1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/Mangle.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/CharInfo.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Lex/Lexer.h" 32 #include "clang/Lex/LiteralSupport.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cstring> 37 using namespace clang; 38 39 const Expr *Expr::getBestDynamicClassTypeExpr() const { 40 const Expr *E = this; 41 while (true) { 42 E = E->ignoreParenBaseCasts(); 43 44 // Follow the RHS of a comma operator. 45 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 46 if (BO->getOpcode() == BO_Comma) { 47 E = BO->getRHS(); 48 continue; 49 } 50 } 51 52 // Step into initializer for materialized temporaries. 53 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 54 E = MTE->getSubExpr(); 55 continue; 56 } 57 58 break; 59 } 60 61 return E; 62 } 63 64 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 65 const Expr *E = getBestDynamicClassTypeExpr(); 66 QualType DerivedType = E->getType(); 67 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 68 DerivedType = PTy->getPointeeType(); 69 70 if (DerivedType->isDependentType()) 71 return nullptr; 72 73 const RecordType *Ty = DerivedType->castAs<RecordType>(); 74 Decl *D = Ty->getDecl(); 75 return cast<CXXRecordDecl>(D); 76 } 77 78 const Expr *Expr::skipRValueSubobjectAdjustments( 79 SmallVectorImpl<const Expr *> &CommaLHSs, 80 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 81 const Expr *E = this; 82 while (true) { 83 E = E->IgnoreParens(); 84 85 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 86 if ((CE->getCastKind() == CK_DerivedToBase || 87 CE->getCastKind() == CK_UncheckedDerivedToBase) && 88 E->getType()->isRecordType()) { 89 E = CE->getSubExpr(); 90 auto *Derived = 91 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 92 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 93 continue; 94 } 95 96 if (CE->getCastKind() == CK_NoOp) { 97 E = CE->getSubExpr(); 98 continue; 99 } 100 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 101 if (!ME->isArrow()) { 102 assert(ME->getBase()->getType()->isRecordType()); 103 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 104 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 105 E = ME->getBase(); 106 Adjustments.push_back(SubobjectAdjustment(Field)); 107 continue; 108 } 109 } 110 } 111 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 112 if (BO->getOpcode() == BO_PtrMemD) { 113 assert(BO->getRHS()->isRValue()); 114 E = BO->getLHS(); 115 const MemberPointerType *MPT = 116 BO->getRHS()->getType()->getAs<MemberPointerType>(); 117 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 118 continue; 119 } else if (BO->getOpcode() == BO_Comma) { 120 CommaLHSs.push_back(BO->getLHS()); 121 E = BO->getRHS(); 122 continue; 123 } 124 } 125 126 // Nothing changed. 127 break; 128 } 129 return E; 130 } 131 132 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 133 const Expr *E = IgnoreParens(); 134 135 // If this value has _Bool type, it is obvious 0/1. 136 if (E->getType()->isBooleanType()) return true; 137 // If this is a non-scalar-integer type, we don't care enough to try. 138 if (!E->getType()->isIntegralOrEnumerationType()) return false; 139 140 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 141 switch (UO->getOpcode()) { 142 case UO_Plus: 143 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 144 case UO_LNot: 145 return true; 146 default: 147 return false; 148 } 149 } 150 151 // Only look through implicit casts. If the user writes 152 // '(int) (a && b)' treat it as an arbitrary int. 153 // FIXME: Should we look through any cast expression in !Semantic mode? 154 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 155 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 156 157 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 158 switch (BO->getOpcode()) { 159 default: return false; 160 case BO_LT: // Relational operators. 161 case BO_GT: 162 case BO_LE: 163 case BO_GE: 164 case BO_EQ: // Equality operators. 165 case BO_NE: 166 case BO_LAnd: // AND operator. 167 case BO_LOr: // Logical OR operator. 168 return true; 169 170 case BO_And: // Bitwise AND operator. 171 case BO_Xor: // Bitwise XOR operator. 172 case BO_Or: // Bitwise OR operator. 173 // Handle things like (x==2)|(y==12). 174 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 175 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 176 177 case BO_Comma: 178 case BO_Assign: 179 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 180 } 181 } 182 183 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 184 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 185 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 186 187 if (isa<ObjCBoolLiteralExpr>(E)) 188 return true; 189 190 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 191 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 192 193 if (const FieldDecl *FD = E->getSourceBitField()) 194 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 195 !FD->getBitWidth()->isValueDependent() && 196 FD->getBitWidthValue(FD->getASTContext()) == 1) 197 return true; 198 199 return false; 200 } 201 202 // Amusing macro metaprogramming hack: check whether a class provides 203 // a more specific implementation of getExprLoc(). 204 // 205 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 206 namespace { 207 /// This implementation is used when a class provides a custom 208 /// implementation of getExprLoc. 209 template <class E, class T> 210 SourceLocation getExprLocImpl(const Expr *expr, 211 SourceLocation (T::*v)() const) { 212 return static_cast<const E*>(expr)->getExprLoc(); 213 } 214 215 /// This implementation is used when a class doesn't provide 216 /// a custom implementation of getExprLoc. Overload resolution 217 /// should pick it over the implementation above because it's 218 /// more specialized according to function template partial ordering. 219 template <class E> 220 SourceLocation getExprLocImpl(const Expr *expr, 221 SourceLocation (Expr::*v)() const) { 222 return static_cast<const E *>(expr)->getBeginLoc(); 223 } 224 } 225 226 SourceLocation Expr::getExprLoc() const { 227 switch (getStmtClass()) { 228 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 229 #define ABSTRACT_STMT(type) 230 #define STMT(type, base) \ 231 case Stmt::type##Class: break; 232 #define EXPR(type, base) \ 233 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 234 #include "clang/AST/StmtNodes.inc" 235 } 236 llvm_unreachable("unknown expression kind"); 237 } 238 239 //===----------------------------------------------------------------------===// 240 // Primary Expressions. 241 //===----------------------------------------------------------------------===// 242 243 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 244 assert((Kind == ConstantExpr::RSK_APValue || 245 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 246 "Invalid StorageKind Value"); 247 } 248 249 ConstantExpr::ResultStorageKind 250 ConstantExpr::getStorageKind(const APValue &Value) { 251 switch (Value.getKind()) { 252 case APValue::None: 253 case APValue::Indeterminate: 254 return ConstantExpr::RSK_None; 255 case APValue::Int: 256 if (!Value.getInt().needsCleanup()) 257 return ConstantExpr::RSK_Int64; 258 LLVM_FALLTHROUGH; 259 default: 260 return ConstantExpr::RSK_APValue; 261 } 262 } 263 264 ConstantExpr::ResultStorageKind 265 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 266 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 267 return ConstantExpr::RSK_Int64; 268 return ConstantExpr::RSK_APValue; 269 } 270 271 void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) { 272 ConstantExprBits.ResultKind = StorageKind; 273 ConstantExprBits.APValueKind = APValue::None; 274 ConstantExprBits.HasCleanup = false; 275 if (StorageKind == ConstantExpr::RSK_APValue) 276 ::new (getTrailingObjects<APValue>()) APValue(); 277 } 278 279 ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind) 280 : FullExpr(ConstantExprClass, subexpr) { 281 DefaultInit(StorageKind); 282 } 283 284 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 285 ResultStorageKind StorageKind, 286 bool IsImmediateInvocation) { 287 assert(!isa<ConstantExpr>(E)); 288 AssertResultStorageKind(StorageKind); 289 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 290 StorageKind == ConstantExpr::RSK_APValue, 291 StorageKind == ConstantExpr::RSK_Int64); 292 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 293 ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind); 294 Self->ConstantExprBits.IsImmediateInvocation = 295 IsImmediateInvocation; 296 return Self; 297 } 298 299 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 300 const APValue &Result) { 301 ResultStorageKind StorageKind = getStorageKind(Result); 302 ConstantExpr *Self = Create(Context, E, StorageKind); 303 Self->SetResult(Result, Context); 304 return Self; 305 } 306 307 ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty) 308 : FullExpr(ConstantExprClass, Empty) { 309 DefaultInit(StorageKind); 310 } 311 312 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 313 ResultStorageKind StorageKind, 314 EmptyShell Empty) { 315 AssertResultStorageKind(StorageKind); 316 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 317 StorageKind == ConstantExpr::RSK_APValue, 318 StorageKind == ConstantExpr::RSK_Int64); 319 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 320 ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty); 321 return Self; 322 } 323 324 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 325 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 326 "Invalid storage for this value kind"); 327 ConstantExprBits.APValueKind = Value.getKind(); 328 switch (ConstantExprBits.ResultKind) { 329 case RSK_None: 330 return; 331 case RSK_Int64: 332 Int64Result() = *Value.getInt().getRawData(); 333 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 334 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 335 return; 336 case RSK_APValue: 337 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 338 ConstantExprBits.HasCleanup = true; 339 Context.addDestruction(&APValueResult()); 340 } 341 APValueResult() = std::move(Value); 342 return; 343 } 344 llvm_unreachable("Invalid ResultKind Bits"); 345 } 346 347 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 348 switch (ConstantExprBits.ResultKind) { 349 case ConstantExpr::RSK_APValue: 350 return APValueResult().getInt(); 351 case ConstantExpr::RSK_Int64: 352 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 353 ConstantExprBits.IsUnsigned); 354 default: 355 llvm_unreachable("invalid Accessor"); 356 } 357 } 358 359 APValue ConstantExpr::getAPValueResult() const { 360 assert(hasAPValueResult()); 361 362 switch (ConstantExprBits.ResultKind) { 363 case ConstantExpr::RSK_APValue: 364 return APValueResult(); 365 case ConstantExpr::RSK_Int64: 366 return APValue( 367 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 368 ConstantExprBits.IsUnsigned)); 369 case ConstantExpr::RSK_None: 370 return APValue(); 371 } 372 llvm_unreachable("invalid ResultKind"); 373 } 374 375 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 376 bool RefersToEnclosingVariableOrCapture, QualType T, 377 ExprValueKind VK, SourceLocation L, 378 const DeclarationNameLoc &LocInfo, 379 NonOdrUseReason NOUR) 380 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 381 DeclRefExprBits.HasQualifier = false; 382 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 383 DeclRefExprBits.HasFoundDecl = false; 384 DeclRefExprBits.HadMultipleCandidates = false; 385 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 386 RefersToEnclosingVariableOrCapture; 387 DeclRefExprBits.NonOdrUseReason = NOUR; 388 DeclRefExprBits.Loc = L; 389 setDependence(computeDependence(this, Ctx)); 390 } 391 392 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 393 NestedNameSpecifierLoc QualifierLoc, 394 SourceLocation TemplateKWLoc, ValueDecl *D, 395 bool RefersToEnclosingVariableOrCapture, 396 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 397 const TemplateArgumentListInfo *TemplateArgs, 398 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 399 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 400 DNLoc(NameInfo.getInfo()) { 401 DeclRefExprBits.Loc = NameInfo.getLoc(); 402 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 403 if (QualifierLoc) 404 new (getTrailingObjects<NestedNameSpecifierLoc>()) 405 NestedNameSpecifierLoc(QualifierLoc); 406 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 407 if (FoundD) 408 *getTrailingObjects<NamedDecl *>() = FoundD; 409 DeclRefExprBits.HasTemplateKWAndArgsInfo 410 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 411 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 412 RefersToEnclosingVariableOrCapture; 413 DeclRefExprBits.NonOdrUseReason = NOUR; 414 if (TemplateArgs) { 415 auto Deps = TemplateArgumentDependence::None; 416 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 417 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 418 Deps); 419 assert(!(Deps & TemplateArgumentDependence::Dependent) && 420 "built a DeclRefExpr with dependent template args"); 421 } else if (TemplateKWLoc.isValid()) { 422 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 423 TemplateKWLoc); 424 } 425 DeclRefExprBits.HadMultipleCandidates = 0; 426 setDependence(computeDependence(this, Ctx)); 427 } 428 429 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 430 NestedNameSpecifierLoc QualifierLoc, 431 SourceLocation TemplateKWLoc, ValueDecl *D, 432 bool RefersToEnclosingVariableOrCapture, 433 SourceLocation NameLoc, QualType T, 434 ExprValueKind VK, NamedDecl *FoundD, 435 const TemplateArgumentListInfo *TemplateArgs, 436 NonOdrUseReason NOUR) { 437 return Create(Context, QualifierLoc, TemplateKWLoc, D, 438 RefersToEnclosingVariableOrCapture, 439 DeclarationNameInfo(D->getDeclName(), NameLoc), 440 T, VK, FoundD, TemplateArgs, NOUR); 441 } 442 443 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 444 NestedNameSpecifierLoc QualifierLoc, 445 SourceLocation TemplateKWLoc, ValueDecl *D, 446 bool RefersToEnclosingVariableOrCapture, 447 const DeclarationNameInfo &NameInfo, 448 QualType T, ExprValueKind VK, 449 NamedDecl *FoundD, 450 const TemplateArgumentListInfo *TemplateArgs, 451 NonOdrUseReason NOUR) { 452 // Filter out cases where the found Decl is the same as the value refenenced. 453 if (D == FoundD) 454 FoundD = nullptr; 455 456 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 457 std::size_t Size = 458 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 459 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 460 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 461 HasTemplateKWAndArgsInfo ? 1 : 0, 462 TemplateArgs ? TemplateArgs->size() : 0); 463 464 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 465 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 466 RefersToEnclosingVariableOrCapture, NameInfo, 467 FoundD, TemplateArgs, T, VK, NOUR); 468 } 469 470 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 471 bool HasQualifier, 472 bool HasFoundDecl, 473 bool HasTemplateKWAndArgsInfo, 474 unsigned NumTemplateArgs) { 475 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 476 std::size_t Size = 477 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 478 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 479 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 480 NumTemplateArgs); 481 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 482 return new (Mem) DeclRefExpr(EmptyShell()); 483 } 484 485 SourceLocation DeclRefExpr::getBeginLoc() const { 486 if (hasQualifier()) 487 return getQualifierLoc().getBeginLoc(); 488 return getNameInfo().getBeginLoc(); 489 } 490 SourceLocation DeclRefExpr::getEndLoc() const { 491 if (hasExplicitTemplateArgs()) 492 return getRAngleLoc(); 493 return getNameInfo().getEndLoc(); 494 } 495 496 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 497 StringLiteral *SL) 498 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 499 PredefinedExprBits.Kind = IK; 500 assert((getIdentKind() == IK) && 501 "IdentKind do not fit in PredefinedExprBitfields!"); 502 bool HasFunctionName = SL != nullptr; 503 PredefinedExprBits.HasFunctionName = HasFunctionName; 504 PredefinedExprBits.Loc = L; 505 if (HasFunctionName) 506 setFunctionName(SL); 507 setDependence(computeDependence(this)); 508 } 509 510 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK, 511 TypeSourceInfo *Info) 512 : Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) { 513 PredefinedExprBits.Kind = IK; 514 assert((getIdentKind() == IK) && 515 "IdentKind do not fit in PredefinedExprBitFields!"); 516 assert(IK == UniqueStableNameType && 517 "Constructor only valid with UniqueStableNameType"); 518 PredefinedExprBits.HasFunctionName = false; 519 PredefinedExprBits.Loc = L; 520 setTypeSourceInfo(Info); 521 setDependence(computeDependence(this)); 522 } 523 524 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK, 525 Expr *E) 526 : Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) { 527 PredefinedExprBits.Kind = IK; 528 assert((getIdentKind() == IK) && 529 "IdentKind do not fit in PredefinedExprBitFields!"); 530 assert(IK == UniqueStableNameExpr && 531 "Constructor only valid with UniqueStableNameExpr"); 532 PredefinedExprBits.HasFunctionName = false; 533 PredefinedExprBits.Loc = L; 534 setExpr(E); 535 setDependence(computeDependence(this)); 536 } 537 538 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 539 : Expr(PredefinedExprClass, Empty) { 540 PredefinedExprBits.HasFunctionName = HasFunctionName; 541 } 542 543 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 544 QualType FNTy, IdentKind IK, 545 StringLiteral *SL) { 546 bool HasFunctionName = SL != nullptr; 547 void *Mem = Ctx.Allocate( 548 totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(HasFunctionName, 0, 0), 549 alignof(PredefinedExpr)); 550 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 551 } 552 553 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 554 QualType FNTy, IdentKind IK, 555 StringLiteral *SL, 556 TypeSourceInfo *Info) { 557 assert(IK == UniqueStableNameType && "Only valid with UniqueStableNameType"); 558 bool HasFunctionName = SL != nullptr; 559 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>( 560 HasFunctionName, 0, !HasFunctionName), 561 alignof(PredefinedExpr)); 562 if (HasFunctionName) 563 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 564 return new (Mem) PredefinedExpr(L, FNTy, IK, Info); 565 } 566 567 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 568 QualType FNTy, IdentKind IK, 569 StringLiteral *SL, Expr *E) { 570 assert(IK == UniqueStableNameExpr && "Only valid with UniqueStableNameExpr"); 571 bool HasFunctionName = SL != nullptr; 572 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>( 573 HasFunctionName, !HasFunctionName, 0), 574 alignof(PredefinedExpr)); 575 if (HasFunctionName) 576 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 577 return new (Mem) PredefinedExpr(L, FNTy, IK, E); 578 } 579 580 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 581 bool HasFunctionName) { 582 void *Mem = Ctx.Allocate( 583 totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(HasFunctionName, 0, 0), 584 alignof(PredefinedExpr)); 585 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 586 } 587 588 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 589 switch (IK) { 590 case Func: 591 return "__func__"; 592 case Function: 593 return "__FUNCTION__"; 594 case FuncDName: 595 return "__FUNCDNAME__"; 596 case LFunction: 597 return "L__FUNCTION__"; 598 case PrettyFunction: 599 return "__PRETTY_FUNCTION__"; 600 case FuncSig: 601 return "__FUNCSIG__"; 602 case LFuncSig: 603 return "L__FUNCSIG__"; 604 case UniqueStableNameType: 605 case UniqueStableNameExpr: 606 return "__builtin_unique_stable_name"; 607 case PrettyFunctionNoVirtual: 608 break; 609 } 610 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 611 } 612 613 std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentKind IK, 614 QualType Ty) { 615 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 616 Context, Context.getDiagnostics(), /*IsUniqueNameMangler*/ true)}; 617 618 Ty = Ty.getCanonicalType(); 619 620 SmallString<256> Buffer; 621 llvm::raw_svector_ostream Out(Buffer); 622 Ctx->mangleTypeName(Ty, Out); 623 return std::string(Buffer.str()); 624 } 625 626 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 627 // expr" policy instead. 628 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 629 ASTContext &Context = CurrentDecl->getASTContext(); 630 631 if (IK == PredefinedExpr::FuncDName) { 632 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 633 std::unique_ptr<MangleContext> MC; 634 MC.reset(Context.createMangleContext()); 635 636 if (MC->shouldMangleDeclName(ND)) { 637 SmallString<256> Buffer; 638 llvm::raw_svector_ostream Out(Buffer); 639 GlobalDecl GD; 640 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 641 GD = GlobalDecl(CD, Ctor_Base); 642 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 643 GD = GlobalDecl(DD, Dtor_Base); 644 else if (ND->hasAttr<CUDAGlobalAttr>()) 645 GD = GlobalDecl(cast<FunctionDecl>(ND)); 646 else 647 GD = GlobalDecl(ND); 648 MC->mangleName(GD, Out); 649 650 if (!Buffer.empty() && Buffer.front() == '\01') 651 return std::string(Buffer.substr(1)); 652 return std::string(Buffer.str()); 653 } else 654 return std::string(ND->getIdentifier()->getName()); 655 } 656 return ""; 657 } 658 if (isa<BlockDecl>(CurrentDecl)) { 659 // For blocks we only emit something if it is enclosed in a function 660 // For top-level block we'd like to include the name of variable, but we 661 // don't have it at this point. 662 auto DC = CurrentDecl->getDeclContext(); 663 if (DC->isFileContext()) 664 return ""; 665 666 SmallString<256> Buffer; 667 llvm::raw_svector_ostream Out(Buffer); 668 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 669 // For nested blocks, propagate up to the parent. 670 Out << ComputeName(IK, DCBlock); 671 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 672 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 673 return std::string(Out.str()); 674 } 675 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 676 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 677 IK != FuncSig && IK != LFuncSig) 678 return FD->getNameAsString(); 679 680 SmallString<256> Name; 681 llvm::raw_svector_ostream Out(Name); 682 683 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 684 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 685 Out << "virtual "; 686 if (MD->isStatic()) 687 Out << "static "; 688 } 689 690 PrintingPolicy Policy(Context.getLangOpts()); 691 std::string Proto; 692 llvm::raw_string_ostream POut(Proto); 693 694 const FunctionDecl *Decl = FD; 695 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 696 Decl = Pattern; 697 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 698 const FunctionProtoType *FT = nullptr; 699 if (FD->hasWrittenPrototype()) 700 FT = dyn_cast<FunctionProtoType>(AFT); 701 702 if (IK == FuncSig || IK == LFuncSig) { 703 switch (AFT->getCallConv()) { 704 case CC_C: POut << "__cdecl "; break; 705 case CC_X86StdCall: POut << "__stdcall "; break; 706 case CC_X86FastCall: POut << "__fastcall "; break; 707 case CC_X86ThisCall: POut << "__thiscall "; break; 708 case CC_X86VectorCall: POut << "__vectorcall "; break; 709 case CC_X86RegCall: POut << "__regcall "; break; 710 // Only bother printing the conventions that MSVC knows about. 711 default: break; 712 } 713 } 714 715 FD->printQualifiedName(POut, Policy); 716 717 POut << "("; 718 if (FT) { 719 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 720 if (i) POut << ", "; 721 POut << Decl->getParamDecl(i)->getType().stream(Policy); 722 } 723 724 if (FT->isVariadic()) { 725 if (FD->getNumParams()) POut << ", "; 726 POut << "..."; 727 } else if ((IK == FuncSig || IK == LFuncSig || 728 !Context.getLangOpts().CPlusPlus) && 729 !Decl->getNumParams()) { 730 POut << "void"; 731 } 732 } 733 POut << ")"; 734 735 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 736 assert(FT && "We must have a written prototype in this case."); 737 if (FT->isConst()) 738 POut << " const"; 739 if (FT->isVolatile()) 740 POut << " volatile"; 741 RefQualifierKind Ref = MD->getRefQualifier(); 742 if (Ref == RQ_LValue) 743 POut << " &"; 744 else if (Ref == RQ_RValue) 745 POut << " &&"; 746 } 747 748 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 749 SpecsTy Specs; 750 const DeclContext *Ctx = FD->getDeclContext(); 751 while (Ctx && isa<NamedDecl>(Ctx)) { 752 const ClassTemplateSpecializationDecl *Spec 753 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 754 if (Spec && !Spec->isExplicitSpecialization()) 755 Specs.push_back(Spec); 756 Ctx = Ctx->getParent(); 757 } 758 759 std::string TemplateParams; 760 llvm::raw_string_ostream TOut(TemplateParams); 761 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 762 I != E; ++I) { 763 const TemplateParameterList *Params 764 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 765 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 766 assert(Params->size() == Args.size()); 767 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 768 StringRef Param = Params->getParam(i)->getName(); 769 if (Param.empty()) continue; 770 TOut << Param << " = "; 771 Args.get(i).print(Policy, TOut); 772 TOut << ", "; 773 } 774 } 775 776 FunctionTemplateSpecializationInfo *FSI 777 = FD->getTemplateSpecializationInfo(); 778 if (FSI && !FSI->isExplicitSpecialization()) { 779 const TemplateParameterList* Params 780 = FSI->getTemplate()->getTemplateParameters(); 781 const TemplateArgumentList* Args = FSI->TemplateArguments; 782 assert(Params->size() == Args->size()); 783 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 784 StringRef Param = Params->getParam(i)->getName(); 785 if (Param.empty()) continue; 786 TOut << Param << " = "; 787 Args->get(i).print(Policy, TOut); 788 TOut << ", "; 789 } 790 } 791 792 TOut.flush(); 793 if (!TemplateParams.empty()) { 794 // remove the trailing comma and space 795 TemplateParams.resize(TemplateParams.size() - 2); 796 POut << " [" << TemplateParams << "]"; 797 } 798 799 POut.flush(); 800 801 // Print "auto" for all deduced return types. This includes C++1y return 802 // type deduction and lambdas. For trailing return types resolve the 803 // decltype expression. Otherwise print the real type when this is 804 // not a constructor or destructor. 805 if (isa<CXXMethodDecl>(FD) && 806 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 807 Proto = "auto " + Proto; 808 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 809 FT->getReturnType() 810 ->getAs<DecltypeType>() 811 ->getUnderlyingType() 812 .getAsStringInternal(Proto, Policy); 813 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 814 AFT->getReturnType().getAsStringInternal(Proto, Policy); 815 816 Out << Proto; 817 818 return std::string(Name); 819 } 820 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 821 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 822 // Skip to its enclosing function or method, but not its enclosing 823 // CapturedDecl. 824 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 825 const Decl *D = Decl::castFromDeclContext(DC); 826 return ComputeName(IK, D); 827 } 828 llvm_unreachable("CapturedDecl not inside a function or method"); 829 } 830 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 831 SmallString<256> Name; 832 llvm::raw_svector_ostream Out(Name); 833 Out << (MD->isInstanceMethod() ? '-' : '+'); 834 Out << '['; 835 836 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 837 // a null check to avoid a crash. 838 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 839 Out << *ID; 840 841 if (const ObjCCategoryImplDecl *CID = 842 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 843 Out << '(' << *CID << ')'; 844 845 Out << ' '; 846 MD->getSelector().print(Out); 847 Out << ']'; 848 849 return std::string(Name); 850 } 851 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 852 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 853 return "top level"; 854 } 855 return ""; 856 } 857 858 void APNumericStorage::setIntValue(const ASTContext &C, 859 const llvm::APInt &Val) { 860 if (hasAllocation()) 861 C.Deallocate(pVal); 862 863 BitWidth = Val.getBitWidth(); 864 unsigned NumWords = Val.getNumWords(); 865 const uint64_t* Words = Val.getRawData(); 866 if (NumWords > 1) { 867 pVal = new (C) uint64_t[NumWords]; 868 std::copy(Words, Words + NumWords, pVal); 869 } else if (NumWords == 1) 870 VAL = Words[0]; 871 else 872 VAL = 0; 873 } 874 875 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 876 QualType type, SourceLocation l) 877 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) { 878 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 879 assert(V.getBitWidth() == C.getIntWidth(type) && 880 "Integer type is not the correct size for constant."); 881 setValue(C, V); 882 setDependence(ExprDependence::None); 883 } 884 885 IntegerLiteral * 886 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 887 QualType type, SourceLocation l) { 888 return new (C) IntegerLiteral(C, V, type, l); 889 } 890 891 IntegerLiteral * 892 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 893 return new (C) IntegerLiteral(Empty); 894 } 895 896 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 897 QualType type, SourceLocation l, 898 unsigned Scale) 899 : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l), 900 Scale(Scale) { 901 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 902 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 903 "Fixed point type is not the correct size for constant."); 904 setValue(C, V); 905 setDependence(ExprDependence::None); 906 } 907 908 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 909 const llvm::APInt &V, 910 QualType type, 911 SourceLocation l, 912 unsigned Scale) { 913 return new (C) FixedPointLiteral(C, V, type, l, Scale); 914 } 915 916 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 917 EmptyShell Empty) { 918 return new (C) FixedPointLiteral(Empty); 919 } 920 921 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 922 // Currently the longest decimal number that can be printed is the max for an 923 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 924 // which is 43 characters. 925 SmallString<64> S; 926 FixedPointValueToString( 927 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 928 return std::string(S.str()); 929 } 930 931 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 932 bool isexact, QualType Type, SourceLocation L) 933 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) { 934 setSemantics(V.getSemantics()); 935 FloatingLiteralBits.IsExact = isexact; 936 setValue(C, V); 937 setDependence(ExprDependence::None); 938 } 939 940 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 941 : Expr(FloatingLiteralClass, Empty) { 942 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 943 FloatingLiteralBits.IsExact = false; 944 } 945 946 FloatingLiteral * 947 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 948 bool isexact, QualType Type, SourceLocation L) { 949 return new (C) FloatingLiteral(C, V, isexact, Type, L); 950 } 951 952 FloatingLiteral * 953 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 954 return new (C) FloatingLiteral(C, Empty); 955 } 956 957 /// getValueAsApproximateDouble - This returns the value as an inaccurate 958 /// double. Note that this may cause loss of precision, but is useful for 959 /// debugging dumps, etc. 960 double FloatingLiteral::getValueAsApproximateDouble() const { 961 llvm::APFloat V = getValue(); 962 bool ignored; 963 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 964 &ignored); 965 return V.convertToDouble(); 966 } 967 968 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 969 StringKind SK) { 970 unsigned CharByteWidth = 0; 971 switch (SK) { 972 case Ascii: 973 case UTF8: 974 CharByteWidth = Target.getCharWidth(); 975 break; 976 case Wide: 977 CharByteWidth = Target.getWCharWidth(); 978 break; 979 case UTF16: 980 CharByteWidth = Target.getChar16Width(); 981 break; 982 case UTF32: 983 CharByteWidth = Target.getChar32Width(); 984 break; 985 } 986 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 987 CharByteWidth /= 8; 988 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 989 "The only supported character byte widths are 1,2 and 4!"); 990 return CharByteWidth; 991 } 992 993 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 994 StringKind Kind, bool Pascal, QualType Ty, 995 const SourceLocation *Loc, 996 unsigned NumConcatenated) 997 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 998 assert(Ctx.getAsConstantArrayType(Ty) && 999 "StringLiteral must be of constant array type!"); 1000 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1001 unsigned ByteLength = Str.size(); 1002 assert((ByteLength % CharByteWidth == 0) && 1003 "The size of the data must be a multiple of CharByteWidth!"); 1004 1005 // Avoid the expensive division. The compiler should be able to figure it 1006 // out by itself. However as of clang 7, even with the appropriate 1007 // llvm_unreachable added just here, it is not able to do so. 1008 unsigned Length; 1009 switch (CharByteWidth) { 1010 case 1: 1011 Length = ByteLength; 1012 break; 1013 case 2: 1014 Length = ByteLength / 2; 1015 break; 1016 case 4: 1017 Length = ByteLength / 4; 1018 break; 1019 default: 1020 llvm_unreachable("Unsupported character width!"); 1021 } 1022 1023 StringLiteralBits.Kind = Kind; 1024 StringLiteralBits.CharByteWidth = CharByteWidth; 1025 StringLiteralBits.IsPascal = Pascal; 1026 StringLiteralBits.NumConcatenated = NumConcatenated; 1027 *getTrailingObjects<unsigned>() = Length; 1028 1029 // Initialize the trailing array of SourceLocation. 1030 // This is safe since SourceLocation is POD-like. 1031 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1032 NumConcatenated * sizeof(SourceLocation)); 1033 1034 // Initialize the trailing array of char holding the string data. 1035 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1036 1037 setDependence(ExprDependence::None); 1038 } 1039 1040 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1041 unsigned Length, unsigned CharByteWidth) 1042 : Expr(StringLiteralClass, Empty) { 1043 StringLiteralBits.CharByteWidth = CharByteWidth; 1044 StringLiteralBits.NumConcatenated = NumConcatenated; 1045 *getTrailingObjects<unsigned>() = Length; 1046 } 1047 1048 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1049 StringKind Kind, bool Pascal, QualType Ty, 1050 const SourceLocation *Loc, 1051 unsigned NumConcatenated) { 1052 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1053 1, NumConcatenated, Str.size()), 1054 alignof(StringLiteral)); 1055 return new (Mem) 1056 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1057 } 1058 1059 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1060 unsigned NumConcatenated, 1061 unsigned Length, 1062 unsigned CharByteWidth) { 1063 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1064 1, NumConcatenated, Length * CharByteWidth), 1065 alignof(StringLiteral)); 1066 return new (Mem) 1067 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1068 } 1069 1070 void StringLiteral::outputString(raw_ostream &OS) const { 1071 switch (getKind()) { 1072 case Ascii: break; // no prefix. 1073 case Wide: OS << 'L'; break; 1074 case UTF8: OS << "u8"; break; 1075 case UTF16: OS << 'u'; break; 1076 case UTF32: OS << 'U'; break; 1077 } 1078 OS << '"'; 1079 static const char Hex[] = "0123456789ABCDEF"; 1080 1081 unsigned LastSlashX = getLength(); 1082 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1083 switch (uint32_t Char = getCodeUnit(I)) { 1084 default: 1085 // FIXME: Convert UTF-8 back to codepoints before rendering. 1086 1087 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1088 // Leave invalid surrogates alone; we'll use \x for those. 1089 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1090 Char <= 0xdbff) { 1091 uint32_t Trail = getCodeUnit(I + 1); 1092 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1093 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1094 ++I; 1095 } 1096 } 1097 1098 if (Char > 0xff) { 1099 // If this is a wide string, output characters over 0xff using \x 1100 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1101 // codepoint: use \x escapes for invalid codepoints. 1102 if (getKind() == Wide || 1103 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1104 // FIXME: Is this the best way to print wchar_t? 1105 OS << "\\x"; 1106 int Shift = 28; 1107 while ((Char >> Shift) == 0) 1108 Shift -= 4; 1109 for (/**/; Shift >= 0; Shift -= 4) 1110 OS << Hex[(Char >> Shift) & 15]; 1111 LastSlashX = I; 1112 break; 1113 } 1114 1115 if (Char > 0xffff) 1116 OS << "\\U00" 1117 << Hex[(Char >> 20) & 15] 1118 << Hex[(Char >> 16) & 15]; 1119 else 1120 OS << "\\u"; 1121 OS << Hex[(Char >> 12) & 15] 1122 << Hex[(Char >> 8) & 15] 1123 << Hex[(Char >> 4) & 15] 1124 << Hex[(Char >> 0) & 15]; 1125 break; 1126 } 1127 1128 // If we used \x... for the previous character, and this character is a 1129 // hexadecimal digit, prevent it being slurped as part of the \x. 1130 if (LastSlashX + 1 == I) { 1131 switch (Char) { 1132 case '0': case '1': case '2': case '3': case '4': 1133 case '5': case '6': case '7': case '8': case '9': 1134 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1135 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1136 OS << "\"\""; 1137 } 1138 } 1139 1140 assert(Char <= 0xff && 1141 "Characters above 0xff should already have been handled."); 1142 1143 if (isPrintable(Char)) 1144 OS << (char)Char; 1145 else // Output anything hard as an octal escape. 1146 OS << '\\' 1147 << (char)('0' + ((Char >> 6) & 7)) 1148 << (char)('0' + ((Char >> 3) & 7)) 1149 << (char)('0' + ((Char >> 0) & 7)); 1150 break; 1151 // Handle some common non-printable cases to make dumps prettier. 1152 case '\\': OS << "\\\\"; break; 1153 case '"': OS << "\\\""; break; 1154 case '\a': OS << "\\a"; break; 1155 case '\b': OS << "\\b"; break; 1156 case '\f': OS << "\\f"; break; 1157 case '\n': OS << "\\n"; break; 1158 case '\r': OS << "\\r"; break; 1159 case '\t': OS << "\\t"; break; 1160 case '\v': OS << "\\v"; break; 1161 } 1162 } 1163 OS << '"'; 1164 } 1165 1166 /// getLocationOfByte - Return a source location that points to the specified 1167 /// byte of this string literal. 1168 /// 1169 /// Strings are amazingly complex. They can be formed from multiple tokens and 1170 /// can have escape sequences in them in addition to the usual trigraph and 1171 /// escaped newline business. This routine handles this complexity. 1172 /// 1173 /// The *StartToken sets the first token to be searched in this function and 1174 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1175 /// returning, it updates the *StartToken to the TokNo of the token being found 1176 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1177 /// string. 1178 /// Using these two parameters can reduce the time complexity from O(n^2) to 1179 /// O(n) if one wants to get the location of byte for all the tokens in a 1180 /// string. 1181 /// 1182 SourceLocation 1183 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1184 const LangOptions &Features, 1185 const TargetInfo &Target, unsigned *StartToken, 1186 unsigned *StartTokenByteOffset) const { 1187 assert((getKind() == StringLiteral::Ascii || 1188 getKind() == StringLiteral::UTF8) && 1189 "Only narrow string literals are currently supported"); 1190 1191 // Loop over all of the tokens in this string until we find the one that 1192 // contains the byte we're looking for. 1193 unsigned TokNo = 0; 1194 unsigned StringOffset = 0; 1195 if (StartToken) 1196 TokNo = *StartToken; 1197 if (StartTokenByteOffset) { 1198 StringOffset = *StartTokenByteOffset; 1199 ByteNo -= StringOffset; 1200 } 1201 while (1) { 1202 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1203 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1204 1205 // Get the spelling of the string so that we can get the data that makes up 1206 // the string literal, not the identifier for the macro it is potentially 1207 // expanded through. 1208 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1209 1210 // Re-lex the token to get its length and original spelling. 1211 std::pair<FileID, unsigned> LocInfo = 1212 SM.getDecomposedLoc(StrTokSpellingLoc); 1213 bool Invalid = false; 1214 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1215 if (Invalid) { 1216 if (StartTokenByteOffset != nullptr) 1217 *StartTokenByteOffset = StringOffset; 1218 if (StartToken != nullptr) 1219 *StartToken = TokNo; 1220 return StrTokSpellingLoc; 1221 } 1222 1223 const char *StrData = Buffer.data()+LocInfo.second; 1224 1225 // Create a lexer starting at the beginning of this token. 1226 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1227 Buffer.begin(), StrData, Buffer.end()); 1228 Token TheTok; 1229 TheLexer.LexFromRawLexer(TheTok); 1230 1231 // Use the StringLiteralParser to compute the length of the string in bytes. 1232 StringLiteralParser SLP(TheTok, SM, Features, Target); 1233 unsigned TokNumBytes = SLP.GetStringLength(); 1234 1235 // If the byte is in this token, return the location of the byte. 1236 if (ByteNo < TokNumBytes || 1237 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1238 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1239 1240 // Now that we know the offset of the token in the spelling, use the 1241 // preprocessor to get the offset in the original source. 1242 if (StartTokenByteOffset != nullptr) 1243 *StartTokenByteOffset = StringOffset; 1244 if (StartToken != nullptr) 1245 *StartToken = TokNo; 1246 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1247 } 1248 1249 // Move to the next string token. 1250 StringOffset += TokNumBytes; 1251 ++TokNo; 1252 ByteNo -= TokNumBytes; 1253 } 1254 } 1255 1256 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1257 /// corresponds to, e.g. "sizeof" or "[pre]++". 1258 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1259 switch (Op) { 1260 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1261 #include "clang/AST/OperationKinds.def" 1262 } 1263 llvm_unreachable("Unknown unary operator"); 1264 } 1265 1266 UnaryOperatorKind 1267 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1268 switch (OO) { 1269 default: llvm_unreachable("No unary operator for overloaded function"); 1270 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1271 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1272 case OO_Amp: return UO_AddrOf; 1273 case OO_Star: return UO_Deref; 1274 case OO_Plus: return UO_Plus; 1275 case OO_Minus: return UO_Minus; 1276 case OO_Tilde: return UO_Not; 1277 case OO_Exclaim: return UO_LNot; 1278 case OO_Coawait: return UO_Coawait; 1279 } 1280 } 1281 1282 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1283 switch (Opc) { 1284 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1285 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1286 case UO_AddrOf: return OO_Amp; 1287 case UO_Deref: return OO_Star; 1288 case UO_Plus: return OO_Plus; 1289 case UO_Minus: return OO_Minus; 1290 case UO_Not: return OO_Tilde; 1291 case UO_LNot: return OO_Exclaim; 1292 case UO_Coawait: return OO_Coawait; 1293 default: return OO_None; 1294 } 1295 } 1296 1297 1298 //===----------------------------------------------------------------------===// 1299 // Postfix Operators. 1300 //===----------------------------------------------------------------------===// 1301 1302 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1303 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1304 SourceLocation RParenLoc, unsigned MinNumArgs, 1305 ADLCallKind UsesADL) 1306 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1307 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1308 unsigned NumPreArgs = PreArgs.size(); 1309 CallExprBits.NumPreArgs = NumPreArgs; 1310 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1311 1312 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1313 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1314 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1315 "OffsetToTrailingObjects overflow!"); 1316 1317 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1318 1319 setCallee(Fn); 1320 for (unsigned I = 0; I != NumPreArgs; ++I) 1321 setPreArg(I, PreArgs[I]); 1322 for (unsigned I = 0; I != Args.size(); ++I) 1323 setArg(I, Args[I]); 1324 for (unsigned I = Args.size(); I != NumArgs; ++I) 1325 setArg(I, nullptr); 1326 1327 setDependence(computeDependence(this, PreArgs)); 1328 } 1329 1330 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1331 EmptyShell Empty) 1332 : Expr(SC, Empty), NumArgs(NumArgs) { 1333 CallExprBits.NumPreArgs = NumPreArgs; 1334 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1335 1336 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1337 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1338 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1339 "OffsetToTrailingObjects overflow!"); 1340 } 1341 1342 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1343 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1344 SourceLocation RParenLoc, unsigned MinNumArgs, 1345 ADLCallKind UsesADL) { 1346 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1347 unsigned SizeOfTrailingObjects = 1348 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); 1349 void *Mem = 1350 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1351 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1352 RParenLoc, MinNumArgs, UsesADL); 1353 } 1354 1355 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1356 ExprValueKind VK, SourceLocation RParenLoc, 1357 ADLCallKind UsesADL) { 1358 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1359 "Misaligned memory in CallExpr::CreateTemporary!"); 1360 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1361 VK, RParenLoc, 1362 /*MinNumArgs=*/0, UsesADL); 1363 } 1364 1365 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1366 EmptyShell Empty) { 1367 unsigned SizeOfTrailingObjects = 1368 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); 1369 void *Mem = 1370 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1371 return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty); 1372 } 1373 1374 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1375 switch (SC) { 1376 case CallExprClass: 1377 return sizeof(CallExpr); 1378 case CXXOperatorCallExprClass: 1379 return sizeof(CXXOperatorCallExpr); 1380 case CXXMemberCallExprClass: 1381 return sizeof(CXXMemberCallExpr); 1382 case UserDefinedLiteralClass: 1383 return sizeof(UserDefinedLiteral); 1384 case CUDAKernelCallExprClass: 1385 return sizeof(CUDAKernelCallExpr); 1386 default: 1387 llvm_unreachable("unexpected class deriving from CallExpr!"); 1388 } 1389 } 1390 1391 Decl *Expr::getReferencedDeclOfCallee() { 1392 Expr *CEE = IgnoreParenImpCasts(); 1393 1394 while (SubstNonTypeTemplateParmExpr *NTTP = 1395 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1396 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1397 } 1398 1399 // If we're calling a dereference, look at the pointer instead. 1400 while (true) { 1401 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1402 if (BO->isPtrMemOp()) { 1403 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1404 continue; 1405 } 1406 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1407 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1408 UO->getOpcode() == UO_Plus) { 1409 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1410 continue; 1411 } 1412 } 1413 break; 1414 } 1415 1416 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1417 return DRE->getDecl(); 1418 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1419 return ME->getMemberDecl(); 1420 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1421 return BE->getBlockDecl(); 1422 1423 return nullptr; 1424 } 1425 1426 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1427 unsigned CallExpr::getBuiltinCallee() const { 1428 auto *FDecl = 1429 dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee()); 1430 return FDecl ? FDecl->getBuiltinID() : 0; 1431 } 1432 1433 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1434 if (unsigned BI = getBuiltinCallee()) 1435 return Ctx.BuiltinInfo.isUnevaluated(BI); 1436 return false; 1437 } 1438 1439 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1440 const Expr *Callee = getCallee(); 1441 QualType CalleeType = Callee->getType(); 1442 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1443 CalleeType = FnTypePtr->getPointeeType(); 1444 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1445 CalleeType = BPT->getPointeeType(); 1446 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1447 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1448 return Ctx.VoidTy; 1449 1450 // This should never be overloaded and so should never return null. 1451 CalleeType = Expr::findBoundMemberType(Callee); 1452 } 1453 1454 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1455 return FnType->getReturnType(); 1456 } 1457 1458 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1459 // If the return type is a struct, union, or enum that is marked nodiscard, 1460 // then return the return type attribute. 1461 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1462 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1463 return A; 1464 1465 // Otherwise, see if the callee is marked nodiscard and return that attribute 1466 // instead. 1467 const Decl *D = getCalleeDecl(); 1468 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1469 } 1470 1471 SourceLocation CallExpr::getBeginLoc() const { 1472 if (isa<CXXOperatorCallExpr>(this)) 1473 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1474 1475 SourceLocation begin = getCallee()->getBeginLoc(); 1476 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1477 begin = getArg(0)->getBeginLoc(); 1478 return begin; 1479 } 1480 SourceLocation CallExpr::getEndLoc() const { 1481 if (isa<CXXOperatorCallExpr>(this)) 1482 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1483 1484 SourceLocation end = getRParenLoc(); 1485 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1486 end = getArg(getNumArgs() - 1)->getEndLoc(); 1487 return end; 1488 } 1489 1490 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1491 SourceLocation OperatorLoc, 1492 TypeSourceInfo *tsi, 1493 ArrayRef<OffsetOfNode> comps, 1494 ArrayRef<Expr*> exprs, 1495 SourceLocation RParenLoc) { 1496 void *Mem = C.Allocate( 1497 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1498 1499 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1500 RParenLoc); 1501 } 1502 1503 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1504 unsigned numComps, unsigned numExprs) { 1505 void *Mem = 1506 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1507 return new (Mem) OffsetOfExpr(numComps, numExprs); 1508 } 1509 1510 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1511 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1512 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1513 SourceLocation RParenLoc) 1514 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary), 1515 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1516 NumComps(comps.size()), NumExprs(exprs.size()) { 1517 for (unsigned i = 0; i != comps.size(); ++i) 1518 setComponent(i, comps[i]); 1519 for (unsigned i = 0; i != exprs.size(); ++i) 1520 setIndexExpr(i, exprs[i]); 1521 1522 setDependence(computeDependence(this)); 1523 } 1524 1525 IdentifierInfo *OffsetOfNode::getFieldName() const { 1526 assert(getKind() == Field || getKind() == Identifier); 1527 if (getKind() == Field) 1528 return getField()->getIdentifier(); 1529 1530 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1531 } 1532 1533 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1534 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1535 SourceLocation op, SourceLocation rp) 1536 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary), 1537 OpLoc(op), RParenLoc(rp) { 1538 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1539 UnaryExprOrTypeTraitExprBits.IsType = false; 1540 Argument.Ex = E; 1541 setDependence(computeDependence(this)); 1542 } 1543 1544 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1545 ValueDecl *MemberDecl, 1546 const DeclarationNameInfo &NameInfo, QualType T, 1547 ExprValueKind VK, ExprObjectKind OK, 1548 NonOdrUseReason NOUR) 1549 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1550 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1551 assert(!NameInfo.getName() || 1552 MemberDecl->getDeclName() == NameInfo.getName()); 1553 MemberExprBits.IsArrow = IsArrow; 1554 MemberExprBits.HasQualifierOrFoundDecl = false; 1555 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1556 MemberExprBits.HadMultipleCandidates = false; 1557 MemberExprBits.NonOdrUseReason = NOUR; 1558 MemberExprBits.OperatorLoc = OperatorLoc; 1559 setDependence(computeDependence(this)); 1560 } 1561 1562 MemberExpr *MemberExpr::Create( 1563 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1564 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1565 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1566 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1567 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1568 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1569 FoundDecl.getAccess() != MemberDecl->getAccess(); 1570 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1571 std::size_t Size = 1572 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1573 TemplateArgumentLoc>( 1574 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1575 TemplateArgs ? TemplateArgs->size() : 0); 1576 1577 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1578 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1579 NameInfo, T, VK, OK, NOUR); 1580 1581 // FIXME: remove remaining dependence computation to computeDependence(). 1582 auto Deps = E->getDependence(); 1583 if (HasQualOrFound) { 1584 // FIXME: Wrong. We should be looking at the member declaration we found. 1585 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1586 Deps |= ExprDependence::TypeValueInstantiation; 1587 else if (QualifierLoc && 1588 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1589 Deps |= ExprDependence::Instantiation; 1590 1591 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1592 1593 MemberExprNameQualifier *NQ = 1594 E->getTrailingObjects<MemberExprNameQualifier>(); 1595 NQ->QualifierLoc = QualifierLoc; 1596 NQ->FoundDecl = FoundDecl; 1597 } 1598 1599 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1600 TemplateArgs || TemplateKWLoc.isValid(); 1601 1602 if (TemplateArgs) { 1603 auto TemplateArgDeps = TemplateArgumentDependence::None; 1604 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1605 TemplateKWLoc, *TemplateArgs, 1606 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1607 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1608 Deps |= ExprDependence::Instantiation; 1609 } else if (TemplateKWLoc.isValid()) { 1610 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1611 TemplateKWLoc); 1612 } 1613 E->setDependence(Deps); 1614 1615 return E; 1616 } 1617 1618 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1619 bool HasQualifier, bool HasFoundDecl, 1620 bool HasTemplateKWAndArgsInfo, 1621 unsigned NumTemplateArgs) { 1622 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1623 "template args but no template arg info?"); 1624 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1625 std::size_t Size = 1626 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1627 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1628 HasTemplateKWAndArgsInfo ? 1 : 0, 1629 NumTemplateArgs); 1630 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1631 return new (Mem) MemberExpr(EmptyShell()); 1632 } 1633 1634 SourceLocation MemberExpr::getBeginLoc() const { 1635 if (isImplicitAccess()) { 1636 if (hasQualifier()) 1637 return getQualifierLoc().getBeginLoc(); 1638 return MemberLoc; 1639 } 1640 1641 // FIXME: We don't want this to happen. Rather, we should be able to 1642 // detect all kinds of implicit accesses more cleanly. 1643 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1644 if (BaseStartLoc.isValid()) 1645 return BaseStartLoc; 1646 return MemberLoc; 1647 } 1648 SourceLocation MemberExpr::getEndLoc() const { 1649 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1650 if (hasExplicitTemplateArgs()) 1651 EndLoc = getRAngleLoc(); 1652 else if (EndLoc.isInvalid()) 1653 EndLoc = getBase()->getEndLoc(); 1654 return EndLoc; 1655 } 1656 1657 bool CastExpr::CastConsistency() const { 1658 switch (getCastKind()) { 1659 case CK_DerivedToBase: 1660 case CK_UncheckedDerivedToBase: 1661 case CK_DerivedToBaseMemberPointer: 1662 case CK_BaseToDerived: 1663 case CK_BaseToDerivedMemberPointer: 1664 assert(!path_empty() && "Cast kind should have a base path!"); 1665 break; 1666 1667 case CK_CPointerToObjCPointerCast: 1668 assert(getType()->isObjCObjectPointerType()); 1669 assert(getSubExpr()->getType()->isPointerType()); 1670 goto CheckNoBasePath; 1671 1672 case CK_BlockPointerToObjCPointerCast: 1673 assert(getType()->isObjCObjectPointerType()); 1674 assert(getSubExpr()->getType()->isBlockPointerType()); 1675 goto CheckNoBasePath; 1676 1677 case CK_ReinterpretMemberPointer: 1678 assert(getType()->isMemberPointerType()); 1679 assert(getSubExpr()->getType()->isMemberPointerType()); 1680 goto CheckNoBasePath; 1681 1682 case CK_BitCast: 1683 // Arbitrary casts to C pointer types count as bitcasts. 1684 // Otherwise, we should only have block and ObjC pointer casts 1685 // here if they stay within the type kind. 1686 if (!getType()->isPointerType()) { 1687 assert(getType()->isObjCObjectPointerType() == 1688 getSubExpr()->getType()->isObjCObjectPointerType()); 1689 assert(getType()->isBlockPointerType() == 1690 getSubExpr()->getType()->isBlockPointerType()); 1691 } 1692 goto CheckNoBasePath; 1693 1694 case CK_AnyPointerToBlockPointerCast: 1695 assert(getType()->isBlockPointerType()); 1696 assert(getSubExpr()->getType()->isAnyPointerType() && 1697 !getSubExpr()->getType()->isBlockPointerType()); 1698 goto CheckNoBasePath; 1699 1700 case CK_CopyAndAutoreleaseBlockObject: 1701 assert(getType()->isBlockPointerType()); 1702 assert(getSubExpr()->getType()->isBlockPointerType()); 1703 goto CheckNoBasePath; 1704 1705 case CK_FunctionToPointerDecay: 1706 assert(getType()->isPointerType()); 1707 assert(getSubExpr()->getType()->isFunctionType()); 1708 goto CheckNoBasePath; 1709 1710 case CK_AddressSpaceConversion: { 1711 auto Ty = getType(); 1712 auto SETy = getSubExpr()->getType(); 1713 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1714 if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1715 Ty = Ty->getPointeeType(); 1716 SETy = SETy->getPointeeType(); 1717 } 1718 assert((Ty->isDependentType() || SETy->isDependentType()) || 1719 (!Ty.isNull() && !SETy.isNull() && 1720 Ty.getAddressSpace() != SETy.getAddressSpace())); 1721 goto CheckNoBasePath; 1722 } 1723 // These should not have an inheritance path. 1724 case CK_Dynamic: 1725 case CK_ToUnion: 1726 case CK_ArrayToPointerDecay: 1727 case CK_NullToMemberPointer: 1728 case CK_NullToPointer: 1729 case CK_ConstructorConversion: 1730 case CK_IntegralToPointer: 1731 case CK_PointerToIntegral: 1732 case CK_ToVoid: 1733 case CK_VectorSplat: 1734 case CK_IntegralCast: 1735 case CK_BooleanToSignedIntegral: 1736 case CK_IntegralToFloating: 1737 case CK_FloatingToIntegral: 1738 case CK_FloatingCast: 1739 case CK_ObjCObjectLValueCast: 1740 case CK_FloatingRealToComplex: 1741 case CK_FloatingComplexToReal: 1742 case CK_FloatingComplexCast: 1743 case CK_FloatingComplexToIntegralComplex: 1744 case CK_IntegralRealToComplex: 1745 case CK_IntegralComplexToReal: 1746 case CK_IntegralComplexCast: 1747 case CK_IntegralComplexToFloatingComplex: 1748 case CK_ARCProduceObject: 1749 case CK_ARCConsumeObject: 1750 case CK_ARCReclaimReturnedObject: 1751 case CK_ARCExtendBlockObject: 1752 case CK_ZeroToOCLOpaqueType: 1753 case CK_IntToOCLSampler: 1754 case CK_FixedPointCast: 1755 case CK_FixedPointToIntegral: 1756 case CK_IntegralToFixedPoint: 1757 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1758 goto CheckNoBasePath; 1759 1760 case CK_Dependent: 1761 case CK_LValueToRValue: 1762 case CK_NoOp: 1763 case CK_AtomicToNonAtomic: 1764 case CK_NonAtomicToAtomic: 1765 case CK_PointerToBoolean: 1766 case CK_IntegralToBoolean: 1767 case CK_FloatingToBoolean: 1768 case CK_MemberPointerToBoolean: 1769 case CK_FloatingComplexToBoolean: 1770 case CK_IntegralComplexToBoolean: 1771 case CK_LValueBitCast: // -> bool& 1772 case CK_LValueToRValueBitCast: 1773 case CK_UserDefinedConversion: // operator bool() 1774 case CK_BuiltinFnToFnPtr: 1775 case CK_FixedPointToBoolean: 1776 CheckNoBasePath: 1777 assert(path_empty() && "Cast kind should not have a base path!"); 1778 break; 1779 } 1780 return true; 1781 } 1782 1783 const char *CastExpr::getCastKindName(CastKind CK) { 1784 switch (CK) { 1785 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1786 #include "clang/AST/OperationKinds.def" 1787 } 1788 llvm_unreachable("Unhandled cast kind!"); 1789 } 1790 1791 namespace { 1792 const Expr *skipImplicitTemporary(const Expr *E) { 1793 // Skip through reference binding to temporary. 1794 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1795 E = Materialize->getSubExpr(); 1796 1797 // Skip any temporary bindings; they're implicit. 1798 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1799 E = Binder->getSubExpr(); 1800 1801 return E; 1802 } 1803 } 1804 1805 Expr *CastExpr::getSubExprAsWritten() { 1806 const Expr *SubExpr = nullptr; 1807 const CastExpr *E = this; 1808 do { 1809 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1810 1811 // Conversions by constructor and conversion functions have a 1812 // subexpression describing the call; strip it off. 1813 if (E->getCastKind() == CK_ConstructorConversion) 1814 SubExpr = 1815 skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0)); 1816 else if (E->getCastKind() == CK_UserDefinedConversion) { 1817 assert((isa<CXXMemberCallExpr>(SubExpr) || 1818 isa<BlockExpr>(SubExpr)) && 1819 "Unexpected SubExpr for CK_UserDefinedConversion."); 1820 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1821 SubExpr = MCE->getImplicitObjectArgument(); 1822 } 1823 1824 // If the subexpression we're left with is an implicit cast, look 1825 // through that, too. 1826 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1827 1828 return const_cast<Expr*>(SubExpr); 1829 } 1830 1831 NamedDecl *CastExpr::getConversionFunction() const { 1832 const Expr *SubExpr = nullptr; 1833 1834 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1835 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1836 1837 if (E->getCastKind() == CK_ConstructorConversion) 1838 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1839 1840 if (E->getCastKind() == CK_UserDefinedConversion) { 1841 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1842 return MCE->getMethodDecl(); 1843 } 1844 } 1845 1846 return nullptr; 1847 } 1848 1849 CXXBaseSpecifier **CastExpr::path_buffer() { 1850 switch (getStmtClass()) { 1851 #define ABSTRACT_STMT(x) 1852 #define CASTEXPR(Type, Base) \ 1853 case Stmt::Type##Class: \ 1854 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1855 #define STMT(Type, Base) 1856 #include "clang/AST/StmtNodes.inc" 1857 default: 1858 llvm_unreachable("non-cast expressions not possible here"); 1859 } 1860 } 1861 1862 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1863 QualType opType) { 1864 auto RD = unionType->castAs<RecordType>()->getDecl(); 1865 return getTargetFieldForToUnionCast(RD, opType); 1866 } 1867 1868 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1869 QualType OpType) { 1870 auto &Ctx = RD->getASTContext(); 1871 RecordDecl::field_iterator Field, FieldEnd; 1872 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1873 Field != FieldEnd; ++Field) { 1874 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1875 !Field->isUnnamedBitfield()) { 1876 return *Field; 1877 } 1878 } 1879 return nullptr; 1880 } 1881 1882 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1883 CastKind Kind, Expr *Operand, 1884 const CXXCastPath *BasePath, 1885 ExprValueKind VK) { 1886 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1887 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1888 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 1889 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 1890 assert((Kind != CK_LValueToRValue || 1891 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 1892 "invalid type for lvalue-to-rvalue conversion"); 1893 ImplicitCastExpr *E = 1894 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1895 if (PathSize) 1896 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1897 E->getTrailingObjects<CXXBaseSpecifier *>()); 1898 return E; 1899 } 1900 1901 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1902 unsigned PathSize) { 1903 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1904 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1905 } 1906 1907 1908 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1909 ExprValueKind VK, CastKind K, Expr *Op, 1910 const CXXCastPath *BasePath, 1911 TypeSourceInfo *WrittenTy, 1912 SourceLocation L, SourceLocation R) { 1913 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1914 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1915 CStyleCastExpr *E = 1916 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1917 if (PathSize) 1918 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1919 E->getTrailingObjects<CXXBaseSpecifier *>()); 1920 return E; 1921 } 1922 1923 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1924 unsigned PathSize) { 1925 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1926 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1927 } 1928 1929 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1930 /// corresponds to, e.g. "<<=". 1931 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1932 switch (Op) { 1933 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 1934 #include "clang/AST/OperationKinds.def" 1935 } 1936 llvm_unreachable("Invalid OpCode!"); 1937 } 1938 1939 BinaryOperatorKind 1940 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1941 switch (OO) { 1942 default: llvm_unreachable("Not an overloadable binary operator"); 1943 case OO_Plus: return BO_Add; 1944 case OO_Minus: return BO_Sub; 1945 case OO_Star: return BO_Mul; 1946 case OO_Slash: return BO_Div; 1947 case OO_Percent: return BO_Rem; 1948 case OO_Caret: return BO_Xor; 1949 case OO_Amp: return BO_And; 1950 case OO_Pipe: return BO_Or; 1951 case OO_Equal: return BO_Assign; 1952 case OO_Spaceship: return BO_Cmp; 1953 case OO_Less: return BO_LT; 1954 case OO_Greater: return BO_GT; 1955 case OO_PlusEqual: return BO_AddAssign; 1956 case OO_MinusEqual: return BO_SubAssign; 1957 case OO_StarEqual: return BO_MulAssign; 1958 case OO_SlashEqual: return BO_DivAssign; 1959 case OO_PercentEqual: return BO_RemAssign; 1960 case OO_CaretEqual: return BO_XorAssign; 1961 case OO_AmpEqual: return BO_AndAssign; 1962 case OO_PipeEqual: return BO_OrAssign; 1963 case OO_LessLess: return BO_Shl; 1964 case OO_GreaterGreater: return BO_Shr; 1965 case OO_LessLessEqual: return BO_ShlAssign; 1966 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1967 case OO_EqualEqual: return BO_EQ; 1968 case OO_ExclaimEqual: return BO_NE; 1969 case OO_LessEqual: return BO_LE; 1970 case OO_GreaterEqual: return BO_GE; 1971 case OO_AmpAmp: return BO_LAnd; 1972 case OO_PipePipe: return BO_LOr; 1973 case OO_Comma: return BO_Comma; 1974 case OO_ArrowStar: return BO_PtrMemI; 1975 } 1976 } 1977 1978 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1979 static const OverloadedOperatorKind OverOps[] = { 1980 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1981 OO_Star, OO_Slash, OO_Percent, 1982 OO_Plus, OO_Minus, 1983 OO_LessLess, OO_GreaterGreater, 1984 OO_Spaceship, 1985 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1986 OO_EqualEqual, OO_ExclaimEqual, 1987 OO_Amp, 1988 OO_Caret, 1989 OO_Pipe, 1990 OO_AmpAmp, 1991 OO_PipePipe, 1992 OO_Equal, OO_StarEqual, 1993 OO_SlashEqual, OO_PercentEqual, 1994 OO_PlusEqual, OO_MinusEqual, 1995 OO_LessLessEqual, OO_GreaterGreaterEqual, 1996 OO_AmpEqual, OO_CaretEqual, 1997 OO_PipeEqual, 1998 OO_Comma 1999 }; 2000 return OverOps[Opc]; 2001 } 2002 2003 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2004 Opcode Opc, 2005 Expr *LHS, Expr *RHS) { 2006 if (Opc != BO_Add) 2007 return false; 2008 2009 // Check that we have one pointer and one integer operand. 2010 Expr *PExp; 2011 if (LHS->getType()->isPointerType()) { 2012 if (!RHS->getType()->isIntegerType()) 2013 return false; 2014 PExp = LHS; 2015 } else if (RHS->getType()->isPointerType()) { 2016 if (!LHS->getType()->isIntegerType()) 2017 return false; 2018 PExp = RHS; 2019 } else { 2020 return false; 2021 } 2022 2023 // Check that the pointer is a nullptr. 2024 if (!PExp->IgnoreParenCasts() 2025 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2026 return false; 2027 2028 // Check that the pointee type is char-sized. 2029 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2030 if (!PTy || !PTy->getPointeeType()->isCharType()) 2031 return false; 2032 2033 return true; 2034 } 2035 2036 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, 2037 SourceLocExpr::IdentKind Kind) { 2038 switch (Kind) { 2039 case SourceLocExpr::File: 2040 case SourceLocExpr::Function: { 2041 QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); 2042 return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); 2043 } 2044 case SourceLocExpr::Line: 2045 case SourceLocExpr::Column: 2046 return Ctx.UnsignedIntTy; 2047 } 2048 llvm_unreachable("unhandled case"); 2049 } 2050 2051 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2052 SourceLocation BLoc, SourceLocation RParenLoc, 2053 DeclContext *ParentContext) 2054 : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), 2055 VK_RValue, OK_Ordinary), 2056 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2057 SourceLocExprBits.Kind = Kind; 2058 setDependence(ExprDependence::None); 2059 } 2060 2061 StringRef SourceLocExpr::getBuiltinStr() const { 2062 switch (getIdentKind()) { 2063 case File: 2064 return "__builtin_FILE"; 2065 case Function: 2066 return "__builtin_FUNCTION"; 2067 case Line: 2068 return "__builtin_LINE"; 2069 case Column: 2070 return "__builtin_COLUMN"; 2071 } 2072 llvm_unreachable("unexpected IdentKind!"); 2073 } 2074 2075 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2076 const Expr *DefaultExpr) const { 2077 SourceLocation Loc; 2078 const DeclContext *Context; 2079 2080 std::tie(Loc, 2081 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2082 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2083 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2084 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2085 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2086 return {this->getLocation(), this->getParentContext()}; 2087 }(); 2088 2089 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2090 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2091 2092 auto MakeStringLiteral = [&](StringRef Tmp) { 2093 using LValuePathEntry = APValue::LValuePathEntry; 2094 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2095 // Decay the string to a pointer to the first character. 2096 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2097 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2098 }; 2099 2100 switch (getIdentKind()) { 2101 case SourceLocExpr::File: 2102 return MakeStringLiteral(PLoc.getFilename()); 2103 case SourceLocExpr::Function: { 2104 const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); 2105 return MakeStringLiteral( 2106 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2107 : std::string("")); 2108 } 2109 case SourceLocExpr::Line: 2110 case SourceLocExpr::Column: { 2111 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2112 /*isUnsigned=*/true); 2113 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2114 : PLoc.getColumn(); 2115 return APValue(IntVal); 2116 } 2117 } 2118 llvm_unreachable("unhandled case"); 2119 } 2120 2121 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2122 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2123 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary), 2124 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2125 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2126 sawArrayRangeDesignator(false); 2127 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2128 2129 setDependence(computeDependence(this)); 2130 } 2131 2132 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2133 if (NumInits > InitExprs.size()) 2134 InitExprs.reserve(C, NumInits); 2135 } 2136 2137 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2138 InitExprs.resize(C, NumInits, nullptr); 2139 } 2140 2141 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2142 if (Init >= InitExprs.size()) { 2143 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2144 setInit(Init, expr); 2145 return nullptr; 2146 } 2147 2148 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2149 setInit(Init, expr); 2150 return Result; 2151 } 2152 2153 void InitListExpr::setArrayFiller(Expr *filler) { 2154 assert(!hasArrayFiller() && "Filler already set!"); 2155 ArrayFillerOrUnionFieldInit = filler; 2156 // Fill out any "holes" in the array due to designated initializers. 2157 Expr **inits = getInits(); 2158 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2159 if (inits[i] == nullptr) 2160 inits[i] = filler; 2161 } 2162 2163 bool InitListExpr::isStringLiteralInit() const { 2164 if (getNumInits() != 1) 2165 return false; 2166 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2167 if (!AT || !AT->getElementType()->isIntegerType()) 2168 return false; 2169 // It is possible for getInit() to return null. 2170 const Expr *Init = getInit(0); 2171 if (!Init) 2172 return false; 2173 Init = Init->IgnoreParens(); 2174 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2175 } 2176 2177 bool InitListExpr::isTransparent() const { 2178 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2179 2180 // A glvalue InitListExpr is always just sugar. 2181 if (isGLValue()) { 2182 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2183 return true; 2184 } 2185 2186 // Otherwise, we're sugar if and only if we have exactly one initializer that 2187 // is of the same type. 2188 if (getNumInits() != 1 || !getInit(0)) 2189 return false; 2190 2191 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2192 // transparent struct copy. 2193 if (!getInit(0)->isRValue() && getType()->isRecordType()) 2194 return false; 2195 2196 return getType().getCanonicalType() == 2197 getInit(0)->getType().getCanonicalType(); 2198 } 2199 2200 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2201 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2202 2203 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2204 return false; 2205 } 2206 2207 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2208 return Lit && Lit->getValue() == 0; 2209 } 2210 2211 SourceLocation InitListExpr::getBeginLoc() const { 2212 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2213 return SyntacticForm->getBeginLoc(); 2214 SourceLocation Beg = LBraceLoc; 2215 if (Beg.isInvalid()) { 2216 // Find the first non-null initializer. 2217 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2218 E = InitExprs.end(); 2219 I != E; ++I) { 2220 if (Stmt *S = *I) { 2221 Beg = S->getBeginLoc(); 2222 break; 2223 } 2224 } 2225 } 2226 return Beg; 2227 } 2228 2229 SourceLocation InitListExpr::getEndLoc() const { 2230 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2231 return SyntacticForm->getEndLoc(); 2232 SourceLocation End = RBraceLoc; 2233 if (End.isInvalid()) { 2234 // Find the first non-null initializer from the end. 2235 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 2236 E = InitExprs.rend(); 2237 I != E; ++I) { 2238 if (Stmt *S = *I) { 2239 End = S->getEndLoc(); 2240 break; 2241 } 2242 } 2243 } 2244 return End; 2245 } 2246 2247 /// getFunctionType - Return the underlying function type for this block. 2248 /// 2249 const FunctionProtoType *BlockExpr::getFunctionType() const { 2250 // The block pointer is never sugared, but the function type might be. 2251 return cast<BlockPointerType>(getType()) 2252 ->getPointeeType()->castAs<FunctionProtoType>(); 2253 } 2254 2255 SourceLocation BlockExpr::getCaretLocation() const { 2256 return TheBlock->getCaretLocation(); 2257 } 2258 const Stmt *BlockExpr::getBody() const { 2259 return TheBlock->getBody(); 2260 } 2261 Stmt *BlockExpr::getBody() { 2262 return TheBlock->getBody(); 2263 } 2264 2265 2266 //===----------------------------------------------------------------------===// 2267 // Generic Expression Routines 2268 //===----------------------------------------------------------------------===// 2269 2270 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2271 // In C++11, discarded-value expressions of a certain form are special, 2272 // according to [expr]p10: 2273 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2274 // expression is an lvalue of volatile-qualified type and it has 2275 // one of the following forms: 2276 if (!isGLValue() || !getType().isVolatileQualified()) 2277 return false; 2278 2279 const Expr *E = IgnoreParens(); 2280 2281 // - id-expression (5.1.1), 2282 if (isa<DeclRefExpr>(E)) 2283 return true; 2284 2285 // - subscripting (5.2.1), 2286 if (isa<ArraySubscriptExpr>(E)) 2287 return true; 2288 2289 // - class member access (5.2.5), 2290 if (isa<MemberExpr>(E)) 2291 return true; 2292 2293 // - indirection (5.3.1), 2294 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2295 if (UO->getOpcode() == UO_Deref) 2296 return true; 2297 2298 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2299 // - pointer-to-member operation (5.5), 2300 if (BO->isPtrMemOp()) 2301 return true; 2302 2303 // - comma expression (5.18) where the right operand is one of the above. 2304 if (BO->getOpcode() == BO_Comma) 2305 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2306 } 2307 2308 // - conditional expression (5.16) where both the second and the third 2309 // operands are one of the above, or 2310 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2311 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2312 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2313 // The related edge case of "*x ?: *x". 2314 if (auto *BCO = 2315 dyn_cast<BinaryConditionalOperator>(E)) { 2316 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2317 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2318 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2319 } 2320 2321 // Objective-C++ extensions to the rule. 2322 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 2323 return true; 2324 2325 return false; 2326 } 2327 2328 /// isUnusedResultAWarning - Return true if this immediate expression should 2329 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2330 /// with location to warn on and the source range[s] to report with the 2331 /// warning. 2332 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2333 SourceRange &R1, SourceRange &R2, 2334 ASTContext &Ctx) const { 2335 // Don't warn if the expr is type dependent. The type could end up 2336 // instantiating to void. 2337 if (isTypeDependent()) 2338 return false; 2339 2340 switch (getStmtClass()) { 2341 default: 2342 if (getType()->isVoidType()) 2343 return false; 2344 WarnE = this; 2345 Loc = getExprLoc(); 2346 R1 = getSourceRange(); 2347 return true; 2348 case ParenExprClass: 2349 return cast<ParenExpr>(this)->getSubExpr()-> 2350 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2351 case GenericSelectionExprClass: 2352 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2353 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2354 case CoawaitExprClass: 2355 case CoyieldExprClass: 2356 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2357 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2358 case ChooseExprClass: 2359 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2360 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2361 case UnaryOperatorClass: { 2362 const UnaryOperator *UO = cast<UnaryOperator>(this); 2363 2364 switch (UO->getOpcode()) { 2365 case UO_Plus: 2366 case UO_Minus: 2367 case UO_AddrOf: 2368 case UO_Not: 2369 case UO_LNot: 2370 case UO_Deref: 2371 break; 2372 case UO_Coawait: 2373 // This is just the 'operator co_await' call inside the guts of a 2374 // dependent co_await call. 2375 case UO_PostInc: 2376 case UO_PostDec: 2377 case UO_PreInc: 2378 case UO_PreDec: // ++/-- 2379 return false; // Not a warning. 2380 case UO_Real: 2381 case UO_Imag: 2382 // accessing a piece of a volatile complex is a side-effect. 2383 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2384 .isVolatileQualified()) 2385 return false; 2386 break; 2387 case UO_Extension: 2388 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2389 } 2390 WarnE = this; 2391 Loc = UO->getOperatorLoc(); 2392 R1 = UO->getSubExpr()->getSourceRange(); 2393 return true; 2394 } 2395 case BinaryOperatorClass: { 2396 const BinaryOperator *BO = cast<BinaryOperator>(this); 2397 switch (BO->getOpcode()) { 2398 default: 2399 break; 2400 // Consider the RHS of comma for side effects. LHS was checked by 2401 // Sema::CheckCommaOperands. 2402 case BO_Comma: 2403 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2404 // lvalue-ness) of an assignment written in a macro. 2405 if (IntegerLiteral *IE = 2406 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2407 if (IE->getValue() == 0) 2408 return false; 2409 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2410 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2411 case BO_LAnd: 2412 case BO_LOr: 2413 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2414 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2415 return false; 2416 break; 2417 } 2418 if (BO->isAssignmentOp()) 2419 return false; 2420 WarnE = this; 2421 Loc = BO->getOperatorLoc(); 2422 R1 = BO->getLHS()->getSourceRange(); 2423 R2 = BO->getRHS()->getSourceRange(); 2424 return true; 2425 } 2426 case CompoundAssignOperatorClass: 2427 case VAArgExprClass: 2428 case AtomicExprClass: 2429 return false; 2430 2431 case ConditionalOperatorClass: { 2432 // If only one of the LHS or RHS is a warning, the operator might 2433 // be being used for control flow. Only warn if both the LHS and 2434 // RHS are warnings. 2435 const auto *Exp = cast<ConditionalOperator>(this); 2436 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2437 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2438 } 2439 case BinaryConditionalOperatorClass: { 2440 const auto *Exp = cast<BinaryConditionalOperator>(this); 2441 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2442 } 2443 2444 case MemberExprClass: 2445 WarnE = this; 2446 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2447 R1 = SourceRange(Loc, Loc); 2448 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2449 return true; 2450 2451 case ArraySubscriptExprClass: 2452 WarnE = this; 2453 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2454 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2455 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2456 return true; 2457 2458 case CXXOperatorCallExprClass: { 2459 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2460 // overloads as there is no reasonable way to define these such that they 2461 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2462 // warning: operators == and != are commonly typo'ed, and so warning on them 2463 // provides additional value as well. If this list is updated, 2464 // DiagnoseUnusedComparison should be as well. 2465 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2466 switch (Op->getOperator()) { 2467 default: 2468 break; 2469 case OO_EqualEqual: 2470 case OO_ExclaimEqual: 2471 case OO_Less: 2472 case OO_Greater: 2473 case OO_GreaterEqual: 2474 case OO_LessEqual: 2475 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2476 Op->getCallReturnType(Ctx)->isVoidType()) 2477 break; 2478 WarnE = this; 2479 Loc = Op->getOperatorLoc(); 2480 R1 = Op->getSourceRange(); 2481 return true; 2482 } 2483 2484 // Fallthrough for generic call handling. 2485 LLVM_FALLTHROUGH; 2486 } 2487 case CallExprClass: 2488 case CXXMemberCallExprClass: 2489 case UserDefinedLiteralClass: { 2490 // If this is a direct call, get the callee. 2491 const CallExpr *CE = cast<CallExpr>(this); 2492 if (const Decl *FD = CE->getCalleeDecl()) { 2493 // If the callee has attribute pure, const, or warn_unused_result, warn 2494 // about it. void foo() { strlen("bar"); } should warn. 2495 // 2496 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2497 // updated to match for QoI. 2498 if (CE->hasUnusedResultAttr(Ctx) || 2499 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2500 WarnE = this; 2501 Loc = CE->getCallee()->getBeginLoc(); 2502 R1 = CE->getCallee()->getSourceRange(); 2503 2504 if (unsigned NumArgs = CE->getNumArgs()) 2505 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2506 CE->getArg(NumArgs - 1)->getEndLoc()); 2507 return true; 2508 } 2509 } 2510 return false; 2511 } 2512 2513 // If we don't know precisely what we're looking at, let's not warn. 2514 case UnresolvedLookupExprClass: 2515 case CXXUnresolvedConstructExprClass: 2516 case RecoveryExprClass: 2517 return false; 2518 2519 case CXXTemporaryObjectExprClass: 2520 case CXXConstructExprClass: { 2521 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2522 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2523 if (Type->hasAttr<WarnUnusedAttr>() || 2524 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2525 WarnE = this; 2526 Loc = getBeginLoc(); 2527 R1 = getSourceRange(); 2528 return true; 2529 } 2530 } 2531 2532 const auto *CE = cast<CXXConstructExpr>(this); 2533 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2534 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2535 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2536 WarnE = this; 2537 Loc = getBeginLoc(); 2538 R1 = getSourceRange(); 2539 2540 if (unsigned NumArgs = CE->getNumArgs()) 2541 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2542 CE->getArg(NumArgs - 1)->getEndLoc()); 2543 return true; 2544 } 2545 } 2546 2547 return false; 2548 } 2549 2550 case ObjCMessageExprClass: { 2551 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2552 if (Ctx.getLangOpts().ObjCAutoRefCount && 2553 ME->isInstanceMessage() && 2554 !ME->getType()->isVoidType() && 2555 ME->getMethodFamily() == OMF_init) { 2556 WarnE = this; 2557 Loc = getExprLoc(); 2558 R1 = ME->getSourceRange(); 2559 return true; 2560 } 2561 2562 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2563 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2564 WarnE = this; 2565 Loc = getExprLoc(); 2566 return true; 2567 } 2568 2569 return false; 2570 } 2571 2572 case ObjCPropertyRefExprClass: 2573 WarnE = this; 2574 Loc = getExprLoc(); 2575 R1 = getSourceRange(); 2576 return true; 2577 2578 case PseudoObjectExprClass: { 2579 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2580 2581 // Only complain about things that have the form of a getter. 2582 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2583 isa<BinaryOperator>(PO->getSyntacticForm())) 2584 return false; 2585 2586 WarnE = this; 2587 Loc = getExprLoc(); 2588 R1 = getSourceRange(); 2589 return true; 2590 } 2591 2592 case StmtExprClass: { 2593 // Statement exprs don't logically have side effects themselves, but are 2594 // sometimes used in macros in ways that give them a type that is unused. 2595 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2596 // however, if the result of the stmt expr is dead, we don't want to emit a 2597 // warning. 2598 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2599 if (!CS->body_empty()) { 2600 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2601 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2602 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2603 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2604 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2605 } 2606 2607 if (getType()->isVoidType()) 2608 return false; 2609 WarnE = this; 2610 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2611 R1 = getSourceRange(); 2612 return true; 2613 } 2614 case CXXFunctionalCastExprClass: 2615 case CStyleCastExprClass: { 2616 // Ignore an explicit cast to void, except in C++98 if the operand is a 2617 // volatile glvalue for which we would trigger an implicit read in any 2618 // other language mode. (Such an implicit read always happens as part of 2619 // the lvalue conversion in C, and happens in C++ for expressions of all 2620 // forms where it seems likely the user intended to trigger a volatile 2621 // load.) 2622 const CastExpr *CE = cast<CastExpr>(this); 2623 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2624 if (CE->getCastKind() == CK_ToVoid) { 2625 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2626 SubE->isReadIfDiscardedInCPlusPlus11()) { 2627 // Suppress the "unused value" warning for idiomatic usage of 2628 // '(void)var;' used to suppress "unused variable" warnings. 2629 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2630 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2631 if (!VD->isExternallyVisible()) 2632 return false; 2633 2634 // The lvalue-to-rvalue conversion would have no effect for an array. 2635 // It's implausible that the programmer expected this to result in a 2636 // volatile array load, so don't warn. 2637 if (SubE->getType()->isArrayType()) 2638 return false; 2639 2640 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2641 } 2642 return false; 2643 } 2644 2645 // If this is a cast to a constructor conversion, check the operand. 2646 // Otherwise, the result of the cast is unused. 2647 if (CE->getCastKind() == CK_ConstructorConversion) 2648 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2649 2650 WarnE = this; 2651 if (const CXXFunctionalCastExpr *CXXCE = 2652 dyn_cast<CXXFunctionalCastExpr>(this)) { 2653 Loc = CXXCE->getBeginLoc(); 2654 R1 = CXXCE->getSubExpr()->getSourceRange(); 2655 } else { 2656 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2657 Loc = CStyleCE->getLParenLoc(); 2658 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2659 } 2660 return true; 2661 } 2662 case ImplicitCastExprClass: { 2663 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2664 2665 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2666 if (ICE->getCastKind() == CK_LValueToRValue && 2667 ICE->getSubExpr()->getType().isVolatileQualified()) 2668 return false; 2669 2670 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2671 } 2672 case CXXDefaultArgExprClass: 2673 return (cast<CXXDefaultArgExpr>(this) 2674 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2675 case CXXDefaultInitExprClass: 2676 return (cast<CXXDefaultInitExpr>(this) 2677 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2678 2679 case CXXNewExprClass: 2680 // FIXME: In theory, there might be new expressions that don't have side 2681 // effects (e.g. a placement new with an uninitialized POD). 2682 case CXXDeleteExprClass: 2683 return false; 2684 case MaterializeTemporaryExprClass: 2685 return cast<MaterializeTemporaryExpr>(this) 2686 ->getSubExpr() 2687 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2688 case CXXBindTemporaryExprClass: 2689 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2690 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2691 case ExprWithCleanupsClass: 2692 return cast<ExprWithCleanups>(this)->getSubExpr() 2693 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2694 } 2695 } 2696 2697 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2698 /// returns true, if it is; false otherwise. 2699 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2700 const Expr *E = IgnoreParens(); 2701 switch (E->getStmtClass()) { 2702 default: 2703 return false; 2704 case ObjCIvarRefExprClass: 2705 return true; 2706 case Expr::UnaryOperatorClass: 2707 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2708 case ImplicitCastExprClass: 2709 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2710 case MaterializeTemporaryExprClass: 2711 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2712 Ctx); 2713 case CStyleCastExprClass: 2714 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2715 case DeclRefExprClass: { 2716 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2717 2718 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2719 if (VD->hasGlobalStorage()) 2720 return true; 2721 QualType T = VD->getType(); 2722 // dereferencing to a pointer is always a gc'able candidate, 2723 // unless it is __weak. 2724 return T->isPointerType() && 2725 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2726 } 2727 return false; 2728 } 2729 case MemberExprClass: { 2730 const MemberExpr *M = cast<MemberExpr>(E); 2731 return M->getBase()->isOBJCGCCandidate(Ctx); 2732 } 2733 case ArraySubscriptExprClass: 2734 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2735 } 2736 } 2737 2738 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2739 if (isTypeDependent()) 2740 return false; 2741 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2742 } 2743 2744 QualType Expr::findBoundMemberType(const Expr *expr) { 2745 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2746 2747 // Bound member expressions are always one of these possibilities: 2748 // x->m x.m x->*y x.*y 2749 // (possibly parenthesized) 2750 2751 expr = expr->IgnoreParens(); 2752 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2753 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2754 return mem->getMemberDecl()->getType(); 2755 } 2756 2757 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2758 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2759 ->getPointeeType(); 2760 assert(type->isFunctionType()); 2761 return type; 2762 } 2763 2764 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2765 return QualType(); 2766 } 2767 2768 static Expr *IgnoreImpCastsSingleStep(Expr *E) { 2769 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) 2770 return ICE->getSubExpr(); 2771 2772 if (auto *FE = dyn_cast<FullExpr>(E)) 2773 return FE->getSubExpr(); 2774 2775 return E; 2776 } 2777 2778 static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) { 2779 // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in 2780 // addition to what IgnoreImpCasts() skips to account for the current 2781 // behaviour of IgnoreParenImpCasts(). 2782 Expr *SubE = IgnoreImpCastsSingleStep(E); 2783 if (SubE != E) 2784 return SubE; 2785 2786 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2787 return MTE->getSubExpr(); 2788 2789 if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2790 return NTTP->getReplacement(); 2791 2792 return E; 2793 } 2794 2795 static Expr *IgnoreCastsSingleStep(Expr *E) { 2796 if (auto *CE = dyn_cast<CastExpr>(E)) 2797 return CE->getSubExpr(); 2798 2799 if (auto *FE = dyn_cast<FullExpr>(E)) 2800 return FE->getSubExpr(); 2801 2802 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2803 return MTE->getSubExpr(); 2804 2805 if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2806 return NTTP->getReplacement(); 2807 2808 return E; 2809 } 2810 2811 static Expr *IgnoreLValueCastsSingleStep(Expr *E) { 2812 // Skip what IgnoreCastsSingleStep skips, except that only 2813 // lvalue-to-rvalue casts are skipped. 2814 if (auto *CE = dyn_cast<CastExpr>(E)) 2815 if (CE->getCastKind() != CK_LValueToRValue) 2816 return E; 2817 2818 return IgnoreCastsSingleStep(E); 2819 } 2820 2821 static Expr *IgnoreBaseCastsSingleStep(Expr *E) { 2822 if (auto *CE = dyn_cast<CastExpr>(E)) 2823 if (CE->getCastKind() == CK_DerivedToBase || 2824 CE->getCastKind() == CK_UncheckedDerivedToBase || 2825 CE->getCastKind() == CK_NoOp) 2826 return CE->getSubExpr(); 2827 2828 return E; 2829 } 2830 2831 static Expr *IgnoreImplicitSingleStep(Expr *E) { 2832 Expr *SubE = IgnoreImpCastsSingleStep(E); 2833 if (SubE != E) 2834 return SubE; 2835 2836 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2837 return MTE->getSubExpr(); 2838 2839 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2840 return BTE->getSubExpr(); 2841 2842 return E; 2843 } 2844 2845 static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) { 2846 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) 2847 return ICE->getSubExprAsWritten(); 2848 2849 return IgnoreImplicitSingleStep(E); 2850 } 2851 2852 static Expr *IgnoreParensOnlySingleStep(Expr *E) { 2853 if (auto *PE = dyn_cast<ParenExpr>(E)) 2854 return PE->getSubExpr(); 2855 return E; 2856 } 2857 2858 static Expr *IgnoreParensSingleStep(Expr *E) { 2859 if (auto *PE = dyn_cast<ParenExpr>(E)) 2860 return PE->getSubExpr(); 2861 2862 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 2863 if (UO->getOpcode() == UO_Extension) 2864 return UO->getSubExpr(); 2865 } 2866 2867 else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 2868 if (!GSE->isResultDependent()) 2869 return GSE->getResultExpr(); 2870 } 2871 2872 else if (auto *CE = dyn_cast<ChooseExpr>(E)) { 2873 if (!CE->isConditionDependent()) 2874 return CE->getChosenSubExpr(); 2875 } 2876 2877 return E; 2878 } 2879 2880 static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) { 2881 if (auto *CE = dyn_cast<CastExpr>(E)) { 2882 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2883 // ptr<->int casts of the same width. We also ignore all identity casts. 2884 Expr *SubExpr = CE->getSubExpr(); 2885 bool IsIdentityCast = 2886 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2887 bool IsSameWidthCast = 2888 (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) && 2889 (SubExpr->getType()->isPointerType() || 2890 SubExpr->getType()->isIntegralType(Ctx)) && 2891 (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType())); 2892 2893 if (IsIdentityCast || IsSameWidthCast) 2894 return SubExpr; 2895 } 2896 2897 else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2898 return NTTP->getReplacement(); 2899 2900 return E; 2901 } 2902 2903 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; } 2904 template <typename FnTy, typename... FnTys> 2905 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) { 2906 return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...); 2907 } 2908 2909 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, 2910 /// Recursively apply each of the functions to E until reaching a fixed point. 2911 /// Note that a null E is valid; in this case nothing is done. 2912 template <typename... FnTys> 2913 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) { 2914 Expr *LastE = nullptr; 2915 while (E != LastE) { 2916 LastE = E; 2917 E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...); 2918 } 2919 return E; 2920 } 2921 2922 Expr *Expr::IgnoreImpCasts() { 2923 return IgnoreExprNodes(this, IgnoreImpCastsSingleStep); 2924 } 2925 2926 Expr *Expr::IgnoreCasts() { 2927 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2928 } 2929 2930 Expr *Expr::IgnoreImplicit() { 2931 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2932 } 2933 2934 Expr *Expr::IgnoreImplicitAsWritten() { 2935 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2936 } 2937 2938 Expr *Expr::IgnoreParens() { 2939 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2940 } 2941 2942 Expr *Expr::IgnoreParenImpCasts() { 2943 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2944 IgnoreImpCastsExtraSingleStep); 2945 } 2946 2947 Expr *Expr::IgnoreParenCasts() { 2948 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2949 } 2950 2951 Expr *Expr::IgnoreConversionOperator() { 2952 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2953 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2954 return MCE->getImplicitObjectArgument(); 2955 } 2956 return this; 2957 } 2958 2959 Expr *Expr::IgnoreParenLValueCasts() { 2960 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2961 IgnoreLValueCastsSingleStep); 2962 } 2963 2964 Expr *Expr::ignoreParenBaseCasts() { 2965 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2966 IgnoreBaseCastsSingleStep); 2967 } 2968 2969 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2970 return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) { 2971 return IgnoreNoopCastsSingleStep(Ctx, E); 2972 }); 2973 } 2974 2975 Expr *Expr::IgnoreUnlessSpelledInSource() { 2976 Expr *E = this; 2977 2978 Expr *LastE = nullptr; 2979 while (E != LastE) { 2980 LastE = E; 2981 E = IgnoreExprNodes(E, IgnoreImplicitSingleStep, 2982 IgnoreImpCastsExtraSingleStep, 2983 IgnoreParensOnlySingleStep); 2984 2985 auto SR = E->getSourceRange(); 2986 2987 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 2988 auto NumArgs = C->getNumArgs(); 2989 if (NumArgs == 1 || 2990 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 2991 Expr *A = C->getArg(0); 2992 if (A->getSourceRange() == SR || !isa<CXXTemporaryObjectExpr>(C)) 2993 E = A; 2994 } 2995 } 2996 2997 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 2998 Expr *ExprNode = C->getImplicitObjectArgument(); 2999 if (ExprNode->getSourceRange() == SR) { 3000 E = ExprNode; 3001 continue; 3002 } 3003 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3004 if (PE->getSourceRange() == C->getSourceRange()) { 3005 E = PE; 3006 continue; 3007 } 3008 } 3009 ExprNode = ExprNode->IgnoreParenImpCasts(); 3010 if (ExprNode->getSourceRange() == SR) 3011 E = ExprNode; 3012 } 3013 } 3014 3015 return E; 3016 } 3017 3018 bool Expr::isDefaultArgument() const { 3019 const Expr *E = this; 3020 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3021 E = M->getSubExpr(); 3022 3023 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3024 E = ICE->getSubExprAsWritten(); 3025 3026 return isa<CXXDefaultArgExpr>(E); 3027 } 3028 3029 /// Skip over any no-op casts and any temporary-binding 3030 /// expressions. 3031 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3032 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3033 E = M->getSubExpr(); 3034 3035 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3036 if (ICE->getCastKind() == CK_NoOp) 3037 E = ICE->getSubExpr(); 3038 else 3039 break; 3040 } 3041 3042 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3043 E = BE->getSubExpr(); 3044 3045 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3046 if (ICE->getCastKind() == CK_NoOp) 3047 E = ICE->getSubExpr(); 3048 else 3049 break; 3050 } 3051 3052 return E->IgnoreParens(); 3053 } 3054 3055 /// isTemporaryObject - Determines if this expression produces a 3056 /// temporary of the given class type. 3057 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3058 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3059 return false; 3060 3061 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3062 3063 // Temporaries are by definition pr-values of class type. 3064 if (!E->Classify(C).isPRValue()) { 3065 // In this context, property reference is a message call and is pr-value. 3066 if (!isa<ObjCPropertyRefExpr>(E)) 3067 return false; 3068 } 3069 3070 // Black-list a few cases which yield pr-values of class type that don't 3071 // refer to temporaries of that type: 3072 3073 // - implicit derived-to-base conversions 3074 if (isa<ImplicitCastExpr>(E)) { 3075 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3076 case CK_DerivedToBase: 3077 case CK_UncheckedDerivedToBase: 3078 return false; 3079 default: 3080 break; 3081 } 3082 } 3083 3084 // - member expressions (all) 3085 if (isa<MemberExpr>(E)) 3086 return false; 3087 3088 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3089 if (BO->isPtrMemOp()) 3090 return false; 3091 3092 // - opaque values (all) 3093 if (isa<OpaqueValueExpr>(E)) 3094 return false; 3095 3096 return true; 3097 } 3098 3099 bool Expr::isImplicitCXXThis() const { 3100 const Expr *E = this; 3101 3102 // Strip away parentheses and casts we don't care about. 3103 while (true) { 3104 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3105 E = Paren->getSubExpr(); 3106 continue; 3107 } 3108 3109 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3110 if (ICE->getCastKind() == CK_NoOp || 3111 ICE->getCastKind() == CK_LValueToRValue || 3112 ICE->getCastKind() == CK_DerivedToBase || 3113 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3114 E = ICE->getSubExpr(); 3115 continue; 3116 } 3117 } 3118 3119 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3120 if (UnOp->getOpcode() == UO_Extension) { 3121 E = UnOp->getSubExpr(); 3122 continue; 3123 } 3124 } 3125 3126 if (const MaterializeTemporaryExpr *M 3127 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3128 E = M->getSubExpr(); 3129 continue; 3130 } 3131 3132 break; 3133 } 3134 3135 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3136 return This->isImplicit(); 3137 3138 return false; 3139 } 3140 3141 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3142 /// in Exprs is type-dependent. 3143 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3144 for (unsigned I = 0; I < Exprs.size(); ++I) 3145 if (Exprs[I]->isTypeDependent()) 3146 return true; 3147 3148 return false; 3149 } 3150 3151 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3152 const Expr **Culprit) const { 3153 assert(!isValueDependent() && 3154 "Expression evaluator can't be called on a dependent expression."); 3155 3156 // This function is attempting whether an expression is an initializer 3157 // which can be evaluated at compile-time. It very closely parallels 3158 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3159 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3160 // to isEvaluatable most of the time. 3161 // 3162 // If we ever capture reference-binding directly in the AST, we can 3163 // kill the second parameter. 3164 3165 if (IsForRef) { 3166 EvalResult Result; 3167 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3168 return true; 3169 if (Culprit) 3170 *Culprit = this; 3171 return false; 3172 } 3173 3174 switch (getStmtClass()) { 3175 default: break; 3176 case Stmt::ExprWithCleanupsClass: 3177 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3178 Ctx, IsForRef, Culprit); 3179 case StringLiteralClass: 3180 case ObjCEncodeExprClass: 3181 return true; 3182 case CXXTemporaryObjectExprClass: 3183 case CXXConstructExprClass: { 3184 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3185 3186 if (CE->getConstructor()->isTrivial() && 3187 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3188 // Trivial default constructor 3189 if (!CE->getNumArgs()) return true; 3190 3191 // Trivial copy constructor 3192 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3193 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3194 } 3195 3196 break; 3197 } 3198 case ConstantExprClass: { 3199 // FIXME: We should be able to return "true" here, but it can lead to extra 3200 // error messages. E.g. in Sema/array-init.c. 3201 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3202 return Exp->isConstantInitializer(Ctx, false, Culprit); 3203 } 3204 case CompoundLiteralExprClass: { 3205 // This handles gcc's extension that allows global initializers like 3206 // "struct x {int x;} x = (struct x) {};". 3207 // FIXME: This accepts other cases it shouldn't! 3208 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3209 return Exp->isConstantInitializer(Ctx, false, Culprit); 3210 } 3211 case DesignatedInitUpdateExprClass: { 3212 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3213 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3214 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3215 } 3216 case InitListExprClass: { 3217 const InitListExpr *ILE = cast<InitListExpr>(this); 3218 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3219 if (ILE->getType()->isArrayType()) { 3220 unsigned numInits = ILE->getNumInits(); 3221 for (unsigned i = 0; i < numInits; i++) { 3222 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3223 return false; 3224 } 3225 return true; 3226 } 3227 3228 if (ILE->getType()->isRecordType()) { 3229 unsigned ElementNo = 0; 3230 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3231 for (const auto *Field : RD->fields()) { 3232 // If this is a union, skip all the fields that aren't being initialized. 3233 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3234 continue; 3235 3236 // Don't emit anonymous bitfields, they just affect layout. 3237 if (Field->isUnnamedBitfield()) 3238 continue; 3239 3240 if (ElementNo < ILE->getNumInits()) { 3241 const Expr *Elt = ILE->getInit(ElementNo++); 3242 if (Field->isBitField()) { 3243 // Bitfields have to evaluate to an integer. 3244 EvalResult Result; 3245 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3246 if (Culprit) 3247 *Culprit = Elt; 3248 return false; 3249 } 3250 } else { 3251 bool RefType = Field->getType()->isReferenceType(); 3252 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3253 return false; 3254 } 3255 } 3256 } 3257 return true; 3258 } 3259 3260 break; 3261 } 3262 case ImplicitValueInitExprClass: 3263 case NoInitExprClass: 3264 return true; 3265 case ParenExprClass: 3266 return cast<ParenExpr>(this)->getSubExpr() 3267 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3268 case GenericSelectionExprClass: 3269 return cast<GenericSelectionExpr>(this)->getResultExpr() 3270 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3271 case ChooseExprClass: 3272 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3273 if (Culprit) 3274 *Culprit = this; 3275 return false; 3276 } 3277 return cast<ChooseExpr>(this)->getChosenSubExpr() 3278 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3279 case UnaryOperatorClass: { 3280 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3281 if (Exp->getOpcode() == UO_Extension) 3282 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3283 break; 3284 } 3285 case CXXFunctionalCastExprClass: 3286 case CXXStaticCastExprClass: 3287 case ImplicitCastExprClass: 3288 case CStyleCastExprClass: 3289 case ObjCBridgedCastExprClass: 3290 case CXXDynamicCastExprClass: 3291 case CXXReinterpretCastExprClass: 3292 case CXXAddrspaceCastExprClass: 3293 case CXXConstCastExprClass: { 3294 const CastExpr *CE = cast<CastExpr>(this); 3295 3296 // Handle misc casts we want to ignore. 3297 if (CE->getCastKind() == CK_NoOp || 3298 CE->getCastKind() == CK_LValueToRValue || 3299 CE->getCastKind() == CK_ToUnion || 3300 CE->getCastKind() == CK_ConstructorConversion || 3301 CE->getCastKind() == CK_NonAtomicToAtomic || 3302 CE->getCastKind() == CK_AtomicToNonAtomic || 3303 CE->getCastKind() == CK_IntToOCLSampler) 3304 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3305 3306 break; 3307 } 3308 case MaterializeTemporaryExprClass: 3309 return cast<MaterializeTemporaryExpr>(this) 3310 ->getSubExpr() 3311 ->isConstantInitializer(Ctx, false, Culprit); 3312 3313 case SubstNonTypeTemplateParmExprClass: 3314 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3315 ->isConstantInitializer(Ctx, false, Culprit); 3316 case CXXDefaultArgExprClass: 3317 return cast<CXXDefaultArgExpr>(this)->getExpr() 3318 ->isConstantInitializer(Ctx, false, Culprit); 3319 case CXXDefaultInitExprClass: 3320 return cast<CXXDefaultInitExpr>(this)->getExpr() 3321 ->isConstantInitializer(Ctx, false, Culprit); 3322 } 3323 // Allow certain forms of UB in constant initializers: signed integer 3324 // overflow and floating-point division by zero. We'll give a warning on 3325 // these, but they're common enough that we have to accept them. 3326 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3327 return true; 3328 if (Culprit) 3329 *Culprit = this; 3330 return false; 3331 } 3332 3333 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3334 const FunctionDecl* FD = getDirectCallee(); 3335 if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && 3336 FD->getBuiltinID() != Builtin::BI__builtin_assume)) 3337 return false; 3338 3339 const Expr* Arg = getArg(0); 3340 bool ArgVal; 3341 return !Arg->isValueDependent() && 3342 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3343 } 3344 3345 namespace { 3346 /// Look for any side effects within a Stmt. 3347 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3348 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3349 const bool IncludePossibleEffects; 3350 bool HasSideEffects; 3351 3352 public: 3353 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3354 : Inherited(Context), 3355 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3356 3357 bool hasSideEffects() const { return HasSideEffects; } 3358 3359 void VisitDecl(const Decl *D) { 3360 if (!D) 3361 return; 3362 3363 // We assume the caller checks subexpressions (eg, the initializer, VLA 3364 // bounds) for side-effects on our behalf. 3365 if (auto *VD = dyn_cast<VarDecl>(D)) { 3366 // Registering a destructor is a side-effect. 3367 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3368 VD->needsDestruction(Context)) 3369 HasSideEffects = true; 3370 } 3371 } 3372 3373 void VisitDeclStmt(const DeclStmt *DS) { 3374 for (auto *D : DS->decls()) 3375 VisitDecl(D); 3376 Inherited::VisitDeclStmt(DS); 3377 } 3378 3379 void VisitExpr(const Expr *E) { 3380 if (!HasSideEffects && 3381 E->HasSideEffects(Context, IncludePossibleEffects)) 3382 HasSideEffects = true; 3383 } 3384 }; 3385 } 3386 3387 bool Expr::HasSideEffects(const ASTContext &Ctx, 3388 bool IncludePossibleEffects) const { 3389 // In circumstances where we care about definite side effects instead of 3390 // potential side effects, we want to ignore expressions that are part of a 3391 // macro expansion as a potential side effect. 3392 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3393 return false; 3394 3395 if (isInstantiationDependent()) 3396 return IncludePossibleEffects; 3397 3398 switch (getStmtClass()) { 3399 case NoStmtClass: 3400 #define ABSTRACT_STMT(Type) 3401 #define STMT(Type, Base) case Type##Class: 3402 #define EXPR(Type, Base) 3403 #include "clang/AST/StmtNodes.inc" 3404 llvm_unreachable("unexpected Expr kind"); 3405 3406 case DependentScopeDeclRefExprClass: 3407 case CXXUnresolvedConstructExprClass: 3408 case CXXDependentScopeMemberExprClass: 3409 case UnresolvedLookupExprClass: 3410 case UnresolvedMemberExprClass: 3411 case PackExpansionExprClass: 3412 case SubstNonTypeTemplateParmPackExprClass: 3413 case FunctionParmPackExprClass: 3414 case TypoExprClass: 3415 case RecoveryExprClass: 3416 case CXXFoldExprClass: 3417 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 3418 3419 case DeclRefExprClass: 3420 case ObjCIvarRefExprClass: 3421 case PredefinedExprClass: 3422 case IntegerLiteralClass: 3423 case FixedPointLiteralClass: 3424 case FloatingLiteralClass: 3425 case ImaginaryLiteralClass: 3426 case StringLiteralClass: 3427 case CharacterLiteralClass: 3428 case OffsetOfExprClass: 3429 case ImplicitValueInitExprClass: 3430 case UnaryExprOrTypeTraitExprClass: 3431 case AddrLabelExprClass: 3432 case GNUNullExprClass: 3433 case ArrayInitIndexExprClass: 3434 case NoInitExprClass: 3435 case CXXBoolLiteralExprClass: 3436 case CXXNullPtrLiteralExprClass: 3437 case CXXThisExprClass: 3438 case CXXScalarValueInitExprClass: 3439 case TypeTraitExprClass: 3440 case ArrayTypeTraitExprClass: 3441 case ExpressionTraitExprClass: 3442 case CXXNoexceptExprClass: 3443 case SizeOfPackExprClass: 3444 case ObjCStringLiteralClass: 3445 case ObjCEncodeExprClass: 3446 case ObjCBoolLiteralExprClass: 3447 case ObjCAvailabilityCheckExprClass: 3448 case CXXUuidofExprClass: 3449 case OpaqueValueExprClass: 3450 case SourceLocExprClass: 3451 case ConceptSpecializationExprClass: 3452 case RequiresExprClass: 3453 // These never have a side-effect. 3454 return false; 3455 3456 case ConstantExprClass: 3457 // FIXME: Move this into the "return false;" block above. 3458 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3459 Ctx, IncludePossibleEffects); 3460 3461 case CallExprClass: 3462 case CXXOperatorCallExprClass: 3463 case CXXMemberCallExprClass: 3464 case CUDAKernelCallExprClass: 3465 case UserDefinedLiteralClass: { 3466 // We don't know a call definitely has side effects, except for calls 3467 // to pure/const functions that definitely don't. 3468 // If the call itself is considered side-effect free, check the operands. 3469 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3470 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3471 if (IsPure || !IncludePossibleEffects) 3472 break; 3473 return true; 3474 } 3475 3476 case BlockExprClass: 3477 case CXXBindTemporaryExprClass: 3478 if (!IncludePossibleEffects) 3479 break; 3480 return true; 3481 3482 case MSPropertyRefExprClass: 3483 case MSPropertySubscriptExprClass: 3484 case CompoundAssignOperatorClass: 3485 case VAArgExprClass: 3486 case AtomicExprClass: 3487 case CXXThrowExprClass: 3488 case CXXNewExprClass: 3489 case CXXDeleteExprClass: 3490 case CoawaitExprClass: 3491 case DependentCoawaitExprClass: 3492 case CoyieldExprClass: 3493 // These always have a side-effect. 3494 return true; 3495 3496 case StmtExprClass: { 3497 // StmtExprs have a side-effect if any substatement does. 3498 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3499 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3500 return Finder.hasSideEffects(); 3501 } 3502 3503 case ExprWithCleanupsClass: 3504 if (IncludePossibleEffects) 3505 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3506 return true; 3507 break; 3508 3509 case ParenExprClass: 3510 case ArraySubscriptExprClass: 3511 case MatrixSubscriptExprClass: 3512 case OMPArraySectionExprClass: 3513 case OMPArrayShapingExprClass: 3514 case OMPIteratorExprClass: 3515 case MemberExprClass: 3516 case ConditionalOperatorClass: 3517 case BinaryConditionalOperatorClass: 3518 case CompoundLiteralExprClass: 3519 case ExtVectorElementExprClass: 3520 case DesignatedInitExprClass: 3521 case DesignatedInitUpdateExprClass: 3522 case ArrayInitLoopExprClass: 3523 case ParenListExprClass: 3524 case CXXPseudoDestructorExprClass: 3525 case CXXRewrittenBinaryOperatorClass: 3526 case CXXStdInitializerListExprClass: 3527 case SubstNonTypeTemplateParmExprClass: 3528 case MaterializeTemporaryExprClass: 3529 case ShuffleVectorExprClass: 3530 case ConvertVectorExprClass: 3531 case AsTypeExprClass: 3532 // These have a side-effect if any subexpression does. 3533 break; 3534 3535 case UnaryOperatorClass: 3536 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3537 return true; 3538 break; 3539 3540 case BinaryOperatorClass: 3541 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3542 return true; 3543 break; 3544 3545 case InitListExprClass: 3546 // FIXME: The children for an InitListExpr doesn't include the array filler. 3547 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3548 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3549 return true; 3550 break; 3551 3552 case GenericSelectionExprClass: 3553 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3554 HasSideEffects(Ctx, IncludePossibleEffects); 3555 3556 case ChooseExprClass: 3557 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3558 Ctx, IncludePossibleEffects); 3559 3560 case CXXDefaultArgExprClass: 3561 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3562 Ctx, IncludePossibleEffects); 3563 3564 case CXXDefaultInitExprClass: { 3565 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3566 if (const Expr *E = FD->getInClassInitializer()) 3567 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3568 // If we've not yet parsed the initializer, assume it has side-effects. 3569 return true; 3570 } 3571 3572 case CXXDynamicCastExprClass: { 3573 // A dynamic_cast expression has side-effects if it can throw. 3574 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3575 if (DCE->getTypeAsWritten()->isReferenceType() && 3576 DCE->getCastKind() == CK_Dynamic) 3577 return true; 3578 } 3579 LLVM_FALLTHROUGH; 3580 case ImplicitCastExprClass: 3581 case CStyleCastExprClass: 3582 case CXXStaticCastExprClass: 3583 case CXXReinterpretCastExprClass: 3584 case CXXConstCastExprClass: 3585 case CXXAddrspaceCastExprClass: 3586 case CXXFunctionalCastExprClass: 3587 case BuiltinBitCastExprClass: { 3588 // While volatile reads are side-effecting in both C and C++, we treat them 3589 // as having possible (not definite) side-effects. This allows idiomatic 3590 // code to behave without warning, such as sizeof(*v) for a volatile- 3591 // qualified pointer. 3592 if (!IncludePossibleEffects) 3593 break; 3594 3595 const CastExpr *CE = cast<CastExpr>(this); 3596 if (CE->getCastKind() == CK_LValueToRValue && 3597 CE->getSubExpr()->getType().isVolatileQualified()) 3598 return true; 3599 break; 3600 } 3601 3602 case CXXTypeidExprClass: 3603 // typeid might throw if its subexpression is potentially-evaluated, so has 3604 // side-effects in that case whether or not its subexpression does. 3605 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3606 3607 case CXXConstructExprClass: 3608 case CXXTemporaryObjectExprClass: { 3609 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3610 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3611 return true; 3612 // A trivial constructor does not add any side-effects of its own. Just look 3613 // at its arguments. 3614 break; 3615 } 3616 3617 case CXXInheritedCtorInitExprClass: { 3618 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3619 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3620 return true; 3621 break; 3622 } 3623 3624 case LambdaExprClass: { 3625 const LambdaExpr *LE = cast<LambdaExpr>(this); 3626 for (Expr *E : LE->capture_inits()) 3627 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3628 return true; 3629 return false; 3630 } 3631 3632 case PseudoObjectExprClass: { 3633 // Only look for side-effects in the semantic form, and look past 3634 // OpaqueValueExpr bindings in that form. 3635 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3636 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3637 E = PO->semantics_end(); 3638 I != E; ++I) { 3639 const Expr *Subexpr = *I; 3640 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3641 Subexpr = OVE->getSourceExpr(); 3642 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3643 return true; 3644 } 3645 return false; 3646 } 3647 3648 case ObjCBoxedExprClass: 3649 case ObjCArrayLiteralClass: 3650 case ObjCDictionaryLiteralClass: 3651 case ObjCSelectorExprClass: 3652 case ObjCProtocolExprClass: 3653 case ObjCIsaExprClass: 3654 case ObjCIndirectCopyRestoreExprClass: 3655 case ObjCSubscriptRefExprClass: 3656 case ObjCBridgedCastExprClass: 3657 case ObjCMessageExprClass: 3658 case ObjCPropertyRefExprClass: 3659 // FIXME: Classify these cases better. 3660 if (IncludePossibleEffects) 3661 return true; 3662 break; 3663 } 3664 3665 // Recurse to children. 3666 for (const Stmt *SubStmt : children()) 3667 if (SubStmt && 3668 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3669 return true; 3670 3671 return false; 3672 } 3673 3674 namespace { 3675 /// Look for a call to a non-trivial function within an expression. 3676 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3677 { 3678 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3679 3680 bool NonTrivial; 3681 3682 public: 3683 explicit NonTrivialCallFinder(const ASTContext &Context) 3684 : Inherited(Context), NonTrivial(false) { } 3685 3686 bool hasNonTrivialCall() const { return NonTrivial; } 3687 3688 void VisitCallExpr(const CallExpr *E) { 3689 if (const CXXMethodDecl *Method 3690 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3691 if (Method->isTrivial()) { 3692 // Recurse to children of the call. 3693 Inherited::VisitStmt(E); 3694 return; 3695 } 3696 } 3697 3698 NonTrivial = true; 3699 } 3700 3701 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3702 if (E->getConstructor()->isTrivial()) { 3703 // Recurse to children of the call. 3704 Inherited::VisitStmt(E); 3705 return; 3706 } 3707 3708 NonTrivial = true; 3709 } 3710 3711 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3712 if (E->getTemporary()->getDestructor()->isTrivial()) { 3713 Inherited::VisitStmt(E); 3714 return; 3715 } 3716 3717 NonTrivial = true; 3718 } 3719 }; 3720 } 3721 3722 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3723 NonTrivialCallFinder Finder(Ctx); 3724 Finder.Visit(this); 3725 return Finder.hasNonTrivialCall(); 3726 } 3727 3728 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3729 /// pointer constant or not, as well as the specific kind of constant detected. 3730 /// Null pointer constants can be integer constant expressions with the 3731 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3732 /// (a GNU extension). 3733 Expr::NullPointerConstantKind 3734 Expr::isNullPointerConstant(ASTContext &Ctx, 3735 NullPointerConstantValueDependence NPC) const { 3736 if (isValueDependent() && 3737 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3738 switch (NPC) { 3739 case NPC_NeverValueDependent: 3740 llvm_unreachable("Unexpected value dependent expression!"); 3741 case NPC_ValueDependentIsNull: 3742 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3743 return NPCK_ZeroExpression; 3744 else 3745 return NPCK_NotNull; 3746 3747 case NPC_ValueDependentIsNotNull: 3748 return NPCK_NotNull; 3749 } 3750 } 3751 3752 // Strip off a cast to void*, if it exists. Except in C++. 3753 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3754 if (!Ctx.getLangOpts().CPlusPlus) { 3755 // Check that it is a cast to void*. 3756 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3757 QualType Pointee = PT->getPointeeType(); 3758 Qualifiers Qs = Pointee.getQualifiers(); 3759 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3760 // has non-default address space it is not treated as nullptr. 3761 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3762 // since it cannot be assigned to a pointer to constant address space. 3763 if ((Ctx.getLangOpts().OpenCLVersion >= 200 && 3764 Pointee.getAddressSpace() == LangAS::opencl_generic) || 3765 (Ctx.getLangOpts().OpenCL && 3766 Ctx.getLangOpts().OpenCLVersion < 200 && 3767 Pointee.getAddressSpace() == LangAS::opencl_private)) 3768 Qs.removeAddressSpace(); 3769 3770 if (Pointee->isVoidType() && Qs.empty() && // to void* 3771 CE->getSubExpr()->getType()->isIntegerType()) // from int 3772 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3773 } 3774 } 3775 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3776 // Ignore the ImplicitCastExpr type entirely. 3777 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3778 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3779 // Accept ((void*)0) as a null pointer constant, as many other 3780 // implementations do. 3781 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3782 } else if (const GenericSelectionExpr *GE = 3783 dyn_cast<GenericSelectionExpr>(this)) { 3784 if (GE->isResultDependent()) 3785 return NPCK_NotNull; 3786 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3787 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3788 if (CE->isConditionDependent()) 3789 return NPCK_NotNull; 3790 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3791 } else if (const CXXDefaultArgExpr *DefaultArg 3792 = dyn_cast<CXXDefaultArgExpr>(this)) { 3793 // See through default argument expressions. 3794 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3795 } else if (const CXXDefaultInitExpr *DefaultInit 3796 = dyn_cast<CXXDefaultInitExpr>(this)) { 3797 // See through default initializer expressions. 3798 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3799 } else if (isa<GNUNullExpr>(this)) { 3800 // The GNU __null extension is always a null pointer constant. 3801 return NPCK_GNUNull; 3802 } else if (const MaterializeTemporaryExpr *M 3803 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3804 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3805 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3806 if (const Expr *Source = OVE->getSourceExpr()) 3807 return Source->isNullPointerConstant(Ctx, NPC); 3808 } 3809 3810 // C++11 nullptr_t is always a null pointer constant. 3811 if (getType()->isNullPtrType()) 3812 return NPCK_CXX11_nullptr; 3813 3814 if (const RecordType *UT = getType()->getAsUnionType()) 3815 if (!Ctx.getLangOpts().CPlusPlus11 && 3816 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3817 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3818 const Expr *InitExpr = CLE->getInitializer(); 3819 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3820 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3821 } 3822 // This expression must be an integer type. 3823 if (!getType()->isIntegerType() || 3824 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3825 return NPCK_NotNull; 3826 3827 if (Ctx.getLangOpts().CPlusPlus11) { 3828 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3829 // value zero or a prvalue of type std::nullptr_t. 3830 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3831 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3832 if (Lit && !Lit->getValue()) 3833 return NPCK_ZeroLiteral; 3834 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3835 return NPCK_NotNull; 3836 } else { 3837 // If we have an integer constant expression, we need to *evaluate* it and 3838 // test for the value 0. 3839 if (!isIntegerConstantExpr(Ctx)) 3840 return NPCK_NotNull; 3841 } 3842 3843 if (EvaluateKnownConstInt(Ctx) != 0) 3844 return NPCK_NotNull; 3845 3846 if (isa<IntegerLiteral>(this)) 3847 return NPCK_ZeroLiteral; 3848 return NPCK_ZeroExpression; 3849 } 3850 3851 /// If this expression is an l-value for an Objective C 3852 /// property, find the underlying property reference expression. 3853 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3854 const Expr *E = this; 3855 while (true) { 3856 assert((E->getValueKind() == VK_LValue && 3857 E->getObjectKind() == OK_ObjCProperty) && 3858 "expression is not a property reference"); 3859 E = E->IgnoreParenCasts(); 3860 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3861 if (BO->getOpcode() == BO_Comma) { 3862 E = BO->getRHS(); 3863 continue; 3864 } 3865 } 3866 3867 break; 3868 } 3869 3870 return cast<ObjCPropertyRefExpr>(E); 3871 } 3872 3873 bool Expr::isObjCSelfExpr() const { 3874 const Expr *E = IgnoreParenImpCasts(); 3875 3876 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3877 if (!DRE) 3878 return false; 3879 3880 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3881 if (!Param) 3882 return false; 3883 3884 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3885 if (!M) 3886 return false; 3887 3888 return M->getSelfDecl() == Param; 3889 } 3890 3891 FieldDecl *Expr::getSourceBitField() { 3892 Expr *E = this->IgnoreParens(); 3893 3894 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3895 if (ICE->getCastKind() == CK_LValueToRValue || 3896 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3897 E = ICE->getSubExpr()->IgnoreParens(); 3898 else 3899 break; 3900 } 3901 3902 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3903 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3904 if (Field->isBitField()) 3905 return Field; 3906 3907 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3908 FieldDecl *Ivar = IvarRef->getDecl(); 3909 if (Ivar->isBitField()) 3910 return Ivar; 3911 } 3912 3913 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3914 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3915 if (Field->isBitField()) 3916 return Field; 3917 3918 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3919 if (Expr *E = BD->getBinding()) 3920 return E->getSourceBitField(); 3921 } 3922 3923 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3924 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3925 return BinOp->getLHS()->getSourceBitField(); 3926 3927 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3928 return BinOp->getRHS()->getSourceBitField(); 3929 } 3930 3931 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3932 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3933 return UnOp->getSubExpr()->getSourceBitField(); 3934 3935 return nullptr; 3936 } 3937 3938 bool Expr::refersToVectorElement() const { 3939 // FIXME: Why do we not just look at the ObjectKind here? 3940 const Expr *E = this->IgnoreParens(); 3941 3942 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3943 if (ICE->getValueKind() != VK_RValue && 3944 ICE->getCastKind() == CK_NoOp) 3945 E = ICE->getSubExpr()->IgnoreParens(); 3946 else 3947 break; 3948 } 3949 3950 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3951 return ASE->getBase()->getType()->isVectorType(); 3952 3953 if (isa<ExtVectorElementExpr>(E)) 3954 return true; 3955 3956 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3957 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3958 if (auto *E = BD->getBinding()) 3959 return E->refersToVectorElement(); 3960 3961 return false; 3962 } 3963 3964 bool Expr::refersToGlobalRegisterVar() const { 3965 const Expr *E = this->IgnoreParenImpCasts(); 3966 3967 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3968 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3969 if (VD->getStorageClass() == SC_Register && 3970 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3971 return true; 3972 3973 return false; 3974 } 3975 3976 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 3977 E1 = E1->IgnoreParens(); 3978 E2 = E2->IgnoreParens(); 3979 3980 if (E1->getStmtClass() != E2->getStmtClass()) 3981 return false; 3982 3983 switch (E1->getStmtClass()) { 3984 default: 3985 return false; 3986 case CXXThisExprClass: 3987 return true; 3988 case DeclRefExprClass: { 3989 // DeclRefExpr without an ImplicitCastExpr can happen for integral 3990 // template parameters. 3991 const auto *DRE1 = cast<DeclRefExpr>(E1); 3992 const auto *DRE2 = cast<DeclRefExpr>(E2); 3993 return DRE1->isRValue() && DRE2->isRValue() && 3994 DRE1->getDecl() == DRE2->getDecl(); 3995 } 3996 case ImplicitCastExprClass: { 3997 // Peel off implicit casts. 3998 while (true) { 3999 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4000 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4001 if (!ICE1 || !ICE2) 4002 return false; 4003 if (ICE1->getCastKind() != ICE2->getCastKind()) 4004 return false; 4005 E1 = ICE1->getSubExpr()->IgnoreParens(); 4006 E2 = ICE2->getSubExpr()->IgnoreParens(); 4007 // The final cast must be one of these types. 4008 if (ICE1->getCastKind() == CK_LValueToRValue || 4009 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4010 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4011 break; 4012 } 4013 } 4014 4015 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4016 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4017 if (DRE1 && DRE2) 4018 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4019 4020 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4021 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4022 if (Ivar1 && Ivar2) { 4023 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4024 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4025 } 4026 4027 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4028 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4029 if (Array1 && Array2) { 4030 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4031 return false; 4032 4033 auto Idx1 = Array1->getIdx(); 4034 auto Idx2 = Array2->getIdx(); 4035 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4036 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4037 if (Integer1 && Integer2) { 4038 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4039 Integer2->getValue())) 4040 return false; 4041 } else { 4042 if (!isSameComparisonOperand(Idx1, Idx2)) 4043 return false; 4044 } 4045 4046 return true; 4047 } 4048 4049 // Walk the MemberExpr chain. 4050 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4051 const auto *ME1 = cast<MemberExpr>(E1); 4052 const auto *ME2 = cast<MemberExpr>(E2); 4053 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4054 return false; 4055 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4056 if (D->isStaticDataMember()) 4057 return true; 4058 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4059 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4060 } 4061 4062 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4063 return true; 4064 4065 // A static member variable can end the MemberExpr chain with either 4066 // a MemberExpr or a DeclRefExpr. 4067 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4068 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4069 return DRE->getDecl(); 4070 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4071 return ME->getMemberDecl(); 4072 return nullptr; 4073 }; 4074 4075 const ValueDecl *VD1 = getAnyDecl(E1); 4076 const ValueDecl *VD2 = getAnyDecl(E2); 4077 return declaresSameEntity(VD1, VD2); 4078 } 4079 } 4080 } 4081 4082 /// isArrow - Return true if the base expression is a pointer to vector, 4083 /// return false if the base expression is a vector. 4084 bool ExtVectorElementExpr::isArrow() const { 4085 return getBase()->getType()->isPointerType(); 4086 } 4087 4088 unsigned ExtVectorElementExpr::getNumElements() const { 4089 if (const VectorType *VT = getType()->getAs<VectorType>()) 4090 return VT->getNumElements(); 4091 return 1; 4092 } 4093 4094 /// containsDuplicateElements - Return true if any element access is repeated. 4095 bool ExtVectorElementExpr::containsDuplicateElements() const { 4096 // FIXME: Refactor this code to an accessor on the AST node which returns the 4097 // "type" of component access, and share with code below and in Sema. 4098 StringRef Comp = Accessor->getName(); 4099 4100 // Halving swizzles do not contain duplicate elements. 4101 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4102 return false; 4103 4104 // Advance past s-char prefix on hex swizzles. 4105 if (Comp[0] == 's' || Comp[0] == 'S') 4106 Comp = Comp.substr(1); 4107 4108 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4109 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 4110 return true; 4111 4112 return false; 4113 } 4114 4115 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4116 void ExtVectorElementExpr::getEncodedElementAccess( 4117 SmallVectorImpl<uint32_t> &Elts) const { 4118 StringRef Comp = Accessor->getName(); 4119 bool isNumericAccessor = false; 4120 if (Comp[0] == 's' || Comp[0] == 'S') { 4121 Comp = Comp.substr(1); 4122 isNumericAccessor = true; 4123 } 4124 4125 bool isHi = Comp == "hi"; 4126 bool isLo = Comp == "lo"; 4127 bool isEven = Comp == "even"; 4128 bool isOdd = Comp == "odd"; 4129 4130 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4131 uint64_t Index; 4132 4133 if (isHi) 4134 Index = e + i; 4135 else if (isLo) 4136 Index = i; 4137 else if (isEven) 4138 Index = 2 * i; 4139 else if (isOdd) 4140 Index = 2 * i + 1; 4141 else 4142 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4143 4144 Elts.push_back(Index); 4145 } 4146 } 4147 4148 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4149 QualType Type, SourceLocation BLoc, 4150 SourceLocation RP) 4151 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary), 4152 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4153 SubExprs = new (C) Stmt*[args.size()]; 4154 for (unsigned i = 0; i != args.size(); i++) 4155 SubExprs[i] = args[i]; 4156 4157 setDependence(computeDependence(this)); 4158 } 4159 4160 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4161 if (SubExprs) C.Deallocate(SubExprs); 4162 4163 this->NumExprs = Exprs.size(); 4164 SubExprs = new (C) Stmt*[NumExprs]; 4165 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4166 } 4167 4168 GenericSelectionExpr::GenericSelectionExpr( 4169 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4170 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4171 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4172 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4173 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4174 AssocExprs[ResultIndex]->getValueKind(), 4175 AssocExprs[ResultIndex]->getObjectKind()), 4176 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4177 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4178 assert(AssocTypes.size() == AssocExprs.size() && 4179 "Must have the same number of association expressions" 4180 " and TypeSourceInfo!"); 4181 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4182 4183 GenericSelectionExprBits.GenericLoc = GenericLoc; 4184 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4185 std::copy(AssocExprs.begin(), AssocExprs.end(), 4186 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4187 std::copy(AssocTypes.begin(), AssocTypes.end(), 4188 getTrailingObjects<TypeSourceInfo *>()); 4189 4190 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4191 } 4192 4193 GenericSelectionExpr::GenericSelectionExpr( 4194 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4195 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4196 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4197 bool ContainsUnexpandedParameterPack) 4198 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, 4199 OK_Ordinary), 4200 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4201 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4202 assert(AssocTypes.size() == AssocExprs.size() && 4203 "Must have the same number of association expressions" 4204 " and TypeSourceInfo!"); 4205 4206 GenericSelectionExprBits.GenericLoc = GenericLoc; 4207 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4208 std::copy(AssocExprs.begin(), AssocExprs.end(), 4209 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4210 std::copy(AssocTypes.begin(), AssocTypes.end(), 4211 getTrailingObjects<TypeSourceInfo *>()); 4212 4213 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4214 } 4215 4216 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4217 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4218 4219 GenericSelectionExpr *GenericSelectionExpr::Create( 4220 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4221 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4222 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4223 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4224 unsigned NumAssocs = AssocExprs.size(); 4225 void *Mem = Context.Allocate( 4226 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4227 alignof(GenericSelectionExpr)); 4228 return new (Mem) GenericSelectionExpr( 4229 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4230 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4231 } 4232 4233 GenericSelectionExpr *GenericSelectionExpr::Create( 4234 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4235 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4236 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4237 bool ContainsUnexpandedParameterPack) { 4238 unsigned NumAssocs = AssocExprs.size(); 4239 void *Mem = Context.Allocate( 4240 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4241 alignof(GenericSelectionExpr)); 4242 return new (Mem) GenericSelectionExpr( 4243 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4244 RParenLoc, ContainsUnexpandedParameterPack); 4245 } 4246 4247 GenericSelectionExpr * 4248 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4249 unsigned NumAssocs) { 4250 void *Mem = Context.Allocate( 4251 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4252 alignof(GenericSelectionExpr)); 4253 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4254 } 4255 4256 //===----------------------------------------------------------------------===// 4257 // DesignatedInitExpr 4258 //===----------------------------------------------------------------------===// 4259 4260 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4261 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4262 if (Field.NameOrField & 0x01) 4263 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 4264 else 4265 return getField()->getIdentifier(); 4266 } 4267 4268 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4269 llvm::ArrayRef<Designator> Designators, 4270 SourceLocation EqualOrColonLoc, 4271 bool GNUSyntax, 4272 ArrayRef<Expr *> IndexExprs, Expr *Init) 4273 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4274 Init->getObjectKind()), 4275 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4276 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4277 this->Designators = new (C) Designator[NumDesignators]; 4278 4279 // Record the initializer itself. 4280 child_iterator Child = child_begin(); 4281 *Child++ = Init; 4282 4283 // Copy the designators and their subexpressions, computing 4284 // value-dependence along the way. 4285 unsigned IndexIdx = 0; 4286 for (unsigned I = 0; I != NumDesignators; ++I) { 4287 this->Designators[I] = Designators[I]; 4288 if (this->Designators[I].isArrayDesignator()) { 4289 // Copy the index expressions into permanent storage. 4290 *Child++ = IndexExprs[IndexIdx++]; 4291 } else if (this->Designators[I].isArrayRangeDesignator()) { 4292 // Copy the start/end expressions into permanent storage. 4293 *Child++ = IndexExprs[IndexIdx++]; 4294 *Child++ = IndexExprs[IndexIdx++]; 4295 } 4296 } 4297 4298 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4299 setDependence(computeDependence(this)); 4300 } 4301 4302 DesignatedInitExpr * 4303 DesignatedInitExpr::Create(const ASTContext &C, 4304 llvm::ArrayRef<Designator> Designators, 4305 ArrayRef<Expr*> IndexExprs, 4306 SourceLocation ColonOrEqualLoc, 4307 bool UsesColonSyntax, Expr *Init) { 4308 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4309 alignof(DesignatedInitExpr)); 4310 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4311 ColonOrEqualLoc, UsesColonSyntax, 4312 IndexExprs, Init); 4313 } 4314 4315 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4316 unsigned NumIndexExprs) { 4317 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4318 alignof(DesignatedInitExpr)); 4319 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4320 } 4321 4322 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4323 const Designator *Desigs, 4324 unsigned NumDesigs) { 4325 Designators = new (C) Designator[NumDesigs]; 4326 NumDesignators = NumDesigs; 4327 for (unsigned I = 0; I != NumDesigs; ++I) 4328 Designators[I] = Desigs[I]; 4329 } 4330 4331 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4332 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4333 if (size() == 1) 4334 return DIE->getDesignator(0)->getSourceRange(); 4335 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4336 DIE->getDesignator(size() - 1)->getEndLoc()); 4337 } 4338 4339 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4340 SourceLocation StartLoc; 4341 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4342 Designator &First = *DIE->getDesignator(0); 4343 if (First.isFieldDesignator()) { 4344 if (GNUSyntax) 4345 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 4346 else 4347 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 4348 } else 4349 StartLoc = 4350 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 4351 return StartLoc; 4352 } 4353 4354 SourceLocation DesignatedInitExpr::getEndLoc() const { 4355 return getInit()->getEndLoc(); 4356 } 4357 4358 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4359 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4360 return getSubExpr(D.ArrayOrRange.Index + 1); 4361 } 4362 4363 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4364 assert(D.Kind == Designator::ArrayRangeDesignator && 4365 "Requires array range designator"); 4366 return getSubExpr(D.ArrayOrRange.Index + 1); 4367 } 4368 4369 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4370 assert(D.Kind == Designator::ArrayRangeDesignator && 4371 "Requires array range designator"); 4372 return getSubExpr(D.ArrayOrRange.Index + 2); 4373 } 4374 4375 /// Replaces the designator at index @p Idx with the series 4376 /// of designators in [First, Last). 4377 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4378 const Designator *First, 4379 const Designator *Last) { 4380 unsigned NumNewDesignators = Last - First; 4381 if (NumNewDesignators == 0) { 4382 std::copy_backward(Designators + Idx + 1, 4383 Designators + NumDesignators, 4384 Designators + Idx); 4385 --NumNewDesignators; 4386 return; 4387 } else if (NumNewDesignators == 1) { 4388 Designators[Idx] = *First; 4389 return; 4390 } 4391 4392 Designator *NewDesignators 4393 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4394 std::copy(Designators, Designators + Idx, NewDesignators); 4395 std::copy(First, Last, NewDesignators + Idx); 4396 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4397 NewDesignators + Idx + NumNewDesignators); 4398 Designators = NewDesignators; 4399 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4400 } 4401 4402 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4403 SourceLocation lBraceLoc, 4404 Expr *baseExpr, 4405 SourceLocation rBraceLoc) 4406 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 4407 OK_Ordinary) { 4408 BaseAndUpdaterExprs[0] = baseExpr; 4409 4410 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4411 ILE->setType(baseExpr->getType()); 4412 BaseAndUpdaterExprs[1] = ILE; 4413 4414 // FIXME: this is wrong, set it correctly. 4415 setDependence(ExprDependence::None); 4416 } 4417 4418 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4419 return getBase()->getBeginLoc(); 4420 } 4421 4422 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4423 return getBase()->getEndLoc(); 4424 } 4425 4426 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4427 SourceLocation RParenLoc) 4428 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary), 4429 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4430 ParenListExprBits.NumExprs = Exprs.size(); 4431 4432 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4433 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4434 setDependence(computeDependence(this)); 4435 } 4436 4437 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4438 : Expr(ParenListExprClass, Empty) { 4439 ParenListExprBits.NumExprs = NumExprs; 4440 } 4441 4442 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4443 SourceLocation LParenLoc, 4444 ArrayRef<Expr *> Exprs, 4445 SourceLocation RParenLoc) { 4446 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4447 alignof(ParenListExpr)); 4448 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4449 } 4450 4451 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4452 unsigned NumExprs) { 4453 void *Mem = 4454 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4455 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4456 } 4457 4458 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4459 Opcode opc, QualType ResTy, ExprValueKind VK, 4460 ExprObjectKind OK, SourceLocation opLoc, 4461 FPOptions FPFeatures) 4462 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4463 BinaryOperatorBits.Opc = opc; 4464 assert(!isCompoundAssignmentOp() && 4465 "Use CompoundAssignOperator for compound assignments"); 4466 BinaryOperatorBits.OpLoc = opLoc; 4467 SubExprs[LHS] = lhs; 4468 SubExprs[RHS] = rhs; 4469 BinaryOperatorBits.HasFPFeatures = 4470 FPFeatures.requiresTrailingStorage(Ctx.getLangOpts()); 4471 if (BinaryOperatorBits.HasFPFeatures) 4472 *getTrailingFPFeatures() = FPFeatures; 4473 setDependence(computeDependence(this)); 4474 } 4475 4476 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4477 Opcode opc, QualType ResTy, ExprValueKind VK, 4478 ExprObjectKind OK, SourceLocation opLoc, 4479 FPOptions FPFeatures, bool dead2) 4480 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4481 BinaryOperatorBits.Opc = opc; 4482 assert(isCompoundAssignmentOp() && 4483 "Use CompoundAssignOperator for compound assignments"); 4484 BinaryOperatorBits.OpLoc = opLoc; 4485 SubExprs[LHS] = lhs; 4486 SubExprs[RHS] = rhs; 4487 BinaryOperatorBits.HasFPFeatures = 4488 FPFeatures.requiresTrailingStorage(Ctx.getLangOpts()); 4489 if (BinaryOperatorBits.HasFPFeatures) 4490 *getTrailingFPFeatures() = FPFeatures; 4491 setDependence(computeDependence(this)); 4492 } 4493 4494 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4495 bool HasFPFeatures) { 4496 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4497 void *Mem = 4498 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4499 return new (Mem) BinaryOperator(EmptyShell()); 4500 } 4501 4502 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4503 Expr *rhs, Opcode opc, QualType ResTy, 4504 ExprValueKind VK, ExprObjectKind OK, 4505 SourceLocation opLoc, 4506 FPOptions FPFeatures) { 4507 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts()); 4508 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4509 void *Mem = 4510 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4511 return new (Mem) 4512 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4513 } 4514 4515 CompoundAssignOperator * 4516 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4517 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4518 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4519 alignof(CompoundAssignOperator)); 4520 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4521 } 4522 4523 CompoundAssignOperator *CompoundAssignOperator::Create( 4524 const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, 4525 ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, 4526 FPOptions FPFeatures, QualType CompLHSType, QualType CompResultType) { 4527 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts()); 4528 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4529 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4530 alignof(CompoundAssignOperator)); 4531 return new (Mem) 4532 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4533 CompLHSType, CompResultType); 4534 } 4535 4536 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4537 bool hasFPFeatures) { 4538 void *Mem = C.Allocate(totalSizeToAlloc<FPOptions>(hasFPFeatures), 4539 alignof(UnaryOperator)); 4540 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4541 } 4542 4543 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4544 QualType type, ExprValueKind VK, ExprObjectKind OK, 4545 SourceLocation l, bool CanOverflow, 4546 FPOptions FPFeatures) 4547 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4548 UnaryOperatorBits.Opc = opc; 4549 UnaryOperatorBits.CanOverflow = CanOverflow; 4550 UnaryOperatorBits.Loc = l; 4551 UnaryOperatorBits.HasFPFeatures = 4552 FPFeatures.requiresTrailingStorage(Ctx.getLangOpts()); 4553 setDependence(computeDependence(this)); 4554 } 4555 4556 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4557 Opcode opc, QualType type, 4558 ExprValueKind VK, ExprObjectKind OK, 4559 SourceLocation l, bool CanOverflow, 4560 FPOptions FPFeatures) { 4561 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts()); 4562 unsigned Size = totalSizeToAlloc<FPOptions>(HasFPFeatures); 4563 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4564 return new (Mem) 4565 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4566 } 4567 4568 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4569 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4570 e = ewc->getSubExpr(); 4571 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4572 e = m->getSubExpr(); 4573 e = cast<CXXConstructExpr>(e)->getArg(0); 4574 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4575 e = ice->getSubExpr(); 4576 return cast<OpaqueValueExpr>(e); 4577 } 4578 4579 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4580 EmptyShell sh, 4581 unsigned numSemanticExprs) { 4582 void *buffer = 4583 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4584 alignof(PseudoObjectExpr)); 4585 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4586 } 4587 4588 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4589 : Expr(PseudoObjectExprClass, shell) { 4590 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4591 } 4592 4593 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4594 ArrayRef<Expr*> semantics, 4595 unsigned resultIndex) { 4596 assert(syntax && "no syntactic expression!"); 4597 assert(semantics.size() && "no semantic expressions!"); 4598 4599 QualType type; 4600 ExprValueKind VK; 4601 if (resultIndex == NoResult) { 4602 type = C.VoidTy; 4603 VK = VK_RValue; 4604 } else { 4605 assert(resultIndex < semantics.size()); 4606 type = semantics[resultIndex]->getType(); 4607 VK = semantics[resultIndex]->getValueKind(); 4608 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4609 } 4610 4611 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4612 alignof(PseudoObjectExpr)); 4613 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4614 resultIndex); 4615 } 4616 4617 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4618 Expr *syntax, ArrayRef<Expr *> semantics, 4619 unsigned resultIndex) 4620 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4621 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4622 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4623 4624 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4625 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4626 getSubExprsBuffer()[i] = E; 4627 4628 if (isa<OpaqueValueExpr>(E)) 4629 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4630 "opaque-value semantic expressions for pseudo-object " 4631 "operations must have sources"); 4632 } 4633 4634 setDependence(computeDependence(this)); 4635 } 4636 4637 //===----------------------------------------------------------------------===// 4638 // Child Iterators for iterating over subexpressions/substatements 4639 //===----------------------------------------------------------------------===// 4640 4641 // UnaryExprOrTypeTraitExpr 4642 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4643 const_child_range CCR = 4644 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4645 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4646 } 4647 4648 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4649 // If this is of a type and the type is a VLA type (and not a typedef), the 4650 // size expression of the VLA needs to be treated as an executable expression. 4651 // Why isn't this weirdness documented better in StmtIterator? 4652 if (isArgumentType()) { 4653 if (const VariableArrayType *T = 4654 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4655 return const_child_range(const_child_iterator(T), const_child_iterator()); 4656 return const_child_range(const_child_iterator(), const_child_iterator()); 4657 } 4658 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4659 } 4660 4661 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4662 AtomicOp op, SourceLocation RP) 4663 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary), 4664 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4665 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4666 for (unsigned i = 0; i != args.size(); i++) 4667 SubExprs[i] = args[i]; 4668 setDependence(computeDependence(this)); 4669 } 4670 4671 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4672 switch (Op) { 4673 case AO__c11_atomic_init: 4674 case AO__opencl_atomic_init: 4675 case AO__c11_atomic_load: 4676 case AO__atomic_load_n: 4677 return 2; 4678 4679 case AO__opencl_atomic_load: 4680 case AO__c11_atomic_store: 4681 case AO__c11_atomic_exchange: 4682 case AO__atomic_load: 4683 case AO__atomic_store: 4684 case AO__atomic_store_n: 4685 case AO__atomic_exchange_n: 4686 case AO__c11_atomic_fetch_add: 4687 case AO__c11_atomic_fetch_sub: 4688 case AO__c11_atomic_fetch_and: 4689 case AO__c11_atomic_fetch_or: 4690 case AO__c11_atomic_fetch_xor: 4691 case AO__c11_atomic_fetch_max: 4692 case AO__c11_atomic_fetch_min: 4693 case AO__atomic_fetch_add: 4694 case AO__atomic_fetch_sub: 4695 case AO__atomic_fetch_and: 4696 case AO__atomic_fetch_or: 4697 case AO__atomic_fetch_xor: 4698 case AO__atomic_fetch_nand: 4699 case AO__atomic_add_fetch: 4700 case AO__atomic_sub_fetch: 4701 case AO__atomic_and_fetch: 4702 case AO__atomic_or_fetch: 4703 case AO__atomic_xor_fetch: 4704 case AO__atomic_nand_fetch: 4705 case AO__atomic_min_fetch: 4706 case AO__atomic_max_fetch: 4707 case AO__atomic_fetch_min: 4708 case AO__atomic_fetch_max: 4709 return 3; 4710 4711 case AO__opencl_atomic_store: 4712 case AO__opencl_atomic_exchange: 4713 case AO__opencl_atomic_fetch_add: 4714 case AO__opencl_atomic_fetch_sub: 4715 case AO__opencl_atomic_fetch_and: 4716 case AO__opencl_atomic_fetch_or: 4717 case AO__opencl_atomic_fetch_xor: 4718 case AO__opencl_atomic_fetch_min: 4719 case AO__opencl_atomic_fetch_max: 4720 case AO__atomic_exchange: 4721 return 4; 4722 4723 case AO__c11_atomic_compare_exchange_strong: 4724 case AO__c11_atomic_compare_exchange_weak: 4725 return 5; 4726 4727 case AO__opencl_atomic_compare_exchange_strong: 4728 case AO__opencl_atomic_compare_exchange_weak: 4729 case AO__atomic_compare_exchange: 4730 case AO__atomic_compare_exchange_n: 4731 return 6; 4732 } 4733 llvm_unreachable("unknown atomic op"); 4734 } 4735 4736 QualType AtomicExpr::getValueType() const { 4737 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4738 if (auto AT = T->getAs<AtomicType>()) 4739 return AT->getValueType(); 4740 return T; 4741 } 4742 4743 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4744 unsigned ArraySectionCount = 0; 4745 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4746 Base = OASE->getBase(); 4747 ++ArraySectionCount; 4748 } 4749 while (auto *ASE = 4750 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4751 Base = ASE->getBase(); 4752 ++ArraySectionCount; 4753 } 4754 Base = Base->IgnoreParenImpCasts(); 4755 auto OriginalTy = Base->getType(); 4756 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4757 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4758 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4759 4760 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4761 if (OriginalTy->isAnyPointerType()) 4762 OriginalTy = OriginalTy->getPointeeType(); 4763 else { 4764 assert (OriginalTy->isArrayType()); 4765 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4766 } 4767 } 4768 return OriginalTy; 4769 } 4770 4771 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4772 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4773 : Expr(RecoveryExprClass, T, VK_LValue, OK_Ordinary), BeginLoc(BeginLoc), 4774 EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4775 assert(!T.isNull()); 4776 assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); 4777 4778 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4779 setDependence(computeDependence(this)); 4780 } 4781 4782 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4783 SourceLocation BeginLoc, 4784 SourceLocation EndLoc, 4785 ArrayRef<Expr *> SubExprs) { 4786 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4787 alignof(RecoveryExpr)); 4788 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4789 } 4790 4791 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4792 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4793 alignof(RecoveryExpr)); 4794 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4795 } 4796 4797 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4798 assert( 4799 NumDims == Dims.size() && 4800 "Preallocated number of dimensions is different from the provided one."); 4801 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4802 } 4803 4804 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4805 assert( 4806 NumDims == BR.size() && 4807 "Preallocated number of dimensions is different from the provided one."); 4808 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4809 } 4810 4811 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4812 SourceLocation L, SourceLocation R, 4813 ArrayRef<Expr *> Dims) 4814 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4815 RPLoc(R), NumDims(Dims.size()) { 4816 setBase(Op); 4817 setDimensions(Dims); 4818 setDependence(computeDependence(this)); 4819 } 4820 4821 OMPArrayShapingExpr * 4822 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4823 SourceLocation L, SourceLocation R, 4824 ArrayRef<Expr *> Dims, 4825 ArrayRef<SourceRange> BracketRanges) { 4826 assert(Dims.size() == BracketRanges.size() && 4827 "Different number of dimensions and brackets ranges."); 4828 void *Mem = Context.Allocate( 4829 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4830 alignof(OMPArrayShapingExpr)); 4831 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4832 E->setBracketsRanges(BracketRanges); 4833 return E; 4834 } 4835 4836 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4837 unsigned NumDims) { 4838 void *Mem = Context.Allocate( 4839 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4840 alignof(OMPArrayShapingExpr)); 4841 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4842 } 4843 4844 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4845 assert(I < NumIterators && 4846 "Idx is greater or equal the number of iterators definitions."); 4847 getTrailingObjects<Decl *>()[I] = D; 4848 } 4849 4850 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4851 assert(I < NumIterators && 4852 "Idx is greater or equal the number of iterators definitions."); 4853 getTrailingObjects< 4854 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4855 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 4856 } 4857 4858 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 4859 SourceLocation ColonLoc, Expr *End, 4860 SourceLocation SecondColonLoc, 4861 Expr *Step) { 4862 assert(I < NumIterators && 4863 "Idx is greater or equal the number of iterators definitions."); 4864 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4865 static_cast<int>(RangeExprOffset::Begin)] = 4866 Begin; 4867 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4868 static_cast<int>(RangeExprOffset::End)] = End; 4869 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4870 static_cast<int>(RangeExprOffset::Step)] = Step; 4871 getTrailingObjects< 4872 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4873 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 4874 ColonLoc; 4875 getTrailingObjects< 4876 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4877 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 4878 SecondColonLoc; 4879 } 4880 4881 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 4882 return getTrailingObjects<Decl *>()[I]; 4883 } 4884 4885 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 4886 IteratorRange Res; 4887 Res.Begin = 4888 getTrailingObjects<Expr *>()[I * static_cast<int>( 4889 RangeExprOffset::Total) + 4890 static_cast<int>(RangeExprOffset::Begin)]; 4891 Res.End = 4892 getTrailingObjects<Expr *>()[I * static_cast<int>( 4893 RangeExprOffset::Total) + 4894 static_cast<int>(RangeExprOffset::End)]; 4895 Res.Step = 4896 getTrailingObjects<Expr *>()[I * static_cast<int>( 4897 RangeExprOffset::Total) + 4898 static_cast<int>(RangeExprOffset::Step)]; 4899 return Res; 4900 } 4901 4902 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 4903 return getTrailingObjects< 4904 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4905 static_cast<int>(RangeLocOffset::AssignLoc)]; 4906 } 4907 4908 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 4909 return getTrailingObjects< 4910 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4911 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 4912 } 4913 4914 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 4915 return getTrailingObjects< 4916 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4917 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 4918 } 4919 4920 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 4921 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 4922 } 4923 4924 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 4925 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4926 } 4927 4928 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 4929 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4930 } 4931 4932 OMPIteratorExpr::OMPIteratorExpr( 4933 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 4934 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4935 ArrayRef<OMPIteratorHelperData> Helpers) 4936 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 4937 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 4938 NumIterators(Data.size()) { 4939 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 4940 const IteratorDefinition &D = Data[I]; 4941 setIteratorDeclaration(I, D.IteratorDecl); 4942 setAssignmentLoc(I, D.AssignmentLoc); 4943 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 4944 D.SecondColonLoc, D.Range.Step); 4945 setHelper(I, Helpers[I]); 4946 } 4947 setDependence(computeDependence(this)); 4948 } 4949 4950 OMPIteratorExpr * 4951 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 4952 SourceLocation IteratorKwLoc, SourceLocation L, 4953 SourceLocation R, 4954 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4955 ArrayRef<OMPIteratorHelperData> Helpers) { 4956 assert(Data.size() == Helpers.size() && 4957 "Data and helpers must have the same size."); 4958 void *Mem = Context.Allocate( 4959 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4960 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 4961 Data.size() * static_cast<int>(RangeLocOffset::Total), 4962 Helpers.size()), 4963 alignof(OMPIteratorExpr)); 4964 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 4965 } 4966 4967 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 4968 unsigned NumIterators) { 4969 void *Mem = Context.Allocate( 4970 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4971 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 4972 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 4973 alignof(OMPIteratorExpr)); 4974 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 4975 } 4976