1 //===--- ExprClassification.cpp - Expression AST Node Implementation ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Expr::classify. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/ErrorHandling.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 using namespace clang; 23 24 typedef Expr::Classification Cl; 25 26 static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E); 27 static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D); 28 static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T); 29 static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E); 30 static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E); 31 static Cl::Kinds ClassifyConditional(ASTContext &Ctx, 32 const Expr *trueExpr, 33 const Expr *falseExpr); 34 static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, 35 Cl::Kinds Kind, SourceLocation &Loc); 36 37 static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang, 38 const Expr *E, 39 ExprValueKind Kind) { 40 switch (Kind) { 41 case VK_RValue: 42 return Lang.CPlusPlus && E->getType()->isRecordType() ? 43 Cl::CL_ClassTemporary : Cl::CL_PRValue; 44 case VK_LValue: 45 return Cl::CL_LValue; 46 case VK_XValue: 47 return Cl::CL_XValue; 48 } 49 llvm_unreachable("Invalid value category of implicit cast."); 50 } 51 52 Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const { 53 assert(!TR->isReferenceType() && "Expressions can't have reference type."); 54 55 Cl::Kinds kind = ClassifyInternal(Ctx, this); 56 // C99 6.3.2.1: An lvalue is an expression with an object type or an 57 // incomplete type other than void. 58 if (!Ctx.getLangOptions().CPlusPlus) { 59 // Thus, no functions. 60 if (TR->isFunctionType() || TR == Ctx.OverloadTy) 61 kind = Cl::CL_Function; 62 // No void either, but qualified void is OK because it is "other than void". 63 // Void "lvalues" are classified as addressable void values, which are void 64 // expressions whose address can be taken. 65 else if (TR->isVoidType() && !TR.hasQualifiers()) 66 kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void); 67 } 68 69 // Enable this assertion for testing. 70 switch (kind) { 71 case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break; 72 case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break; 73 case Cl::CL_Function: 74 case Cl::CL_Void: 75 case Cl::CL_AddressableVoid: 76 case Cl::CL_DuplicateVectorComponents: 77 case Cl::CL_MemberFunction: 78 case Cl::CL_SubObjCPropertySetting: 79 case Cl::CL_ClassTemporary: 80 case Cl::CL_ObjCMessageRValue: 81 case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break; 82 } 83 84 Cl::ModifiableType modifiable = Cl::CM_Untested; 85 if (Loc) 86 modifiable = IsModifiable(Ctx, this, kind, *Loc); 87 return Classification(kind, modifiable); 88 } 89 90 static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) { 91 // This function takes the first stab at classifying expressions. 92 const LangOptions &Lang = Ctx.getLangOptions(); 93 94 switch (E->getStmtClass()) { 95 case Stmt::NoStmtClass: 96 #define ABSTRACT_STMT(Kind) 97 #define STMT(Kind, Base) case Expr::Kind##Class: 98 #define EXPR(Kind, Base) 99 #include "clang/AST/StmtNodes.inc" 100 llvm_unreachable("cannot classify a statement"); 101 102 // First come the expressions that are always lvalues, unconditionally. 103 case Expr::ObjCIsaExprClass: 104 // C++ [expr.prim.general]p1: A string literal is an lvalue. 105 case Expr::StringLiteralClass: 106 // @encode is equivalent to its string 107 case Expr::ObjCEncodeExprClass: 108 // __func__ and friends are too. 109 case Expr::PredefinedExprClass: 110 // Property references are lvalues 111 case Expr::ObjCPropertyRefExprClass: 112 // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of... 113 case Expr::CXXTypeidExprClass: 114 // Unresolved lookups get classified as lvalues. 115 // FIXME: Is this wise? Should they get their own kind? 116 case Expr::UnresolvedLookupExprClass: 117 case Expr::UnresolvedMemberExprClass: 118 case Expr::CXXDependentScopeMemberExprClass: 119 case Expr::DependentScopeDeclRefExprClass: 120 // ObjC instance variables are lvalues 121 // FIXME: ObjC++0x might have different rules 122 case Expr::ObjCIvarRefExprClass: 123 return Cl::CL_LValue; 124 125 // C99 6.5.2.5p5 says that compound literals are lvalues. 126 // In C++, they're class temporaries. 127 case Expr::CompoundLiteralExprClass: 128 return Ctx.getLangOptions().CPlusPlus? Cl::CL_ClassTemporary 129 : Cl::CL_LValue; 130 131 // Expressions that are prvalues. 132 case Expr::CXXBoolLiteralExprClass: 133 case Expr::CXXPseudoDestructorExprClass: 134 case Expr::UnaryExprOrTypeTraitExprClass: 135 case Expr::CXXNewExprClass: 136 case Expr::CXXThisExprClass: 137 case Expr::CXXNullPtrLiteralExprClass: 138 case Expr::ImaginaryLiteralClass: 139 case Expr::GNUNullExprClass: 140 case Expr::OffsetOfExprClass: 141 case Expr::CXXThrowExprClass: 142 case Expr::ShuffleVectorExprClass: 143 case Expr::IntegerLiteralClass: 144 case Expr::CharacterLiteralClass: 145 case Expr::AddrLabelExprClass: 146 case Expr::CXXDeleteExprClass: 147 case Expr::ImplicitValueInitExprClass: 148 case Expr::BlockExprClass: 149 case Expr::FloatingLiteralClass: 150 case Expr::CXXNoexceptExprClass: 151 case Expr::CXXScalarValueInitExprClass: 152 case Expr::UnaryTypeTraitExprClass: 153 case Expr::BinaryTypeTraitExprClass: 154 case Expr::TypeTraitExprClass: 155 case Expr::ArrayTypeTraitExprClass: 156 case Expr::ExpressionTraitExprClass: 157 case Expr::ObjCSelectorExprClass: 158 case Expr::ObjCProtocolExprClass: 159 case Expr::ObjCStringLiteralClass: 160 case Expr::ParenListExprClass: 161 case Expr::SizeOfPackExprClass: 162 case Expr::SubstNonTypeTemplateParmPackExprClass: 163 case Expr::AsTypeExprClass: 164 case Expr::ObjCIndirectCopyRestoreExprClass: 165 case Expr::AtomicExprClass: 166 return Cl::CL_PRValue; 167 168 // Next come the complicated cases. 169 case Expr::SubstNonTypeTemplateParmExprClass: 170 return ClassifyInternal(Ctx, 171 cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 172 173 // C++ [expr.sub]p1: The result is an lvalue of type "T". 174 // However, subscripting vector types is more like member access. 175 case Expr::ArraySubscriptExprClass: 176 if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType()) 177 return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase()); 178 return Cl::CL_LValue; 179 180 // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a 181 // function or variable and a prvalue otherwise. 182 case Expr::DeclRefExprClass: 183 if (E->getType() == Ctx.UnknownAnyTy) 184 return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl()) 185 ? Cl::CL_PRValue : Cl::CL_LValue; 186 return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl()); 187 // We deal with names referenced from blocks the same way. 188 case Expr::BlockDeclRefExprClass: 189 return ClassifyDecl(Ctx, cast<BlockDeclRefExpr>(E)->getDecl()); 190 191 // Member access is complex. 192 case Expr::MemberExprClass: 193 return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E)); 194 195 case Expr::UnaryOperatorClass: 196 switch (cast<UnaryOperator>(E)->getOpcode()) { 197 // C++ [expr.unary.op]p1: The unary * operator performs indirection: 198 // [...] the result is an lvalue referring to the object or function 199 // to which the expression points. 200 case UO_Deref: 201 return Cl::CL_LValue; 202 203 // GNU extensions, simply look through them. 204 case UO_Extension: 205 return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr()); 206 207 // Treat _Real and _Imag basically as if they were member 208 // expressions: l-value only if the operand is a true l-value. 209 case UO_Real: 210 case UO_Imag: { 211 const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 212 Cl::Kinds K = ClassifyInternal(Ctx, Op); 213 if (K != Cl::CL_LValue) return K; 214 215 if (isa<ObjCPropertyRefExpr>(Op)) 216 return Cl::CL_SubObjCPropertySetting; 217 return Cl::CL_LValue; 218 } 219 220 // C++ [expr.pre.incr]p1: The result is the updated operand; it is an 221 // lvalue, [...] 222 // Not so in C. 223 case UO_PreInc: 224 case UO_PreDec: 225 return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue; 226 227 default: 228 return Cl::CL_PRValue; 229 } 230 231 case Expr::OpaqueValueExprClass: 232 return ClassifyExprValueKind(Lang, E, E->getValueKind()); 233 234 // Pseudo-object expressions can produce l-values with reference magic. 235 case Expr::PseudoObjectExprClass: 236 return ClassifyExprValueKind(Lang, E, 237 cast<PseudoObjectExpr>(E)->getValueKind()); 238 239 // Implicit casts are lvalues if they're lvalue casts. Other than that, we 240 // only specifically record class temporaries. 241 case Expr::ImplicitCastExprClass: 242 return ClassifyExprValueKind(Lang, E, E->getValueKind()); 243 244 // C++ [expr.prim.general]p4: The presence of parentheses does not affect 245 // whether the expression is an lvalue. 246 case Expr::ParenExprClass: 247 return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr()); 248 249 // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator, 250 // or a void expression if its result expression is, respectively, an 251 // lvalue, a function designator, or a void expression. 252 case Expr::GenericSelectionExprClass: 253 if (cast<GenericSelectionExpr>(E)->isResultDependent()) 254 return Cl::CL_PRValue; 255 return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr()); 256 257 case Expr::BinaryOperatorClass: 258 case Expr::CompoundAssignOperatorClass: 259 // C doesn't have any binary expressions that are lvalues. 260 if (Lang.CPlusPlus) 261 return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E)); 262 return Cl::CL_PRValue; 263 264 case Expr::CallExprClass: 265 case Expr::CXXOperatorCallExprClass: 266 case Expr::CXXMemberCallExprClass: 267 case Expr::CUDAKernelCallExprClass: 268 return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType()); 269 270 // __builtin_choose_expr is equivalent to the chosen expression. 271 case Expr::ChooseExprClass: 272 return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr(Ctx)); 273 274 // Extended vector element access is an lvalue unless there are duplicates 275 // in the shuffle expression. 276 case Expr::ExtVectorElementExprClass: 277 return cast<ExtVectorElementExpr>(E)->containsDuplicateElements() ? 278 Cl::CL_DuplicateVectorComponents : Cl::CL_LValue; 279 280 // Simply look at the actual default argument. 281 case Expr::CXXDefaultArgExprClass: 282 return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr()); 283 284 // Same idea for temporary binding. 285 case Expr::CXXBindTemporaryExprClass: 286 return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr()); 287 288 // And the cleanups guard. 289 case Expr::ExprWithCleanupsClass: 290 return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr()); 291 292 // Casts depend completely on the target type. All casts work the same. 293 case Expr::CStyleCastExprClass: 294 case Expr::CXXFunctionalCastExprClass: 295 case Expr::CXXStaticCastExprClass: 296 case Expr::CXXDynamicCastExprClass: 297 case Expr::CXXReinterpretCastExprClass: 298 case Expr::CXXConstCastExprClass: 299 case Expr::ObjCBridgedCastExprClass: 300 // Only in C++ can casts be interesting at all. 301 if (!Lang.CPlusPlus) return Cl::CL_PRValue; 302 return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten()); 303 304 case Expr::CXXUnresolvedConstructExprClass: 305 return ClassifyUnnamed(Ctx, 306 cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten()); 307 308 case Expr::BinaryConditionalOperatorClass: { 309 if (!Lang.CPlusPlus) return Cl::CL_PRValue; 310 const BinaryConditionalOperator *co = cast<BinaryConditionalOperator>(E); 311 return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); 312 } 313 314 case Expr::ConditionalOperatorClass: { 315 // Once again, only C++ is interesting. 316 if (!Lang.CPlusPlus) return Cl::CL_PRValue; 317 const ConditionalOperator *co = cast<ConditionalOperator>(E); 318 return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); 319 } 320 321 // ObjC message sends are effectively function calls, if the target function 322 // is known. 323 case Expr::ObjCMessageExprClass: 324 if (const ObjCMethodDecl *Method = 325 cast<ObjCMessageExpr>(E)->getMethodDecl()) { 326 Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getResultType()); 327 return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind; 328 } 329 return Cl::CL_PRValue; 330 331 // Some C++ expressions are always class temporaries. 332 case Expr::CXXConstructExprClass: 333 case Expr::CXXTemporaryObjectExprClass: 334 case Expr::LambdaExprClass: 335 return Cl::CL_ClassTemporary; 336 337 case Expr::VAArgExprClass: 338 return ClassifyUnnamed(Ctx, E->getType()); 339 340 case Expr::DesignatedInitExprClass: 341 return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit()); 342 343 case Expr::StmtExprClass: { 344 const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt(); 345 if (const Expr *LastExpr = dyn_cast_or_null<Expr>(S->body_back())) 346 return ClassifyUnnamed(Ctx, LastExpr->getType()); 347 return Cl::CL_PRValue; 348 } 349 350 case Expr::CXXUuidofExprClass: 351 return Cl::CL_LValue; 352 353 case Expr::PackExpansionExprClass: 354 return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern()); 355 356 case Expr::MaterializeTemporaryExprClass: 357 return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference() 358 ? Cl::CL_LValue 359 : Cl::CL_XValue; 360 361 case Expr::InitListExprClass: 362 // An init list can be an lvalue if it is bound to a reference and 363 // contains only one element. In that case, we look at that element 364 // for an exact classification. Init list creation takes care of the 365 // value kind for us, so we only need to fine-tune. 366 if (E->isRValue()) 367 return ClassifyExprValueKind(Lang, E, E->getValueKind()); 368 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 369 "Only 1-element init lists can be glvalues."); 370 return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0)); 371 } 372 373 llvm_unreachable("unhandled expression kind in classification"); 374 } 375 376 /// ClassifyDecl - Return the classification of an expression referencing the 377 /// given declaration. 378 static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) { 379 // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a 380 // function, variable, or data member and a prvalue otherwise. 381 // In C, functions are not lvalues. 382 // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an 383 // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to 384 // special-case this. 385 386 if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 387 return Cl::CL_MemberFunction; 388 389 bool islvalue; 390 if (const NonTypeTemplateParmDecl *NTTParm = 391 dyn_cast<NonTypeTemplateParmDecl>(D)) 392 islvalue = NTTParm->getType()->isReferenceType(); 393 else 394 islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) || 395 isa<IndirectFieldDecl>(D) || 396 (Ctx.getLangOptions().CPlusPlus && 397 (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D))); 398 399 return islvalue ? Cl::CL_LValue : Cl::CL_PRValue; 400 } 401 402 /// ClassifyUnnamed - Return the classification of an expression yielding an 403 /// unnamed value of the given type. This applies in particular to function 404 /// calls and casts. 405 static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) { 406 // In C, function calls are always rvalues. 407 if (!Ctx.getLangOptions().CPlusPlus) return Cl::CL_PRValue; 408 409 // C++ [expr.call]p10: A function call is an lvalue if the result type is an 410 // lvalue reference type or an rvalue reference to function type, an xvalue 411 // if the result type is an rvalue reference to object type, and a prvalue 412 // otherwise. 413 if (T->isLValueReferenceType()) 414 return Cl::CL_LValue; 415 const RValueReferenceType *RV = T->getAs<RValueReferenceType>(); 416 if (!RV) // Could still be a class temporary, though. 417 return T->isRecordType() ? Cl::CL_ClassTemporary : Cl::CL_PRValue; 418 419 return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue; 420 } 421 422 static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) { 423 if (E->getType() == Ctx.UnknownAnyTy) 424 return (isa<FunctionDecl>(E->getMemberDecl()) 425 ? Cl::CL_PRValue : Cl::CL_LValue); 426 427 // Handle C first, it's easier. 428 if (!Ctx.getLangOptions().CPlusPlus) { 429 // C99 6.5.2.3p3 430 // For dot access, the expression is an lvalue if the first part is. For 431 // arrow access, it always is an lvalue. 432 if (E->isArrow()) 433 return Cl::CL_LValue; 434 // ObjC property accesses are not lvalues, but get special treatment. 435 Expr *Base = E->getBase()->IgnoreParens(); 436 if (isa<ObjCPropertyRefExpr>(Base)) 437 return Cl::CL_SubObjCPropertySetting; 438 return ClassifyInternal(Ctx, Base); 439 } 440 441 NamedDecl *Member = E->getMemberDecl(); 442 // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2. 443 // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then 444 // E1.E2 is an lvalue. 445 if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) 446 if (Value->getType()->isReferenceType()) 447 return Cl::CL_LValue; 448 449 // Otherwise, one of the following rules applies. 450 // -- If E2 is a static member [...] then E1.E2 is an lvalue. 451 if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) 452 return Cl::CL_LValue; 453 454 // -- If E2 is a non-static data member [...]. If E1 is an lvalue, then 455 // E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; 456 // otherwise, it is a prvalue. 457 if (isa<FieldDecl>(Member)) { 458 // *E1 is an lvalue 459 if (E->isArrow()) 460 return Cl::CL_LValue; 461 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 462 if (isa<ObjCPropertyRefExpr>(Base)) 463 return Cl::CL_SubObjCPropertySetting; 464 return ClassifyInternal(Ctx, E->getBase()); 465 } 466 467 // -- If E2 is a [...] member function, [...] 468 // -- If it refers to a static member function [...], then E1.E2 is an 469 // lvalue; [...] 470 // -- Otherwise [...] E1.E2 is a prvalue. 471 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) 472 return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction; 473 474 // -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue. 475 // So is everything else we haven't handled yet. 476 return Cl::CL_PRValue; 477 } 478 479 static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) { 480 assert(Ctx.getLangOptions().CPlusPlus && 481 "This is only relevant for C++."); 482 // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand. 483 // Except we override this for writes to ObjC properties. 484 if (E->isAssignmentOp()) 485 return (E->getLHS()->getObjectKind() == OK_ObjCProperty 486 ? Cl::CL_PRValue : Cl::CL_LValue); 487 488 // C++ [expr.comma]p1: the result is of the same value category as its right 489 // operand, [...]. 490 if (E->getOpcode() == BO_Comma) 491 return ClassifyInternal(Ctx, E->getRHS()); 492 493 // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand 494 // is a pointer to a data member is of the same value category as its first 495 // operand. 496 if (E->getOpcode() == BO_PtrMemD) 497 return (E->getType()->isFunctionType() || 498 E->hasPlaceholderType(BuiltinType::BoundMember)) 499 ? Cl::CL_MemberFunction 500 : ClassifyInternal(Ctx, E->getLHS()); 501 502 // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its 503 // second operand is a pointer to data member and a prvalue otherwise. 504 if (E->getOpcode() == BO_PtrMemI) 505 return (E->getType()->isFunctionType() || 506 E->hasPlaceholderType(BuiltinType::BoundMember)) 507 ? Cl::CL_MemberFunction 508 : Cl::CL_LValue; 509 510 // All other binary operations are prvalues. 511 return Cl::CL_PRValue; 512 } 513 514 static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True, 515 const Expr *False) { 516 assert(Ctx.getLangOptions().CPlusPlus && 517 "This is only relevant for C++."); 518 519 // C++ [expr.cond]p2 520 // If either the second or the third operand has type (cv) void, [...] 521 // the result [...] is a prvalue. 522 if (True->getType()->isVoidType() || False->getType()->isVoidType()) 523 return Cl::CL_PRValue; 524 525 // Note that at this point, we have already performed all conversions 526 // according to [expr.cond]p3. 527 // C++ [expr.cond]p4: If the second and third operands are glvalues of the 528 // same value category [...], the result is of that [...] value category. 529 // C++ [expr.cond]p5: Otherwise, the result is a prvalue. 530 Cl::Kinds LCl = ClassifyInternal(Ctx, True), 531 RCl = ClassifyInternal(Ctx, False); 532 return LCl == RCl ? LCl : Cl::CL_PRValue; 533 } 534 535 static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, 536 Cl::Kinds Kind, SourceLocation &Loc) { 537 // As a general rule, we only care about lvalues. But there are some rvalues 538 // for which we want to generate special results. 539 if (Kind == Cl::CL_PRValue) { 540 // For the sake of better diagnostics, we want to specifically recognize 541 // use of the GCC cast-as-lvalue extension. 542 if (const ExplicitCastExpr *CE = 543 dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) { 544 if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) { 545 Loc = CE->getExprLoc(); 546 return Cl::CM_LValueCast; 547 } 548 } 549 } 550 if (Kind != Cl::CL_LValue) 551 return Cl::CM_RValue; 552 553 // This is the lvalue case. 554 // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6) 555 if (Ctx.getLangOptions().CPlusPlus && E->getType()->isFunctionType()) 556 return Cl::CM_Function; 557 558 // You cannot assign to a variable outside a block from within the block if 559 // it is not marked __block, e.g. 560 // void takeclosure(void (^C)(void)); 561 // void func() { int x = 1; takeclosure(^{ x = 7; }); } 562 if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(E)) { 563 if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) 564 return Cl::CM_NotBlockQualified; 565 } 566 567 // Assignment to a property in ObjC is an implicit setter access. But a 568 // setter might not exist. 569 if (const ObjCPropertyRefExpr *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) { 570 if (Expr->isImplicitProperty() && Expr->getImplicitPropertySetter() == 0) 571 return Cl::CM_NoSetterProperty; 572 } 573 574 CanQualType CT = Ctx.getCanonicalType(E->getType()); 575 // Const stuff is obviously not modifiable. 576 if (CT.isConstQualified()) 577 return Cl::CM_ConstQualified; 578 // Arrays are not modifiable, only their elements are. 579 if (CT->isArrayType()) 580 return Cl::CM_ArrayType; 581 // Incomplete types are not modifiable. 582 if (CT->isIncompleteType()) 583 return Cl::CM_IncompleteType; 584 585 // Records with any const fields (recursively) are not modifiable. 586 if (const RecordType *R = CT->getAs<RecordType>()) { 587 assert((E->getObjectKind() == OK_ObjCProperty || 588 !Ctx.getLangOptions().CPlusPlus) && 589 "C++ struct assignment should be resolved by the " 590 "copy assignment operator."); 591 if (R->hasConstFields()) 592 return Cl::CM_ConstQualified; 593 } 594 595 return Cl::CM_Modifiable; 596 } 597 598 Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const { 599 Classification VC = Classify(Ctx); 600 switch (VC.getKind()) { 601 case Cl::CL_LValue: return LV_Valid; 602 case Cl::CL_XValue: return LV_InvalidExpression; 603 case Cl::CL_Function: return LV_NotObjectType; 604 case Cl::CL_Void: return LV_InvalidExpression; 605 case Cl::CL_AddressableVoid: return LV_IncompleteVoidType; 606 case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents; 607 case Cl::CL_MemberFunction: return LV_MemberFunction; 608 case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting; 609 case Cl::CL_ClassTemporary: return LV_ClassTemporary; 610 case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression; 611 case Cl::CL_PRValue: return LV_InvalidExpression; 612 } 613 llvm_unreachable("Unhandled kind"); 614 } 615 616 Expr::isModifiableLvalueResult 617 Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { 618 SourceLocation dummy; 619 Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy); 620 switch (VC.getKind()) { 621 case Cl::CL_LValue: break; 622 case Cl::CL_XValue: return MLV_InvalidExpression; 623 case Cl::CL_Function: return MLV_NotObjectType; 624 case Cl::CL_Void: return MLV_InvalidExpression; 625 case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType; 626 case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; 627 case Cl::CL_MemberFunction: return MLV_MemberFunction; 628 case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; 629 case Cl::CL_ClassTemporary: return MLV_ClassTemporary; 630 case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression; 631 case Cl::CL_PRValue: 632 return VC.getModifiable() == Cl::CM_LValueCast ? 633 MLV_LValueCast : MLV_InvalidExpression; 634 } 635 assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind"); 636 switch (VC.getModifiable()) { 637 case Cl::CM_Untested: llvm_unreachable("Did not test modifiability"); 638 case Cl::CM_Modifiable: return MLV_Valid; 639 case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match"); 640 case Cl::CM_Function: return MLV_NotObjectType; 641 case Cl::CM_LValueCast: 642 llvm_unreachable("CM_LValueCast and CL_LValue don't match"); 643 case Cl::CM_NotBlockQualified: return MLV_NotBlockQualified; 644 case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty; 645 case Cl::CM_ConstQualified: return MLV_ConstQualified; 646 case Cl::CM_ArrayType: return MLV_ArrayType; 647 case Cl::CM_IncompleteType: return MLV_IncompleteType; 648 } 649 llvm_unreachable("Unhandled modifiable type"); 650 } 651