                  getASTContext().getSourceManager(),
5828                                  "Mangling declaration");
5829 
5830   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
5831     auto Type = GD.getCtorType();
5832     CXXNameMangler Mangler(*this, Out, CD, Type);
5833     return Mangler.mangle(GlobalDecl(CD, Type));
5834   }
5835 
5836   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
5837     auto Type = GD.getDtorType();
5838     CXXNameMangler Mangler(*this, Out, DD, Type);
5839     return Mangler.mangle(GlobalDecl(DD, Type));
5840   }
5841 
5842   CXXNameMangler Mangler(*this, Out, D);
5843   Mangler.mangle(GD);
5844 }
5845 
5846 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
5847                                                    raw_ostream &Out) {
5848   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
5849   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
5850 }
5851 
5852 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
5853                                                    raw_ostream &Out) {
5854   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
5855   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
5856 }
5857 
5858 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
5859                                            const ThunkInfo &Thunk,
5860                                            raw_ostream &Out) {
5861   //  <special-name> ::= T <call-offset> <base encoding>
5862   //                      # base is the nominal target function of thunk
5863   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
5864   //                      # base is the nominal target function of thunk
5865   //                      # first call-offset is 'this' adjustment
5866   //                      # second call-offset is result adjustment
5867 
5868   assert(!isa<CXXDestructorDecl>(MD) &&
5869          "Use mangleCXXDtor for destructor decls!");
5870   CXXNameMangler Mangler(*this, Out);
5871   Mangler.getStream() << "_ZT";
5872   if (!Thunk.Return.isEmpty())
5873     Mangler.getStream() << 'c';
5874 
5875   // Mangle the 'this' pointer adjustment.
5876   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
5877                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
5878 
5879   // Mangle the return pointer adjustment if there is one.
5880   if (!Thunk.Return.isEmpty())
5881     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5882                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
5883 
5884   Mangler.mangleFunctionEncoding(MD);
5885 }
5886 
5887 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5888     const CXXDestructorDecl *DD, CXXDtorType Type,
5889     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5890   //  <special-name> ::= T <call-offset> <base encoding>
5891   //                      # base is the nominal target function of thunk
5892   CXXNameMangler Mangler(*this, Out, DD, Type);
5893   Mangler.getStream() << "_ZT";
5894 
5895   // Mangle the 'this' pointer adjustment.
5896   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5897                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5898 
5899   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
5900 }
5901 
5902 /// Returns the mangled name for a guard variable for the passed in VarDecl.
5903 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5904                                                          raw_ostream &Out) {
5905   //  <special-name> ::= GV <object name>       # Guard variable for one-time
5906   //                                            # initialization
5907   CXXNameMangler Mangler(*this, Out);
5908   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5909   // be a bug that is fixed in trunk.
5910   Mangler.getStream() << "_ZGV";
5911   Mangler.mangleName(D);
5912 }
5913 
5914 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5915                                                         raw_ostream &Out) {
5916   // These symbols are internal in the Itanium ABI, so the names don't matter.
5917   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5918   // avoid duplicate symbols.
5919   Out << "__cxx_global_var_init";
5920 }
5921 
5922 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5923                                                              raw_ostream &Out) {
5924   // Prefix the mangling of D with __dtor_.
5925   CXXNameMangler Mangler(*this, Out);
5926   Mangler.getStream() << "__dtor_";
5927   if (shouldMangleDeclName(D))
5928     Mangler.mangle(D);
5929   else
5930     Mangler.getStream() << D->getName();
5931 }
5932 
5933 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
5934                                                            raw_ostream &Out) {
5935   // Clang generates these internal-linkage functions as part of its
5936   // implementation of the XL ABI.
5937   CXXNameMangler Mangler(*this, Out);
5938   Mangler.getStream() << "__finalize_";
5939   if (shouldMangleDeclName(D))
5940     Mangler.mangle(D);
5941   else
5942     Mangler.getStream() << D->getName();
5943 }
5944 
5945 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5946     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5947   CXXNameMangler Mangler(*this, Out);
5948   Mangler.getStream() << "__filt_";
5949   if (shouldMangleDeclName(EnclosingDecl))
5950     Mangler.mangle(EnclosingDecl);
5951   else
5952     Mangler.getStream() << EnclosingDecl->getName();
5953 }
5954 
5955 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5956     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5957   CXXNameMangler Mangler(*this, Out);
5958   Mangler.getStream() << "__fin_";
5959   if (shouldMangleDeclName(EnclosingDecl))
5960     Mangler.mangle(EnclosingDecl);
5961   else
5962     Mangler.getStream() << EnclosingDecl->getName();
5963 }
5964 
5965 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5966                                                             raw_ostream &Out) {
5967   //  <special-name> ::= TH <object name>
5968   CXXNameMangler Mangler(*this, Out);
5969   Mangler.getStream() << "_ZTH";
5970   Mangler.mangleName(D);
5971 }
5972 
5973 void
5974 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5975                                                           raw_ostream &Out) {
5976   //  <special-name> ::= TW <object name>
5977   CXXNameMangler Mangler(*this, Out);
5978   Mangler.getStream() << "_ZTW";
5979   Mangler.mangleName(D);
5980 }
5981 
5982 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5983                                                         unsigned ManglingNumber,
5984                                                         raw_ostream &Out) {
5985   // We match the GCC mangling here.
5986   //  <special-name> ::= GR <object name>
5987   CXXNameMangler Mangler(*this, Out);
5988   Mangler.getStream() << "_ZGR";
5989   Mangler.mangleName(D);
5990   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5991   Mangler.mangleSeqID(ManglingNumber - 1);
5992 }
5993 
5994 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5995                                                raw_ostream &Out) {
5996   // <special-name> ::= TV <type>  # virtual table
5997   CXXNameMangler Mangler(*this, Out);
5998   Mangler.getStream() << "_ZTV";
5999   Mangler.mangleNameOrStandardSubstitution(RD);
6000 }
6001 
6002 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6003                                             raw_ostream &Out) {
6004   // <special-name> ::= TT <type>  # VTT structure
6005   CXXNameMangler Mangler(*this, Out);
6006   Mangler.getStream() << "_ZTT";
6007   Mangler.mangleNameOrStandardSubstitution(RD);
6008 }
6009 
6010 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6011                                                    int64_t Offset,
6012                                                    const CXXRecordDecl *Type,
6013                                                    raw_ostream &Out) {
6014   // <special-name> ::= TC <type> <offset number> _ <base type>
6015   CXXNameMangler Mangler(*this, Out);
6016   Mangler.getStream() << "_ZTC";
6017   Mangler.mangleNameOrStandardSubstitution(RD);
6018   Mangler.getStream() << Offset;
6019   Mangler.getStream() << '_';
6020   Mangler.mangleNameOrStandardSubstitution(Type);
6021 }
6022 
6023 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6024   // <special-name> ::= TI <type>  # typeinfo structure
6025   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6026   CXXNameMangler Mangler(*this, Out);
6027   Mangler.getStream() << "_ZTI";
6028   Mangler.mangleType(Ty);
6029 }
6030 
6031 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6032                                                  raw_ostream &Out) {
6033   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6034   CXXNameMangler Mangler(*this, Out);
6035   Mangler.getStream() << "_ZTS";
6036   Mangler.mangleType(Ty);
6037 }
6038 
6039 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6040   mangleCXXRTTIName(Ty, Out);
6041 }
6042 
6043 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6044   llvm_unreachable("Can't mangle string literals");
6045 }
6046 
6047 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6048                                                raw_ostream &Out) {
6049   CXXNameMangler Mangler(*this, Out);
6050   Mangler.mangleLambdaSig(Lambda);
6051 }
6052 
6053 ItaniumMangleContext *
6054 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
6055   return new ItaniumMangleContextImpl(Context, Diags);
6056 }
6057