1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 #define MANGLE_CHECKER 0
36 
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
40 
41 using namespace clang;
42 
43 namespace {
44 
45 /// Retrieve the declaration context that should be used when mangling the given
46 /// declaration.
47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48   // The ABI assumes that lambda closure types that occur within
49   // default arguments live in the context of the function. However, due to
50   // the way in which Clang parses and creates function declarations, this is
51   // not the case: the lambda closure type ends up living in the context
52   // where the function itself resides, because the function declaration itself
53   // had not yet been created. Fix the context here.
54   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55     if (RD->isLambda())
56       if (ParmVarDecl *ContextParam
57             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58         return ContextParam->getDeclContext();
59   }
60 
61   // Perform the same check for block literals.
62   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63     if (ParmVarDecl *ContextParam
64           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65       return ContextParam->getDeclContext();
66   }
67 
68   const DeclContext *DC = D->getDeclContext();
69   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70     return getEffectiveDeclContext(CD);
71 
72   if (const auto *VD = dyn_cast<VarDecl>(D))
73     if (VD->isExternC())
74       return VD->getASTContext().getTranslationUnitDecl();
75 
76   if (const auto *FD = dyn_cast<FunctionDecl>(D))
77     if (FD->isExternC())
78       return FD->getASTContext().getTranslationUnitDecl();
79 
80   return DC;
81 }
82 
83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84   return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86 
87 static bool isLocalContainerContext(const DeclContext *DC) {
88   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90 
91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92   const DeclContext *DC = getEffectiveDeclContext(D);
93   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94     if (isLocalContainerContext(DC))
95       return dyn_cast<RecordDecl>(D);
96     D = cast<Decl>(DC);
97     DC = getEffectiveDeclContext(D);
98   }
99   return nullptr;
100 }
101 
102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104     return ftd->getTemplatedDecl();
105 
106   return fn;
107 }
108 
109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111   return (fn ? getStructor(fn) : decl);
112 }
113 
114 static bool isLambda(const NamedDecl *ND) {
115   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116   if (!Record)
117     return false;
118 
119   return Record->isLambda();
120 }
121 
122 static const unsigned UnknownArity = ~0U;
123 
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128 
129 public:
130   explicit ItaniumMangleContextImpl(ASTContext &Context,
131                                     DiagnosticsEngine &Diags)
132       : ItaniumMangleContext(Context, Diags) {}
133 
134   /// @name Mangler Entry Points
135   /// @{
136 
137   bool shouldMangleCXXName(const NamedDecl *D) override;
138   bool shouldMangleStringLiteral(const StringLiteral *) override {
139     return false;
140   }
141   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
142   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                    raw_ostream &) override;
144   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                           const ThisAdjustment &ThisAdjustment,
146                           raw_ostream &) override;
147   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148                                 raw_ostream &) override;
149   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152                            const CXXRecordDecl *Type, raw_ostream &) override;
153   void mangleCXXRTTI(QualType T, raw_ostream &) override;
154   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155   void mangleTypeName(QualType T, raw_ostream &) override;
156   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
157                      raw_ostream &) override;
158   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
159                      raw_ostream &) override;
160 
161   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
162   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
163   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
164   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
165   void mangleDynamicAtExitDestructor(const VarDecl *D,
166                                      raw_ostream &Out) override;
167   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
168                                  raw_ostream &Out) override;
169   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
170                              raw_ostream &Out) override;
171   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
172   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
173                                        raw_ostream &) override;
174 
175   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
176 
177   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
178     // Lambda closure types are already numbered.
179     if (isLambda(ND))
180       return false;
181 
182     // Anonymous tags are already numbered.
183     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
184       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
185         return false;
186     }
187 
188     // Use the canonical number for externally visible decls.
189     if (ND->isExternallyVisible()) {
190       unsigned discriminator = getASTContext().getManglingNumber(ND);
191       if (discriminator == 1)
192         return false;
193       disc = discriminator - 2;
194       return true;
195     }
196 
197     // Make up a reasonable number for internal decls.
198     unsigned &discriminator = Uniquifier[ND];
199     if (!discriminator) {
200       const DeclContext *DC = getEffectiveDeclContext(ND);
201       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
202     }
203     if (discriminator == 1)
204       return false;
205     disc = discriminator-2;
206     return true;
207   }
208   /// @}
209 };
210 
211 /// Manage the mangling of a single name.
212 class CXXNameMangler {
213   ItaniumMangleContextImpl &Context;
214   raw_ostream &Out;
215 
216   /// The "structor" is the top-level declaration being mangled, if
217   /// that's not a template specialization; otherwise it's the pattern
218   /// for that specialization.
219   const NamedDecl *Structor;
220   unsigned StructorType;
221 
222   /// The next substitution sequence number.
223   unsigned SeqID;
224 
225   class FunctionTypeDepthState {
226     unsigned Bits;
227 
228     enum { InResultTypeMask = 1 };
229 
230   public:
231     FunctionTypeDepthState() : Bits(0) {}
232 
233     /// The number of function types we're inside.
234     unsigned getDepth() const {
235       return Bits >> 1;
236     }
237 
238     /// True if we're in the return type of the innermost function type.
239     bool isInResultType() const {
240       return Bits & InResultTypeMask;
241     }
242 
243     FunctionTypeDepthState push() {
244       FunctionTypeDepthState tmp = *this;
245       Bits = (Bits & ~InResultTypeMask) + 2;
246       return tmp;
247     }
248 
249     void enterResultType() {
250       Bits |= InResultTypeMask;
251     }
252 
253     void leaveResultType() {
254       Bits &= ~InResultTypeMask;
255     }
256 
257     void pop(FunctionTypeDepthState saved) {
258       assert(getDepth() == saved.getDepth() + 1);
259       Bits = saved.Bits;
260     }
261 
262   } FunctionTypeDepth;
263 
264   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
265 
266   ASTContext &getASTContext() const { return Context.getASTContext(); }
267 
268 public:
269   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
270                  const NamedDecl *D = nullptr)
271     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
272       SeqID(0) {
273     // These can't be mangled without a ctor type or dtor type.
274     assert(!D || (!isa<CXXDestructorDecl>(D) &&
275                   !isa<CXXConstructorDecl>(D)));
276   }
277   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
278                  const CXXConstructorDecl *D, CXXCtorType Type)
279     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
280       SeqID(0) { }
281   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
282                  const CXXDestructorDecl *D, CXXDtorType Type)
283     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
284       SeqID(0) { }
285 
286 #if MANGLE_CHECKER
287   ~CXXNameMangler() {
288     if (Out.str()[0] == '\01')
289       return;
290 
291     int status = 0;
292     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
293     assert(status == 0 && "Could not demangle mangled name!");
294     free(result);
295   }
296 #endif
297   raw_ostream &getStream() { return Out; }
298 
299   void mangle(const NamedDecl *D);
300   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
301   void mangleNumber(const llvm::APSInt &I);
302   void mangleNumber(int64_t Number);
303   void mangleFloat(const llvm::APFloat &F);
304   void mangleFunctionEncoding(const FunctionDecl *FD);
305   void mangleSeqID(unsigned SeqID);
306   void mangleName(const NamedDecl *ND);
307   void mangleType(QualType T);
308   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
309 
310 private:
311 
312   bool mangleSubstitution(const NamedDecl *ND);
313   bool mangleSubstitution(QualType T);
314   bool mangleSubstitution(TemplateName Template);
315   bool mangleSubstitution(uintptr_t Ptr);
316 
317   void mangleExistingSubstitution(QualType type);
318   void mangleExistingSubstitution(TemplateName name);
319 
320   bool mangleStandardSubstitution(const NamedDecl *ND);
321 
322   void addSubstitution(const NamedDecl *ND) {
323     ND = cast<NamedDecl>(ND->getCanonicalDecl());
324 
325     addSubstitution(reinterpret_cast<uintptr_t>(ND));
326   }
327   void addSubstitution(QualType T);
328   void addSubstitution(TemplateName Template);
329   void addSubstitution(uintptr_t Ptr);
330 
331   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
332                               bool recursive = false);
333   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
334                             DeclarationName name,
335                             unsigned KnownArity = UnknownArity);
336 
337   void mangleName(const TemplateDecl *TD,
338                   const TemplateArgument *TemplateArgs,
339                   unsigned NumTemplateArgs);
340   void mangleUnqualifiedName(const NamedDecl *ND) {
341     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
342   }
343   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
344                              unsigned KnownArity);
345   void mangleUnscopedName(const NamedDecl *ND);
346   void mangleUnscopedTemplateName(const TemplateDecl *ND);
347   void mangleUnscopedTemplateName(TemplateName);
348   void mangleSourceName(const IdentifierInfo *II);
349   void mangleLocalName(const Decl *D);
350   void mangleBlockForPrefix(const BlockDecl *Block);
351   void mangleUnqualifiedBlock(const BlockDecl *Block);
352   void mangleLambda(const CXXRecordDecl *Lambda);
353   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
354                         bool NoFunction=false);
355   void mangleNestedName(const TemplateDecl *TD,
356                         const TemplateArgument *TemplateArgs,
357                         unsigned NumTemplateArgs);
358   void manglePrefix(NestedNameSpecifier *qualifier);
359   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
360   void manglePrefix(QualType type);
361   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
362   void mangleTemplatePrefix(TemplateName Template);
363   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
364                                       StringRef Prefix = "");
365   void mangleOperatorName(DeclarationName Name, unsigned Arity);
366   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
367   void mangleQualifiers(Qualifiers Quals);
368   void mangleRefQualifier(RefQualifierKind RefQualifier);
369 
370   void mangleObjCMethodName(const ObjCMethodDecl *MD);
371 
372   // Declare manglers for every type class.
373 #define ABSTRACT_TYPE(CLASS, PARENT)
374 #define NON_CANONICAL_TYPE(CLASS, PARENT)
375 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
376 #include "clang/AST/TypeNodes.def"
377 
378   void mangleType(const TagType*);
379   void mangleType(TemplateName);
380   void mangleBareFunctionType(const FunctionType *T,
381                               bool MangleReturnType);
382   void mangleNeonVectorType(const VectorType *T);
383   void mangleAArch64NeonVectorType(const VectorType *T);
384 
385   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
386   void mangleMemberExprBase(const Expr *base, bool isArrow);
387   void mangleMemberExpr(const Expr *base, bool isArrow,
388                         NestedNameSpecifier *qualifier,
389                         NamedDecl *firstQualifierLookup,
390                         DeclarationName name,
391                         unsigned knownArity);
392   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
393   void mangleInitListElements(const InitListExpr *InitList);
394   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
395   void mangleCXXCtorType(CXXCtorType T);
396   void mangleCXXDtorType(CXXDtorType T);
397 
398   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
399   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
400                           unsigned NumTemplateArgs);
401   void mangleTemplateArgs(const TemplateArgumentList &AL);
402   void mangleTemplateArg(TemplateArgument A);
403 
404   void mangleTemplateParameter(unsigned Index);
405 
406   void mangleFunctionParam(const ParmVarDecl *parm);
407 };
408 
409 }
410 
411 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
412   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
413   if (FD) {
414     LanguageLinkage L = FD->getLanguageLinkage();
415     // Overloadable functions need mangling.
416     if (FD->hasAttr<OverloadableAttr>())
417       return true;
418 
419     // "main" is not mangled.
420     if (FD->isMain())
421       return false;
422 
423     // C++ functions and those whose names are not a simple identifier need
424     // mangling.
425     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
426       return true;
427 
428     // C functions are not mangled.
429     if (L == CLanguageLinkage)
430       return false;
431   }
432 
433   // Otherwise, no mangling is done outside C++ mode.
434   if (!getASTContext().getLangOpts().CPlusPlus)
435     return false;
436 
437   const VarDecl *VD = dyn_cast<VarDecl>(D);
438   if (VD) {
439     // C variables are not mangled.
440     if (VD->isExternC())
441       return false;
442 
443     // Variables at global scope with non-internal linkage are not mangled
444     const DeclContext *DC = getEffectiveDeclContext(D);
445     // Check for extern variable declared locally.
446     if (DC->isFunctionOrMethod() && D->hasLinkage())
447       while (!DC->isNamespace() && !DC->isTranslationUnit())
448         DC = getEffectiveParentContext(DC);
449     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
450         !isa<VarTemplateSpecializationDecl>(D))
451       return false;
452   }
453 
454   return true;
455 }
456 
457 void CXXNameMangler::mangle(const NamedDecl *D) {
458   // <mangled-name> ::= _Z <encoding>
459   //            ::= <data name>
460   //            ::= <special-name>
461   Out << "_Z";
462   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
463     mangleFunctionEncoding(FD);
464   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
465     mangleName(VD);
466   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
467     mangleName(IFD->getAnonField());
468   else
469     mangleName(cast<FieldDecl>(D));
470 }
471 
472 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
473   // <encoding> ::= <function name> <bare-function-type>
474   mangleName(FD);
475 
476   // Don't mangle in the type if this isn't a decl we should typically mangle.
477   if (!Context.shouldMangleDeclName(FD))
478     return;
479 
480   if (FD->hasAttr<EnableIfAttr>()) {
481     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
482     Out << "Ua9enable_ifI";
483     // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
484     // it here.
485     for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
486                                          E = FD->getAttrs().rend();
487          I != E; ++I) {
488       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
489       if (!EIA)
490         continue;
491       Out << 'X';
492       mangleExpression(EIA->getCond());
493       Out << 'E';
494     }
495     Out << 'E';
496     FunctionTypeDepth.pop(Saved);
497   }
498 
499   // Whether the mangling of a function type includes the return type depends on
500   // the context and the nature of the function. The rules for deciding whether
501   // the return type is included are:
502   //
503   //   1. Template functions (names or types) have return types encoded, with
504   //   the exceptions listed below.
505   //   2. Function types not appearing as part of a function name mangling,
506   //   e.g. parameters, pointer types, etc., have return type encoded, with the
507   //   exceptions listed below.
508   //   3. Non-template function names do not have return types encoded.
509   //
510   // The exceptions mentioned in (1) and (2) above, for which the return type is
511   // never included, are
512   //   1. Constructors.
513   //   2. Destructors.
514   //   3. Conversion operator functions, e.g. operator int.
515   bool MangleReturnType = false;
516   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
517     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
518           isa<CXXConversionDecl>(FD)))
519       MangleReturnType = true;
520 
521     // Mangle the type of the primary template.
522     FD = PrimaryTemplate->getTemplatedDecl();
523   }
524 
525   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
526                          MangleReturnType);
527 }
528 
529 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
530   while (isa<LinkageSpecDecl>(DC)) {
531     DC = getEffectiveParentContext(DC);
532   }
533 
534   return DC;
535 }
536 
537 /// Return whether a given namespace is the 'std' namespace.
538 static bool isStd(const NamespaceDecl *NS) {
539   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
540                                 ->isTranslationUnit())
541     return false;
542 
543   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
544   return II && II->isStr("std");
545 }
546 
547 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
548 // namespace.
549 static bool isStdNamespace(const DeclContext *DC) {
550   if (!DC->isNamespace())
551     return false;
552 
553   return isStd(cast<NamespaceDecl>(DC));
554 }
555 
556 static const TemplateDecl *
557 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
558   // Check if we have a function template.
559   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
560     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
561       TemplateArgs = FD->getTemplateSpecializationArgs();
562       return TD;
563     }
564   }
565 
566   // Check if we have a class template.
567   if (const ClassTemplateSpecializationDecl *Spec =
568         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
569     TemplateArgs = &Spec->getTemplateArgs();
570     return Spec->getSpecializedTemplate();
571   }
572 
573   // Check if we have a variable template.
574   if (const VarTemplateSpecializationDecl *Spec =
575           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
576     TemplateArgs = &Spec->getTemplateArgs();
577     return Spec->getSpecializedTemplate();
578   }
579 
580   return nullptr;
581 }
582 
583 void CXXNameMangler::mangleName(const NamedDecl *ND) {
584   //  <name> ::= <nested-name>
585   //         ::= <unscoped-name>
586   //         ::= <unscoped-template-name> <template-args>
587   //         ::= <local-name>
588   //
589   const DeclContext *DC = getEffectiveDeclContext(ND);
590 
591   // If this is an extern variable declared locally, the relevant DeclContext
592   // is that of the containing namespace, or the translation unit.
593   // FIXME: This is a hack; extern variables declared locally should have
594   // a proper semantic declaration context!
595   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
596     while (!DC->isNamespace() && !DC->isTranslationUnit())
597       DC = getEffectiveParentContext(DC);
598   else if (GetLocalClassDecl(ND)) {
599     mangleLocalName(ND);
600     return;
601   }
602 
603   DC = IgnoreLinkageSpecDecls(DC);
604 
605   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
606     // Check if we have a template.
607     const TemplateArgumentList *TemplateArgs = nullptr;
608     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
609       mangleUnscopedTemplateName(TD);
610       mangleTemplateArgs(*TemplateArgs);
611       return;
612     }
613 
614     mangleUnscopedName(ND);
615     return;
616   }
617 
618   if (isLocalContainerContext(DC)) {
619     mangleLocalName(ND);
620     return;
621   }
622 
623   mangleNestedName(ND, DC);
624 }
625 void CXXNameMangler::mangleName(const TemplateDecl *TD,
626                                 const TemplateArgument *TemplateArgs,
627                                 unsigned NumTemplateArgs) {
628   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
629 
630   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
631     mangleUnscopedTemplateName(TD);
632     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
633   } else {
634     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
635   }
636 }
637 
638 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
639   //  <unscoped-name> ::= <unqualified-name>
640   //                  ::= St <unqualified-name>   # ::std::
641 
642   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
643     Out << "St";
644 
645   mangleUnqualifiedName(ND);
646 }
647 
648 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
649   //     <unscoped-template-name> ::= <unscoped-name>
650   //                              ::= <substitution>
651   if (mangleSubstitution(ND))
652     return;
653 
654   // <template-template-param> ::= <template-param>
655   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
656     mangleTemplateParameter(TTP->getIndex());
657   else
658     mangleUnscopedName(ND->getTemplatedDecl());
659 
660   addSubstitution(ND);
661 }
662 
663 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
664   //     <unscoped-template-name> ::= <unscoped-name>
665   //                              ::= <substitution>
666   if (TemplateDecl *TD = Template.getAsTemplateDecl())
667     return mangleUnscopedTemplateName(TD);
668 
669   if (mangleSubstitution(Template))
670     return;
671 
672   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
673   assert(Dependent && "Not a dependent template name?");
674   if (const IdentifierInfo *Id = Dependent->getIdentifier())
675     mangleSourceName(Id);
676   else
677     mangleOperatorName(Dependent->getOperator(), UnknownArity);
678 
679   addSubstitution(Template);
680 }
681 
682 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
683   // ABI:
684   //   Floating-point literals are encoded using a fixed-length
685   //   lowercase hexadecimal string corresponding to the internal
686   //   representation (IEEE on Itanium), high-order bytes first,
687   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
688   //   on Itanium.
689   // The 'without leading zeroes' thing seems to be an editorial
690   // mistake; see the discussion on cxx-abi-dev beginning on
691   // 2012-01-16.
692 
693   // Our requirements here are just barely weird enough to justify
694   // using a custom algorithm instead of post-processing APInt::toString().
695 
696   llvm::APInt valueBits = f.bitcastToAPInt();
697   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
698   assert(numCharacters != 0);
699 
700   // Allocate a buffer of the right number of characters.
701   SmallVector<char, 20> buffer(numCharacters);
702 
703   // Fill the buffer left-to-right.
704   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
705     // The bit-index of the next hex digit.
706     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
707 
708     // Project out 4 bits starting at 'digitIndex'.
709     llvm::integerPart hexDigit
710       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
711     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
712     hexDigit &= 0xF;
713 
714     // Map that over to a lowercase hex digit.
715     static const char charForHex[16] = {
716       '0', '1', '2', '3', '4', '5', '6', '7',
717       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
718     };
719     buffer[stringIndex] = charForHex[hexDigit];
720   }
721 
722   Out.write(buffer.data(), numCharacters);
723 }
724 
725 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
726   if (Value.isSigned() && Value.isNegative()) {
727     Out << 'n';
728     Value.abs().print(Out, /*signed*/ false);
729   } else {
730     Value.print(Out, /*signed*/ false);
731   }
732 }
733 
734 void CXXNameMangler::mangleNumber(int64_t Number) {
735   //  <number> ::= [n] <non-negative decimal integer>
736   if (Number < 0) {
737     Out << 'n';
738     Number = -Number;
739   }
740 
741   Out << Number;
742 }
743 
744 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
745   //  <call-offset>  ::= h <nv-offset> _
746   //                 ::= v <v-offset> _
747   //  <nv-offset>    ::= <offset number>        # non-virtual base override
748   //  <v-offset>     ::= <offset number> _ <virtual offset number>
749   //                      # virtual base override, with vcall offset
750   if (!Virtual) {
751     Out << 'h';
752     mangleNumber(NonVirtual);
753     Out << '_';
754     return;
755   }
756 
757   Out << 'v';
758   mangleNumber(NonVirtual);
759   Out << '_';
760   mangleNumber(Virtual);
761   Out << '_';
762 }
763 
764 void CXXNameMangler::manglePrefix(QualType type) {
765   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
766     if (!mangleSubstitution(QualType(TST, 0))) {
767       mangleTemplatePrefix(TST->getTemplateName());
768 
769       // FIXME: GCC does not appear to mangle the template arguments when
770       // the template in question is a dependent template name. Should we
771       // emulate that badness?
772       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
773       addSubstitution(QualType(TST, 0));
774     }
775   } else if (const auto *DTST =
776                  type->getAs<DependentTemplateSpecializationType>()) {
777     if (!mangleSubstitution(QualType(DTST, 0))) {
778       TemplateName Template = getASTContext().getDependentTemplateName(
779           DTST->getQualifier(), DTST->getIdentifier());
780       mangleTemplatePrefix(Template);
781 
782       // FIXME: GCC does not appear to mangle the template arguments when
783       // the template in question is a dependent template name. Should we
784       // emulate that badness?
785       mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
786       addSubstitution(QualType(DTST, 0));
787     }
788   } else {
789     // We use the QualType mangle type variant here because it handles
790     // substitutions.
791     mangleType(type);
792   }
793 }
794 
795 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
796 ///
797 /// \param recursive - true if this is being called recursively,
798 ///   i.e. if there is more prefix "to the right".
799 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
800                                             bool recursive) {
801 
802   // x, ::x
803   // <unresolved-name> ::= [gs] <base-unresolved-name>
804 
805   // T::x / decltype(p)::x
806   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
807 
808   // T::N::x /decltype(p)::N::x
809   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
810   //                       <base-unresolved-name>
811 
812   // A::x, N::y, A<T>::z; "gs" means leading "::"
813   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
814   //                       <base-unresolved-name>
815 
816   switch (qualifier->getKind()) {
817   case NestedNameSpecifier::Global:
818     Out << "gs";
819 
820     // We want an 'sr' unless this is the entire NNS.
821     if (recursive)
822       Out << "sr";
823 
824     // We never want an 'E' here.
825     return;
826 
827   case NestedNameSpecifier::Super:
828     llvm_unreachable("Can't mangle __super specifier");
829 
830   case NestedNameSpecifier::Namespace:
831     if (qualifier->getPrefix())
832       mangleUnresolvedPrefix(qualifier->getPrefix(),
833                              /*recursive*/ true);
834     else
835       Out << "sr";
836     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
837     break;
838   case NestedNameSpecifier::NamespaceAlias:
839     if (qualifier->getPrefix())
840       mangleUnresolvedPrefix(qualifier->getPrefix(),
841                              /*recursive*/ true);
842     else
843       Out << "sr";
844     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
845     break;
846 
847   case NestedNameSpecifier::TypeSpec:
848   case NestedNameSpecifier::TypeSpecWithTemplate: {
849     const Type *type = qualifier->getAsType();
850 
851     // We only want to use an unresolved-type encoding if this is one of:
852     //   - a decltype
853     //   - a template type parameter
854     //   - a template template parameter with arguments
855     // In all of these cases, we should have no prefix.
856     if (qualifier->getPrefix()) {
857       mangleUnresolvedPrefix(qualifier->getPrefix(),
858                              /*recursive*/ true);
859     } else {
860       // Otherwise, all the cases want this.
861       Out << "sr";
862     }
863 
864     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
865       return;
866 
867     break;
868   }
869 
870   case NestedNameSpecifier::Identifier:
871     // Member expressions can have these without prefixes.
872     if (qualifier->getPrefix())
873       mangleUnresolvedPrefix(qualifier->getPrefix(),
874                              /*recursive*/ true);
875     else
876       Out << "sr";
877 
878     mangleSourceName(qualifier->getAsIdentifier());
879     break;
880   }
881 
882   // If this was the innermost part of the NNS, and we fell out to
883   // here, append an 'E'.
884   if (!recursive)
885     Out << 'E';
886 }
887 
888 /// Mangle an unresolved-name, which is generally used for names which
889 /// weren't resolved to specific entities.
890 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
891                                           DeclarationName name,
892                                           unsigned knownArity) {
893   if (qualifier) mangleUnresolvedPrefix(qualifier);
894   switch (name.getNameKind()) {
895     // <base-unresolved-name> ::= <simple-id>
896     case DeclarationName::Identifier:
897       mangleSourceName(name.getAsIdentifierInfo());
898       break;
899     // <base-unresolved-name> ::= dn <destructor-name>
900     case DeclarationName::CXXDestructorName:
901       Out << "dn";
902       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
903       break;
904     // <base-unresolved-name> ::= on <operator-name>
905     case DeclarationName::CXXConversionFunctionName:
906     case DeclarationName::CXXLiteralOperatorName:
907     case DeclarationName::CXXOperatorName:
908       Out << "on";
909       mangleOperatorName(name, knownArity);
910       break;
911     case DeclarationName::CXXConstructorName:
912       llvm_unreachable("Can't mangle a constructor name!");
913     case DeclarationName::CXXUsingDirective:
914       llvm_unreachable("Can't mangle a using directive name!");
915     case DeclarationName::ObjCMultiArgSelector:
916     case DeclarationName::ObjCOneArgSelector:
917     case DeclarationName::ObjCZeroArgSelector:
918       llvm_unreachable("Can't mangle Objective-C selector names here!");
919   }
920 }
921 
922 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
923                                            DeclarationName Name,
924                                            unsigned KnownArity) {
925   unsigned Arity = KnownArity;
926   //  <unqualified-name> ::= <operator-name>
927   //                     ::= <ctor-dtor-name>
928   //                     ::= <source-name>
929   switch (Name.getNameKind()) {
930   case DeclarationName::Identifier: {
931     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
932       // We must avoid conflicts between internally- and externally-
933       // linked variable and function declaration names in the same TU:
934       //   void test() { extern void foo(); }
935       //   static void foo();
936       // This naming convention is the same as that followed by GCC,
937       // though it shouldn't actually matter.
938       if (ND && ND->getFormalLinkage() == InternalLinkage &&
939           getEffectiveDeclContext(ND)->isFileContext())
940         Out << 'L';
941 
942       mangleSourceName(II);
943       break;
944     }
945 
946     // Otherwise, an anonymous entity.  We must have a declaration.
947     assert(ND && "mangling empty name without declaration");
948 
949     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
950       if (NS->isAnonymousNamespace()) {
951         // This is how gcc mangles these names.
952         Out << "12_GLOBAL__N_1";
953         break;
954       }
955     }
956 
957     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
958       // We must have an anonymous union or struct declaration.
959       const RecordDecl *RD =
960         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
961 
962       // Itanium C++ ABI 5.1.2:
963       //
964       //   For the purposes of mangling, the name of an anonymous union is
965       //   considered to be the name of the first named data member found by a
966       //   pre-order, depth-first, declaration-order walk of the data members of
967       //   the anonymous union. If there is no such data member (i.e., if all of
968       //   the data members in the union are unnamed), then there is no way for
969       //   a program to refer to the anonymous union, and there is therefore no
970       //   need to mangle its name.
971       assert(RD->isAnonymousStructOrUnion()
972              && "Expected anonymous struct or union!");
973       const FieldDecl *FD = RD->findFirstNamedDataMember();
974 
975       // It's actually possible for various reasons for us to get here
976       // with an empty anonymous struct / union.  Fortunately, it
977       // doesn't really matter what name we generate.
978       if (!FD) break;
979       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
980 
981       mangleSourceName(FD->getIdentifier());
982       break;
983     }
984 
985     // Class extensions have no name as a category, and it's possible
986     // for them to be the semantic parent of certain declarations
987     // (primarily, tag decls defined within declarations).  Such
988     // declarations will always have internal linkage, so the name
989     // doesn't really matter, but we shouldn't crash on them.  For
990     // safety, just handle all ObjC containers here.
991     if (isa<ObjCContainerDecl>(ND))
992       break;
993 
994     // We must have an anonymous struct.
995     const TagDecl *TD = cast<TagDecl>(ND);
996     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
997       assert(TD->getDeclContext() == D->getDeclContext() &&
998              "Typedef should not be in another decl context!");
999       assert(D->getDeclName().getAsIdentifierInfo() &&
1000              "Typedef was not named!");
1001       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1002       break;
1003     }
1004 
1005     // <unnamed-type-name> ::= <closure-type-name>
1006     //
1007     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1008     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1009     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1010       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1011         mangleLambda(Record);
1012         break;
1013       }
1014     }
1015 
1016     if (TD->isExternallyVisible()) {
1017       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1018       Out << "Ut";
1019       if (UnnamedMangle > 1)
1020         Out << llvm::utostr(UnnamedMangle - 2);
1021       Out << '_';
1022       break;
1023     }
1024 
1025     // Get a unique id for the anonymous struct.
1026     unsigned AnonStructId = Context.getAnonymousStructId(TD);
1027 
1028     // Mangle it as a source name in the form
1029     // [n] $_<id>
1030     // where n is the length of the string.
1031     SmallString<8> Str;
1032     Str += "$_";
1033     Str += llvm::utostr(AnonStructId);
1034 
1035     Out << Str.size();
1036     Out << Str;
1037     break;
1038   }
1039 
1040   case DeclarationName::ObjCZeroArgSelector:
1041   case DeclarationName::ObjCOneArgSelector:
1042   case DeclarationName::ObjCMultiArgSelector:
1043     llvm_unreachable("Can't mangle Objective-C selector names here!");
1044 
1045   case DeclarationName::CXXConstructorName:
1046     if (ND == Structor)
1047       // If the named decl is the C++ constructor we're mangling, use the type
1048       // we were given.
1049       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1050     else
1051       // Otherwise, use the complete constructor name. This is relevant if a
1052       // class with a constructor is declared within a constructor.
1053       mangleCXXCtorType(Ctor_Complete);
1054     break;
1055 
1056   case DeclarationName::CXXDestructorName:
1057     if (ND == Structor)
1058       // If the named decl is the C++ destructor we're mangling, use the type we
1059       // were given.
1060       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1061     else
1062       // Otherwise, use the complete destructor name. This is relevant if a
1063       // class with a destructor is declared within a destructor.
1064       mangleCXXDtorType(Dtor_Complete);
1065     break;
1066 
1067   case DeclarationName::CXXOperatorName:
1068     if (ND && Arity == UnknownArity) {
1069       Arity = cast<FunctionDecl>(ND)->getNumParams();
1070 
1071       // If we have a member function, we need to include the 'this' pointer.
1072       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1073         if (!MD->isStatic())
1074           Arity++;
1075     }
1076   // FALLTHROUGH
1077   case DeclarationName::CXXConversionFunctionName:
1078   case DeclarationName::CXXLiteralOperatorName:
1079     mangleOperatorName(Name, Arity);
1080     break;
1081 
1082   case DeclarationName::CXXUsingDirective:
1083     llvm_unreachable("Can't mangle a using directive name!");
1084   }
1085 }
1086 
1087 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1088   // <source-name> ::= <positive length number> <identifier>
1089   // <number> ::= [n] <non-negative decimal integer>
1090   // <identifier> ::= <unqualified source code identifier>
1091   Out << II->getLength() << II->getName();
1092 }
1093 
1094 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1095                                       const DeclContext *DC,
1096                                       bool NoFunction) {
1097   // <nested-name>
1098   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1099   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1100   //       <template-args> E
1101 
1102   Out << 'N';
1103   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1104     Qualifiers MethodQuals =
1105         Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1106     // We do not consider restrict a distinguishing attribute for overloading
1107     // purposes so we must not mangle it.
1108     MethodQuals.removeRestrict();
1109     mangleQualifiers(MethodQuals);
1110     mangleRefQualifier(Method->getRefQualifier());
1111   }
1112 
1113   // Check if we have a template.
1114   const TemplateArgumentList *TemplateArgs = nullptr;
1115   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1116     mangleTemplatePrefix(TD, NoFunction);
1117     mangleTemplateArgs(*TemplateArgs);
1118   }
1119   else {
1120     manglePrefix(DC, NoFunction);
1121     mangleUnqualifiedName(ND);
1122   }
1123 
1124   Out << 'E';
1125 }
1126 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1127                                       const TemplateArgument *TemplateArgs,
1128                                       unsigned NumTemplateArgs) {
1129   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1130 
1131   Out << 'N';
1132 
1133   mangleTemplatePrefix(TD);
1134   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1135 
1136   Out << 'E';
1137 }
1138 
1139 void CXXNameMangler::mangleLocalName(const Decl *D) {
1140   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1141   //              := Z <function encoding> E s [<discriminator>]
1142   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1143   //                 _ <entity name>
1144   // <discriminator> := _ <non-negative number>
1145   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1146   const RecordDecl *RD = GetLocalClassDecl(D);
1147   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1148 
1149   Out << 'Z';
1150 
1151   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1152     mangleObjCMethodName(MD);
1153   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1154     mangleBlockForPrefix(BD);
1155   else
1156     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1157 
1158   Out << 'E';
1159 
1160   if (RD) {
1161     // The parameter number is omitted for the last parameter, 0 for the
1162     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1163     // <entity name> will of course contain a <closure-type-name>: Its
1164     // numbering will be local to the particular argument in which it appears
1165     // -- other default arguments do not affect its encoding.
1166     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1167     if (CXXRD->isLambda()) {
1168       if (const ParmVarDecl *Parm
1169               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1170         if (const FunctionDecl *Func
1171               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1172           Out << 'd';
1173           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1174           if (Num > 1)
1175             mangleNumber(Num - 2);
1176           Out << '_';
1177         }
1178       }
1179     }
1180 
1181     // Mangle the name relative to the closest enclosing function.
1182     // equality ok because RD derived from ND above
1183     if (D == RD)  {
1184       mangleUnqualifiedName(RD);
1185     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1186       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1187       mangleUnqualifiedBlock(BD);
1188     } else {
1189       const NamedDecl *ND = cast<NamedDecl>(D);
1190       mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1191     }
1192   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1193     // Mangle a block in a default parameter; see above explanation for
1194     // lambdas.
1195     if (const ParmVarDecl *Parm
1196             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1197       if (const FunctionDecl *Func
1198             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1199         Out << 'd';
1200         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1201         if (Num > 1)
1202           mangleNumber(Num - 2);
1203         Out << '_';
1204       }
1205     }
1206 
1207     mangleUnqualifiedBlock(BD);
1208   } else {
1209     mangleUnqualifiedName(cast<NamedDecl>(D));
1210   }
1211 
1212   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1213     unsigned disc;
1214     if (Context.getNextDiscriminator(ND, disc)) {
1215       if (disc < 10)
1216         Out << '_' << disc;
1217       else
1218         Out << "__" << disc << '_';
1219     }
1220   }
1221 }
1222 
1223 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1224   if (GetLocalClassDecl(Block)) {
1225     mangleLocalName(Block);
1226     return;
1227   }
1228   const DeclContext *DC = getEffectiveDeclContext(Block);
1229   if (isLocalContainerContext(DC)) {
1230     mangleLocalName(Block);
1231     return;
1232   }
1233   manglePrefix(getEffectiveDeclContext(Block));
1234   mangleUnqualifiedBlock(Block);
1235 }
1236 
1237 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1238   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1239     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1240         Context->getDeclContext()->isRecord()) {
1241       if (const IdentifierInfo *Name
1242             = cast<NamedDecl>(Context)->getIdentifier()) {
1243         mangleSourceName(Name);
1244         Out << 'M';
1245       }
1246     }
1247   }
1248 
1249   // If we have a block mangling number, use it.
1250   unsigned Number = Block->getBlockManglingNumber();
1251   // Otherwise, just make up a number. It doesn't matter what it is because
1252   // the symbol in question isn't externally visible.
1253   if (!Number)
1254     Number = Context.getBlockId(Block, false);
1255   Out << "Ub";
1256   if (Number > 0)
1257     Out << Number - 1;
1258   Out << '_';
1259 }
1260 
1261 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1262   // If the context of a closure type is an initializer for a class member
1263   // (static or nonstatic), it is encoded in a qualified name with a final
1264   // <prefix> of the form:
1265   //
1266   //   <data-member-prefix> := <member source-name> M
1267   //
1268   // Technically, the data-member-prefix is part of the <prefix>. However,
1269   // since a closure type will always be mangled with a prefix, it's easier
1270   // to emit that last part of the prefix here.
1271   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1272     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1273         Context->getDeclContext()->isRecord()) {
1274       if (const IdentifierInfo *Name
1275             = cast<NamedDecl>(Context)->getIdentifier()) {
1276         mangleSourceName(Name);
1277         Out << 'M';
1278       }
1279     }
1280   }
1281 
1282   Out << "Ul";
1283   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1284                                    getAs<FunctionProtoType>();
1285   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1286   Out << "E";
1287 
1288   // The number is omitted for the first closure type with a given
1289   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1290   // (in lexical order) with that same <lambda-sig> and context.
1291   //
1292   // The AST keeps track of the number for us.
1293   unsigned Number = Lambda->getLambdaManglingNumber();
1294   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1295   if (Number > 1)
1296     mangleNumber(Number - 2);
1297   Out << '_';
1298 }
1299 
1300 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1301   switch (qualifier->getKind()) {
1302   case NestedNameSpecifier::Global:
1303     // nothing
1304     return;
1305 
1306   case NestedNameSpecifier::Super:
1307     llvm_unreachable("Can't mangle __super specifier");
1308 
1309   case NestedNameSpecifier::Namespace:
1310     mangleName(qualifier->getAsNamespace());
1311     return;
1312 
1313   case NestedNameSpecifier::NamespaceAlias:
1314     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1315     return;
1316 
1317   case NestedNameSpecifier::TypeSpec:
1318   case NestedNameSpecifier::TypeSpecWithTemplate:
1319     manglePrefix(QualType(qualifier->getAsType(), 0));
1320     return;
1321 
1322   case NestedNameSpecifier::Identifier:
1323     // Member expressions can have these without prefixes, but that
1324     // should end up in mangleUnresolvedPrefix instead.
1325     assert(qualifier->getPrefix());
1326     manglePrefix(qualifier->getPrefix());
1327 
1328     mangleSourceName(qualifier->getAsIdentifier());
1329     return;
1330   }
1331 
1332   llvm_unreachable("unexpected nested name specifier");
1333 }
1334 
1335 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1336   //  <prefix> ::= <prefix> <unqualified-name>
1337   //           ::= <template-prefix> <template-args>
1338   //           ::= <template-param>
1339   //           ::= # empty
1340   //           ::= <substitution>
1341 
1342   DC = IgnoreLinkageSpecDecls(DC);
1343 
1344   if (DC->isTranslationUnit())
1345     return;
1346 
1347   if (NoFunction && isLocalContainerContext(DC))
1348     return;
1349 
1350   assert(!isLocalContainerContext(DC));
1351 
1352   const NamedDecl *ND = cast<NamedDecl>(DC);
1353   if (mangleSubstitution(ND))
1354     return;
1355 
1356   // Check if we have a template.
1357   const TemplateArgumentList *TemplateArgs = nullptr;
1358   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1359     mangleTemplatePrefix(TD);
1360     mangleTemplateArgs(*TemplateArgs);
1361   } else {
1362     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1363     mangleUnqualifiedName(ND);
1364   }
1365 
1366   addSubstitution(ND);
1367 }
1368 
1369 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1370   // <template-prefix> ::= <prefix> <template unqualified-name>
1371   //                   ::= <template-param>
1372   //                   ::= <substitution>
1373   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1374     return mangleTemplatePrefix(TD);
1375 
1376   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1377     manglePrefix(Qualified->getQualifier());
1378 
1379   if (OverloadedTemplateStorage *Overloaded
1380                                       = Template.getAsOverloadedTemplate()) {
1381     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1382                           UnknownArity);
1383     return;
1384   }
1385 
1386   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1387   assert(Dependent && "Unknown template name kind?");
1388   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1389     manglePrefix(Qualifier);
1390   mangleUnscopedTemplateName(Template);
1391 }
1392 
1393 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1394                                           bool NoFunction) {
1395   // <template-prefix> ::= <prefix> <template unqualified-name>
1396   //                   ::= <template-param>
1397   //                   ::= <substitution>
1398   // <template-template-param> ::= <template-param>
1399   //                               <substitution>
1400 
1401   if (mangleSubstitution(ND))
1402     return;
1403 
1404   // <template-template-param> ::= <template-param>
1405   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1406     mangleTemplateParameter(TTP->getIndex());
1407   } else {
1408     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1409     mangleUnqualifiedName(ND->getTemplatedDecl());
1410   }
1411 
1412   addSubstitution(ND);
1413 }
1414 
1415 /// Mangles a template name under the production <type>.  Required for
1416 /// template template arguments.
1417 ///   <type> ::= <class-enum-type>
1418 ///          ::= <template-param>
1419 ///          ::= <substitution>
1420 void CXXNameMangler::mangleType(TemplateName TN) {
1421   if (mangleSubstitution(TN))
1422     return;
1423 
1424   TemplateDecl *TD = nullptr;
1425 
1426   switch (TN.getKind()) {
1427   case TemplateName::QualifiedTemplate:
1428     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1429     goto HaveDecl;
1430 
1431   case TemplateName::Template:
1432     TD = TN.getAsTemplateDecl();
1433     goto HaveDecl;
1434 
1435   HaveDecl:
1436     if (isa<TemplateTemplateParmDecl>(TD))
1437       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1438     else
1439       mangleName(TD);
1440     break;
1441 
1442   case TemplateName::OverloadedTemplate:
1443     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1444 
1445   case TemplateName::DependentTemplate: {
1446     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1447     assert(Dependent->isIdentifier());
1448 
1449     // <class-enum-type> ::= <name>
1450     // <name> ::= <nested-name>
1451     mangleUnresolvedPrefix(Dependent->getQualifier());
1452     mangleSourceName(Dependent->getIdentifier());
1453     break;
1454   }
1455 
1456   case TemplateName::SubstTemplateTemplateParm: {
1457     // Substituted template parameters are mangled as the substituted
1458     // template.  This will check for the substitution twice, which is
1459     // fine, but we have to return early so that we don't try to *add*
1460     // the substitution twice.
1461     SubstTemplateTemplateParmStorage *subst
1462       = TN.getAsSubstTemplateTemplateParm();
1463     mangleType(subst->getReplacement());
1464     return;
1465   }
1466 
1467   case TemplateName::SubstTemplateTemplateParmPack: {
1468     // FIXME: not clear how to mangle this!
1469     // template <template <class> class T...> class A {
1470     //   template <template <class> class U...> void foo(B<T,U> x...);
1471     // };
1472     Out << "_SUBSTPACK_";
1473     break;
1474   }
1475   }
1476 
1477   addSubstitution(TN);
1478 }
1479 
1480 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1481                                                     StringRef Prefix) {
1482   // Only certain other types are valid as prefixes;  enumerate them.
1483   switch (Ty->getTypeClass()) {
1484   case Type::Builtin:
1485   case Type::Complex:
1486   case Type::Adjusted:
1487   case Type::Decayed:
1488   case Type::Pointer:
1489   case Type::BlockPointer:
1490   case Type::LValueReference:
1491   case Type::RValueReference:
1492   case Type::MemberPointer:
1493   case Type::ConstantArray:
1494   case Type::IncompleteArray:
1495   case Type::VariableArray:
1496   case Type::DependentSizedArray:
1497   case Type::DependentSizedExtVector:
1498   case Type::Vector:
1499   case Type::ExtVector:
1500   case Type::FunctionProto:
1501   case Type::FunctionNoProto:
1502   case Type::Paren:
1503   case Type::Attributed:
1504   case Type::Auto:
1505   case Type::PackExpansion:
1506   case Type::ObjCObject:
1507   case Type::ObjCInterface:
1508   case Type::ObjCObjectPointer:
1509   case Type::Atomic:
1510     llvm_unreachable("type is illegal as a nested name specifier");
1511 
1512   case Type::SubstTemplateTypeParmPack:
1513     // FIXME: not clear how to mangle this!
1514     // template <class T...> class A {
1515     //   template <class U...> void foo(decltype(T::foo(U())) x...);
1516     // };
1517     Out << "_SUBSTPACK_";
1518     break;
1519 
1520   // <unresolved-type> ::= <template-param>
1521   //                   ::= <decltype>
1522   //                   ::= <template-template-param> <template-args>
1523   // (this last is not official yet)
1524   case Type::TypeOfExpr:
1525   case Type::TypeOf:
1526   case Type::Decltype:
1527   case Type::TemplateTypeParm:
1528   case Type::UnaryTransform:
1529   case Type::SubstTemplateTypeParm:
1530   unresolvedType:
1531     // Some callers want a prefix before the mangled type.
1532     Out << Prefix;
1533 
1534     // This seems to do everything we want.  It's not really
1535     // sanctioned for a substituted template parameter, though.
1536     mangleType(Ty);
1537 
1538     // We never want to print 'E' directly after an unresolved-type,
1539     // so we return directly.
1540     return true;
1541 
1542   case Type::Typedef:
1543     mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
1544     break;
1545 
1546   case Type::UnresolvedUsing:
1547     mangleSourceName(
1548         cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
1549     break;
1550 
1551   case Type::Enum:
1552   case Type::Record:
1553     mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
1554     break;
1555 
1556   case Type::TemplateSpecialization: {
1557     const TemplateSpecializationType *TST =
1558         cast<TemplateSpecializationType>(Ty);
1559     TemplateName TN = TST->getTemplateName();
1560     switch (TN.getKind()) {
1561     case TemplateName::Template:
1562     case TemplateName::QualifiedTemplate: {
1563       TemplateDecl *TD = TN.getAsTemplateDecl();
1564 
1565       // If the base is a template template parameter, this is an
1566       // unresolved type.
1567       assert(TD && "no template for template specialization type");
1568       if (isa<TemplateTemplateParmDecl>(TD))
1569         goto unresolvedType;
1570 
1571       mangleSourceName(TD->getIdentifier());
1572       break;
1573     }
1574 
1575     case TemplateName::OverloadedTemplate:
1576     case TemplateName::DependentTemplate:
1577       llvm_unreachable("invalid base for a template specialization type");
1578 
1579     case TemplateName::SubstTemplateTemplateParm: {
1580       SubstTemplateTemplateParmStorage *subst =
1581           TN.getAsSubstTemplateTemplateParm();
1582       mangleExistingSubstitution(subst->getReplacement());
1583       break;
1584     }
1585 
1586     case TemplateName::SubstTemplateTemplateParmPack: {
1587       // FIXME: not clear how to mangle this!
1588       // template <template <class U> class T...> class A {
1589       //   template <class U...> void foo(decltype(T<U>::foo) x...);
1590       // };
1591       Out << "_SUBSTPACK_";
1592       break;
1593     }
1594     }
1595 
1596     mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1597     break;
1598   }
1599 
1600   case Type::InjectedClassName:
1601     mangleSourceName(
1602         cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
1603     break;
1604 
1605   case Type::DependentName:
1606     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1607     break;
1608 
1609   case Type::DependentTemplateSpecialization: {
1610     const DependentTemplateSpecializationType *DTST =
1611         cast<DependentTemplateSpecializationType>(Ty);
1612     mangleSourceName(DTST->getIdentifier());
1613     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1614     break;
1615   }
1616 
1617   case Type::Elaborated:
1618     return mangleUnresolvedTypeOrSimpleId(
1619         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1620   }
1621 
1622   return false;
1623 }
1624 
1625 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1626   switch (Name.getNameKind()) {
1627   case DeclarationName::CXXConstructorName:
1628   case DeclarationName::CXXDestructorName:
1629   case DeclarationName::CXXUsingDirective:
1630   case DeclarationName::Identifier:
1631   case DeclarationName::ObjCMultiArgSelector:
1632   case DeclarationName::ObjCOneArgSelector:
1633   case DeclarationName::ObjCZeroArgSelector:
1634     llvm_unreachable("Not an operator name");
1635 
1636   case DeclarationName::CXXConversionFunctionName:
1637     // <operator-name> ::= cv <type>    # (cast)
1638     Out << "cv";
1639     mangleType(Name.getCXXNameType());
1640     break;
1641 
1642   case DeclarationName::CXXLiteralOperatorName:
1643     Out << "li";
1644     mangleSourceName(Name.getCXXLiteralIdentifier());
1645     return;
1646 
1647   case DeclarationName::CXXOperatorName:
1648     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1649     break;
1650   }
1651 }
1652 
1653 
1654 
1655 void
1656 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1657   switch (OO) {
1658   // <operator-name> ::= nw     # new
1659   case OO_New: Out << "nw"; break;
1660   //              ::= na        # new[]
1661   case OO_Array_New: Out << "na"; break;
1662   //              ::= dl        # delete
1663   case OO_Delete: Out << "dl"; break;
1664   //              ::= da        # delete[]
1665   case OO_Array_Delete: Out << "da"; break;
1666   //              ::= ps        # + (unary)
1667   //              ::= pl        # + (binary or unknown)
1668   case OO_Plus:
1669     Out << (Arity == 1? "ps" : "pl"); break;
1670   //              ::= ng        # - (unary)
1671   //              ::= mi        # - (binary or unknown)
1672   case OO_Minus:
1673     Out << (Arity == 1? "ng" : "mi"); break;
1674   //              ::= ad        # & (unary)
1675   //              ::= an        # & (binary or unknown)
1676   case OO_Amp:
1677     Out << (Arity == 1? "ad" : "an"); break;
1678   //              ::= de        # * (unary)
1679   //              ::= ml        # * (binary or unknown)
1680   case OO_Star:
1681     // Use binary when unknown.
1682     Out << (Arity == 1? "de" : "ml"); break;
1683   //              ::= co        # ~
1684   case OO_Tilde: Out << "co"; break;
1685   //              ::= dv        # /
1686   case OO_Slash: Out << "dv"; break;
1687   //              ::= rm        # %
1688   case OO_Percent: Out << "rm"; break;
1689   //              ::= or        # |
1690   case OO_Pipe: Out << "or"; break;
1691   //              ::= eo        # ^
1692   case OO_Caret: Out << "eo"; break;
1693   //              ::= aS        # =
1694   case OO_Equal: Out << "aS"; break;
1695   //              ::= pL        # +=
1696   case OO_PlusEqual: Out << "pL"; break;
1697   //              ::= mI        # -=
1698   case OO_MinusEqual: Out << "mI"; break;
1699   //              ::= mL        # *=
1700   case OO_StarEqual: Out << "mL"; break;
1701   //              ::= dV        # /=
1702   case OO_SlashEqual: Out << "dV"; break;
1703   //              ::= rM        # %=
1704   case OO_PercentEqual: Out << "rM"; break;
1705   //              ::= aN        # &=
1706   case OO_AmpEqual: Out << "aN"; break;
1707   //              ::= oR        # |=
1708   case OO_PipeEqual: Out << "oR"; break;
1709   //              ::= eO        # ^=
1710   case OO_CaretEqual: Out << "eO"; break;
1711   //              ::= ls        # <<
1712   case OO_LessLess: Out << "ls"; break;
1713   //              ::= rs        # >>
1714   case OO_GreaterGreater: Out << "rs"; break;
1715   //              ::= lS        # <<=
1716   case OO_LessLessEqual: Out << "lS"; break;
1717   //              ::= rS        # >>=
1718   case OO_GreaterGreaterEqual: Out << "rS"; break;
1719   //              ::= eq        # ==
1720   case OO_EqualEqual: Out << "eq"; break;
1721   //              ::= ne        # !=
1722   case OO_ExclaimEqual: Out << "ne"; break;
1723   //              ::= lt        # <
1724   case OO_Less: Out << "lt"; break;
1725   //              ::= gt        # >
1726   case OO_Greater: Out << "gt"; break;
1727   //              ::= le        # <=
1728   case OO_LessEqual: Out << "le"; break;
1729   //              ::= ge        # >=
1730   case OO_GreaterEqual: Out << "ge"; break;
1731   //              ::= nt        # !
1732   case OO_Exclaim: Out << "nt"; break;
1733   //              ::= aa        # &&
1734   case OO_AmpAmp: Out << "aa"; break;
1735   //              ::= oo        # ||
1736   case OO_PipePipe: Out << "oo"; break;
1737   //              ::= pp        # ++
1738   case OO_PlusPlus: Out << "pp"; break;
1739   //              ::= mm        # --
1740   case OO_MinusMinus: Out << "mm"; break;
1741   //              ::= cm        # ,
1742   case OO_Comma: Out << "cm"; break;
1743   //              ::= pm        # ->*
1744   case OO_ArrowStar: Out << "pm"; break;
1745   //              ::= pt        # ->
1746   case OO_Arrow: Out << "pt"; break;
1747   //              ::= cl        # ()
1748   case OO_Call: Out << "cl"; break;
1749   //              ::= ix        # []
1750   case OO_Subscript: Out << "ix"; break;
1751 
1752   //              ::= qu        # ?
1753   // The conditional operator can't be overloaded, but we still handle it when
1754   // mangling expressions.
1755   case OO_Conditional: Out << "qu"; break;
1756   // Proposal on cxx-abi-dev, 2015-10-21.
1757   //              ::= aw        # co_await
1758   case OO_Coawait: Out << "aw"; break;
1759 
1760   case OO_None:
1761   case NUM_OVERLOADED_OPERATORS:
1762     llvm_unreachable("Not an overloaded operator");
1763   }
1764 }
1765 
1766 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1767   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1768   if (Quals.hasRestrict())
1769     Out << 'r';
1770   if (Quals.hasVolatile())
1771     Out << 'V';
1772   if (Quals.hasConst())
1773     Out << 'K';
1774 
1775   if (Quals.hasAddressSpace()) {
1776     // Address space extension:
1777     //
1778     //   <type> ::= U <target-addrspace>
1779     //   <type> ::= U <OpenCL-addrspace>
1780     //   <type> ::= U <CUDA-addrspace>
1781 
1782     SmallString<64> ASString;
1783     unsigned AS = Quals.getAddressSpace();
1784 
1785     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1786       //  <target-addrspace> ::= "AS" <address-space-number>
1787       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1788       ASString = "AS" + llvm::utostr_32(TargetAS);
1789     } else {
1790       switch (AS) {
1791       default: llvm_unreachable("Not a language specific address space");
1792       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1793       case LangAS::opencl_global:   ASString = "CLglobal";   break;
1794       case LangAS::opencl_local:    ASString = "CLlocal";    break;
1795       case LangAS::opencl_constant: ASString = "CLconstant"; break;
1796       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1797       case LangAS::cuda_device:     ASString = "CUdevice";   break;
1798       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1799       case LangAS::cuda_shared:     ASString = "CUshared";   break;
1800       }
1801     }
1802     Out << 'U' << ASString.size() << ASString;
1803   }
1804 
1805   StringRef LifetimeName;
1806   switch (Quals.getObjCLifetime()) {
1807   // Objective-C ARC Extension:
1808   //
1809   //   <type> ::= U "__strong"
1810   //   <type> ::= U "__weak"
1811   //   <type> ::= U "__autoreleasing"
1812   case Qualifiers::OCL_None:
1813     break;
1814 
1815   case Qualifiers::OCL_Weak:
1816     LifetimeName = "__weak";
1817     break;
1818 
1819   case Qualifiers::OCL_Strong:
1820     LifetimeName = "__strong";
1821     break;
1822 
1823   case Qualifiers::OCL_Autoreleasing:
1824     LifetimeName = "__autoreleasing";
1825     break;
1826 
1827   case Qualifiers::OCL_ExplicitNone:
1828     // The __unsafe_unretained qualifier is *not* mangled, so that
1829     // __unsafe_unretained types in ARC produce the same manglings as the
1830     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1831     // better ABI compatibility.
1832     //
1833     // It's safe to do this because unqualified 'id' won't show up
1834     // in any type signatures that need to be mangled.
1835     break;
1836   }
1837   if (!LifetimeName.empty())
1838     Out << 'U' << LifetimeName.size() << LifetimeName;
1839 }
1840 
1841 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1842   // <ref-qualifier> ::= R                # lvalue reference
1843   //                 ::= O                # rvalue-reference
1844   switch (RefQualifier) {
1845   case RQ_None:
1846     break;
1847 
1848   case RQ_LValue:
1849     Out << 'R';
1850     break;
1851 
1852   case RQ_RValue:
1853     Out << 'O';
1854     break;
1855   }
1856 }
1857 
1858 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1859   Context.mangleObjCMethodName(MD, Out);
1860 }
1861 
1862 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1863   if (Quals)
1864     return true;
1865   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1866     return true;
1867   if (Ty->isOpenCLSpecificType())
1868     return true;
1869   if (Ty->isBuiltinType())
1870     return false;
1871 
1872   return true;
1873 }
1874 
1875 void CXXNameMangler::mangleType(QualType T) {
1876   // If our type is instantiation-dependent but not dependent, we mangle
1877   // it as it was written in the source, removing any top-level sugar.
1878   // Otherwise, use the canonical type.
1879   //
1880   // FIXME: This is an approximation of the instantiation-dependent name
1881   // mangling rules, since we should really be using the type as written and
1882   // augmented via semantic analysis (i.e., with implicit conversions and
1883   // default template arguments) for any instantiation-dependent type.
1884   // Unfortunately, that requires several changes to our AST:
1885   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1886   //     uniqued, so that we can handle substitutions properly
1887   //   - Default template arguments will need to be represented in the
1888   //     TemplateSpecializationType, since they need to be mangled even though
1889   //     they aren't written.
1890   //   - Conversions on non-type template arguments need to be expressed, since
1891   //     they can affect the mangling of sizeof/alignof.
1892   if (!T->isInstantiationDependentType() || T->isDependentType())
1893     T = T.getCanonicalType();
1894   else {
1895     // Desugar any types that are purely sugar.
1896     do {
1897       // Don't desugar through template specialization types that aren't
1898       // type aliases. We need to mangle the template arguments as written.
1899       if (const TemplateSpecializationType *TST
1900                                       = dyn_cast<TemplateSpecializationType>(T))
1901         if (!TST->isTypeAlias())
1902           break;
1903 
1904       QualType Desugared
1905         = T.getSingleStepDesugaredType(Context.getASTContext());
1906       if (Desugared == T)
1907         break;
1908 
1909       T = Desugared;
1910     } while (true);
1911   }
1912   SplitQualType split = T.split();
1913   Qualifiers quals = split.Quals;
1914   const Type *ty = split.Ty;
1915 
1916   bool isSubstitutable = isTypeSubstitutable(quals, ty);
1917   if (isSubstitutable && mangleSubstitution(T))
1918     return;
1919 
1920   // If we're mangling a qualified array type, push the qualifiers to
1921   // the element type.
1922   if (quals && isa<ArrayType>(T)) {
1923     ty = Context.getASTContext().getAsArrayType(T);
1924     quals = Qualifiers();
1925 
1926     // Note that we don't update T: we want to add the
1927     // substitution at the original type.
1928   }
1929 
1930   if (quals) {
1931     mangleQualifiers(quals);
1932     // Recurse:  even if the qualified type isn't yet substitutable,
1933     // the unqualified type might be.
1934     mangleType(QualType(ty, 0));
1935   } else {
1936     switch (ty->getTypeClass()) {
1937 #define ABSTRACT_TYPE(CLASS, PARENT)
1938 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1939     case Type::CLASS: \
1940       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1941       return;
1942 #define TYPE(CLASS, PARENT) \
1943     case Type::CLASS: \
1944       mangleType(static_cast<const CLASS##Type*>(ty)); \
1945       break;
1946 #include "clang/AST/TypeNodes.def"
1947     }
1948   }
1949 
1950   // Add the substitution.
1951   if (isSubstitutable)
1952     addSubstitution(T);
1953 }
1954 
1955 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1956   if (!mangleStandardSubstitution(ND))
1957     mangleName(ND);
1958 }
1959 
1960 void CXXNameMangler::mangleType(const BuiltinType *T) {
1961   //  <type>         ::= <builtin-type>
1962   //  <builtin-type> ::= v  # void
1963   //                 ::= w  # wchar_t
1964   //                 ::= b  # bool
1965   //                 ::= c  # char
1966   //                 ::= a  # signed char
1967   //                 ::= h  # unsigned char
1968   //                 ::= s  # short
1969   //                 ::= t  # unsigned short
1970   //                 ::= i  # int
1971   //                 ::= j  # unsigned int
1972   //                 ::= l  # long
1973   //                 ::= m  # unsigned long
1974   //                 ::= x  # long long, __int64
1975   //                 ::= y  # unsigned long long, __int64
1976   //                 ::= n  # __int128
1977   //                 ::= o  # unsigned __int128
1978   //                 ::= f  # float
1979   //                 ::= d  # double
1980   //                 ::= e  # long double, __float80
1981   // UNSUPPORTED:    ::= g  # __float128
1982   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1983   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1984   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1985   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1986   //                 ::= Di # char32_t
1987   //                 ::= Ds # char16_t
1988   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1989   //                 ::= u <source-name>    # vendor extended type
1990   switch (T->getKind()) {
1991   case BuiltinType::Void:
1992     Out << 'v';
1993     break;
1994   case BuiltinType::Bool:
1995     Out << 'b';
1996     break;
1997   case BuiltinType::Char_U:
1998   case BuiltinType::Char_S:
1999     Out << 'c';
2000     break;
2001   case BuiltinType::UChar:
2002     Out << 'h';
2003     break;
2004   case BuiltinType::UShort:
2005     Out << 't';
2006     break;
2007   case BuiltinType::UInt:
2008     Out << 'j';
2009     break;
2010   case BuiltinType::ULong:
2011     Out << 'm';
2012     break;
2013   case BuiltinType::ULongLong:
2014     Out << 'y';
2015     break;
2016   case BuiltinType::UInt128:
2017     Out << 'o';
2018     break;
2019   case BuiltinType::SChar:
2020     Out << 'a';
2021     break;
2022   case BuiltinType::WChar_S:
2023   case BuiltinType::WChar_U:
2024     Out << 'w';
2025     break;
2026   case BuiltinType::Char16:
2027     Out << "Ds";
2028     break;
2029   case BuiltinType::Char32:
2030     Out << "Di";
2031     break;
2032   case BuiltinType::Short:
2033     Out << 's';
2034     break;
2035   case BuiltinType::Int:
2036     Out << 'i';
2037     break;
2038   case BuiltinType::Long:
2039     Out << 'l';
2040     break;
2041   case BuiltinType::LongLong:
2042     Out << 'x';
2043     break;
2044   case BuiltinType::Int128:
2045     Out << 'n';
2046     break;
2047   case BuiltinType::Half:
2048     Out << "Dh";
2049     break;
2050   case BuiltinType::Float:
2051     Out << 'f';
2052     break;
2053   case BuiltinType::Double:
2054     Out << 'd';
2055     break;
2056   case BuiltinType::LongDouble:
2057     Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2058                 ? 'g'
2059                 : 'e');
2060     break;
2061   case BuiltinType::NullPtr:
2062     Out << "Dn";
2063     break;
2064 
2065 #define BUILTIN_TYPE(Id, SingletonId)
2066 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2067   case BuiltinType::Id:
2068 #include "clang/AST/BuiltinTypes.def"
2069   case BuiltinType::Dependent:
2070     llvm_unreachable("mangling a placeholder type");
2071   case BuiltinType::ObjCId:
2072     Out << "11objc_object";
2073     break;
2074   case BuiltinType::ObjCClass:
2075     Out << "10objc_class";
2076     break;
2077   case BuiltinType::ObjCSel:
2078     Out << "13objc_selector";
2079     break;
2080   case BuiltinType::OCLImage1d:
2081     Out << "11ocl_image1d";
2082     break;
2083   case BuiltinType::OCLImage1dArray:
2084     Out << "16ocl_image1darray";
2085     break;
2086   case BuiltinType::OCLImage1dBuffer:
2087     Out << "17ocl_image1dbuffer";
2088     break;
2089   case BuiltinType::OCLImage2d:
2090     Out << "11ocl_image2d";
2091     break;
2092   case BuiltinType::OCLImage2dArray:
2093     Out << "16ocl_image2darray";
2094     break;
2095   case BuiltinType::OCLImage2dDepth:
2096     Out << "16ocl_image2ddepth";
2097     break;
2098   case BuiltinType::OCLImage2dArrayDepth:
2099     Out << "21ocl_image2darraydepth";
2100     break;
2101   case BuiltinType::OCLImage2dMSAA:
2102     Out << "15ocl_image2dmsaa";
2103     break;
2104   case BuiltinType::OCLImage2dArrayMSAA:
2105     Out << "20ocl_image2darraymsaa";
2106     break;
2107   case BuiltinType::OCLImage2dMSAADepth:
2108     Out << "20ocl_image2dmsaadepth";
2109     break;
2110   case BuiltinType::OCLImage2dArrayMSAADepth:
2111     Out << "35ocl_image2darraymsaadepth";
2112     break;
2113   case BuiltinType::OCLImage3d:
2114     Out << "11ocl_image3d";
2115     break;
2116   case BuiltinType::OCLSampler:
2117     Out << "11ocl_sampler";
2118     break;
2119   case BuiltinType::OCLEvent:
2120     Out << "9ocl_event";
2121     break;
2122   case BuiltinType::OCLClkEvent:
2123     Out << "12ocl_clkevent";
2124     break;
2125   case BuiltinType::OCLQueue:
2126     Out << "9ocl_queue";
2127     break;
2128   case BuiltinType::OCLNDRange:
2129     Out << "11ocl_ndrange";
2130     break;
2131   case BuiltinType::OCLReserveID:
2132     Out << "13ocl_reserveid";
2133     break;
2134   }
2135 }
2136 
2137 // <type>          ::= <function-type>
2138 // <function-type> ::= [<CV-qualifiers>] F [Y]
2139 //                      <bare-function-type> [<ref-qualifier>] E
2140 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2141   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2142   // e.g. "const" in "int (A::*)() const".
2143   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2144 
2145   Out << 'F';
2146 
2147   // FIXME: We don't have enough information in the AST to produce the 'Y'
2148   // encoding for extern "C" function types.
2149   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2150 
2151   // Mangle the ref-qualifier, if present.
2152   mangleRefQualifier(T->getRefQualifier());
2153 
2154   Out << 'E';
2155 }
2156 
2157 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2158   // Function types without prototypes can arise when mangling a function type
2159   // within an overloadable function in C. We mangle these as the absence of any
2160   // parameter types (not even an empty parameter list).
2161   Out << 'F';
2162 
2163   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2164 
2165   FunctionTypeDepth.enterResultType();
2166   mangleType(T->getReturnType());
2167   FunctionTypeDepth.leaveResultType();
2168 
2169   FunctionTypeDepth.pop(saved);
2170   Out << 'E';
2171 }
2172 
2173 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2174                                             bool MangleReturnType) {
2175   // We should never be mangling something without a prototype.
2176   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2177 
2178   // Record that we're in a function type.  See mangleFunctionParam
2179   // for details on what we're trying to achieve here.
2180   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2181 
2182   // <bare-function-type> ::= <signature type>+
2183   if (MangleReturnType) {
2184     FunctionTypeDepth.enterResultType();
2185     mangleType(Proto->getReturnType());
2186     FunctionTypeDepth.leaveResultType();
2187   }
2188 
2189   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2190     //   <builtin-type> ::= v   # void
2191     Out << 'v';
2192 
2193     FunctionTypeDepth.pop(saved);
2194     return;
2195   }
2196 
2197   for (const auto &Arg : Proto->param_types())
2198     mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2199 
2200   FunctionTypeDepth.pop(saved);
2201 
2202   // <builtin-type>      ::= z  # ellipsis
2203   if (Proto->isVariadic())
2204     Out << 'z';
2205 }
2206 
2207 // <type>            ::= <class-enum-type>
2208 // <class-enum-type> ::= <name>
2209 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2210   mangleName(T->getDecl());
2211 }
2212 
2213 // <type>            ::= <class-enum-type>
2214 // <class-enum-type> ::= <name>
2215 void CXXNameMangler::mangleType(const EnumType *T) {
2216   mangleType(static_cast<const TagType*>(T));
2217 }
2218 void CXXNameMangler::mangleType(const RecordType *T) {
2219   mangleType(static_cast<const TagType*>(T));
2220 }
2221 void CXXNameMangler::mangleType(const TagType *T) {
2222   mangleName(T->getDecl());
2223 }
2224 
2225 // <type>       ::= <array-type>
2226 // <array-type> ::= A <positive dimension number> _ <element type>
2227 //              ::= A [<dimension expression>] _ <element type>
2228 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2229   Out << 'A' << T->getSize() << '_';
2230   mangleType(T->getElementType());
2231 }
2232 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2233   Out << 'A';
2234   // decayed vla types (size 0) will just be skipped.
2235   if (T->getSizeExpr())
2236     mangleExpression(T->getSizeExpr());
2237   Out << '_';
2238   mangleType(T->getElementType());
2239 }
2240 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2241   Out << 'A';
2242   mangleExpression(T->getSizeExpr());
2243   Out << '_';
2244   mangleType(T->getElementType());
2245 }
2246 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2247   Out << "A_";
2248   mangleType(T->getElementType());
2249 }
2250 
2251 // <type>                   ::= <pointer-to-member-type>
2252 // <pointer-to-member-type> ::= M <class type> <member type>
2253 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2254   Out << 'M';
2255   mangleType(QualType(T->getClass(), 0));
2256   QualType PointeeType = T->getPointeeType();
2257   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2258     mangleType(FPT);
2259 
2260     // Itanium C++ ABI 5.1.8:
2261     //
2262     //   The type of a non-static member function is considered to be different,
2263     //   for the purposes of substitution, from the type of a namespace-scope or
2264     //   static member function whose type appears similar. The types of two
2265     //   non-static member functions are considered to be different, for the
2266     //   purposes of substitution, if the functions are members of different
2267     //   classes. In other words, for the purposes of substitution, the class of
2268     //   which the function is a member is considered part of the type of
2269     //   function.
2270 
2271     // Given that we already substitute member function pointers as a
2272     // whole, the net effect of this rule is just to unconditionally
2273     // suppress substitution on the function type in a member pointer.
2274     // We increment the SeqID here to emulate adding an entry to the
2275     // substitution table.
2276     ++SeqID;
2277   } else
2278     mangleType(PointeeType);
2279 }
2280 
2281 // <type>           ::= <template-param>
2282 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2283   mangleTemplateParameter(T->getIndex());
2284 }
2285 
2286 // <type>           ::= <template-param>
2287 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2288   // FIXME: not clear how to mangle this!
2289   // template <class T...> class A {
2290   //   template <class U...> void foo(T(*)(U) x...);
2291   // };
2292   Out << "_SUBSTPACK_";
2293 }
2294 
2295 // <type> ::= P <type>   # pointer-to
2296 void CXXNameMangler::mangleType(const PointerType *T) {
2297   Out << 'P';
2298   mangleType(T->getPointeeType());
2299 }
2300 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2301   Out << 'P';
2302   mangleType(T->getPointeeType());
2303 }
2304 
2305 // <type> ::= R <type>   # reference-to
2306 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2307   Out << 'R';
2308   mangleType(T->getPointeeType());
2309 }
2310 
2311 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2312 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2313   Out << 'O';
2314   mangleType(T->getPointeeType());
2315 }
2316 
2317 // <type> ::= C <type>   # complex pair (C 2000)
2318 void CXXNameMangler::mangleType(const ComplexType *T) {
2319   Out << 'C';
2320   mangleType(T->getElementType());
2321 }
2322 
2323 // ARM's ABI for Neon vector types specifies that they should be mangled as
2324 // if they are structs (to match ARM's initial implementation).  The
2325 // vector type must be one of the special types predefined by ARM.
2326 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2327   QualType EltType = T->getElementType();
2328   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2329   const char *EltName = nullptr;
2330   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2331     switch (cast<BuiltinType>(EltType)->getKind()) {
2332     case BuiltinType::SChar:
2333     case BuiltinType::UChar:
2334       EltName = "poly8_t";
2335       break;
2336     case BuiltinType::Short:
2337     case BuiltinType::UShort:
2338       EltName = "poly16_t";
2339       break;
2340     case BuiltinType::ULongLong:
2341       EltName = "poly64_t";
2342       break;
2343     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2344     }
2345   } else {
2346     switch (cast<BuiltinType>(EltType)->getKind()) {
2347     case BuiltinType::SChar:     EltName = "int8_t"; break;
2348     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2349     case BuiltinType::Short:     EltName = "int16_t"; break;
2350     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2351     case BuiltinType::Int:       EltName = "int32_t"; break;
2352     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2353     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2354     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2355     case BuiltinType::Double:    EltName = "float64_t"; break;
2356     case BuiltinType::Float:     EltName = "float32_t"; break;
2357     case BuiltinType::Half:      EltName = "float16_t";break;
2358     default:
2359       llvm_unreachable("unexpected Neon vector element type");
2360     }
2361   }
2362   const char *BaseName = nullptr;
2363   unsigned BitSize = (T->getNumElements() *
2364                       getASTContext().getTypeSize(EltType));
2365   if (BitSize == 64)
2366     BaseName = "__simd64_";
2367   else {
2368     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2369     BaseName = "__simd128_";
2370   }
2371   Out << strlen(BaseName) + strlen(EltName);
2372   Out << BaseName << EltName;
2373 }
2374 
2375 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2376   switch (EltType->getKind()) {
2377   case BuiltinType::SChar:
2378     return "Int8";
2379   case BuiltinType::Short:
2380     return "Int16";
2381   case BuiltinType::Int:
2382     return "Int32";
2383   case BuiltinType::Long:
2384   case BuiltinType::LongLong:
2385     return "Int64";
2386   case BuiltinType::UChar:
2387     return "Uint8";
2388   case BuiltinType::UShort:
2389     return "Uint16";
2390   case BuiltinType::UInt:
2391     return "Uint32";
2392   case BuiltinType::ULong:
2393   case BuiltinType::ULongLong:
2394     return "Uint64";
2395   case BuiltinType::Half:
2396     return "Float16";
2397   case BuiltinType::Float:
2398     return "Float32";
2399   case BuiltinType::Double:
2400     return "Float64";
2401   default:
2402     llvm_unreachable("Unexpected vector element base type");
2403   }
2404 }
2405 
2406 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2407 // the equivalent internal name. The vector type must be one of the special
2408 // types predefined by ARM.
2409 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2410   QualType EltType = T->getElementType();
2411   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2412   unsigned BitSize =
2413       (T->getNumElements() * getASTContext().getTypeSize(EltType));
2414   (void)BitSize; // Silence warning.
2415 
2416   assert((BitSize == 64 || BitSize == 128) &&
2417          "Neon vector type not 64 or 128 bits");
2418 
2419   StringRef EltName;
2420   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2421     switch (cast<BuiltinType>(EltType)->getKind()) {
2422     case BuiltinType::UChar:
2423       EltName = "Poly8";
2424       break;
2425     case BuiltinType::UShort:
2426       EltName = "Poly16";
2427       break;
2428     case BuiltinType::ULong:
2429     case BuiltinType::ULongLong:
2430       EltName = "Poly64";
2431       break;
2432     default:
2433       llvm_unreachable("unexpected Neon polynomial vector element type");
2434     }
2435   } else
2436     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2437 
2438   std::string TypeName =
2439       ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2440   Out << TypeName.length() << TypeName;
2441 }
2442 
2443 // GNU extension: vector types
2444 // <type>                  ::= <vector-type>
2445 // <vector-type>           ::= Dv <positive dimension number> _
2446 //                                    <extended element type>
2447 //                         ::= Dv [<dimension expression>] _ <element type>
2448 // <extended element type> ::= <element type>
2449 //                         ::= p # AltiVec vector pixel
2450 //                         ::= b # Altivec vector bool
2451 void CXXNameMangler::mangleType(const VectorType *T) {
2452   if ((T->getVectorKind() == VectorType::NeonVector ||
2453        T->getVectorKind() == VectorType::NeonPolyVector)) {
2454     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2455     llvm::Triple::ArchType Arch =
2456         getASTContext().getTargetInfo().getTriple().getArch();
2457     if ((Arch == llvm::Triple::aarch64 ||
2458          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2459       mangleAArch64NeonVectorType(T);
2460     else
2461       mangleNeonVectorType(T);
2462     return;
2463   }
2464   Out << "Dv" << T->getNumElements() << '_';
2465   if (T->getVectorKind() == VectorType::AltiVecPixel)
2466     Out << 'p';
2467   else if (T->getVectorKind() == VectorType::AltiVecBool)
2468     Out << 'b';
2469   else
2470     mangleType(T->getElementType());
2471 }
2472 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2473   mangleType(static_cast<const VectorType*>(T));
2474 }
2475 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2476   Out << "Dv";
2477   mangleExpression(T->getSizeExpr());
2478   Out << '_';
2479   mangleType(T->getElementType());
2480 }
2481 
2482 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2483   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2484   Out << "Dp";
2485   mangleType(T->getPattern());
2486 }
2487 
2488 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2489   mangleSourceName(T->getDecl()->getIdentifier());
2490 }
2491 
2492 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2493   // Treat __kindof as a vendor extended type qualifier.
2494   if (T->isKindOfType())
2495     Out << "U8__kindof";
2496 
2497   if (!T->qual_empty()) {
2498     // Mangle protocol qualifiers.
2499     SmallString<64> QualStr;
2500     llvm::raw_svector_ostream QualOS(QualStr);
2501     QualOS << "objcproto";
2502     for (const auto *I : T->quals()) {
2503       StringRef name = I->getName();
2504       QualOS << name.size() << name;
2505     }
2506     Out << 'U' << QualStr.size() << QualStr;
2507   }
2508 
2509   mangleType(T->getBaseType());
2510 
2511   if (T->isSpecialized()) {
2512     // Mangle type arguments as I <type>+ E
2513     Out << 'I';
2514     for (auto typeArg : T->getTypeArgs())
2515       mangleType(typeArg);
2516     Out << 'E';
2517   }
2518 }
2519 
2520 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2521   Out << "U13block_pointer";
2522   mangleType(T->getPointeeType());
2523 }
2524 
2525 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2526   // Mangle injected class name types as if the user had written the
2527   // specialization out fully.  It may not actually be possible to see
2528   // this mangling, though.
2529   mangleType(T->getInjectedSpecializationType());
2530 }
2531 
2532 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2533   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2534     mangleName(TD, T->getArgs(), T->getNumArgs());
2535   } else {
2536     if (mangleSubstitution(QualType(T, 0)))
2537       return;
2538 
2539     mangleTemplatePrefix(T->getTemplateName());
2540 
2541     // FIXME: GCC does not appear to mangle the template arguments when
2542     // the template in question is a dependent template name. Should we
2543     // emulate that badness?
2544     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2545     addSubstitution(QualType(T, 0));
2546   }
2547 }
2548 
2549 void CXXNameMangler::mangleType(const DependentNameType *T) {
2550   // Proposal by cxx-abi-dev, 2014-03-26
2551   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2552   //                                 # dependent elaborated type specifier using
2553   //                                 # 'typename'
2554   //                   ::= Ts <name> # dependent elaborated type specifier using
2555   //                                 # 'struct' or 'class'
2556   //                   ::= Tu <name> # dependent elaborated type specifier using
2557   //                                 # 'union'
2558   //                   ::= Te <name> # dependent elaborated type specifier using
2559   //                                 # 'enum'
2560   switch (T->getKeyword()) {
2561     case ETK_Typename:
2562       break;
2563     case ETK_Struct:
2564     case ETK_Class:
2565     case ETK_Interface:
2566       Out << "Ts";
2567       break;
2568     case ETK_Union:
2569       Out << "Tu";
2570       break;
2571     case ETK_Enum:
2572       Out << "Te";
2573       break;
2574     default:
2575       llvm_unreachable("unexpected keyword for dependent type name");
2576   }
2577   // Typename types are always nested
2578   Out << 'N';
2579   manglePrefix(T->getQualifier());
2580   mangleSourceName(T->getIdentifier());
2581   Out << 'E';
2582 }
2583 
2584 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2585   // Dependently-scoped template types are nested if they have a prefix.
2586   Out << 'N';
2587 
2588   // TODO: avoid making this TemplateName.
2589   TemplateName Prefix =
2590     getASTContext().getDependentTemplateName(T->getQualifier(),
2591                                              T->getIdentifier());
2592   mangleTemplatePrefix(Prefix);
2593 
2594   // FIXME: GCC does not appear to mangle the template arguments when
2595   // the template in question is a dependent template name. Should we
2596   // emulate that badness?
2597   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2598   Out << 'E';
2599 }
2600 
2601 void CXXNameMangler::mangleType(const TypeOfType *T) {
2602   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2603   // "extension with parameters" mangling.
2604   Out << "u6typeof";
2605 }
2606 
2607 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2608   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2609   // "extension with parameters" mangling.
2610   Out << "u6typeof";
2611 }
2612 
2613 void CXXNameMangler::mangleType(const DecltypeType *T) {
2614   Expr *E = T->getUnderlyingExpr();
2615 
2616   // type ::= Dt <expression> E  # decltype of an id-expression
2617   //                             #   or class member access
2618   //      ::= DT <expression> E  # decltype of an expression
2619 
2620   // This purports to be an exhaustive list of id-expressions and
2621   // class member accesses.  Note that we do not ignore parentheses;
2622   // parentheses change the semantics of decltype for these
2623   // expressions (and cause the mangler to use the other form).
2624   if (isa<DeclRefExpr>(E) ||
2625       isa<MemberExpr>(E) ||
2626       isa<UnresolvedLookupExpr>(E) ||
2627       isa<DependentScopeDeclRefExpr>(E) ||
2628       isa<CXXDependentScopeMemberExpr>(E) ||
2629       isa<UnresolvedMemberExpr>(E))
2630     Out << "Dt";
2631   else
2632     Out << "DT";
2633   mangleExpression(E);
2634   Out << 'E';
2635 }
2636 
2637 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2638   // If this is dependent, we need to record that. If not, we simply
2639   // mangle it as the underlying type since they are equivalent.
2640   if (T->isDependentType()) {
2641     Out << 'U';
2642 
2643     switch (T->getUTTKind()) {
2644       case UnaryTransformType::EnumUnderlyingType:
2645         Out << "3eut";
2646         break;
2647     }
2648   }
2649 
2650   mangleType(T->getUnderlyingType());
2651 }
2652 
2653 void CXXNameMangler::mangleType(const AutoType *T) {
2654   QualType D = T->getDeducedType();
2655   // <builtin-type> ::= Da  # dependent auto
2656   if (D.isNull())
2657     Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2658   else
2659     mangleType(D);
2660 }
2661 
2662 void CXXNameMangler::mangleType(const AtomicType *T) {
2663   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2664   // (Until there's a standardized mangling...)
2665   Out << "U7_Atomic";
2666   mangleType(T->getValueType());
2667 }
2668 
2669 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2670                                           const llvm::APSInt &Value) {
2671   //  <expr-primary> ::= L <type> <value number> E # integer literal
2672   Out << 'L';
2673 
2674   mangleType(T);
2675   if (T->isBooleanType()) {
2676     // Boolean values are encoded as 0/1.
2677     Out << (Value.getBoolValue() ? '1' : '0');
2678   } else {
2679     mangleNumber(Value);
2680   }
2681   Out << 'E';
2682 
2683 }
2684 
2685 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
2686   // Ignore member expressions involving anonymous unions.
2687   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
2688     if (!RT->getDecl()->isAnonymousStructOrUnion())
2689       break;
2690     const auto *ME = dyn_cast<MemberExpr>(Base);
2691     if (!ME)
2692       break;
2693     Base = ME->getBase();
2694     IsArrow = ME->isArrow();
2695   }
2696 
2697   if (Base->isImplicitCXXThis()) {
2698     // Note: GCC mangles member expressions to the implicit 'this' as
2699     // *this., whereas we represent them as this->. The Itanium C++ ABI
2700     // does not specify anything here, so we follow GCC.
2701     Out << "dtdefpT";
2702   } else {
2703     Out << (IsArrow ? "pt" : "dt");
2704     mangleExpression(Base);
2705   }
2706 }
2707 
2708 /// Mangles a member expression.
2709 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2710                                       bool isArrow,
2711                                       NestedNameSpecifier *qualifier,
2712                                       NamedDecl *firstQualifierLookup,
2713                                       DeclarationName member,
2714                                       unsigned arity) {
2715   // <expression> ::= dt <expression> <unresolved-name>
2716   //              ::= pt <expression> <unresolved-name>
2717   if (base)
2718     mangleMemberExprBase(base, isArrow);
2719   mangleUnresolvedName(qualifier, member, arity);
2720 }
2721 
2722 /// Look at the callee of the given call expression and determine if
2723 /// it's a parenthesized id-expression which would have triggered ADL
2724 /// otherwise.
2725 static bool isParenthesizedADLCallee(const CallExpr *call) {
2726   const Expr *callee = call->getCallee();
2727   const Expr *fn = callee->IgnoreParens();
2728 
2729   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2730   // too, but for those to appear in the callee, it would have to be
2731   // parenthesized.
2732   if (callee == fn) return false;
2733 
2734   // Must be an unresolved lookup.
2735   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2736   if (!lookup) return false;
2737 
2738   assert(!lookup->requiresADL());
2739 
2740   // Must be an unqualified lookup.
2741   if (lookup->getQualifier()) return false;
2742 
2743   // Must not have found a class member.  Note that if one is a class
2744   // member, they're all class members.
2745   if (lookup->getNumDecls() > 0 &&
2746       (*lookup->decls_begin())->isCXXClassMember())
2747     return false;
2748 
2749   // Otherwise, ADL would have been triggered.
2750   return true;
2751 }
2752 
2753 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2754   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2755   Out << CastEncoding;
2756   mangleType(ECE->getType());
2757   mangleExpression(ECE->getSubExpr());
2758 }
2759 
2760 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
2761   if (auto *Syntactic = InitList->getSyntacticForm())
2762     InitList = Syntactic;
2763   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2764     mangleExpression(InitList->getInit(i));
2765 }
2766 
2767 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2768   // <expression> ::= <unary operator-name> <expression>
2769   //              ::= <binary operator-name> <expression> <expression>
2770   //              ::= <trinary operator-name> <expression> <expression> <expression>
2771   //              ::= cv <type> expression           # conversion with one argument
2772   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2773   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
2774   //              ::= sc <type> <expression>         # static_cast<type> (expression)
2775   //              ::= cc <type> <expression>         # const_cast<type> (expression)
2776   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
2777   //              ::= st <type>                      # sizeof (a type)
2778   //              ::= at <type>                      # alignof (a type)
2779   //              ::= <template-param>
2780   //              ::= <function-param>
2781   //              ::= sr <type> <unqualified-name>                   # dependent name
2782   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2783   //              ::= ds <expression> <expression>                   # expr.*expr
2784   //              ::= sZ <template-param>                            # size of a parameter pack
2785   //              ::= sZ <function-param>    # size of a function parameter pack
2786   //              ::= <expr-primary>
2787   // <expr-primary> ::= L <type> <value number> E    # integer literal
2788   //                ::= L <type <value float> E      # floating literal
2789   //                ::= L <mangled-name> E           # external name
2790   //                ::= fpT                          # 'this' expression
2791   QualType ImplicitlyConvertedToType;
2792 
2793 recurse:
2794   switch (E->getStmtClass()) {
2795   case Expr::NoStmtClass:
2796 #define ABSTRACT_STMT(Type)
2797 #define EXPR(Type, Base)
2798 #define STMT(Type, Base) \
2799   case Expr::Type##Class:
2800 #include "clang/AST/StmtNodes.inc"
2801     // fallthrough
2802 
2803   // These all can only appear in local or variable-initialization
2804   // contexts and so should never appear in a mangling.
2805   case Expr::AddrLabelExprClass:
2806   case Expr::DesignatedInitUpdateExprClass:
2807   case Expr::ImplicitValueInitExprClass:
2808   case Expr::NoInitExprClass:
2809   case Expr::ParenListExprClass:
2810   case Expr::LambdaExprClass:
2811   case Expr::MSPropertyRefExprClass:
2812   case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
2813   case Expr::OMPArraySectionExprClass:
2814     llvm_unreachable("unexpected statement kind");
2815 
2816   // FIXME: invent manglings for all these.
2817   case Expr::BlockExprClass:
2818   case Expr::ChooseExprClass:
2819   case Expr::CompoundLiteralExprClass:
2820   case Expr::DesignatedInitExprClass:
2821   case Expr::ExtVectorElementExprClass:
2822   case Expr::GenericSelectionExprClass:
2823   case Expr::ObjCEncodeExprClass:
2824   case Expr::ObjCIsaExprClass:
2825   case Expr::ObjCIvarRefExprClass:
2826   case Expr::ObjCMessageExprClass:
2827   case Expr::ObjCPropertyRefExprClass:
2828   case Expr::ObjCProtocolExprClass:
2829   case Expr::ObjCSelectorExprClass:
2830   case Expr::ObjCStringLiteralClass:
2831   case Expr::ObjCBoxedExprClass:
2832   case Expr::ObjCArrayLiteralClass:
2833   case Expr::ObjCDictionaryLiteralClass:
2834   case Expr::ObjCSubscriptRefExprClass:
2835   case Expr::ObjCIndirectCopyRestoreExprClass:
2836   case Expr::OffsetOfExprClass:
2837   case Expr::PredefinedExprClass:
2838   case Expr::ShuffleVectorExprClass:
2839   case Expr::ConvertVectorExprClass:
2840   case Expr::StmtExprClass:
2841   case Expr::TypeTraitExprClass:
2842   case Expr::ArrayTypeTraitExprClass:
2843   case Expr::ExpressionTraitExprClass:
2844   case Expr::VAArgExprClass:
2845   case Expr::CUDAKernelCallExprClass:
2846   case Expr::AsTypeExprClass:
2847   case Expr::PseudoObjectExprClass:
2848   case Expr::AtomicExprClass:
2849   {
2850     // As bad as this diagnostic is, it's better than crashing.
2851     DiagnosticsEngine &Diags = Context.getDiags();
2852     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2853                                      "cannot yet mangle expression type %0");
2854     Diags.Report(E->getExprLoc(), DiagID)
2855       << E->getStmtClassName() << E->getSourceRange();
2856     break;
2857   }
2858 
2859   case Expr::CXXUuidofExprClass: {
2860     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2861     if (UE->isTypeOperand()) {
2862       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2863       Out << "u8__uuidoft";
2864       mangleType(UuidT);
2865     } else {
2866       Expr *UuidExp = UE->getExprOperand();
2867       Out << "u8__uuidofz";
2868       mangleExpression(UuidExp, Arity);
2869     }
2870     break;
2871   }
2872 
2873   // Even gcc-4.5 doesn't mangle this.
2874   case Expr::BinaryConditionalOperatorClass: {
2875     DiagnosticsEngine &Diags = Context.getDiags();
2876     unsigned DiagID =
2877       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2878                 "?: operator with omitted middle operand cannot be mangled");
2879     Diags.Report(E->getExprLoc(), DiagID)
2880       << E->getStmtClassName() << E->getSourceRange();
2881     break;
2882   }
2883 
2884   // These are used for internal purposes and cannot be meaningfully mangled.
2885   case Expr::OpaqueValueExprClass:
2886     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2887 
2888   case Expr::InitListExprClass: {
2889     Out << "il";
2890     mangleInitListElements(cast<InitListExpr>(E));
2891     Out << "E";
2892     break;
2893   }
2894 
2895   case Expr::CXXDefaultArgExprClass:
2896     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2897     break;
2898 
2899   case Expr::CXXDefaultInitExprClass:
2900     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2901     break;
2902 
2903   case Expr::CXXStdInitializerListExprClass:
2904     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2905     break;
2906 
2907   case Expr::SubstNonTypeTemplateParmExprClass:
2908     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2909                      Arity);
2910     break;
2911 
2912   case Expr::UserDefinedLiteralClass:
2913     // We follow g++'s approach of mangling a UDL as a call to the literal
2914     // operator.
2915   case Expr::CXXMemberCallExprClass: // fallthrough
2916   case Expr::CallExprClass: {
2917     const CallExpr *CE = cast<CallExpr>(E);
2918 
2919     // <expression> ::= cp <simple-id> <expression>* E
2920     // We use this mangling only when the call would use ADL except
2921     // for being parenthesized.  Per discussion with David
2922     // Vandervoorde, 2011.04.25.
2923     if (isParenthesizedADLCallee(CE)) {
2924       Out << "cp";
2925       // The callee here is a parenthesized UnresolvedLookupExpr with
2926       // no qualifier and should always get mangled as a <simple-id>
2927       // anyway.
2928 
2929     // <expression> ::= cl <expression>* E
2930     } else {
2931       Out << "cl";
2932     }
2933 
2934     unsigned CallArity = CE->getNumArgs();
2935     for (const Expr *Arg : CE->arguments())
2936       if (isa<PackExpansionExpr>(Arg))
2937         CallArity = UnknownArity;
2938 
2939     mangleExpression(CE->getCallee(), CallArity);
2940     for (const Expr *Arg : CE->arguments())
2941       mangleExpression(Arg);
2942     Out << 'E';
2943     break;
2944   }
2945 
2946   case Expr::CXXNewExprClass: {
2947     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2948     if (New->isGlobalNew()) Out << "gs";
2949     Out << (New->isArray() ? "na" : "nw");
2950     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2951            E = New->placement_arg_end(); I != E; ++I)
2952       mangleExpression(*I);
2953     Out << '_';
2954     mangleType(New->getAllocatedType());
2955     if (New->hasInitializer()) {
2956       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2957         Out << "il";
2958       else
2959         Out << "pi";
2960       const Expr *Init = New->getInitializer();
2961       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2962         // Directly inline the initializers.
2963         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2964                                                   E = CCE->arg_end();
2965              I != E; ++I)
2966           mangleExpression(*I);
2967       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2968         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2969           mangleExpression(PLE->getExpr(i));
2970       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2971                  isa<InitListExpr>(Init)) {
2972         // Only take InitListExprs apart for list-initialization.
2973         mangleInitListElements(cast<InitListExpr>(Init));
2974       } else
2975         mangleExpression(Init);
2976     }
2977     Out << 'E';
2978     break;
2979   }
2980 
2981   case Expr::CXXPseudoDestructorExprClass: {
2982     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
2983     if (const Expr *Base = PDE->getBase())
2984       mangleMemberExprBase(Base, PDE->isArrow());
2985     NestedNameSpecifier *Qualifier = PDE->getQualifier();
2986     QualType ScopeType;
2987     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
2988       if (Qualifier) {
2989         mangleUnresolvedPrefix(Qualifier,
2990                                /*Recursive=*/true);
2991         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
2992         Out << 'E';
2993       } else {
2994         Out << "sr";
2995         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
2996           Out << 'E';
2997       }
2998     } else if (Qualifier) {
2999       mangleUnresolvedPrefix(Qualifier);
3000     }
3001     // <base-unresolved-name> ::= dn <destructor-name>
3002     Out << "dn";
3003     QualType DestroyedType = PDE->getDestroyedType();
3004     mangleUnresolvedTypeOrSimpleId(DestroyedType);
3005     break;
3006   }
3007 
3008   case Expr::MemberExprClass: {
3009     const MemberExpr *ME = cast<MemberExpr>(E);
3010     mangleMemberExpr(ME->getBase(), ME->isArrow(),
3011                      ME->getQualifier(), nullptr,
3012                      ME->getMemberDecl()->getDeclName(), Arity);
3013     break;
3014   }
3015 
3016   case Expr::UnresolvedMemberExprClass: {
3017     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3018     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3019                      ME->isArrow(), ME->getQualifier(), nullptr,
3020                      ME->getMemberName(), Arity);
3021     if (ME->hasExplicitTemplateArgs())
3022       mangleTemplateArgs(ME->getExplicitTemplateArgs());
3023     break;
3024   }
3025 
3026   case Expr::CXXDependentScopeMemberExprClass: {
3027     const CXXDependentScopeMemberExpr *ME
3028       = cast<CXXDependentScopeMemberExpr>(E);
3029     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3030                      ME->isArrow(), ME->getQualifier(),
3031                      ME->getFirstQualifierFoundInScope(),
3032                      ME->getMember(), Arity);
3033     if (ME->hasExplicitTemplateArgs())
3034       mangleTemplateArgs(ME->getExplicitTemplateArgs());
3035     break;
3036   }
3037 
3038   case Expr::UnresolvedLookupExprClass: {
3039     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3040     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
3041 
3042     // All the <unresolved-name> productions end in a
3043     // base-unresolved-name, where <template-args> are just tacked
3044     // onto the end.
3045     if (ULE->hasExplicitTemplateArgs())
3046       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
3047     break;
3048   }
3049 
3050   case Expr::CXXUnresolvedConstructExprClass: {
3051     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3052     unsigned N = CE->arg_size();
3053 
3054     Out << "cv";
3055     mangleType(CE->getType());
3056     if (N != 1) Out << '_';
3057     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3058     if (N != 1) Out << 'E';
3059     break;
3060   }
3061 
3062   case Expr::CXXConstructExprClass: {
3063     const auto *CE = cast<CXXConstructExpr>(E);
3064     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3065       assert(
3066           CE->getNumArgs() >= 1 &&
3067           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3068           "implicit CXXConstructExpr must have one argument");
3069       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3070     }
3071     Out << "il";
3072     for (auto *E : CE->arguments())
3073       mangleExpression(E);
3074     Out << "E";
3075     break;
3076   }
3077 
3078   case Expr::CXXTemporaryObjectExprClass: {
3079     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3080     unsigned N = CE->getNumArgs();
3081     bool List = CE->isListInitialization();
3082 
3083     if (List)
3084       Out << "tl";
3085     else
3086       Out << "cv";
3087     mangleType(CE->getType());
3088     if (!List && N != 1)
3089       Out << '_';
3090     if (CE->isStdInitListInitialization()) {
3091       // We implicitly created a std::initializer_list<T> for the first argument
3092       // of a constructor of type U in an expression of the form U{a, b, c}.
3093       // Strip all the semantic gunk off the initializer list.
3094       auto *SILE =
3095           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3096       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3097       mangleInitListElements(ILE);
3098     } else {
3099       for (auto *E : CE->arguments())
3100         mangleExpression(E);
3101     }
3102     if (List || N != 1)
3103       Out << 'E';
3104     break;
3105   }
3106 
3107   case Expr::CXXScalarValueInitExprClass:
3108     Out << "cv";
3109     mangleType(E->getType());
3110     Out << "_E";
3111     break;
3112 
3113   case Expr::CXXNoexceptExprClass:
3114     Out << "nx";
3115     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3116     break;
3117 
3118   case Expr::UnaryExprOrTypeTraitExprClass: {
3119     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3120 
3121     if (!SAE->isInstantiationDependent()) {
3122       // Itanium C++ ABI:
3123       //   If the operand of a sizeof or alignof operator is not
3124       //   instantiation-dependent it is encoded as an integer literal
3125       //   reflecting the result of the operator.
3126       //
3127       //   If the result of the operator is implicitly converted to a known
3128       //   integer type, that type is used for the literal; otherwise, the type
3129       //   of std::size_t or std::ptrdiff_t is used.
3130       QualType T = (ImplicitlyConvertedToType.isNull() ||
3131                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3132                                                     : ImplicitlyConvertedToType;
3133       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3134       mangleIntegerLiteral(T, V);
3135       break;
3136     }
3137 
3138     switch(SAE->getKind()) {
3139     case UETT_SizeOf:
3140       Out << 's';
3141       break;
3142     case UETT_AlignOf:
3143       Out << 'a';
3144       break;
3145     case UETT_VecStep: {
3146       DiagnosticsEngine &Diags = Context.getDiags();
3147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3148                                      "cannot yet mangle vec_step expression");
3149       Diags.Report(DiagID);
3150       return;
3151     }
3152     case UETT_OpenMPRequiredSimdAlign:
3153       DiagnosticsEngine &Diags = Context.getDiags();
3154       unsigned DiagID = Diags.getCustomDiagID(
3155           DiagnosticsEngine::Error,
3156           "cannot yet mangle __builtin_omp_required_simd_align expression");
3157       Diags.Report(DiagID);
3158       return;
3159     }
3160     if (SAE->isArgumentType()) {
3161       Out << 't';
3162       mangleType(SAE->getArgumentType());
3163     } else {
3164       Out << 'z';
3165       mangleExpression(SAE->getArgumentExpr());
3166     }
3167     break;
3168   }
3169 
3170   case Expr::CXXThrowExprClass: {
3171     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3172     //  <expression> ::= tw <expression>  # throw expression
3173     //               ::= tr               # rethrow
3174     if (TE->getSubExpr()) {
3175       Out << "tw";
3176       mangleExpression(TE->getSubExpr());
3177     } else {
3178       Out << "tr";
3179     }
3180     break;
3181   }
3182 
3183   case Expr::CXXTypeidExprClass: {
3184     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3185     //  <expression> ::= ti <type>        # typeid (type)
3186     //               ::= te <expression>  # typeid (expression)
3187     if (TIE->isTypeOperand()) {
3188       Out << "ti";
3189       mangleType(TIE->getTypeOperand(Context.getASTContext()));
3190     } else {
3191       Out << "te";
3192       mangleExpression(TIE->getExprOperand());
3193     }
3194     break;
3195   }
3196 
3197   case Expr::CXXDeleteExprClass: {
3198     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3199     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3200     //               ::= [gs] da <expression>  # [::] delete [] expr
3201     if (DE->isGlobalDelete()) Out << "gs";
3202     Out << (DE->isArrayForm() ? "da" : "dl");
3203     mangleExpression(DE->getArgument());
3204     break;
3205   }
3206 
3207   case Expr::UnaryOperatorClass: {
3208     const UnaryOperator *UO = cast<UnaryOperator>(E);
3209     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3210                        /*Arity=*/1);
3211     mangleExpression(UO->getSubExpr());
3212     break;
3213   }
3214 
3215   case Expr::ArraySubscriptExprClass: {
3216     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3217 
3218     // Array subscript is treated as a syntactically weird form of
3219     // binary operator.
3220     Out << "ix";
3221     mangleExpression(AE->getLHS());
3222     mangleExpression(AE->getRHS());
3223     break;
3224   }
3225 
3226   case Expr::CompoundAssignOperatorClass: // fallthrough
3227   case Expr::BinaryOperatorClass: {
3228     const BinaryOperator *BO = cast<BinaryOperator>(E);
3229     if (BO->getOpcode() == BO_PtrMemD)
3230       Out << "ds";
3231     else
3232       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3233                          /*Arity=*/2);
3234     mangleExpression(BO->getLHS());
3235     mangleExpression(BO->getRHS());
3236     break;
3237   }
3238 
3239   case Expr::ConditionalOperatorClass: {
3240     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3241     mangleOperatorName(OO_Conditional, /*Arity=*/3);
3242     mangleExpression(CO->getCond());
3243     mangleExpression(CO->getLHS(), Arity);
3244     mangleExpression(CO->getRHS(), Arity);
3245     break;
3246   }
3247 
3248   case Expr::ImplicitCastExprClass: {
3249     ImplicitlyConvertedToType = E->getType();
3250     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3251     goto recurse;
3252   }
3253 
3254   case Expr::ObjCBridgedCastExprClass: {
3255     // Mangle ownership casts as a vendor extended operator __bridge,
3256     // __bridge_transfer, or __bridge_retain.
3257     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3258     Out << "v1U" << Kind.size() << Kind;
3259   }
3260   // Fall through to mangle the cast itself.
3261 
3262   case Expr::CStyleCastExprClass:
3263     mangleCastExpression(E, "cv");
3264     break;
3265 
3266   case Expr::CXXFunctionalCastExprClass: {
3267     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3268     // FIXME: Add isImplicit to CXXConstructExpr.
3269     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3270       if (CCE->getParenOrBraceRange().isInvalid())
3271         Sub = CCE->getArg(0)->IgnoreImplicit();
3272     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3273       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3274     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3275       Out << "tl";
3276       mangleType(E->getType());
3277       mangleInitListElements(IL);
3278       Out << "E";
3279     } else {
3280       mangleCastExpression(E, "cv");
3281     }
3282     break;
3283   }
3284 
3285   case Expr::CXXStaticCastExprClass:
3286     mangleCastExpression(E, "sc");
3287     break;
3288   case Expr::CXXDynamicCastExprClass:
3289     mangleCastExpression(E, "dc");
3290     break;
3291   case Expr::CXXReinterpretCastExprClass:
3292     mangleCastExpression(E, "rc");
3293     break;
3294   case Expr::CXXConstCastExprClass:
3295     mangleCastExpression(E, "cc");
3296     break;
3297 
3298   case Expr::CXXOperatorCallExprClass: {
3299     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3300     unsigned NumArgs = CE->getNumArgs();
3301     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3302     // Mangle the arguments.
3303     for (unsigned i = 0; i != NumArgs; ++i)
3304       mangleExpression(CE->getArg(i));
3305     break;
3306   }
3307 
3308   case Expr::ParenExprClass:
3309     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3310     break;
3311 
3312   case Expr::DeclRefExprClass: {
3313     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3314 
3315     switch (D->getKind()) {
3316     default:
3317       //  <expr-primary> ::= L <mangled-name> E # external name
3318       Out << 'L';
3319       mangle(D);
3320       Out << 'E';
3321       break;
3322 
3323     case Decl::ParmVar:
3324       mangleFunctionParam(cast<ParmVarDecl>(D));
3325       break;
3326 
3327     case Decl::EnumConstant: {
3328       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3329       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3330       break;
3331     }
3332 
3333     case Decl::NonTypeTemplateParm: {
3334       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3335       mangleTemplateParameter(PD->getIndex());
3336       break;
3337     }
3338 
3339     }
3340 
3341     break;
3342   }
3343 
3344   case Expr::SubstNonTypeTemplateParmPackExprClass:
3345     // FIXME: not clear how to mangle this!
3346     // template <unsigned N...> class A {
3347     //   template <class U...> void foo(U (&x)[N]...);
3348     // };
3349     Out << "_SUBSTPACK_";
3350     break;
3351 
3352   case Expr::FunctionParmPackExprClass: {
3353     // FIXME: not clear how to mangle this!
3354     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3355     Out << "v110_SUBSTPACK";
3356     mangleFunctionParam(FPPE->getParameterPack());
3357     break;
3358   }
3359 
3360   case Expr::DependentScopeDeclRefExprClass: {
3361     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3362     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
3363 
3364     // All the <unresolved-name> productions end in a
3365     // base-unresolved-name, where <template-args> are just tacked
3366     // onto the end.
3367     if (DRE->hasExplicitTemplateArgs())
3368       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3369     break;
3370   }
3371 
3372   case Expr::CXXBindTemporaryExprClass:
3373     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3374     break;
3375 
3376   case Expr::ExprWithCleanupsClass:
3377     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3378     break;
3379 
3380   case Expr::FloatingLiteralClass: {
3381     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3382     Out << 'L';
3383     mangleType(FL->getType());
3384     mangleFloat(FL->getValue());
3385     Out << 'E';
3386     break;
3387   }
3388 
3389   case Expr::CharacterLiteralClass:
3390     Out << 'L';
3391     mangleType(E->getType());
3392     Out << cast<CharacterLiteral>(E)->getValue();
3393     Out << 'E';
3394     break;
3395 
3396   // FIXME. __objc_yes/__objc_no are mangled same as true/false
3397   case Expr::ObjCBoolLiteralExprClass:
3398     Out << "Lb";
3399     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3400     Out << 'E';
3401     break;
3402 
3403   case Expr::CXXBoolLiteralExprClass:
3404     Out << "Lb";
3405     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3406     Out << 'E';
3407     break;
3408 
3409   case Expr::IntegerLiteralClass: {
3410     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3411     if (E->getType()->isSignedIntegerType())
3412       Value.setIsSigned(true);
3413     mangleIntegerLiteral(E->getType(), Value);
3414     break;
3415   }
3416 
3417   case Expr::ImaginaryLiteralClass: {
3418     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3419     // Mangle as if a complex literal.
3420     // Proposal from David Vandevoorde, 2010.06.30.
3421     Out << 'L';
3422     mangleType(E->getType());
3423     if (const FloatingLiteral *Imag =
3424           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3425       // Mangle a floating-point zero of the appropriate type.
3426       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3427       Out << '_';
3428       mangleFloat(Imag->getValue());
3429     } else {
3430       Out << "0_";
3431       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3432       if (IE->getSubExpr()->getType()->isSignedIntegerType())
3433         Value.setIsSigned(true);
3434       mangleNumber(Value);
3435     }
3436     Out << 'E';
3437     break;
3438   }
3439 
3440   case Expr::StringLiteralClass: {
3441     // Revised proposal from David Vandervoorde, 2010.07.15.
3442     Out << 'L';
3443     assert(isa<ConstantArrayType>(E->getType()));
3444     mangleType(E->getType());
3445     Out << 'E';
3446     break;
3447   }
3448 
3449   case Expr::GNUNullExprClass:
3450     // FIXME: should this really be mangled the same as nullptr?
3451     // fallthrough
3452 
3453   case Expr::CXXNullPtrLiteralExprClass: {
3454     Out << "LDnE";
3455     break;
3456   }
3457 
3458   case Expr::PackExpansionExprClass:
3459     Out << "sp";
3460     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3461     break;
3462 
3463   case Expr::SizeOfPackExprClass: {
3464     auto *SPE = cast<SizeOfPackExpr>(E);
3465     if (SPE->isPartiallySubstituted()) {
3466       Out << "sP";
3467       for (const auto &A : SPE->getPartialArguments())
3468         mangleTemplateArg(A);
3469       Out << "E";
3470       break;
3471     }
3472 
3473     Out << "sZ";
3474     const NamedDecl *Pack = SPE->getPack();
3475     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3476       mangleTemplateParameter(TTP->getIndex());
3477     else if (const NonTypeTemplateParmDecl *NTTP
3478                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3479       mangleTemplateParameter(NTTP->getIndex());
3480     else if (const TemplateTemplateParmDecl *TempTP
3481                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
3482       mangleTemplateParameter(TempTP->getIndex());
3483     else
3484       mangleFunctionParam(cast<ParmVarDecl>(Pack));
3485     break;
3486   }
3487 
3488   case Expr::MaterializeTemporaryExprClass: {
3489     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3490     break;
3491   }
3492 
3493   case Expr::CXXFoldExprClass: {
3494     auto *FE = cast<CXXFoldExpr>(E);
3495     if (FE->isLeftFold())
3496       Out << (FE->getInit() ? "fL" : "fl");
3497     else
3498       Out << (FE->getInit() ? "fR" : "fr");
3499 
3500     if (FE->getOperator() == BO_PtrMemD)
3501       Out << "ds";
3502     else
3503       mangleOperatorName(
3504           BinaryOperator::getOverloadedOperator(FE->getOperator()),
3505           /*Arity=*/2);
3506 
3507     if (FE->getLHS())
3508       mangleExpression(FE->getLHS());
3509     if (FE->getRHS())
3510       mangleExpression(FE->getRHS());
3511     break;
3512   }
3513 
3514   case Expr::CXXThisExprClass:
3515     Out << "fpT";
3516     break;
3517   }
3518 }
3519 
3520 /// Mangle an expression which refers to a parameter variable.
3521 ///
3522 /// <expression>     ::= <function-param>
3523 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3524 /// <function-param> ::= fp <top-level CV-qualifiers>
3525 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3526 /// <function-param> ::= fL <L-1 non-negative number>
3527 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3528 /// <function-param> ::= fL <L-1 non-negative number>
3529 ///                      p <top-level CV-qualifiers>
3530 ///                      <I-1 non-negative number> _         # L > 0, I > 0
3531 ///
3532 /// L is the nesting depth of the parameter, defined as 1 if the
3533 /// parameter comes from the innermost function prototype scope
3534 /// enclosing the current context, 2 if from the next enclosing
3535 /// function prototype scope, and so on, with one special case: if
3536 /// we've processed the full parameter clause for the innermost
3537 /// function type, then L is one less.  This definition conveniently
3538 /// makes it irrelevant whether a function's result type was written
3539 /// trailing or leading, but is otherwise overly complicated; the
3540 /// numbering was first designed without considering references to
3541 /// parameter in locations other than return types, and then the
3542 /// mangling had to be generalized without changing the existing
3543 /// manglings.
3544 ///
3545 /// I is the zero-based index of the parameter within its parameter
3546 /// declaration clause.  Note that the original ABI document describes
3547 /// this using 1-based ordinals.
3548 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3549   unsigned parmDepth = parm->getFunctionScopeDepth();
3550   unsigned parmIndex = parm->getFunctionScopeIndex();
3551 
3552   // Compute 'L'.
3553   // parmDepth does not include the declaring function prototype.
3554   // FunctionTypeDepth does account for that.
3555   assert(parmDepth < FunctionTypeDepth.getDepth());
3556   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3557   if (FunctionTypeDepth.isInResultType())
3558     nestingDepth--;
3559 
3560   if (nestingDepth == 0) {
3561     Out << "fp";
3562   } else {
3563     Out << "fL" << (nestingDepth - 1) << 'p';
3564   }
3565 
3566   // Top-level qualifiers.  We don't have to worry about arrays here,
3567   // because parameters declared as arrays should already have been
3568   // transformed to have pointer type. FIXME: apparently these don't
3569   // get mangled if used as an rvalue of a known non-class type?
3570   assert(!parm->getType()->isArrayType()
3571          && "parameter's type is still an array type?");
3572   mangleQualifiers(parm->getType().getQualifiers());
3573 
3574   // Parameter index.
3575   if (parmIndex != 0) {
3576     Out << (parmIndex - 1);
3577   }
3578   Out << '_';
3579 }
3580 
3581 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3582   // <ctor-dtor-name> ::= C1  # complete object constructor
3583   //                  ::= C2  # base object constructor
3584   //
3585   // In addition, C5 is a comdat name with C1 and C2 in it.
3586   switch (T) {
3587   case Ctor_Complete:
3588     Out << "C1";
3589     break;
3590   case Ctor_Base:
3591     Out << "C2";
3592     break;
3593   case Ctor_Comdat:
3594     Out << "C5";
3595     break;
3596   case Ctor_DefaultClosure:
3597   case Ctor_CopyingClosure:
3598     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
3599   }
3600 }
3601 
3602 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3603   // <ctor-dtor-name> ::= D0  # deleting destructor
3604   //                  ::= D1  # complete object destructor
3605   //                  ::= D2  # base object destructor
3606   //
3607   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3608   switch (T) {
3609   case Dtor_Deleting:
3610     Out << "D0";
3611     break;
3612   case Dtor_Complete:
3613     Out << "D1";
3614     break;
3615   case Dtor_Base:
3616     Out << "D2";
3617     break;
3618   case Dtor_Comdat:
3619     Out << "D5";
3620     break;
3621   }
3622 }
3623 
3624 void CXXNameMangler::mangleTemplateArgs(
3625                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3626   // <template-args> ::= I <template-arg>+ E
3627   Out << 'I';
3628   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3629     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3630   Out << 'E';
3631 }
3632 
3633 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3634   // <template-args> ::= I <template-arg>+ E
3635   Out << 'I';
3636   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3637     mangleTemplateArg(AL[i]);
3638   Out << 'E';
3639 }
3640 
3641 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3642                                         unsigned NumTemplateArgs) {
3643   // <template-args> ::= I <template-arg>+ E
3644   Out << 'I';
3645   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3646     mangleTemplateArg(TemplateArgs[i]);
3647   Out << 'E';
3648 }
3649 
3650 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3651   // <template-arg> ::= <type>              # type or template
3652   //                ::= X <expression> E    # expression
3653   //                ::= <expr-primary>      # simple expressions
3654   //                ::= J <template-arg>* E # argument pack
3655   if (!A.isInstantiationDependent() || A.isDependent())
3656     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3657 
3658   switch (A.getKind()) {
3659   case TemplateArgument::Null:
3660     llvm_unreachable("Cannot mangle NULL template argument");
3661 
3662   case TemplateArgument::Type:
3663     mangleType(A.getAsType());
3664     break;
3665   case TemplateArgument::Template:
3666     // This is mangled as <type>.
3667     mangleType(A.getAsTemplate());
3668     break;
3669   case TemplateArgument::TemplateExpansion:
3670     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3671     Out << "Dp";
3672     mangleType(A.getAsTemplateOrTemplatePattern());
3673     break;
3674   case TemplateArgument::Expression: {
3675     // It's possible to end up with a DeclRefExpr here in certain
3676     // dependent cases, in which case we should mangle as a
3677     // declaration.
3678     const Expr *E = A.getAsExpr()->IgnoreParens();
3679     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3680       const ValueDecl *D = DRE->getDecl();
3681       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3682         Out << 'L';
3683         mangle(D);
3684         Out << 'E';
3685         break;
3686       }
3687     }
3688 
3689     Out << 'X';
3690     mangleExpression(E);
3691     Out << 'E';
3692     break;
3693   }
3694   case TemplateArgument::Integral:
3695     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3696     break;
3697   case TemplateArgument::Declaration: {
3698     //  <expr-primary> ::= L <mangled-name> E # external name
3699     // Clang produces AST's where pointer-to-member-function expressions
3700     // and pointer-to-function expressions are represented as a declaration not
3701     // an expression. We compensate for it here to produce the correct mangling.
3702     ValueDecl *D = A.getAsDecl();
3703     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3704     if (compensateMangling) {
3705       Out << 'X';
3706       mangleOperatorName(OO_Amp, 1);
3707     }
3708 
3709     Out << 'L';
3710     // References to external entities use the mangled name; if the name would
3711     // not normally be manged then mangle it as unqualified.
3712     mangle(D);
3713     Out << 'E';
3714 
3715     if (compensateMangling)
3716       Out << 'E';
3717 
3718     break;
3719   }
3720   case TemplateArgument::NullPtr: {
3721     //  <expr-primary> ::= L <type> 0 E
3722     Out << 'L';
3723     mangleType(A.getNullPtrType());
3724     Out << "0E";
3725     break;
3726   }
3727   case TemplateArgument::Pack: {
3728     //  <template-arg> ::= J <template-arg>* E
3729     Out << 'J';
3730     for (const auto &P : A.pack_elements())
3731       mangleTemplateArg(P);
3732     Out << 'E';
3733   }
3734   }
3735 }
3736 
3737 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3738   // <template-param> ::= T_    # first template parameter
3739   //                  ::= T <parameter-2 non-negative number> _
3740   if (Index == 0)
3741     Out << "T_";
3742   else
3743     Out << 'T' << (Index - 1) << '_';
3744 }
3745 
3746 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3747   if (SeqID == 1)
3748     Out << '0';
3749   else if (SeqID > 1) {
3750     SeqID--;
3751 
3752     // <seq-id> is encoded in base-36, using digits and upper case letters.
3753     char Buffer[7]; // log(2**32) / log(36) ~= 7
3754     MutableArrayRef<char> BufferRef(Buffer);
3755     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3756 
3757     for (; SeqID != 0; SeqID /= 36) {
3758       unsigned C = SeqID % 36;
3759       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3760     }
3761 
3762     Out.write(I.base(), I - BufferRef.rbegin());
3763   }
3764   Out << '_';
3765 }
3766 
3767 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3768   bool result = mangleSubstitution(type);
3769   assert(result && "no existing substitution for type");
3770   (void) result;
3771 }
3772 
3773 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3774   bool result = mangleSubstitution(tname);
3775   assert(result && "no existing substitution for template name");
3776   (void) result;
3777 }
3778 
3779 // <substitution> ::= S <seq-id> _
3780 //                ::= S_
3781 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3782   // Try one of the standard substitutions first.
3783   if (mangleStandardSubstitution(ND))
3784     return true;
3785 
3786   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3787   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3788 }
3789 
3790 /// Determine whether the given type has any qualifiers that are relevant for
3791 /// substitutions.
3792 static bool hasMangledSubstitutionQualifiers(QualType T) {
3793   Qualifiers Qs = T.getQualifiers();
3794   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3795 }
3796 
3797 bool CXXNameMangler::mangleSubstitution(QualType T) {
3798   if (!hasMangledSubstitutionQualifiers(T)) {
3799     if (const RecordType *RT = T->getAs<RecordType>())
3800       return mangleSubstitution(RT->getDecl());
3801   }
3802 
3803   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3804 
3805   return mangleSubstitution(TypePtr);
3806 }
3807 
3808 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3809   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3810     return mangleSubstitution(TD);
3811 
3812   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3813   return mangleSubstitution(
3814                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3815 }
3816 
3817 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3818   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3819   if (I == Substitutions.end())
3820     return false;
3821 
3822   unsigned SeqID = I->second;
3823   Out << 'S';
3824   mangleSeqID(SeqID);
3825 
3826   return true;
3827 }
3828 
3829 static bool isCharType(QualType T) {
3830   if (T.isNull())
3831     return false;
3832 
3833   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3834     T->isSpecificBuiltinType(BuiltinType::Char_U);
3835 }
3836 
3837 /// Returns whether a given type is a template specialization of a given name
3838 /// with a single argument of type char.
3839 static bool isCharSpecialization(QualType T, const char *Name) {
3840   if (T.isNull())
3841     return false;
3842 
3843   const RecordType *RT = T->getAs<RecordType>();
3844   if (!RT)
3845     return false;
3846 
3847   const ClassTemplateSpecializationDecl *SD =
3848     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3849   if (!SD)
3850     return false;
3851 
3852   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3853     return false;
3854 
3855   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3856   if (TemplateArgs.size() != 1)
3857     return false;
3858 
3859   if (!isCharType(TemplateArgs[0].getAsType()))
3860     return false;
3861 
3862   return SD->getIdentifier()->getName() == Name;
3863 }
3864 
3865 template <std::size_t StrLen>
3866 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3867                                        const char (&Str)[StrLen]) {
3868   if (!SD->getIdentifier()->isStr(Str))
3869     return false;
3870 
3871   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3872   if (TemplateArgs.size() != 2)
3873     return false;
3874 
3875   if (!isCharType(TemplateArgs[0].getAsType()))
3876     return false;
3877 
3878   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3879     return false;
3880 
3881   return true;
3882 }
3883 
3884 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3885   // <substitution> ::= St # ::std::
3886   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3887     if (isStd(NS)) {
3888       Out << "St";
3889       return true;
3890     }
3891   }
3892 
3893   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3894     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3895       return false;
3896 
3897     // <substitution> ::= Sa # ::std::allocator
3898     if (TD->getIdentifier()->isStr("allocator")) {
3899       Out << "Sa";
3900       return true;
3901     }
3902 
3903     // <<substitution> ::= Sb # ::std::basic_string
3904     if (TD->getIdentifier()->isStr("basic_string")) {
3905       Out << "Sb";
3906       return true;
3907     }
3908   }
3909 
3910   if (const ClassTemplateSpecializationDecl *SD =
3911         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3912     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3913       return false;
3914 
3915     //    <substitution> ::= Ss # ::std::basic_string<char,
3916     //                            ::std::char_traits<char>,
3917     //                            ::std::allocator<char> >
3918     if (SD->getIdentifier()->isStr("basic_string")) {
3919       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3920 
3921       if (TemplateArgs.size() != 3)
3922         return false;
3923 
3924       if (!isCharType(TemplateArgs[0].getAsType()))
3925         return false;
3926 
3927       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3928         return false;
3929 
3930       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3931         return false;
3932 
3933       Out << "Ss";
3934       return true;
3935     }
3936 
3937     //    <substitution> ::= Si # ::std::basic_istream<char,
3938     //                            ::std::char_traits<char> >
3939     if (isStreamCharSpecialization(SD, "basic_istream")) {
3940       Out << "Si";
3941       return true;
3942     }
3943 
3944     //    <substitution> ::= So # ::std::basic_ostream<char,
3945     //                            ::std::char_traits<char> >
3946     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3947       Out << "So";
3948       return true;
3949     }
3950 
3951     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3952     //                            ::std::char_traits<char> >
3953     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3954       Out << "Sd";
3955       return true;
3956     }
3957   }
3958   return false;
3959 }
3960 
3961 void CXXNameMangler::addSubstitution(QualType T) {
3962   if (!hasMangledSubstitutionQualifiers(T)) {
3963     if (const RecordType *RT = T->getAs<RecordType>()) {
3964       addSubstitution(RT->getDecl());
3965       return;
3966     }
3967   }
3968 
3969   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3970   addSubstitution(TypePtr);
3971 }
3972 
3973 void CXXNameMangler::addSubstitution(TemplateName Template) {
3974   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3975     return addSubstitution(TD);
3976 
3977   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3978   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3979 }
3980 
3981 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3982   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3983   Substitutions[Ptr] = SeqID++;
3984 }
3985 
3986 //
3987 
3988 /// Mangles the name of the declaration D and emits that name to the given
3989 /// output stream.
3990 ///
3991 /// If the declaration D requires a mangled name, this routine will emit that
3992 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3993 /// and this routine will return false. In this case, the caller should just
3994 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3995 /// name.
3996 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3997                                              raw_ostream &Out) {
3998   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3999           "Invalid mangleName() call, argument is not a variable or function!");
4000   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4001          "Invalid mangleName() call on 'structor decl!");
4002 
4003   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4004                                  getASTContext().getSourceManager(),
4005                                  "Mangling declaration");
4006 
4007   CXXNameMangler Mangler(*this, Out, D);
4008   Mangler.mangle(D);
4009 }
4010 
4011 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4012                                              CXXCtorType Type,
4013                                              raw_ostream &Out) {
4014   CXXNameMangler Mangler(*this, Out, D, Type);
4015   Mangler.mangle(D);
4016 }
4017 
4018 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4019                                              CXXDtorType Type,
4020                                              raw_ostream &Out) {
4021   CXXNameMangler Mangler(*this, Out, D, Type);
4022   Mangler.mangle(D);
4023 }
4024 
4025 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4026                                                    raw_ostream &Out) {
4027   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4028   Mangler.mangle(D);
4029 }
4030 
4031 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4032                                                    raw_ostream &Out) {
4033   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4034   Mangler.mangle(D);
4035 }
4036 
4037 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4038                                            const ThunkInfo &Thunk,
4039                                            raw_ostream &Out) {
4040   //  <special-name> ::= T <call-offset> <base encoding>
4041   //                      # base is the nominal target function of thunk
4042   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4043   //                      # base is the nominal target function of thunk
4044   //                      # first call-offset is 'this' adjustment
4045   //                      # second call-offset is result adjustment
4046 
4047   assert(!isa<CXXDestructorDecl>(MD) &&
4048          "Use mangleCXXDtor for destructor decls!");
4049   CXXNameMangler Mangler(*this, Out);
4050   Mangler.getStream() << "_ZT";
4051   if (!Thunk.Return.isEmpty())
4052     Mangler.getStream() << 'c';
4053 
4054   // Mangle the 'this' pointer adjustment.
4055   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4056                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4057 
4058   // Mangle the return pointer adjustment if there is one.
4059   if (!Thunk.Return.isEmpty())
4060     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4061                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4062 
4063   Mangler.mangleFunctionEncoding(MD);
4064 }
4065 
4066 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4067     const CXXDestructorDecl *DD, CXXDtorType Type,
4068     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4069   //  <special-name> ::= T <call-offset> <base encoding>
4070   //                      # base is the nominal target function of thunk
4071   CXXNameMangler Mangler(*this, Out, DD, Type);
4072   Mangler.getStream() << "_ZT";
4073 
4074   // Mangle the 'this' pointer adjustment.
4075   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4076                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4077 
4078   Mangler.mangleFunctionEncoding(DD);
4079 }
4080 
4081 /// Returns the mangled name for a guard variable for the passed in VarDecl.
4082 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4083                                                          raw_ostream &Out) {
4084   //  <special-name> ::= GV <object name>       # Guard variable for one-time
4085   //                                            # initialization
4086   CXXNameMangler Mangler(*this, Out);
4087   Mangler.getStream() << "_ZGV";
4088   Mangler.mangleName(D);
4089 }
4090 
4091 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4092                                                         raw_ostream &Out) {
4093   // These symbols are internal in the Itanium ABI, so the names don't matter.
4094   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4095   // avoid duplicate symbols.
4096   Out << "__cxx_global_var_init";
4097 }
4098 
4099 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4100                                                              raw_ostream &Out) {
4101   // Prefix the mangling of D with __dtor_.
4102   CXXNameMangler Mangler(*this, Out);
4103   Mangler.getStream() << "__dtor_";
4104   if (shouldMangleDeclName(D))
4105     Mangler.mangle(D);
4106   else
4107     Mangler.getStream() << D->getName();
4108 }
4109 
4110 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4111     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4112   CXXNameMangler Mangler(*this, Out);
4113   Mangler.getStream() << "__filt_";
4114   if (shouldMangleDeclName(EnclosingDecl))
4115     Mangler.mangle(EnclosingDecl);
4116   else
4117     Mangler.getStream() << EnclosingDecl->getName();
4118 }
4119 
4120 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4121     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4122   CXXNameMangler Mangler(*this, Out);
4123   Mangler.getStream() << "__fin_";
4124   if (shouldMangleDeclName(EnclosingDecl))
4125     Mangler.mangle(EnclosingDecl);
4126   else
4127     Mangler.getStream() << EnclosingDecl->getName();
4128 }
4129 
4130 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4131                                                             raw_ostream &Out) {
4132   //  <special-name> ::= TH <object name>
4133   CXXNameMangler Mangler(*this, Out);
4134   Mangler.getStream() << "_ZTH";
4135   Mangler.mangleName(D);
4136 }
4137 
4138 void
4139 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4140                                                           raw_ostream &Out) {
4141   //  <special-name> ::= TW <object name>
4142   CXXNameMangler Mangler(*this, Out);
4143   Mangler.getStream() << "_ZTW";
4144   Mangler.mangleName(D);
4145 }
4146 
4147 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4148                                                         unsigned ManglingNumber,
4149                                                         raw_ostream &Out) {
4150   // We match the GCC mangling here.
4151   //  <special-name> ::= GR <object name>
4152   CXXNameMangler Mangler(*this, Out);
4153   Mangler.getStream() << "_ZGR";
4154   Mangler.mangleName(D);
4155   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4156   Mangler.mangleSeqID(ManglingNumber - 1);
4157 }
4158 
4159 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4160                                                raw_ostream &Out) {
4161   // <special-name> ::= TV <type>  # virtual table
4162   CXXNameMangler Mangler(*this, Out);
4163   Mangler.getStream() << "_ZTV";
4164   Mangler.mangleNameOrStandardSubstitution(RD);
4165 }
4166 
4167 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4168                                             raw_ostream &Out) {
4169   // <special-name> ::= TT <type>  # VTT structure
4170   CXXNameMangler Mangler(*this, Out);
4171   Mangler.getStream() << "_ZTT";
4172   Mangler.mangleNameOrStandardSubstitution(RD);
4173 }
4174 
4175 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4176                                                    int64_t Offset,
4177                                                    const CXXRecordDecl *Type,
4178                                                    raw_ostream &Out) {
4179   // <special-name> ::= TC <type> <offset number> _ <base type>
4180   CXXNameMangler Mangler(*this, Out);
4181   Mangler.getStream() << "_ZTC";
4182   Mangler.mangleNameOrStandardSubstitution(RD);
4183   Mangler.getStream() << Offset;
4184   Mangler.getStream() << '_';
4185   Mangler.mangleNameOrStandardSubstitution(Type);
4186 }
4187 
4188 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4189   // <special-name> ::= TI <type>  # typeinfo structure
4190   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4191   CXXNameMangler Mangler(*this, Out);
4192   Mangler.getStream() << "_ZTI";
4193   Mangler.mangleType(Ty);
4194 }
4195 
4196 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4197                                                  raw_ostream &Out) {
4198   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4199   CXXNameMangler Mangler(*this, Out);
4200   Mangler.getStream() << "_ZTS";
4201   Mangler.mangleType(Ty);
4202 }
4203 
4204 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4205   mangleCXXRTTIName(Ty, Out);
4206 }
4207 
4208 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4209   llvm_unreachable("Can't mangle string literals");
4210 }
4211 
4212 ItaniumMangleContext *
4213 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4214   return new ItaniumMangleContextImpl(Context, Diags);
4215 }
4216 
4217