xref: /llvm-project-15.0.7/clang/lib/AST/Expr.cpp (revision eaebcbc6)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/Mangle.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/CharInfo.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Lexer.h"
32 #include "clang/Lex/LiteralSupport.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38 
39 const Expr *Expr::getBestDynamicClassTypeExpr() const {
40   const Expr *E = this;
41   while (true) {
42     E = E->ignoreParenBaseCasts();
43 
44     // Follow the RHS of a comma operator.
45     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
46       if (BO->getOpcode() == BO_Comma) {
47         E = BO->getRHS();
48         continue;
49       }
50     }
51 
52     // Step into initializer for materialized temporaries.
53     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
54       E = MTE->getSubExpr();
55       continue;
56     }
57 
58     break;
59   }
60 
61   return E;
62 }
63 
64 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
65   const Expr *E = getBestDynamicClassTypeExpr();
66   QualType DerivedType = E->getType();
67   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
68     DerivedType = PTy->getPointeeType();
69 
70   if (DerivedType->isDependentType())
71     return nullptr;
72 
73   const RecordType *Ty = DerivedType->castAs<RecordType>();
74   Decl *D = Ty->getDecl();
75   return cast<CXXRecordDecl>(D);
76 }
77 
78 const Expr *Expr::skipRValueSubobjectAdjustments(
79     SmallVectorImpl<const Expr *> &CommaLHSs,
80     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
81   const Expr *E = this;
82   while (true) {
83     E = E->IgnoreParens();
84 
85     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
86       if ((CE->getCastKind() == CK_DerivedToBase ||
87            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
88           E->getType()->isRecordType()) {
89         E = CE->getSubExpr();
90         auto *Derived =
91             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
92         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
93         continue;
94       }
95 
96       if (CE->getCastKind() == CK_NoOp) {
97         E = CE->getSubExpr();
98         continue;
99       }
100     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
101       if (!ME->isArrow()) {
102         assert(ME->getBase()->getType()->isRecordType());
103         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
104           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
105             E = ME->getBase();
106             Adjustments.push_back(SubobjectAdjustment(Field));
107             continue;
108           }
109         }
110       }
111     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
112       if (BO->getOpcode() == BO_PtrMemD) {
113         assert(BO->getRHS()->isRValue());
114         E = BO->getLHS();
115         const MemberPointerType *MPT =
116           BO->getRHS()->getType()->getAs<MemberPointerType>();
117         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
118         continue;
119       } else if (BO->getOpcode() == BO_Comma) {
120         CommaLHSs.push_back(BO->getLHS());
121         E = BO->getRHS();
122         continue;
123       }
124     }
125 
126     // Nothing changed.
127     break;
128   }
129   return E;
130 }
131 
132 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
133   const Expr *E = IgnoreParens();
134 
135   // If this value has _Bool type, it is obvious 0/1.
136   if (E->getType()->isBooleanType()) return true;
137   // If this is a non-scalar-integer type, we don't care enough to try.
138   if (!E->getType()->isIntegralOrEnumerationType()) return false;
139 
140   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
141     switch (UO->getOpcode()) {
142     case UO_Plus:
143       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
144     case UO_LNot:
145       return true;
146     default:
147       return false;
148     }
149   }
150 
151   // Only look through implicit casts.  If the user writes
152   // '(int) (a && b)' treat it as an arbitrary int.
153   // FIXME: Should we look through any cast expression in !Semantic mode?
154   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
155     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
156 
157   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
158     switch (BO->getOpcode()) {
159     default: return false;
160     case BO_LT:   // Relational operators.
161     case BO_GT:
162     case BO_LE:
163     case BO_GE:
164     case BO_EQ:   // Equality operators.
165     case BO_NE:
166     case BO_LAnd: // AND operator.
167     case BO_LOr:  // Logical OR operator.
168       return true;
169 
170     case BO_And:  // Bitwise AND operator.
171     case BO_Xor:  // Bitwise XOR operator.
172     case BO_Or:   // Bitwise OR operator.
173       // Handle things like (x==2)|(y==12).
174       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
175              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
176 
177     case BO_Comma:
178     case BO_Assign:
179       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180     }
181   }
182 
183   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
184     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
185            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
186 
187   if (isa<ObjCBoolLiteralExpr>(E))
188     return true;
189 
190   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
191     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
192 
193   if (const FieldDecl *FD = E->getSourceBitField())
194     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
195         !FD->getBitWidth()->isValueDependent() &&
196         FD->getBitWidthValue(FD->getASTContext()) == 1)
197       return true;
198 
199   return false;
200 }
201 
202 // Amusing macro metaprogramming hack: check whether a class provides
203 // a more specific implementation of getExprLoc().
204 //
205 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
206 namespace {
207   /// This implementation is used when a class provides a custom
208   /// implementation of getExprLoc.
209   template <class E, class T>
210   SourceLocation getExprLocImpl(const Expr *expr,
211                                 SourceLocation (T::*v)() const) {
212     return static_cast<const E*>(expr)->getExprLoc();
213   }
214 
215   /// This implementation is used when a class doesn't provide
216   /// a custom implementation of getExprLoc.  Overload resolution
217   /// should pick it over the implementation above because it's
218   /// more specialized according to function template partial ordering.
219   template <class E>
220   SourceLocation getExprLocImpl(const Expr *expr,
221                                 SourceLocation (Expr::*v)() const) {
222     return static_cast<const E *>(expr)->getBeginLoc();
223   }
224 }
225 
226 SourceLocation Expr::getExprLoc() const {
227   switch (getStmtClass()) {
228   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
229 #define ABSTRACT_STMT(type)
230 #define STMT(type, base) \
231   case Stmt::type##Class: break;
232 #define EXPR(type, base) \
233   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
234 #include "clang/AST/StmtNodes.inc"
235   }
236   llvm_unreachable("unknown expression kind");
237 }
238 
239 //===----------------------------------------------------------------------===//
240 // Primary Expressions.
241 //===----------------------------------------------------------------------===//
242 
243 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
244   assert((Kind == ConstantExpr::RSK_APValue ||
245           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
246          "Invalid StorageKind Value");
247 }
248 
249 ConstantExpr::ResultStorageKind
250 ConstantExpr::getStorageKind(const APValue &Value) {
251   switch (Value.getKind()) {
252   case APValue::None:
253   case APValue::Indeterminate:
254     return ConstantExpr::RSK_None;
255   case APValue::Int:
256     if (!Value.getInt().needsCleanup())
257       return ConstantExpr::RSK_Int64;
258     LLVM_FALLTHROUGH;
259   default:
260     return ConstantExpr::RSK_APValue;
261   }
262 }
263 
264 ConstantExpr::ResultStorageKind
265 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
266   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
267     return ConstantExpr::RSK_Int64;
268   return ConstantExpr::RSK_APValue;
269 }
270 
271 void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
272   ConstantExprBits.ResultKind = StorageKind;
273   ConstantExprBits.APValueKind = APValue::None;
274   ConstantExprBits.HasCleanup = false;
275   if (StorageKind == ConstantExpr::RSK_APValue)
276     ::new (getTrailingObjects<APValue>()) APValue();
277 }
278 
279 ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
280     : FullExpr(ConstantExprClass, subexpr) {
281   DefaultInit(StorageKind);
282 }
283 
284 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
285                                    ResultStorageKind StorageKind,
286                                    bool IsImmediateInvocation) {
287   assert(!isa<ConstantExpr>(E));
288   AssertResultStorageKind(StorageKind);
289   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
290       StorageKind == ConstantExpr::RSK_APValue,
291       StorageKind == ConstantExpr::RSK_Int64);
292   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
293   ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
294   Self->ConstantExprBits.IsImmediateInvocation =
295       IsImmediateInvocation;
296   return Self;
297 }
298 
299 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
300                                    const APValue &Result) {
301   ResultStorageKind StorageKind = getStorageKind(Result);
302   ConstantExpr *Self = Create(Context, E, StorageKind);
303   Self->SetResult(Result, Context);
304   return Self;
305 }
306 
307 ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
308     : FullExpr(ConstantExprClass, Empty) {
309   DefaultInit(StorageKind);
310 }
311 
312 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
313                                         ResultStorageKind StorageKind,
314                                         EmptyShell Empty) {
315   AssertResultStorageKind(StorageKind);
316   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
317       StorageKind == ConstantExpr::RSK_APValue,
318       StorageKind == ConstantExpr::RSK_Int64);
319   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
320   ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
321   return Self;
322 }
323 
324 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
325   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
326          "Invalid storage for this value kind");
327   ConstantExprBits.APValueKind = Value.getKind();
328   switch (ConstantExprBits.ResultKind) {
329   case RSK_None:
330     return;
331   case RSK_Int64:
332     Int64Result() = *Value.getInt().getRawData();
333     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
334     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
335     return;
336   case RSK_APValue:
337     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
338       ConstantExprBits.HasCleanup = true;
339       Context.addDestruction(&APValueResult());
340     }
341     APValueResult() = std::move(Value);
342     return;
343   }
344   llvm_unreachable("Invalid ResultKind Bits");
345 }
346 
347 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
348   switch (ConstantExprBits.ResultKind) {
349   case ConstantExpr::RSK_APValue:
350     return APValueResult().getInt();
351   case ConstantExpr::RSK_Int64:
352     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
353                         ConstantExprBits.IsUnsigned);
354   default:
355     llvm_unreachable("invalid Accessor");
356   }
357 }
358 
359 APValue ConstantExpr::getAPValueResult() const {
360   assert(hasAPValueResult());
361 
362   switch (ConstantExprBits.ResultKind) {
363   case ConstantExpr::RSK_APValue:
364     return APValueResult();
365   case ConstantExpr::RSK_Int64:
366     return APValue(
367         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
368                      ConstantExprBits.IsUnsigned));
369   case ConstantExpr::RSK_None:
370     return APValue();
371   }
372   llvm_unreachable("invalid ResultKind");
373 }
374 
375 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
376                          bool RefersToEnclosingVariableOrCapture, QualType T,
377                          ExprValueKind VK, SourceLocation L,
378                          const DeclarationNameLoc &LocInfo,
379                          NonOdrUseReason NOUR)
380     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
381   DeclRefExprBits.HasQualifier = false;
382   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
383   DeclRefExprBits.HasFoundDecl = false;
384   DeclRefExprBits.HadMultipleCandidates = false;
385   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
386       RefersToEnclosingVariableOrCapture;
387   DeclRefExprBits.NonOdrUseReason = NOUR;
388   DeclRefExprBits.Loc = L;
389   setDependence(computeDependence(this, Ctx));
390 }
391 
392 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
393                          NestedNameSpecifierLoc QualifierLoc,
394                          SourceLocation TemplateKWLoc, ValueDecl *D,
395                          bool RefersToEnclosingVariableOrCapture,
396                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
397                          const TemplateArgumentListInfo *TemplateArgs,
398                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
399     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
400       DNLoc(NameInfo.getInfo()) {
401   DeclRefExprBits.Loc = NameInfo.getLoc();
402   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
403   if (QualifierLoc)
404     new (getTrailingObjects<NestedNameSpecifierLoc>())
405         NestedNameSpecifierLoc(QualifierLoc);
406   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
407   if (FoundD)
408     *getTrailingObjects<NamedDecl *>() = FoundD;
409   DeclRefExprBits.HasTemplateKWAndArgsInfo
410     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
411   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
412       RefersToEnclosingVariableOrCapture;
413   DeclRefExprBits.NonOdrUseReason = NOUR;
414   if (TemplateArgs) {
415     auto Deps = TemplateArgumentDependence::None;
416     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
417         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
418         Deps);
419     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
420            "built a DeclRefExpr with dependent template args");
421   } else if (TemplateKWLoc.isValid()) {
422     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
423         TemplateKWLoc);
424   }
425   DeclRefExprBits.HadMultipleCandidates = 0;
426   setDependence(computeDependence(this, Ctx));
427 }
428 
429 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
430                                  NestedNameSpecifierLoc QualifierLoc,
431                                  SourceLocation TemplateKWLoc, ValueDecl *D,
432                                  bool RefersToEnclosingVariableOrCapture,
433                                  SourceLocation NameLoc, QualType T,
434                                  ExprValueKind VK, NamedDecl *FoundD,
435                                  const TemplateArgumentListInfo *TemplateArgs,
436                                  NonOdrUseReason NOUR) {
437   return Create(Context, QualifierLoc, TemplateKWLoc, D,
438                 RefersToEnclosingVariableOrCapture,
439                 DeclarationNameInfo(D->getDeclName(), NameLoc),
440                 T, VK, FoundD, TemplateArgs, NOUR);
441 }
442 
443 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
444                                  NestedNameSpecifierLoc QualifierLoc,
445                                  SourceLocation TemplateKWLoc, ValueDecl *D,
446                                  bool RefersToEnclosingVariableOrCapture,
447                                  const DeclarationNameInfo &NameInfo,
448                                  QualType T, ExprValueKind VK,
449                                  NamedDecl *FoundD,
450                                  const TemplateArgumentListInfo *TemplateArgs,
451                                  NonOdrUseReason NOUR) {
452   // Filter out cases where the found Decl is the same as the value refenenced.
453   if (D == FoundD)
454     FoundD = nullptr;
455 
456   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
457   std::size_t Size =
458       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
459                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
460           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
461           HasTemplateKWAndArgsInfo ? 1 : 0,
462           TemplateArgs ? TemplateArgs->size() : 0);
463 
464   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
465   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
466                                RefersToEnclosingVariableOrCapture, NameInfo,
467                                FoundD, TemplateArgs, T, VK, NOUR);
468 }
469 
470 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
471                                       bool HasQualifier,
472                                       bool HasFoundDecl,
473                                       bool HasTemplateKWAndArgsInfo,
474                                       unsigned NumTemplateArgs) {
475   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
476   std::size_t Size =
477       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
478                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
479           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
480           NumTemplateArgs);
481   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
482   return new (Mem) DeclRefExpr(EmptyShell());
483 }
484 
485 SourceLocation DeclRefExpr::getBeginLoc() const {
486   if (hasQualifier())
487     return getQualifierLoc().getBeginLoc();
488   return getNameInfo().getBeginLoc();
489 }
490 SourceLocation DeclRefExpr::getEndLoc() const {
491   if (hasExplicitTemplateArgs())
492     return getRAngleLoc();
493   return getNameInfo().getEndLoc();
494 }
495 
496 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
497                                StringLiteral *SL)
498     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
499   PredefinedExprBits.Kind = IK;
500   assert((getIdentKind() == IK) &&
501          "IdentKind do not fit in PredefinedExprBitfields!");
502   bool HasFunctionName = SL != nullptr;
503   PredefinedExprBits.HasFunctionName = HasFunctionName;
504   PredefinedExprBits.Loc = L;
505   if (HasFunctionName)
506     setFunctionName(SL);
507   setDependence(computeDependence(this));
508 }
509 
510 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK,
511                                TypeSourceInfo *Info)
512     : Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) {
513   PredefinedExprBits.Kind = IK;
514   assert((getIdentKind() == IK) &&
515          "IdentKind do not fit in PredefinedExprBitFields!");
516   assert(IK == UniqueStableNameType &&
517          "Constructor only valid with UniqueStableNameType");
518   PredefinedExprBits.HasFunctionName = false;
519   PredefinedExprBits.Loc = L;
520   setTypeSourceInfo(Info);
521   setDependence(computeDependence(this));
522 }
523 
524 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK,
525                                Expr *E)
526     : Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) {
527   PredefinedExprBits.Kind = IK;
528   assert((getIdentKind() == IK) &&
529          "IdentKind do not fit in PredefinedExprBitFields!");
530   assert(IK == UniqueStableNameExpr &&
531          "Constructor only valid with UniqueStableNameExpr");
532   PredefinedExprBits.HasFunctionName = false;
533   PredefinedExprBits.Loc = L;
534   setExpr(E);
535   setDependence(computeDependence(this));
536 }
537 
538 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
539     : Expr(PredefinedExprClass, Empty) {
540   PredefinedExprBits.HasFunctionName = HasFunctionName;
541 }
542 
543 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
544                                        QualType FNTy, IdentKind IK,
545                                        StringLiteral *SL) {
546   bool HasFunctionName = SL != nullptr;
547   void *Mem = Ctx.Allocate(
548       totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(HasFunctionName, 0, 0),
549       alignof(PredefinedExpr));
550   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
551 }
552 
553 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
554                                        QualType FNTy, IdentKind IK,
555                                        StringLiteral *SL,
556                                        TypeSourceInfo *Info) {
557   assert(IK == UniqueStableNameType && "Only valid with UniqueStableNameType");
558   bool HasFunctionName = SL != nullptr;
559   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(
560                                HasFunctionName, 0, !HasFunctionName),
561                            alignof(PredefinedExpr));
562   if (HasFunctionName)
563     return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
564   return new (Mem) PredefinedExpr(L, FNTy, IK, Info);
565 }
566 
567 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
568                                        QualType FNTy, IdentKind IK,
569                                        StringLiteral *SL, Expr *E) {
570   assert(IK == UniqueStableNameExpr && "Only valid with UniqueStableNameExpr");
571   bool HasFunctionName = SL != nullptr;
572   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(
573                                HasFunctionName, !HasFunctionName, 0),
574                            alignof(PredefinedExpr));
575   if (HasFunctionName)
576     return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
577   return new (Mem) PredefinedExpr(L, FNTy, IK, E);
578 }
579 
580 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
581                                             bool HasFunctionName) {
582   void *Mem = Ctx.Allocate(
583       totalSizeToAlloc<Stmt *, Expr *, TypeSourceInfo *>(HasFunctionName, 0, 0),
584       alignof(PredefinedExpr));
585   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
586 }
587 
588 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
589   switch (IK) {
590   case Func:
591     return "__func__";
592   case Function:
593     return "__FUNCTION__";
594   case FuncDName:
595     return "__FUNCDNAME__";
596   case LFunction:
597     return "L__FUNCTION__";
598   case PrettyFunction:
599     return "__PRETTY_FUNCTION__";
600   case FuncSig:
601     return "__FUNCSIG__";
602   case LFuncSig:
603     return "L__FUNCSIG__";
604   case UniqueStableNameType:
605   case UniqueStableNameExpr:
606     return "__builtin_unique_stable_name";
607   case PrettyFunctionNoVirtual:
608     break;
609   }
610   llvm_unreachable("Unknown ident kind for PredefinedExpr");
611 }
612 
613 std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentKind IK,
614                                         QualType Ty) {
615   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
616       Context, Context.getDiagnostics(), /*IsUniqueNameMangler*/ true)};
617 
618   Ty = Ty.getCanonicalType();
619 
620   SmallString<256> Buffer;
621   llvm::raw_svector_ostream Out(Buffer);
622   Ctx->mangleTypeName(Ty, Out);
623   return std::string(Buffer.str());
624 }
625 
626 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
627 // expr" policy instead.
628 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
629   ASTContext &Context = CurrentDecl->getASTContext();
630 
631   if (IK == PredefinedExpr::FuncDName) {
632     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
633       std::unique_ptr<MangleContext> MC;
634       MC.reset(Context.createMangleContext());
635 
636       if (MC->shouldMangleDeclName(ND)) {
637         SmallString<256> Buffer;
638         llvm::raw_svector_ostream Out(Buffer);
639         GlobalDecl GD;
640         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
641           GD = GlobalDecl(CD, Ctor_Base);
642         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
643           GD = GlobalDecl(DD, Dtor_Base);
644         else if (ND->hasAttr<CUDAGlobalAttr>())
645           GD = GlobalDecl(cast<FunctionDecl>(ND));
646         else
647           GD = GlobalDecl(ND);
648         MC->mangleName(GD, Out);
649 
650         if (!Buffer.empty() && Buffer.front() == '\01')
651           return std::string(Buffer.substr(1));
652         return std::string(Buffer.str());
653       } else
654         return std::string(ND->getIdentifier()->getName());
655     }
656     return "";
657   }
658   if (isa<BlockDecl>(CurrentDecl)) {
659     // For blocks we only emit something if it is enclosed in a function
660     // For top-level block we'd like to include the name of variable, but we
661     // don't have it at this point.
662     auto DC = CurrentDecl->getDeclContext();
663     if (DC->isFileContext())
664       return "";
665 
666     SmallString<256> Buffer;
667     llvm::raw_svector_ostream Out(Buffer);
668     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
669       // For nested blocks, propagate up to the parent.
670       Out << ComputeName(IK, DCBlock);
671     else if (auto *DCDecl = dyn_cast<Decl>(DC))
672       Out << ComputeName(IK, DCDecl) << "_block_invoke";
673     return std::string(Out.str());
674   }
675   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
676     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
677         IK != FuncSig && IK != LFuncSig)
678       return FD->getNameAsString();
679 
680     SmallString<256> Name;
681     llvm::raw_svector_ostream Out(Name);
682 
683     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
684       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
685         Out << "virtual ";
686       if (MD->isStatic())
687         Out << "static ";
688     }
689 
690     PrintingPolicy Policy(Context.getLangOpts());
691     std::string Proto;
692     llvm::raw_string_ostream POut(Proto);
693 
694     const FunctionDecl *Decl = FD;
695     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
696       Decl = Pattern;
697     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
698     const FunctionProtoType *FT = nullptr;
699     if (FD->hasWrittenPrototype())
700       FT = dyn_cast<FunctionProtoType>(AFT);
701 
702     if (IK == FuncSig || IK == LFuncSig) {
703       switch (AFT->getCallConv()) {
704       case CC_C: POut << "__cdecl "; break;
705       case CC_X86StdCall: POut << "__stdcall "; break;
706       case CC_X86FastCall: POut << "__fastcall "; break;
707       case CC_X86ThisCall: POut << "__thiscall "; break;
708       case CC_X86VectorCall: POut << "__vectorcall "; break;
709       case CC_X86RegCall: POut << "__regcall "; break;
710       // Only bother printing the conventions that MSVC knows about.
711       default: break;
712       }
713     }
714 
715     FD->printQualifiedName(POut, Policy);
716 
717     POut << "(";
718     if (FT) {
719       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
720         if (i) POut << ", ";
721         POut << Decl->getParamDecl(i)->getType().stream(Policy);
722       }
723 
724       if (FT->isVariadic()) {
725         if (FD->getNumParams()) POut << ", ";
726         POut << "...";
727       } else if ((IK == FuncSig || IK == LFuncSig ||
728                   !Context.getLangOpts().CPlusPlus) &&
729                  !Decl->getNumParams()) {
730         POut << "void";
731       }
732     }
733     POut << ")";
734 
735     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
736       assert(FT && "We must have a written prototype in this case.");
737       if (FT->isConst())
738         POut << " const";
739       if (FT->isVolatile())
740         POut << " volatile";
741       RefQualifierKind Ref = MD->getRefQualifier();
742       if (Ref == RQ_LValue)
743         POut << " &";
744       else if (Ref == RQ_RValue)
745         POut << " &&";
746     }
747 
748     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
749     SpecsTy Specs;
750     const DeclContext *Ctx = FD->getDeclContext();
751     while (Ctx && isa<NamedDecl>(Ctx)) {
752       const ClassTemplateSpecializationDecl *Spec
753                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
754       if (Spec && !Spec->isExplicitSpecialization())
755         Specs.push_back(Spec);
756       Ctx = Ctx->getParent();
757     }
758 
759     std::string TemplateParams;
760     llvm::raw_string_ostream TOut(TemplateParams);
761     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
762          I != E; ++I) {
763       const TemplateParameterList *Params
764                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
765       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
766       assert(Params->size() == Args.size());
767       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
768         StringRef Param = Params->getParam(i)->getName();
769         if (Param.empty()) continue;
770         TOut << Param << " = ";
771         Args.get(i).print(Policy, TOut);
772         TOut << ", ";
773       }
774     }
775 
776     FunctionTemplateSpecializationInfo *FSI
777                                           = FD->getTemplateSpecializationInfo();
778     if (FSI && !FSI->isExplicitSpecialization()) {
779       const TemplateParameterList* Params
780                                   = FSI->getTemplate()->getTemplateParameters();
781       const TemplateArgumentList* Args = FSI->TemplateArguments;
782       assert(Params->size() == Args->size());
783       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
784         StringRef Param = Params->getParam(i)->getName();
785         if (Param.empty()) continue;
786         TOut << Param << " = ";
787         Args->get(i).print(Policy, TOut);
788         TOut << ", ";
789       }
790     }
791 
792     TOut.flush();
793     if (!TemplateParams.empty()) {
794       // remove the trailing comma and space
795       TemplateParams.resize(TemplateParams.size() - 2);
796       POut << " [" << TemplateParams << "]";
797     }
798 
799     POut.flush();
800 
801     // Print "auto" for all deduced return types. This includes C++1y return
802     // type deduction and lambdas. For trailing return types resolve the
803     // decltype expression. Otherwise print the real type when this is
804     // not a constructor or destructor.
805     if (isa<CXXMethodDecl>(FD) &&
806          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
807       Proto = "auto " + Proto;
808     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
809       FT->getReturnType()
810           ->getAs<DecltypeType>()
811           ->getUnderlyingType()
812           .getAsStringInternal(Proto, Policy);
813     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
814       AFT->getReturnType().getAsStringInternal(Proto, Policy);
815 
816     Out << Proto;
817 
818     return std::string(Name);
819   }
820   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
821     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
822       // Skip to its enclosing function or method, but not its enclosing
823       // CapturedDecl.
824       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
825         const Decl *D = Decl::castFromDeclContext(DC);
826         return ComputeName(IK, D);
827       }
828     llvm_unreachable("CapturedDecl not inside a function or method");
829   }
830   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
831     SmallString<256> Name;
832     llvm::raw_svector_ostream Out(Name);
833     Out << (MD->isInstanceMethod() ? '-' : '+');
834     Out << '[';
835 
836     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
837     // a null check to avoid a crash.
838     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
839       Out << *ID;
840 
841     if (const ObjCCategoryImplDecl *CID =
842         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
843       Out << '(' << *CID << ')';
844 
845     Out <<  ' ';
846     MD->getSelector().print(Out);
847     Out <<  ']';
848 
849     return std::string(Name);
850   }
851   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
852     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
853     return "top level";
854   }
855   return "";
856 }
857 
858 void APNumericStorage::setIntValue(const ASTContext &C,
859                                    const llvm::APInt &Val) {
860   if (hasAllocation())
861     C.Deallocate(pVal);
862 
863   BitWidth = Val.getBitWidth();
864   unsigned NumWords = Val.getNumWords();
865   const uint64_t* Words = Val.getRawData();
866   if (NumWords > 1) {
867     pVal = new (C) uint64_t[NumWords];
868     std::copy(Words, Words + NumWords, pVal);
869   } else if (NumWords == 1)
870     VAL = Words[0];
871   else
872     VAL = 0;
873 }
874 
875 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
876                                QualType type, SourceLocation l)
877     : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) {
878   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
879   assert(V.getBitWidth() == C.getIntWidth(type) &&
880          "Integer type is not the correct size for constant.");
881   setValue(C, V);
882   setDependence(ExprDependence::None);
883 }
884 
885 IntegerLiteral *
886 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
887                        QualType type, SourceLocation l) {
888   return new (C) IntegerLiteral(C, V, type, l);
889 }
890 
891 IntegerLiteral *
892 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
893   return new (C) IntegerLiteral(Empty);
894 }
895 
896 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
897                                      QualType type, SourceLocation l,
898                                      unsigned Scale)
899     : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l),
900       Scale(Scale) {
901   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
902   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
903          "Fixed point type is not the correct size for constant.");
904   setValue(C, V);
905   setDependence(ExprDependence::None);
906 }
907 
908 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
909                                                        const llvm::APInt &V,
910                                                        QualType type,
911                                                        SourceLocation l,
912                                                        unsigned Scale) {
913   return new (C) FixedPointLiteral(C, V, type, l, Scale);
914 }
915 
916 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
917                                              EmptyShell Empty) {
918   return new (C) FixedPointLiteral(Empty);
919 }
920 
921 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
922   // Currently the longest decimal number that can be printed is the max for an
923   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
924   // which is 43 characters.
925   SmallString<64> S;
926   FixedPointValueToString(
927       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
928   return std::string(S.str());
929 }
930 
931 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
932                                  bool isexact, QualType Type, SourceLocation L)
933     : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) {
934   setSemantics(V.getSemantics());
935   FloatingLiteralBits.IsExact = isexact;
936   setValue(C, V);
937   setDependence(ExprDependence::None);
938 }
939 
940 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
941   : Expr(FloatingLiteralClass, Empty) {
942   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
943   FloatingLiteralBits.IsExact = false;
944 }
945 
946 FloatingLiteral *
947 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
948                         bool isexact, QualType Type, SourceLocation L) {
949   return new (C) FloatingLiteral(C, V, isexact, Type, L);
950 }
951 
952 FloatingLiteral *
953 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
954   return new (C) FloatingLiteral(C, Empty);
955 }
956 
957 /// getValueAsApproximateDouble - This returns the value as an inaccurate
958 /// double.  Note that this may cause loss of precision, but is useful for
959 /// debugging dumps, etc.
960 double FloatingLiteral::getValueAsApproximateDouble() const {
961   llvm::APFloat V = getValue();
962   bool ignored;
963   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
964             &ignored);
965   return V.convertToDouble();
966 }
967 
968 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
969                                          StringKind SK) {
970   unsigned CharByteWidth = 0;
971   switch (SK) {
972   case Ascii:
973   case UTF8:
974     CharByteWidth = Target.getCharWidth();
975     break;
976   case Wide:
977     CharByteWidth = Target.getWCharWidth();
978     break;
979   case UTF16:
980     CharByteWidth = Target.getChar16Width();
981     break;
982   case UTF32:
983     CharByteWidth = Target.getChar32Width();
984     break;
985   }
986   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
987   CharByteWidth /= 8;
988   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
989          "The only supported character byte widths are 1,2 and 4!");
990   return CharByteWidth;
991 }
992 
993 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
994                              StringKind Kind, bool Pascal, QualType Ty,
995                              const SourceLocation *Loc,
996                              unsigned NumConcatenated)
997     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
998   assert(Ctx.getAsConstantArrayType(Ty) &&
999          "StringLiteral must be of constant array type!");
1000   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1001   unsigned ByteLength = Str.size();
1002   assert((ByteLength % CharByteWidth == 0) &&
1003          "The size of the data must be a multiple of CharByteWidth!");
1004 
1005   // Avoid the expensive division. The compiler should be able to figure it
1006   // out by itself. However as of clang 7, even with the appropriate
1007   // llvm_unreachable added just here, it is not able to do so.
1008   unsigned Length;
1009   switch (CharByteWidth) {
1010   case 1:
1011     Length = ByteLength;
1012     break;
1013   case 2:
1014     Length = ByteLength / 2;
1015     break;
1016   case 4:
1017     Length = ByteLength / 4;
1018     break;
1019   default:
1020     llvm_unreachable("Unsupported character width!");
1021   }
1022 
1023   StringLiteralBits.Kind = Kind;
1024   StringLiteralBits.CharByteWidth = CharByteWidth;
1025   StringLiteralBits.IsPascal = Pascal;
1026   StringLiteralBits.NumConcatenated = NumConcatenated;
1027   *getTrailingObjects<unsigned>() = Length;
1028 
1029   // Initialize the trailing array of SourceLocation.
1030   // This is safe since SourceLocation is POD-like.
1031   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1032               NumConcatenated * sizeof(SourceLocation));
1033 
1034   // Initialize the trailing array of char holding the string data.
1035   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1036 
1037   setDependence(ExprDependence::None);
1038 }
1039 
1040 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1041                              unsigned Length, unsigned CharByteWidth)
1042     : Expr(StringLiteralClass, Empty) {
1043   StringLiteralBits.CharByteWidth = CharByteWidth;
1044   StringLiteralBits.NumConcatenated = NumConcatenated;
1045   *getTrailingObjects<unsigned>() = Length;
1046 }
1047 
1048 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1049                                      StringKind Kind, bool Pascal, QualType Ty,
1050                                      const SourceLocation *Loc,
1051                                      unsigned NumConcatenated) {
1052   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1053                                1, NumConcatenated, Str.size()),
1054                            alignof(StringLiteral));
1055   return new (Mem)
1056       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1057 }
1058 
1059 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1060                                           unsigned NumConcatenated,
1061                                           unsigned Length,
1062                                           unsigned CharByteWidth) {
1063   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1064                                1, NumConcatenated, Length * CharByteWidth),
1065                            alignof(StringLiteral));
1066   return new (Mem)
1067       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1068 }
1069 
1070 void StringLiteral::outputString(raw_ostream &OS) const {
1071   switch (getKind()) {
1072   case Ascii: break; // no prefix.
1073   case Wide:  OS << 'L'; break;
1074   case UTF8:  OS << "u8"; break;
1075   case UTF16: OS << 'u'; break;
1076   case UTF32: OS << 'U'; break;
1077   }
1078   OS << '"';
1079   static const char Hex[] = "0123456789ABCDEF";
1080 
1081   unsigned LastSlashX = getLength();
1082   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1083     switch (uint32_t Char = getCodeUnit(I)) {
1084     default:
1085       // FIXME: Convert UTF-8 back to codepoints before rendering.
1086 
1087       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1088       // Leave invalid surrogates alone; we'll use \x for those.
1089       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1090           Char <= 0xdbff) {
1091         uint32_t Trail = getCodeUnit(I + 1);
1092         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1093           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1094           ++I;
1095         }
1096       }
1097 
1098       if (Char > 0xff) {
1099         // If this is a wide string, output characters over 0xff using \x
1100         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1101         // codepoint: use \x escapes for invalid codepoints.
1102         if (getKind() == Wide ||
1103             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1104           // FIXME: Is this the best way to print wchar_t?
1105           OS << "\\x";
1106           int Shift = 28;
1107           while ((Char >> Shift) == 0)
1108             Shift -= 4;
1109           for (/**/; Shift >= 0; Shift -= 4)
1110             OS << Hex[(Char >> Shift) & 15];
1111           LastSlashX = I;
1112           break;
1113         }
1114 
1115         if (Char > 0xffff)
1116           OS << "\\U00"
1117              << Hex[(Char >> 20) & 15]
1118              << Hex[(Char >> 16) & 15];
1119         else
1120           OS << "\\u";
1121         OS << Hex[(Char >> 12) & 15]
1122            << Hex[(Char >>  8) & 15]
1123            << Hex[(Char >>  4) & 15]
1124            << Hex[(Char >>  0) & 15];
1125         break;
1126       }
1127 
1128       // If we used \x... for the previous character, and this character is a
1129       // hexadecimal digit, prevent it being slurped as part of the \x.
1130       if (LastSlashX + 1 == I) {
1131         switch (Char) {
1132           case '0': case '1': case '2': case '3': case '4':
1133           case '5': case '6': case '7': case '8': case '9':
1134           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1135           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1136             OS << "\"\"";
1137         }
1138       }
1139 
1140       assert(Char <= 0xff &&
1141              "Characters above 0xff should already have been handled.");
1142 
1143       if (isPrintable(Char))
1144         OS << (char)Char;
1145       else  // Output anything hard as an octal escape.
1146         OS << '\\'
1147            << (char)('0' + ((Char >> 6) & 7))
1148            << (char)('0' + ((Char >> 3) & 7))
1149            << (char)('0' + ((Char >> 0) & 7));
1150       break;
1151     // Handle some common non-printable cases to make dumps prettier.
1152     case '\\': OS << "\\\\"; break;
1153     case '"': OS << "\\\""; break;
1154     case '\a': OS << "\\a"; break;
1155     case '\b': OS << "\\b"; break;
1156     case '\f': OS << "\\f"; break;
1157     case '\n': OS << "\\n"; break;
1158     case '\r': OS << "\\r"; break;
1159     case '\t': OS << "\\t"; break;
1160     case '\v': OS << "\\v"; break;
1161     }
1162   }
1163   OS << '"';
1164 }
1165 
1166 /// getLocationOfByte - Return a source location that points to the specified
1167 /// byte of this string literal.
1168 ///
1169 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1170 /// can have escape sequences in them in addition to the usual trigraph and
1171 /// escaped newline business.  This routine handles this complexity.
1172 ///
1173 /// The *StartToken sets the first token to be searched in this function and
1174 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1175 /// returning, it updates the *StartToken to the TokNo of the token being found
1176 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1177 /// string.
1178 /// Using these two parameters can reduce the time complexity from O(n^2) to
1179 /// O(n) if one wants to get the location of byte for all the tokens in a
1180 /// string.
1181 ///
1182 SourceLocation
1183 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1184                                  const LangOptions &Features,
1185                                  const TargetInfo &Target, unsigned *StartToken,
1186                                  unsigned *StartTokenByteOffset) const {
1187   assert((getKind() == StringLiteral::Ascii ||
1188           getKind() == StringLiteral::UTF8) &&
1189          "Only narrow string literals are currently supported");
1190 
1191   // Loop over all of the tokens in this string until we find the one that
1192   // contains the byte we're looking for.
1193   unsigned TokNo = 0;
1194   unsigned StringOffset = 0;
1195   if (StartToken)
1196     TokNo = *StartToken;
1197   if (StartTokenByteOffset) {
1198     StringOffset = *StartTokenByteOffset;
1199     ByteNo -= StringOffset;
1200   }
1201   while (1) {
1202     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1203     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1204 
1205     // Get the spelling of the string so that we can get the data that makes up
1206     // the string literal, not the identifier for the macro it is potentially
1207     // expanded through.
1208     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1209 
1210     // Re-lex the token to get its length and original spelling.
1211     std::pair<FileID, unsigned> LocInfo =
1212         SM.getDecomposedLoc(StrTokSpellingLoc);
1213     bool Invalid = false;
1214     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1215     if (Invalid) {
1216       if (StartTokenByteOffset != nullptr)
1217         *StartTokenByteOffset = StringOffset;
1218       if (StartToken != nullptr)
1219         *StartToken = TokNo;
1220       return StrTokSpellingLoc;
1221     }
1222 
1223     const char *StrData = Buffer.data()+LocInfo.second;
1224 
1225     // Create a lexer starting at the beginning of this token.
1226     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1227                    Buffer.begin(), StrData, Buffer.end());
1228     Token TheTok;
1229     TheLexer.LexFromRawLexer(TheTok);
1230 
1231     // Use the StringLiteralParser to compute the length of the string in bytes.
1232     StringLiteralParser SLP(TheTok, SM, Features, Target);
1233     unsigned TokNumBytes = SLP.GetStringLength();
1234 
1235     // If the byte is in this token, return the location of the byte.
1236     if (ByteNo < TokNumBytes ||
1237         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1238       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1239 
1240       // Now that we know the offset of the token in the spelling, use the
1241       // preprocessor to get the offset in the original source.
1242       if (StartTokenByteOffset != nullptr)
1243         *StartTokenByteOffset = StringOffset;
1244       if (StartToken != nullptr)
1245         *StartToken = TokNo;
1246       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1247     }
1248 
1249     // Move to the next string token.
1250     StringOffset += TokNumBytes;
1251     ++TokNo;
1252     ByteNo -= TokNumBytes;
1253   }
1254 }
1255 
1256 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1257 /// corresponds to, e.g. "sizeof" or "[pre]++".
1258 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1259   switch (Op) {
1260 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1261 #include "clang/AST/OperationKinds.def"
1262   }
1263   llvm_unreachable("Unknown unary operator");
1264 }
1265 
1266 UnaryOperatorKind
1267 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1268   switch (OO) {
1269   default: llvm_unreachable("No unary operator for overloaded function");
1270   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1271   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1272   case OO_Amp:        return UO_AddrOf;
1273   case OO_Star:       return UO_Deref;
1274   case OO_Plus:       return UO_Plus;
1275   case OO_Minus:      return UO_Minus;
1276   case OO_Tilde:      return UO_Not;
1277   case OO_Exclaim:    return UO_LNot;
1278   case OO_Coawait:    return UO_Coawait;
1279   }
1280 }
1281 
1282 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1283   switch (Opc) {
1284   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1285   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1286   case UO_AddrOf: return OO_Amp;
1287   case UO_Deref: return OO_Star;
1288   case UO_Plus: return OO_Plus;
1289   case UO_Minus: return OO_Minus;
1290   case UO_Not: return OO_Tilde;
1291   case UO_LNot: return OO_Exclaim;
1292   case UO_Coawait: return OO_Coawait;
1293   default: return OO_None;
1294   }
1295 }
1296 
1297 
1298 //===----------------------------------------------------------------------===//
1299 // Postfix Operators.
1300 //===----------------------------------------------------------------------===//
1301 
1302 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1303                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1304                    SourceLocation RParenLoc, unsigned MinNumArgs,
1305                    ADLCallKind UsesADL)
1306     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1307   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1308   unsigned NumPreArgs = PreArgs.size();
1309   CallExprBits.NumPreArgs = NumPreArgs;
1310   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1311 
1312   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1313   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1314   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1315          "OffsetToTrailingObjects overflow!");
1316 
1317   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1318 
1319   setCallee(Fn);
1320   for (unsigned I = 0; I != NumPreArgs; ++I)
1321     setPreArg(I, PreArgs[I]);
1322   for (unsigned I = 0; I != Args.size(); ++I)
1323     setArg(I, Args[I]);
1324   for (unsigned I = Args.size(); I != NumArgs; ++I)
1325     setArg(I, nullptr);
1326 
1327   setDependence(computeDependence(this, PreArgs));
1328 }
1329 
1330 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1331                    EmptyShell Empty)
1332     : Expr(SC, Empty), NumArgs(NumArgs) {
1333   CallExprBits.NumPreArgs = NumPreArgs;
1334   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1335 
1336   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1337   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1338   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1339          "OffsetToTrailingObjects overflow!");
1340 }
1341 
1342 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1343                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1344                            SourceLocation RParenLoc, unsigned MinNumArgs,
1345                            ADLCallKind UsesADL) {
1346   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1347   unsigned SizeOfTrailingObjects =
1348       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1349   void *Mem =
1350       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1351   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1352                             RParenLoc, MinNumArgs, UsesADL);
1353 }
1354 
1355 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1356                                     ExprValueKind VK, SourceLocation RParenLoc,
1357                                     ADLCallKind UsesADL) {
1358   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1359          "Misaligned memory in CallExpr::CreateTemporary!");
1360   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1361                             VK, RParenLoc,
1362                             /*MinNumArgs=*/0, UsesADL);
1363 }
1364 
1365 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1366                                 EmptyShell Empty) {
1367   unsigned SizeOfTrailingObjects =
1368       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1369   void *Mem =
1370       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1371   return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
1372 }
1373 
1374 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1375   switch (SC) {
1376   case CallExprClass:
1377     return sizeof(CallExpr);
1378   case CXXOperatorCallExprClass:
1379     return sizeof(CXXOperatorCallExpr);
1380   case CXXMemberCallExprClass:
1381     return sizeof(CXXMemberCallExpr);
1382   case UserDefinedLiteralClass:
1383     return sizeof(UserDefinedLiteral);
1384   case CUDAKernelCallExprClass:
1385     return sizeof(CUDAKernelCallExpr);
1386   default:
1387     llvm_unreachable("unexpected class deriving from CallExpr!");
1388   }
1389 }
1390 
1391 Decl *Expr::getReferencedDeclOfCallee() {
1392   Expr *CEE = IgnoreParenImpCasts();
1393 
1394   while (SubstNonTypeTemplateParmExpr *NTTP =
1395              dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1396     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1397   }
1398 
1399   // If we're calling a dereference, look at the pointer instead.
1400   while (true) {
1401     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1402       if (BO->isPtrMemOp()) {
1403         CEE = BO->getRHS()->IgnoreParenImpCasts();
1404         continue;
1405       }
1406     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1407       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1408           UO->getOpcode() == UO_Plus) {
1409         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1410         continue;
1411       }
1412     }
1413     break;
1414   }
1415 
1416   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1417     return DRE->getDecl();
1418   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1419     return ME->getMemberDecl();
1420   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1421     return BE->getBlockDecl();
1422 
1423   return nullptr;
1424 }
1425 
1426 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1427 unsigned CallExpr::getBuiltinCallee() const {
1428   auto *FDecl =
1429       dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
1430   return FDecl ? FDecl->getBuiltinID() : 0;
1431 }
1432 
1433 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1434   if (unsigned BI = getBuiltinCallee())
1435     return Ctx.BuiltinInfo.isUnevaluated(BI);
1436   return false;
1437 }
1438 
1439 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1440   const Expr *Callee = getCallee();
1441   QualType CalleeType = Callee->getType();
1442   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1443     CalleeType = FnTypePtr->getPointeeType();
1444   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1445     CalleeType = BPT->getPointeeType();
1446   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1447     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1448       return Ctx.VoidTy;
1449 
1450     // This should never be overloaded and so should never return null.
1451     CalleeType = Expr::findBoundMemberType(Callee);
1452   }
1453 
1454   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1455   return FnType->getReturnType();
1456 }
1457 
1458 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1459   // If the return type is a struct, union, or enum that is marked nodiscard,
1460   // then return the return type attribute.
1461   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1462     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1463       return A;
1464 
1465   // Otherwise, see if the callee is marked nodiscard and return that attribute
1466   // instead.
1467   const Decl *D = getCalleeDecl();
1468   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1469 }
1470 
1471 SourceLocation CallExpr::getBeginLoc() const {
1472   if (isa<CXXOperatorCallExpr>(this))
1473     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1474 
1475   SourceLocation begin = getCallee()->getBeginLoc();
1476   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1477     begin = getArg(0)->getBeginLoc();
1478   return begin;
1479 }
1480 SourceLocation CallExpr::getEndLoc() const {
1481   if (isa<CXXOperatorCallExpr>(this))
1482     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1483 
1484   SourceLocation end = getRParenLoc();
1485   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1486     end = getArg(getNumArgs() - 1)->getEndLoc();
1487   return end;
1488 }
1489 
1490 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1491                                    SourceLocation OperatorLoc,
1492                                    TypeSourceInfo *tsi,
1493                                    ArrayRef<OffsetOfNode> comps,
1494                                    ArrayRef<Expr*> exprs,
1495                                    SourceLocation RParenLoc) {
1496   void *Mem = C.Allocate(
1497       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1498 
1499   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1500                                 RParenLoc);
1501 }
1502 
1503 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1504                                         unsigned numComps, unsigned numExprs) {
1505   void *Mem =
1506       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1507   return new (Mem) OffsetOfExpr(numComps, numExprs);
1508 }
1509 
1510 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1511                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1512                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1513                            SourceLocation RParenLoc)
1514     : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary),
1515       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1516       NumComps(comps.size()), NumExprs(exprs.size()) {
1517   for (unsigned i = 0; i != comps.size(); ++i)
1518     setComponent(i, comps[i]);
1519   for (unsigned i = 0; i != exprs.size(); ++i)
1520     setIndexExpr(i, exprs[i]);
1521 
1522   setDependence(computeDependence(this));
1523 }
1524 
1525 IdentifierInfo *OffsetOfNode::getFieldName() const {
1526   assert(getKind() == Field || getKind() == Identifier);
1527   if (getKind() == Field)
1528     return getField()->getIdentifier();
1529 
1530   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1531 }
1532 
1533 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1534     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1535     SourceLocation op, SourceLocation rp)
1536     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary),
1537       OpLoc(op), RParenLoc(rp) {
1538   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1539   UnaryExprOrTypeTraitExprBits.IsType = false;
1540   Argument.Ex = E;
1541   setDependence(computeDependence(this));
1542 }
1543 
1544 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1545                        ValueDecl *MemberDecl,
1546                        const DeclarationNameInfo &NameInfo, QualType T,
1547                        ExprValueKind VK, ExprObjectKind OK,
1548                        NonOdrUseReason NOUR)
1549     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1550       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1551   assert(!NameInfo.getName() ||
1552          MemberDecl->getDeclName() == NameInfo.getName());
1553   MemberExprBits.IsArrow = IsArrow;
1554   MemberExprBits.HasQualifierOrFoundDecl = false;
1555   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1556   MemberExprBits.HadMultipleCandidates = false;
1557   MemberExprBits.NonOdrUseReason = NOUR;
1558   MemberExprBits.OperatorLoc = OperatorLoc;
1559   setDependence(computeDependence(this));
1560 }
1561 
1562 MemberExpr *MemberExpr::Create(
1563     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1564     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1565     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1566     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1567     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1568   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1569                         FoundDecl.getAccess() != MemberDecl->getAccess();
1570   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1571   std::size_t Size =
1572       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1573                        TemplateArgumentLoc>(
1574           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1575           TemplateArgs ? TemplateArgs->size() : 0);
1576 
1577   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1578   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1579                                        NameInfo, T, VK, OK, NOUR);
1580 
1581   // FIXME: remove remaining dependence computation to computeDependence().
1582   auto Deps = E->getDependence();
1583   if (HasQualOrFound) {
1584     // FIXME: Wrong. We should be looking at the member declaration we found.
1585     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1586       Deps |= ExprDependence::TypeValueInstantiation;
1587     else if (QualifierLoc &&
1588              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1589       Deps |= ExprDependence::Instantiation;
1590 
1591     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1592 
1593     MemberExprNameQualifier *NQ =
1594         E->getTrailingObjects<MemberExprNameQualifier>();
1595     NQ->QualifierLoc = QualifierLoc;
1596     NQ->FoundDecl = FoundDecl;
1597   }
1598 
1599   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1600       TemplateArgs || TemplateKWLoc.isValid();
1601 
1602   if (TemplateArgs) {
1603     auto TemplateArgDeps = TemplateArgumentDependence::None;
1604     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1605         TemplateKWLoc, *TemplateArgs,
1606         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1607     if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1608       Deps |= ExprDependence::Instantiation;
1609   } else if (TemplateKWLoc.isValid()) {
1610     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1611         TemplateKWLoc);
1612   }
1613   E->setDependence(Deps);
1614 
1615   return E;
1616 }
1617 
1618 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1619                                     bool HasQualifier, bool HasFoundDecl,
1620                                     bool HasTemplateKWAndArgsInfo,
1621                                     unsigned NumTemplateArgs) {
1622   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1623          "template args but no template arg info?");
1624   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1625   std::size_t Size =
1626       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1627                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1628                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1629                                             NumTemplateArgs);
1630   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1631   return new (Mem) MemberExpr(EmptyShell());
1632 }
1633 
1634 SourceLocation MemberExpr::getBeginLoc() const {
1635   if (isImplicitAccess()) {
1636     if (hasQualifier())
1637       return getQualifierLoc().getBeginLoc();
1638     return MemberLoc;
1639   }
1640 
1641   // FIXME: We don't want this to happen. Rather, we should be able to
1642   // detect all kinds of implicit accesses more cleanly.
1643   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1644   if (BaseStartLoc.isValid())
1645     return BaseStartLoc;
1646   return MemberLoc;
1647 }
1648 SourceLocation MemberExpr::getEndLoc() const {
1649   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1650   if (hasExplicitTemplateArgs())
1651     EndLoc = getRAngleLoc();
1652   else if (EndLoc.isInvalid())
1653     EndLoc = getBase()->getEndLoc();
1654   return EndLoc;
1655 }
1656 
1657 bool CastExpr::CastConsistency() const {
1658   switch (getCastKind()) {
1659   case CK_DerivedToBase:
1660   case CK_UncheckedDerivedToBase:
1661   case CK_DerivedToBaseMemberPointer:
1662   case CK_BaseToDerived:
1663   case CK_BaseToDerivedMemberPointer:
1664     assert(!path_empty() && "Cast kind should have a base path!");
1665     break;
1666 
1667   case CK_CPointerToObjCPointerCast:
1668     assert(getType()->isObjCObjectPointerType());
1669     assert(getSubExpr()->getType()->isPointerType());
1670     goto CheckNoBasePath;
1671 
1672   case CK_BlockPointerToObjCPointerCast:
1673     assert(getType()->isObjCObjectPointerType());
1674     assert(getSubExpr()->getType()->isBlockPointerType());
1675     goto CheckNoBasePath;
1676 
1677   case CK_ReinterpretMemberPointer:
1678     assert(getType()->isMemberPointerType());
1679     assert(getSubExpr()->getType()->isMemberPointerType());
1680     goto CheckNoBasePath;
1681 
1682   case CK_BitCast:
1683     // Arbitrary casts to C pointer types count as bitcasts.
1684     // Otherwise, we should only have block and ObjC pointer casts
1685     // here if they stay within the type kind.
1686     if (!getType()->isPointerType()) {
1687       assert(getType()->isObjCObjectPointerType() ==
1688              getSubExpr()->getType()->isObjCObjectPointerType());
1689       assert(getType()->isBlockPointerType() ==
1690              getSubExpr()->getType()->isBlockPointerType());
1691     }
1692     goto CheckNoBasePath;
1693 
1694   case CK_AnyPointerToBlockPointerCast:
1695     assert(getType()->isBlockPointerType());
1696     assert(getSubExpr()->getType()->isAnyPointerType() &&
1697            !getSubExpr()->getType()->isBlockPointerType());
1698     goto CheckNoBasePath;
1699 
1700   case CK_CopyAndAutoreleaseBlockObject:
1701     assert(getType()->isBlockPointerType());
1702     assert(getSubExpr()->getType()->isBlockPointerType());
1703     goto CheckNoBasePath;
1704 
1705   case CK_FunctionToPointerDecay:
1706     assert(getType()->isPointerType());
1707     assert(getSubExpr()->getType()->isFunctionType());
1708     goto CheckNoBasePath;
1709 
1710   case CK_AddressSpaceConversion: {
1711     auto Ty = getType();
1712     auto SETy = getSubExpr()->getType();
1713     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1714     if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1715       Ty = Ty->getPointeeType();
1716       SETy = SETy->getPointeeType();
1717     }
1718     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1719            (!Ty.isNull() && !SETy.isNull() &&
1720             Ty.getAddressSpace() != SETy.getAddressSpace()));
1721     goto CheckNoBasePath;
1722   }
1723   // These should not have an inheritance path.
1724   case CK_Dynamic:
1725   case CK_ToUnion:
1726   case CK_ArrayToPointerDecay:
1727   case CK_NullToMemberPointer:
1728   case CK_NullToPointer:
1729   case CK_ConstructorConversion:
1730   case CK_IntegralToPointer:
1731   case CK_PointerToIntegral:
1732   case CK_ToVoid:
1733   case CK_VectorSplat:
1734   case CK_IntegralCast:
1735   case CK_BooleanToSignedIntegral:
1736   case CK_IntegralToFloating:
1737   case CK_FloatingToIntegral:
1738   case CK_FloatingCast:
1739   case CK_ObjCObjectLValueCast:
1740   case CK_FloatingRealToComplex:
1741   case CK_FloatingComplexToReal:
1742   case CK_FloatingComplexCast:
1743   case CK_FloatingComplexToIntegralComplex:
1744   case CK_IntegralRealToComplex:
1745   case CK_IntegralComplexToReal:
1746   case CK_IntegralComplexCast:
1747   case CK_IntegralComplexToFloatingComplex:
1748   case CK_ARCProduceObject:
1749   case CK_ARCConsumeObject:
1750   case CK_ARCReclaimReturnedObject:
1751   case CK_ARCExtendBlockObject:
1752   case CK_ZeroToOCLOpaqueType:
1753   case CK_IntToOCLSampler:
1754   case CK_FixedPointCast:
1755   case CK_FixedPointToIntegral:
1756   case CK_IntegralToFixedPoint:
1757     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1758     goto CheckNoBasePath;
1759 
1760   case CK_Dependent:
1761   case CK_LValueToRValue:
1762   case CK_NoOp:
1763   case CK_AtomicToNonAtomic:
1764   case CK_NonAtomicToAtomic:
1765   case CK_PointerToBoolean:
1766   case CK_IntegralToBoolean:
1767   case CK_FloatingToBoolean:
1768   case CK_MemberPointerToBoolean:
1769   case CK_FloatingComplexToBoolean:
1770   case CK_IntegralComplexToBoolean:
1771   case CK_LValueBitCast:            // -> bool&
1772   case CK_LValueToRValueBitCast:
1773   case CK_UserDefinedConversion:    // operator bool()
1774   case CK_BuiltinFnToFnPtr:
1775   case CK_FixedPointToBoolean:
1776   CheckNoBasePath:
1777     assert(path_empty() && "Cast kind should not have a base path!");
1778     break;
1779   }
1780   return true;
1781 }
1782 
1783 const char *CastExpr::getCastKindName(CastKind CK) {
1784   switch (CK) {
1785 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1786 #include "clang/AST/OperationKinds.def"
1787   }
1788   llvm_unreachable("Unhandled cast kind!");
1789 }
1790 
1791 namespace {
1792   const Expr *skipImplicitTemporary(const Expr *E) {
1793     // Skip through reference binding to temporary.
1794     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1795       E = Materialize->getSubExpr();
1796 
1797     // Skip any temporary bindings; they're implicit.
1798     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1799       E = Binder->getSubExpr();
1800 
1801     return E;
1802   }
1803 }
1804 
1805 Expr *CastExpr::getSubExprAsWritten() {
1806   const Expr *SubExpr = nullptr;
1807   const CastExpr *E = this;
1808   do {
1809     SubExpr = skipImplicitTemporary(E->getSubExpr());
1810 
1811     // Conversions by constructor and conversion functions have a
1812     // subexpression describing the call; strip it off.
1813     if (E->getCastKind() == CK_ConstructorConversion)
1814       SubExpr =
1815         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1816     else if (E->getCastKind() == CK_UserDefinedConversion) {
1817       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1818               isa<BlockExpr>(SubExpr)) &&
1819              "Unexpected SubExpr for CK_UserDefinedConversion.");
1820       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1821         SubExpr = MCE->getImplicitObjectArgument();
1822     }
1823 
1824     // If the subexpression we're left with is an implicit cast, look
1825     // through that, too.
1826   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1827 
1828   return const_cast<Expr*>(SubExpr);
1829 }
1830 
1831 NamedDecl *CastExpr::getConversionFunction() const {
1832   const Expr *SubExpr = nullptr;
1833 
1834   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1835     SubExpr = skipImplicitTemporary(E->getSubExpr());
1836 
1837     if (E->getCastKind() == CK_ConstructorConversion)
1838       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1839 
1840     if (E->getCastKind() == CK_UserDefinedConversion) {
1841       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1842         return MCE->getMethodDecl();
1843     }
1844   }
1845 
1846   return nullptr;
1847 }
1848 
1849 CXXBaseSpecifier **CastExpr::path_buffer() {
1850   switch (getStmtClass()) {
1851 #define ABSTRACT_STMT(x)
1852 #define CASTEXPR(Type, Base)                                                   \
1853   case Stmt::Type##Class:                                                      \
1854     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1855 #define STMT(Type, Base)
1856 #include "clang/AST/StmtNodes.inc"
1857   default:
1858     llvm_unreachable("non-cast expressions not possible here");
1859   }
1860 }
1861 
1862 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1863                                                         QualType opType) {
1864   auto RD = unionType->castAs<RecordType>()->getDecl();
1865   return getTargetFieldForToUnionCast(RD, opType);
1866 }
1867 
1868 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1869                                                         QualType OpType) {
1870   auto &Ctx = RD->getASTContext();
1871   RecordDecl::field_iterator Field, FieldEnd;
1872   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1873        Field != FieldEnd; ++Field) {
1874     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1875         !Field->isUnnamedBitfield()) {
1876       return *Field;
1877     }
1878   }
1879   return nullptr;
1880 }
1881 
1882 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1883                                            CastKind Kind, Expr *Operand,
1884                                            const CXXCastPath *BasePath,
1885                                            ExprValueKind VK) {
1886   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1887   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1888   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
1889   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
1890   assert((Kind != CK_LValueToRValue ||
1891           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
1892          "invalid type for lvalue-to-rvalue conversion");
1893   ImplicitCastExpr *E =
1894     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1895   if (PathSize)
1896     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1897                               E->getTrailingObjects<CXXBaseSpecifier *>());
1898   return E;
1899 }
1900 
1901 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1902                                                 unsigned PathSize) {
1903   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1904   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1905 }
1906 
1907 
1908 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1909                                        ExprValueKind VK, CastKind K, Expr *Op,
1910                                        const CXXCastPath *BasePath,
1911                                        TypeSourceInfo *WrittenTy,
1912                                        SourceLocation L, SourceLocation R) {
1913   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1914   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1915   CStyleCastExpr *E =
1916     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1917   if (PathSize)
1918     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1919                               E->getTrailingObjects<CXXBaseSpecifier *>());
1920   return E;
1921 }
1922 
1923 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1924                                             unsigned PathSize) {
1925   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1926   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1927 }
1928 
1929 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1930 /// corresponds to, e.g. "<<=".
1931 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1932   switch (Op) {
1933 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1934 #include "clang/AST/OperationKinds.def"
1935   }
1936   llvm_unreachable("Invalid OpCode!");
1937 }
1938 
1939 BinaryOperatorKind
1940 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1941   switch (OO) {
1942   default: llvm_unreachable("Not an overloadable binary operator");
1943   case OO_Plus: return BO_Add;
1944   case OO_Minus: return BO_Sub;
1945   case OO_Star: return BO_Mul;
1946   case OO_Slash: return BO_Div;
1947   case OO_Percent: return BO_Rem;
1948   case OO_Caret: return BO_Xor;
1949   case OO_Amp: return BO_And;
1950   case OO_Pipe: return BO_Or;
1951   case OO_Equal: return BO_Assign;
1952   case OO_Spaceship: return BO_Cmp;
1953   case OO_Less: return BO_LT;
1954   case OO_Greater: return BO_GT;
1955   case OO_PlusEqual: return BO_AddAssign;
1956   case OO_MinusEqual: return BO_SubAssign;
1957   case OO_StarEqual: return BO_MulAssign;
1958   case OO_SlashEqual: return BO_DivAssign;
1959   case OO_PercentEqual: return BO_RemAssign;
1960   case OO_CaretEqual: return BO_XorAssign;
1961   case OO_AmpEqual: return BO_AndAssign;
1962   case OO_PipeEqual: return BO_OrAssign;
1963   case OO_LessLess: return BO_Shl;
1964   case OO_GreaterGreater: return BO_Shr;
1965   case OO_LessLessEqual: return BO_ShlAssign;
1966   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1967   case OO_EqualEqual: return BO_EQ;
1968   case OO_ExclaimEqual: return BO_NE;
1969   case OO_LessEqual: return BO_LE;
1970   case OO_GreaterEqual: return BO_GE;
1971   case OO_AmpAmp: return BO_LAnd;
1972   case OO_PipePipe: return BO_LOr;
1973   case OO_Comma: return BO_Comma;
1974   case OO_ArrowStar: return BO_PtrMemI;
1975   }
1976 }
1977 
1978 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1979   static const OverloadedOperatorKind OverOps[] = {
1980     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1981     OO_Star, OO_Slash, OO_Percent,
1982     OO_Plus, OO_Minus,
1983     OO_LessLess, OO_GreaterGreater,
1984     OO_Spaceship,
1985     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1986     OO_EqualEqual, OO_ExclaimEqual,
1987     OO_Amp,
1988     OO_Caret,
1989     OO_Pipe,
1990     OO_AmpAmp,
1991     OO_PipePipe,
1992     OO_Equal, OO_StarEqual,
1993     OO_SlashEqual, OO_PercentEqual,
1994     OO_PlusEqual, OO_MinusEqual,
1995     OO_LessLessEqual, OO_GreaterGreaterEqual,
1996     OO_AmpEqual, OO_CaretEqual,
1997     OO_PipeEqual,
1998     OO_Comma
1999   };
2000   return OverOps[Opc];
2001 }
2002 
2003 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2004                                                       Opcode Opc,
2005                                                       Expr *LHS, Expr *RHS) {
2006   if (Opc != BO_Add)
2007     return false;
2008 
2009   // Check that we have one pointer and one integer operand.
2010   Expr *PExp;
2011   if (LHS->getType()->isPointerType()) {
2012     if (!RHS->getType()->isIntegerType())
2013       return false;
2014     PExp = LHS;
2015   } else if (RHS->getType()->isPointerType()) {
2016     if (!LHS->getType()->isIntegerType())
2017       return false;
2018     PExp = RHS;
2019   } else {
2020     return false;
2021   }
2022 
2023   // Check that the pointer is a nullptr.
2024   if (!PExp->IgnoreParenCasts()
2025           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2026     return false;
2027 
2028   // Check that the pointee type is char-sized.
2029   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2030   if (!PTy || !PTy->getPointeeType()->isCharType())
2031     return false;
2032 
2033   return true;
2034 }
2035 
2036 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2037                                             SourceLocExpr::IdentKind Kind) {
2038   switch (Kind) {
2039   case SourceLocExpr::File:
2040   case SourceLocExpr::Function: {
2041     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2042     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2043   }
2044   case SourceLocExpr::Line:
2045   case SourceLocExpr::Column:
2046     return Ctx.UnsignedIntTy;
2047   }
2048   llvm_unreachable("unhandled case");
2049 }
2050 
2051 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2052                              SourceLocation BLoc, SourceLocation RParenLoc,
2053                              DeclContext *ParentContext)
2054     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2055            VK_RValue, OK_Ordinary),
2056       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2057   SourceLocExprBits.Kind = Kind;
2058   setDependence(ExprDependence::None);
2059 }
2060 
2061 StringRef SourceLocExpr::getBuiltinStr() const {
2062   switch (getIdentKind()) {
2063   case File:
2064     return "__builtin_FILE";
2065   case Function:
2066     return "__builtin_FUNCTION";
2067   case Line:
2068     return "__builtin_LINE";
2069   case Column:
2070     return "__builtin_COLUMN";
2071   }
2072   llvm_unreachable("unexpected IdentKind!");
2073 }
2074 
2075 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2076                                          const Expr *DefaultExpr) const {
2077   SourceLocation Loc;
2078   const DeclContext *Context;
2079 
2080   std::tie(Loc,
2081            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2082     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2083       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2084     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2085       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2086     return {this->getLocation(), this->getParentContext()};
2087   }();
2088 
2089   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2090       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2091 
2092   auto MakeStringLiteral = [&](StringRef Tmp) {
2093     using LValuePathEntry = APValue::LValuePathEntry;
2094     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2095     // Decay the string to a pointer to the first character.
2096     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2097     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2098   };
2099 
2100   switch (getIdentKind()) {
2101   case SourceLocExpr::File:
2102     return MakeStringLiteral(PLoc.getFilename());
2103   case SourceLocExpr::Function: {
2104     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2105     return MakeStringLiteral(
2106         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2107                 : std::string(""));
2108   }
2109   case SourceLocExpr::Line:
2110   case SourceLocExpr::Column: {
2111     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2112                         /*isUnsigned=*/true);
2113     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2114                                                    : PLoc.getColumn();
2115     return APValue(IntVal);
2116   }
2117   }
2118   llvm_unreachable("unhandled case");
2119 }
2120 
2121 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2122                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2123     : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary),
2124       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2125       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2126   sawArrayRangeDesignator(false);
2127   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2128 
2129   setDependence(computeDependence(this));
2130 }
2131 
2132 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2133   if (NumInits > InitExprs.size())
2134     InitExprs.reserve(C, NumInits);
2135 }
2136 
2137 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2138   InitExprs.resize(C, NumInits, nullptr);
2139 }
2140 
2141 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2142   if (Init >= InitExprs.size()) {
2143     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2144     setInit(Init, expr);
2145     return nullptr;
2146   }
2147 
2148   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2149   setInit(Init, expr);
2150   return Result;
2151 }
2152 
2153 void InitListExpr::setArrayFiller(Expr *filler) {
2154   assert(!hasArrayFiller() && "Filler already set!");
2155   ArrayFillerOrUnionFieldInit = filler;
2156   // Fill out any "holes" in the array due to designated initializers.
2157   Expr **inits = getInits();
2158   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2159     if (inits[i] == nullptr)
2160       inits[i] = filler;
2161 }
2162 
2163 bool InitListExpr::isStringLiteralInit() const {
2164   if (getNumInits() != 1)
2165     return false;
2166   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2167   if (!AT || !AT->getElementType()->isIntegerType())
2168     return false;
2169   // It is possible for getInit() to return null.
2170   const Expr *Init = getInit(0);
2171   if (!Init)
2172     return false;
2173   Init = Init->IgnoreParens();
2174   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2175 }
2176 
2177 bool InitListExpr::isTransparent() const {
2178   assert(isSemanticForm() && "syntactic form never semantically transparent");
2179 
2180   // A glvalue InitListExpr is always just sugar.
2181   if (isGLValue()) {
2182     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2183     return true;
2184   }
2185 
2186   // Otherwise, we're sugar if and only if we have exactly one initializer that
2187   // is of the same type.
2188   if (getNumInits() != 1 || !getInit(0))
2189     return false;
2190 
2191   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2192   // transparent struct copy.
2193   if (!getInit(0)->isRValue() && getType()->isRecordType())
2194     return false;
2195 
2196   return getType().getCanonicalType() ==
2197          getInit(0)->getType().getCanonicalType();
2198 }
2199 
2200 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2201   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2202 
2203   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2204     return false;
2205   }
2206 
2207   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2208   return Lit && Lit->getValue() == 0;
2209 }
2210 
2211 SourceLocation InitListExpr::getBeginLoc() const {
2212   if (InitListExpr *SyntacticForm = getSyntacticForm())
2213     return SyntacticForm->getBeginLoc();
2214   SourceLocation Beg = LBraceLoc;
2215   if (Beg.isInvalid()) {
2216     // Find the first non-null initializer.
2217     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2218                                      E = InitExprs.end();
2219       I != E; ++I) {
2220       if (Stmt *S = *I) {
2221         Beg = S->getBeginLoc();
2222         break;
2223       }
2224     }
2225   }
2226   return Beg;
2227 }
2228 
2229 SourceLocation InitListExpr::getEndLoc() const {
2230   if (InitListExpr *SyntacticForm = getSyntacticForm())
2231     return SyntacticForm->getEndLoc();
2232   SourceLocation End = RBraceLoc;
2233   if (End.isInvalid()) {
2234     // Find the first non-null initializer from the end.
2235     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2236          E = InitExprs.rend();
2237          I != E; ++I) {
2238       if (Stmt *S = *I) {
2239         End = S->getEndLoc();
2240         break;
2241       }
2242     }
2243   }
2244   return End;
2245 }
2246 
2247 /// getFunctionType - Return the underlying function type for this block.
2248 ///
2249 const FunctionProtoType *BlockExpr::getFunctionType() const {
2250   // The block pointer is never sugared, but the function type might be.
2251   return cast<BlockPointerType>(getType())
2252            ->getPointeeType()->castAs<FunctionProtoType>();
2253 }
2254 
2255 SourceLocation BlockExpr::getCaretLocation() const {
2256   return TheBlock->getCaretLocation();
2257 }
2258 const Stmt *BlockExpr::getBody() const {
2259   return TheBlock->getBody();
2260 }
2261 Stmt *BlockExpr::getBody() {
2262   return TheBlock->getBody();
2263 }
2264 
2265 
2266 //===----------------------------------------------------------------------===//
2267 // Generic Expression Routines
2268 //===----------------------------------------------------------------------===//
2269 
2270 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2271   // In C++11, discarded-value expressions of a certain form are special,
2272   // according to [expr]p10:
2273   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2274   //   expression is an lvalue of volatile-qualified type and it has
2275   //   one of the following forms:
2276   if (!isGLValue() || !getType().isVolatileQualified())
2277     return false;
2278 
2279   const Expr *E = IgnoreParens();
2280 
2281   //   - id-expression (5.1.1),
2282   if (isa<DeclRefExpr>(E))
2283     return true;
2284 
2285   //   - subscripting (5.2.1),
2286   if (isa<ArraySubscriptExpr>(E))
2287     return true;
2288 
2289   //   - class member access (5.2.5),
2290   if (isa<MemberExpr>(E))
2291     return true;
2292 
2293   //   - indirection (5.3.1),
2294   if (auto *UO = dyn_cast<UnaryOperator>(E))
2295     if (UO->getOpcode() == UO_Deref)
2296       return true;
2297 
2298   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2299     //   - pointer-to-member operation (5.5),
2300     if (BO->isPtrMemOp())
2301       return true;
2302 
2303     //   - comma expression (5.18) where the right operand is one of the above.
2304     if (BO->getOpcode() == BO_Comma)
2305       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2306   }
2307 
2308   //   - conditional expression (5.16) where both the second and the third
2309   //     operands are one of the above, or
2310   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2311     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2312            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2313   // The related edge case of "*x ?: *x".
2314   if (auto *BCO =
2315           dyn_cast<BinaryConditionalOperator>(E)) {
2316     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2317       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2318              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2319   }
2320 
2321   // Objective-C++ extensions to the rule.
2322   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
2323     return true;
2324 
2325   return false;
2326 }
2327 
2328 /// isUnusedResultAWarning - Return true if this immediate expression should
2329 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2330 /// with location to warn on and the source range[s] to report with the
2331 /// warning.
2332 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2333                                   SourceRange &R1, SourceRange &R2,
2334                                   ASTContext &Ctx) const {
2335   // Don't warn if the expr is type dependent. The type could end up
2336   // instantiating to void.
2337   if (isTypeDependent())
2338     return false;
2339 
2340   switch (getStmtClass()) {
2341   default:
2342     if (getType()->isVoidType())
2343       return false;
2344     WarnE = this;
2345     Loc = getExprLoc();
2346     R1 = getSourceRange();
2347     return true;
2348   case ParenExprClass:
2349     return cast<ParenExpr>(this)->getSubExpr()->
2350       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2351   case GenericSelectionExprClass:
2352     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2353       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2354   case CoawaitExprClass:
2355   case CoyieldExprClass:
2356     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2357       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2358   case ChooseExprClass:
2359     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2360       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2361   case UnaryOperatorClass: {
2362     const UnaryOperator *UO = cast<UnaryOperator>(this);
2363 
2364     switch (UO->getOpcode()) {
2365     case UO_Plus:
2366     case UO_Minus:
2367     case UO_AddrOf:
2368     case UO_Not:
2369     case UO_LNot:
2370     case UO_Deref:
2371       break;
2372     case UO_Coawait:
2373       // This is just the 'operator co_await' call inside the guts of a
2374       // dependent co_await call.
2375     case UO_PostInc:
2376     case UO_PostDec:
2377     case UO_PreInc:
2378     case UO_PreDec:                 // ++/--
2379       return false;  // Not a warning.
2380     case UO_Real:
2381     case UO_Imag:
2382       // accessing a piece of a volatile complex is a side-effect.
2383       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2384           .isVolatileQualified())
2385         return false;
2386       break;
2387     case UO_Extension:
2388       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2389     }
2390     WarnE = this;
2391     Loc = UO->getOperatorLoc();
2392     R1 = UO->getSubExpr()->getSourceRange();
2393     return true;
2394   }
2395   case BinaryOperatorClass: {
2396     const BinaryOperator *BO = cast<BinaryOperator>(this);
2397     switch (BO->getOpcode()) {
2398       default:
2399         break;
2400       // Consider the RHS of comma for side effects. LHS was checked by
2401       // Sema::CheckCommaOperands.
2402       case BO_Comma:
2403         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2404         // lvalue-ness) of an assignment written in a macro.
2405         if (IntegerLiteral *IE =
2406               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2407           if (IE->getValue() == 0)
2408             return false;
2409         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2410       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2411       case BO_LAnd:
2412       case BO_LOr:
2413         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2414             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2415           return false;
2416         break;
2417     }
2418     if (BO->isAssignmentOp())
2419       return false;
2420     WarnE = this;
2421     Loc = BO->getOperatorLoc();
2422     R1 = BO->getLHS()->getSourceRange();
2423     R2 = BO->getRHS()->getSourceRange();
2424     return true;
2425   }
2426   case CompoundAssignOperatorClass:
2427   case VAArgExprClass:
2428   case AtomicExprClass:
2429     return false;
2430 
2431   case ConditionalOperatorClass: {
2432     // If only one of the LHS or RHS is a warning, the operator might
2433     // be being used for control flow. Only warn if both the LHS and
2434     // RHS are warnings.
2435     const auto *Exp = cast<ConditionalOperator>(this);
2436     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2437            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2438   }
2439   case BinaryConditionalOperatorClass: {
2440     const auto *Exp = cast<BinaryConditionalOperator>(this);
2441     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2442   }
2443 
2444   case MemberExprClass:
2445     WarnE = this;
2446     Loc = cast<MemberExpr>(this)->getMemberLoc();
2447     R1 = SourceRange(Loc, Loc);
2448     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2449     return true;
2450 
2451   case ArraySubscriptExprClass:
2452     WarnE = this;
2453     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2454     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2455     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2456     return true;
2457 
2458   case CXXOperatorCallExprClass: {
2459     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2460     // overloads as there is no reasonable way to define these such that they
2461     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2462     // warning: operators == and != are commonly typo'ed, and so warning on them
2463     // provides additional value as well. If this list is updated,
2464     // DiagnoseUnusedComparison should be as well.
2465     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2466     switch (Op->getOperator()) {
2467     default:
2468       break;
2469     case OO_EqualEqual:
2470     case OO_ExclaimEqual:
2471     case OO_Less:
2472     case OO_Greater:
2473     case OO_GreaterEqual:
2474     case OO_LessEqual:
2475       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2476           Op->getCallReturnType(Ctx)->isVoidType())
2477         break;
2478       WarnE = this;
2479       Loc = Op->getOperatorLoc();
2480       R1 = Op->getSourceRange();
2481       return true;
2482     }
2483 
2484     // Fallthrough for generic call handling.
2485     LLVM_FALLTHROUGH;
2486   }
2487   case CallExprClass:
2488   case CXXMemberCallExprClass:
2489   case UserDefinedLiteralClass: {
2490     // If this is a direct call, get the callee.
2491     const CallExpr *CE = cast<CallExpr>(this);
2492     if (const Decl *FD = CE->getCalleeDecl()) {
2493       // If the callee has attribute pure, const, or warn_unused_result, warn
2494       // about it. void foo() { strlen("bar"); } should warn.
2495       //
2496       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2497       // updated to match for QoI.
2498       if (CE->hasUnusedResultAttr(Ctx) ||
2499           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2500         WarnE = this;
2501         Loc = CE->getCallee()->getBeginLoc();
2502         R1 = CE->getCallee()->getSourceRange();
2503 
2504         if (unsigned NumArgs = CE->getNumArgs())
2505           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2506                            CE->getArg(NumArgs - 1)->getEndLoc());
2507         return true;
2508       }
2509     }
2510     return false;
2511   }
2512 
2513   // If we don't know precisely what we're looking at, let's not warn.
2514   case UnresolvedLookupExprClass:
2515   case CXXUnresolvedConstructExprClass:
2516   case RecoveryExprClass:
2517     return false;
2518 
2519   case CXXTemporaryObjectExprClass:
2520   case CXXConstructExprClass: {
2521     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2522       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2523       if (Type->hasAttr<WarnUnusedAttr>() ||
2524           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2525         WarnE = this;
2526         Loc = getBeginLoc();
2527         R1 = getSourceRange();
2528         return true;
2529       }
2530     }
2531 
2532     const auto *CE = cast<CXXConstructExpr>(this);
2533     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2534       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2535       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2536         WarnE = this;
2537         Loc = getBeginLoc();
2538         R1 = getSourceRange();
2539 
2540         if (unsigned NumArgs = CE->getNumArgs())
2541           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2542                            CE->getArg(NumArgs - 1)->getEndLoc());
2543         return true;
2544       }
2545     }
2546 
2547     return false;
2548   }
2549 
2550   case ObjCMessageExprClass: {
2551     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2552     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2553         ME->isInstanceMessage() &&
2554         !ME->getType()->isVoidType() &&
2555         ME->getMethodFamily() == OMF_init) {
2556       WarnE = this;
2557       Loc = getExprLoc();
2558       R1 = ME->getSourceRange();
2559       return true;
2560     }
2561 
2562     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2563       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2564         WarnE = this;
2565         Loc = getExprLoc();
2566         return true;
2567       }
2568 
2569     return false;
2570   }
2571 
2572   case ObjCPropertyRefExprClass:
2573     WarnE = this;
2574     Loc = getExprLoc();
2575     R1 = getSourceRange();
2576     return true;
2577 
2578   case PseudoObjectExprClass: {
2579     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2580 
2581     // Only complain about things that have the form of a getter.
2582     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2583         isa<BinaryOperator>(PO->getSyntacticForm()))
2584       return false;
2585 
2586     WarnE = this;
2587     Loc = getExprLoc();
2588     R1 = getSourceRange();
2589     return true;
2590   }
2591 
2592   case StmtExprClass: {
2593     // Statement exprs don't logically have side effects themselves, but are
2594     // sometimes used in macros in ways that give them a type that is unused.
2595     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2596     // however, if the result of the stmt expr is dead, we don't want to emit a
2597     // warning.
2598     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2599     if (!CS->body_empty()) {
2600       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2601         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2602       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2603         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2604           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2605     }
2606 
2607     if (getType()->isVoidType())
2608       return false;
2609     WarnE = this;
2610     Loc = cast<StmtExpr>(this)->getLParenLoc();
2611     R1 = getSourceRange();
2612     return true;
2613   }
2614   case CXXFunctionalCastExprClass:
2615   case CStyleCastExprClass: {
2616     // Ignore an explicit cast to void, except in C++98 if the operand is a
2617     // volatile glvalue for which we would trigger an implicit read in any
2618     // other language mode. (Such an implicit read always happens as part of
2619     // the lvalue conversion in C, and happens in C++ for expressions of all
2620     // forms where it seems likely the user intended to trigger a volatile
2621     // load.)
2622     const CastExpr *CE = cast<CastExpr>(this);
2623     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2624     if (CE->getCastKind() == CK_ToVoid) {
2625       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2626           SubE->isReadIfDiscardedInCPlusPlus11()) {
2627         // Suppress the "unused value" warning for idiomatic usage of
2628         // '(void)var;' used to suppress "unused variable" warnings.
2629         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2630           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2631             if (!VD->isExternallyVisible())
2632               return false;
2633 
2634         // The lvalue-to-rvalue conversion would have no effect for an array.
2635         // It's implausible that the programmer expected this to result in a
2636         // volatile array load, so don't warn.
2637         if (SubE->getType()->isArrayType())
2638           return false;
2639 
2640         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2641       }
2642       return false;
2643     }
2644 
2645     // If this is a cast to a constructor conversion, check the operand.
2646     // Otherwise, the result of the cast is unused.
2647     if (CE->getCastKind() == CK_ConstructorConversion)
2648       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2649 
2650     WarnE = this;
2651     if (const CXXFunctionalCastExpr *CXXCE =
2652             dyn_cast<CXXFunctionalCastExpr>(this)) {
2653       Loc = CXXCE->getBeginLoc();
2654       R1 = CXXCE->getSubExpr()->getSourceRange();
2655     } else {
2656       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2657       Loc = CStyleCE->getLParenLoc();
2658       R1 = CStyleCE->getSubExpr()->getSourceRange();
2659     }
2660     return true;
2661   }
2662   case ImplicitCastExprClass: {
2663     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2664 
2665     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2666     if (ICE->getCastKind() == CK_LValueToRValue &&
2667         ICE->getSubExpr()->getType().isVolatileQualified())
2668       return false;
2669 
2670     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2671   }
2672   case CXXDefaultArgExprClass:
2673     return (cast<CXXDefaultArgExpr>(this)
2674             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2675   case CXXDefaultInitExprClass:
2676     return (cast<CXXDefaultInitExpr>(this)
2677             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2678 
2679   case CXXNewExprClass:
2680     // FIXME: In theory, there might be new expressions that don't have side
2681     // effects (e.g. a placement new with an uninitialized POD).
2682   case CXXDeleteExprClass:
2683     return false;
2684   case MaterializeTemporaryExprClass:
2685     return cast<MaterializeTemporaryExpr>(this)
2686         ->getSubExpr()
2687         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2688   case CXXBindTemporaryExprClass:
2689     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2690                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2691   case ExprWithCleanupsClass:
2692     return cast<ExprWithCleanups>(this)->getSubExpr()
2693                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2694   }
2695 }
2696 
2697 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2698 /// returns true, if it is; false otherwise.
2699 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2700   const Expr *E = IgnoreParens();
2701   switch (E->getStmtClass()) {
2702   default:
2703     return false;
2704   case ObjCIvarRefExprClass:
2705     return true;
2706   case Expr::UnaryOperatorClass:
2707     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2708   case ImplicitCastExprClass:
2709     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2710   case MaterializeTemporaryExprClass:
2711     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2712         Ctx);
2713   case CStyleCastExprClass:
2714     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2715   case DeclRefExprClass: {
2716     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2717 
2718     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2719       if (VD->hasGlobalStorage())
2720         return true;
2721       QualType T = VD->getType();
2722       // dereferencing to a  pointer is always a gc'able candidate,
2723       // unless it is __weak.
2724       return T->isPointerType() &&
2725              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2726     }
2727     return false;
2728   }
2729   case MemberExprClass: {
2730     const MemberExpr *M = cast<MemberExpr>(E);
2731     return M->getBase()->isOBJCGCCandidate(Ctx);
2732   }
2733   case ArraySubscriptExprClass:
2734     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2735   }
2736 }
2737 
2738 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2739   if (isTypeDependent())
2740     return false;
2741   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2742 }
2743 
2744 QualType Expr::findBoundMemberType(const Expr *expr) {
2745   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2746 
2747   // Bound member expressions are always one of these possibilities:
2748   //   x->m      x.m      x->*y      x.*y
2749   // (possibly parenthesized)
2750 
2751   expr = expr->IgnoreParens();
2752   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2753     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2754     return mem->getMemberDecl()->getType();
2755   }
2756 
2757   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2758     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2759                       ->getPointeeType();
2760     assert(type->isFunctionType());
2761     return type;
2762   }
2763 
2764   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2765   return QualType();
2766 }
2767 
2768 static Expr *IgnoreImpCastsSingleStep(Expr *E) {
2769   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2770     return ICE->getSubExpr();
2771 
2772   if (auto *FE = dyn_cast<FullExpr>(E))
2773     return FE->getSubExpr();
2774 
2775   return E;
2776 }
2777 
2778 static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
2779   // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
2780   // addition to what IgnoreImpCasts() skips to account for the current
2781   // behaviour of IgnoreParenImpCasts().
2782   Expr *SubE = IgnoreImpCastsSingleStep(E);
2783   if (SubE != E)
2784     return SubE;
2785 
2786   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2787     return MTE->getSubExpr();
2788 
2789   if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2790     return NTTP->getReplacement();
2791 
2792   return E;
2793 }
2794 
2795 static Expr *IgnoreCastsSingleStep(Expr *E) {
2796   if (auto *CE = dyn_cast<CastExpr>(E))
2797     return CE->getSubExpr();
2798 
2799   if (auto *FE = dyn_cast<FullExpr>(E))
2800     return FE->getSubExpr();
2801 
2802   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2803     return MTE->getSubExpr();
2804 
2805   if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2806     return NTTP->getReplacement();
2807 
2808   return E;
2809 }
2810 
2811 static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
2812   // Skip what IgnoreCastsSingleStep skips, except that only
2813   // lvalue-to-rvalue casts are skipped.
2814   if (auto *CE = dyn_cast<CastExpr>(E))
2815     if (CE->getCastKind() != CK_LValueToRValue)
2816       return E;
2817 
2818   return IgnoreCastsSingleStep(E);
2819 }
2820 
2821 static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
2822   if (auto *CE = dyn_cast<CastExpr>(E))
2823     if (CE->getCastKind() == CK_DerivedToBase ||
2824         CE->getCastKind() == CK_UncheckedDerivedToBase ||
2825         CE->getCastKind() == CK_NoOp)
2826       return CE->getSubExpr();
2827 
2828   return E;
2829 }
2830 
2831 static Expr *IgnoreImplicitSingleStep(Expr *E) {
2832   Expr *SubE = IgnoreImpCastsSingleStep(E);
2833   if (SubE != E)
2834     return SubE;
2835 
2836   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2837     return MTE->getSubExpr();
2838 
2839   if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2840     return BTE->getSubExpr();
2841 
2842   return E;
2843 }
2844 
2845 static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) {
2846   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2847     return ICE->getSubExprAsWritten();
2848 
2849   return IgnoreImplicitSingleStep(E);
2850 }
2851 
2852 static Expr *IgnoreParensOnlySingleStep(Expr *E) {
2853   if (auto *PE = dyn_cast<ParenExpr>(E))
2854     return PE->getSubExpr();
2855   return E;
2856 }
2857 
2858 static Expr *IgnoreParensSingleStep(Expr *E) {
2859   if (auto *PE = dyn_cast<ParenExpr>(E))
2860     return PE->getSubExpr();
2861 
2862   if (auto *UO = dyn_cast<UnaryOperator>(E)) {
2863     if (UO->getOpcode() == UO_Extension)
2864       return UO->getSubExpr();
2865   }
2866 
2867   else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
2868     if (!GSE->isResultDependent())
2869       return GSE->getResultExpr();
2870   }
2871 
2872   else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
2873     if (!CE->isConditionDependent())
2874       return CE->getChosenSubExpr();
2875   }
2876 
2877   return E;
2878 }
2879 
2880 static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
2881   if (auto *CE = dyn_cast<CastExpr>(E)) {
2882     // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2883     // ptr<->int casts of the same width. We also ignore all identity casts.
2884     Expr *SubExpr = CE->getSubExpr();
2885     bool IsIdentityCast =
2886         Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2887     bool IsSameWidthCast =
2888         (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
2889         (SubExpr->getType()->isPointerType() ||
2890          SubExpr->getType()->isIntegralType(Ctx)) &&
2891         (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
2892 
2893     if (IsIdentityCast || IsSameWidthCast)
2894       return SubExpr;
2895   }
2896 
2897   else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2898     return NTTP->getReplacement();
2899 
2900   return E;
2901 }
2902 
2903 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
2904 template <typename FnTy, typename... FnTys>
2905 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
2906   return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
2907 }
2908 
2909 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
2910 /// Recursively apply each of the functions to E until reaching a fixed point.
2911 /// Note that a null E is valid; in this case nothing is done.
2912 template <typename... FnTys>
2913 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
2914   Expr *LastE = nullptr;
2915   while (E != LastE) {
2916     LastE = E;
2917     E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
2918   }
2919   return E;
2920 }
2921 
2922 Expr *Expr::IgnoreImpCasts() {
2923   return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
2924 }
2925 
2926 Expr *Expr::IgnoreCasts() {
2927   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2928 }
2929 
2930 Expr *Expr::IgnoreImplicit() {
2931   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2932 }
2933 
2934 Expr *Expr::IgnoreImplicitAsWritten() {
2935   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
2936 }
2937 
2938 Expr *Expr::IgnoreParens() {
2939   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2940 }
2941 
2942 Expr *Expr::IgnoreParenImpCasts() {
2943   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2944                          IgnoreImpCastsExtraSingleStep);
2945 }
2946 
2947 Expr *Expr::IgnoreParenCasts() {
2948   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
2949 }
2950 
2951 Expr *Expr::IgnoreConversionOperator() {
2952   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2953     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2954       return MCE->getImplicitObjectArgument();
2955   }
2956   return this;
2957 }
2958 
2959 Expr *Expr::IgnoreParenLValueCasts() {
2960   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2961                          IgnoreLValueCastsSingleStep);
2962 }
2963 
2964 Expr *Expr::ignoreParenBaseCasts() {
2965   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2966                          IgnoreBaseCastsSingleStep);
2967 }
2968 
2969 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
2970   return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
2971     return IgnoreNoopCastsSingleStep(Ctx, E);
2972   });
2973 }
2974 
2975 Expr *Expr::IgnoreUnlessSpelledInSource() {
2976   Expr *E = this;
2977 
2978   Expr *LastE = nullptr;
2979   while (E != LastE) {
2980     LastE = E;
2981     E = IgnoreExprNodes(E, IgnoreImplicitSingleStep,
2982                         IgnoreImpCastsExtraSingleStep,
2983                         IgnoreParensOnlySingleStep);
2984 
2985     auto SR = E->getSourceRange();
2986 
2987     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
2988       auto NumArgs = C->getNumArgs();
2989       if (NumArgs == 1 ||
2990           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
2991         Expr *A = C->getArg(0);
2992         if (A->getSourceRange() == SR || !isa<CXXTemporaryObjectExpr>(C))
2993           E = A;
2994       }
2995     }
2996 
2997     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
2998       Expr *ExprNode = C->getImplicitObjectArgument();
2999       if (ExprNode->getSourceRange() == SR) {
3000         E = ExprNode;
3001         continue;
3002       }
3003       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3004         if (PE->getSourceRange() == C->getSourceRange()) {
3005           E = PE;
3006           continue;
3007         }
3008       }
3009       ExprNode = ExprNode->IgnoreParenImpCasts();
3010       if (ExprNode->getSourceRange() == SR)
3011         E = ExprNode;
3012     }
3013   }
3014 
3015   return E;
3016 }
3017 
3018 bool Expr::isDefaultArgument() const {
3019   const Expr *E = this;
3020   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3021     E = M->getSubExpr();
3022 
3023   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3024     E = ICE->getSubExprAsWritten();
3025 
3026   return isa<CXXDefaultArgExpr>(E);
3027 }
3028 
3029 /// Skip over any no-op casts and any temporary-binding
3030 /// expressions.
3031 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3032   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3033     E = M->getSubExpr();
3034 
3035   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3036     if (ICE->getCastKind() == CK_NoOp)
3037       E = ICE->getSubExpr();
3038     else
3039       break;
3040   }
3041 
3042   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3043     E = BE->getSubExpr();
3044 
3045   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3046     if (ICE->getCastKind() == CK_NoOp)
3047       E = ICE->getSubExpr();
3048     else
3049       break;
3050   }
3051 
3052   return E->IgnoreParens();
3053 }
3054 
3055 /// isTemporaryObject - Determines if this expression produces a
3056 /// temporary of the given class type.
3057 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3058   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3059     return false;
3060 
3061   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3062 
3063   // Temporaries are by definition pr-values of class type.
3064   if (!E->Classify(C).isPRValue()) {
3065     // In this context, property reference is a message call and is pr-value.
3066     if (!isa<ObjCPropertyRefExpr>(E))
3067       return false;
3068   }
3069 
3070   // Black-list a few cases which yield pr-values of class type that don't
3071   // refer to temporaries of that type:
3072 
3073   // - implicit derived-to-base conversions
3074   if (isa<ImplicitCastExpr>(E)) {
3075     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3076     case CK_DerivedToBase:
3077     case CK_UncheckedDerivedToBase:
3078       return false;
3079     default:
3080       break;
3081     }
3082   }
3083 
3084   // - member expressions (all)
3085   if (isa<MemberExpr>(E))
3086     return false;
3087 
3088   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3089     if (BO->isPtrMemOp())
3090       return false;
3091 
3092   // - opaque values (all)
3093   if (isa<OpaqueValueExpr>(E))
3094     return false;
3095 
3096   return true;
3097 }
3098 
3099 bool Expr::isImplicitCXXThis() const {
3100   const Expr *E = this;
3101 
3102   // Strip away parentheses and casts we don't care about.
3103   while (true) {
3104     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3105       E = Paren->getSubExpr();
3106       continue;
3107     }
3108 
3109     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3110       if (ICE->getCastKind() == CK_NoOp ||
3111           ICE->getCastKind() == CK_LValueToRValue ||
3112           ICE->getCastKind() == CK_DerivedToBase ||
3113           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3114         E = ICE->getSubExpr();
3115         continue;
3116       }
3117     }
3118 
3119     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3120       if (UnOp->getOpcode() == UO_Extension) {
3121         E = UnOp->getSubExpr();
3122         continue;
3123       }
3124     }
3125 
3126     if (const MaterializeTemporaryExpr *M
3127                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3128       E = M->getSubExpr();
3129       continue;
3130     }
3131 
3132     break;
3133   }
3134 
3135   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3136     return This->isImplicit();
3137 
3138   return false;
3139 }
3140 
3141 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3142 /// in Exprs is type-dependent.
3143 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3144   for (unsigned I = 0; I < Exprs.size(); ++I)
3145     if (Exprs[I]->isTypeDependent())
3146       return true;
3147 
3148   return false;
3149 }
3150 
3151 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3152                                  const Expr **Culprit) const {
3153   assert(!isValueDependent() &&
3154          "Expression evaluator can't be called on a dependent expression.");
3155 
3156   // This function is attempting whether an expression is an initializer
3157   // which can be evaluated at compile-time. It very closely parallels
3158   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3159   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3160   // to isEvaluatable most of the time.
3161   //
3162   // If we ever capture reference-binding directly in the AST, we can
3163   // kill the second parameter.
3164 
3165   if (IsForRef) {
3166     EvalResult Result;
3167     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3168       return true;
3169     if (Culprit)
3170       *Culprit = this;
3171     return false;
3172   }
3173 
3174   switch (getStmtClass()) {
3175   default: break;
3176   case Stmt::ExprWithCleanupsClass:
3177     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3178         Ctx, IsForRef, Culprit);
3179   case StringLiteralClass:
3180   case ObjCEncodeExprClass:
3181     return true;
3182   case CXXTemporaryObjectExprClass:
3183   case CXXConstructExprClass: {
3184     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3185 
3186     if (CE->getConstructor()->isTrivial() &&
3187         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3188       // Trivial default constructor
3189       if (!CE->getNumArgs()) return true;
3190 
3191       // Trivial copy constructor
3192       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3193       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3194     }
3195 
3196     break;
3197   }
3198   case ConstantExprClass: {
3199     // FIXME: We should be able to return "true" here, but it can lead to extra
3200     // error messages. E.g. in Sema/array-init.c.
3201     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3202     return Exp->isConstantInitializer(Ctx, false, Culprit);
3203   }
3204   case CompoundLiteralExprClass: {
3205     // This handles gcc's extension that allows global initializers like
3206     // "struct x {int x;} x = (struct x) {};".
3207     // FIXME: This accepts other cases it shouldn't!
3208     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3209     return Exp->isConstantInitializer(Ctx, false, Culprit);
3210   }
3211   case DesignatedInitUpdateExprClass: {
3212     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3213     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3214            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3215   }
3216   case InitListExprClass: {
3217     const InitListExpr *ILE = cast<InitListExpr>(this);
3218     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3219     if (ILE->getType()->isArrayType()) {
3220       unsigned numInits = ILE->getNumInits();
3221       for (unsigned i = 0; i < numInits; i++) {
3222         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3223           return false;
3224       }
3225       return true;
3226     }
3227 
3228     if (ILE->getType()->isRecordType()) {
3229       unsigned ElementNo = 0;
3230       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3231       for (const auto *Field : RD->fields()) {
3232         // If this is a union, skip all the fields that aren't being initialized.
3233         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3234           continue;
3235 
3236         // Don't emit anonymous bitfields, they just affect layout.
3237         if (Field->isUnnamedBitfield())
3238           continue;
3239 
3240         if (ElementNo < ILE->getNumInits()) {
3241           const Expr *Elt = ILE->getInit(ElementNo++);
3242           if (Field->isBitField()) {
3243             // Bitfields have to evaluate to an integer.
3244             EvalResult Result;
3245             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3246               if (Culprit)
3247                 *Culprit = Elt;
3248               return false;
3249             }
3250           } else {
3251             bool RefType = Field->getType()->isReferenceType();
3252             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3253               return false;
3254           }
3255         }
3256       }
3257       return true;
3258     }
3259 
3260     break;
3261   }
3262   case ImplicitValueInitExprClass:
3263   case NoInitExprClass:
3264     return true;
3265   case ParenExprClass:
3266     return cast<ParenExpr>(this)->getSubExpr()
3267       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3268   case GenericSelectionExprClass:
3269     return cast<GenericSelectionExpr>(this)->getResultExpr()
3270       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3271   case ChooseExprClass:
3272     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3273       if (Culprit)
3274         *Culprit = this;
3275       return false;
3276     }
3277     return cast<ChooseExpr>(this)->getChosenSubExpr()
3278       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3279   case UnaryOperatorClass: {
3280     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3281     if (Exp->getOpcode() == UO_Extension)
3282       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3283     break;
3284   }
3285   case CXXFunctionalCastExprClass:
3286   case CXXStaticCastExprClass:
3287   case ImplicitCastExprClass:
3288   case CStyleCastExprClass:
3289   case ObjCBridgedCastExprClass:
3290   case CXXDynamicCastExprClass:
3291   case CXXReinterpretCastExprClass:
3292   case CXXAddrspaceCastExprClass:
3293   case CXXConstCastExprClass: {
3294     const CastExpr *CE = cast<CastExpr>(this);
3295 
3296     // Handle misc casts we want to ignore.
3297     if (CE->getCastKind() == CK_NoOp ||
3298         CE->getCastKind() == CK_LValueToRValue ||
3299         CE->getCastKind() == CK_ToUnion ||
3300         CE->getCastKind() == CK_ConstructorConversion ||
3301         CE->getCastKind() == CK_NonAtomicToAtomic ||
3302         CE->getCastKind() == CK_AtomicToNonAtomic ||
3303         CE->getCastKind() == CK_IntToOCLSampler)
3304       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3305 
3306     break;
3307   }
3308   case MaterializeTemporaryExprClass:
3309     return cast<MaterializeTemporaryExpr>(this)
3310         ->getSubExpr()
3311         ->isConstantInitializer(Ctx, false, Culprit);
3312 
3313   case SubstNonTypeTemplateParmExprClass:
3314     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3315       ->isConstantInitializer(Ctx, false, Culprit);
3316   case CXXDefaultArgExprClass:
3317     return cast<CXXDefaultArgExpr>(this)->getExpr()
3318       ->isConstantInitializer(Ctx, false, Culprit);
3319   case CXXDefaultInitExprClass:
3320     return cast<CXXDefaultInitExpr>(this)->getExpr()
3321       ->isConstantInitializer(Ctx, false, Culprit);
3322   }
3323   // Allow certain forms of UB in constant initializers: signed integer
3324   // overflow and floating-point division by zero. We'll give a warning on
3325   // these, but they're common enough that we have to accept them.
3326   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3327     return true;
3328   if (Culprit)
3329     *Culprit = this;
3330   return false;
3331 }
3332 
3333 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3334   const FunctionDecl* FD = getDirectCallee();
3335   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3336               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3337     return false;
3338 
3339   const Expr* Arg = getArg(0);
3340   bool ArgVal;
3341   return !Arg->isValueDependent() &&
3342          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3343 }
3344 
3345 namespace {
3346   /// Look for any side effects within a Stmt.
3347   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3348     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3349     const bool IncludePossibleEffects;
3350     bool HasSideEffects;
3351 
3352   public:
3353     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3354       : Inherited(Context),
3355         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3356 
3357     bool hasSideEffects() const { return HasSideEffects; }
3358 
3359     void VisitDecl(const Decl *D) {
3360       if (!D)
3361         return;
3362 
3363       // We assume the caller checks subexpressions (eg, the initializer, VLA
3364       // bounds) for side-effects on our behalf.
3365       if (auto *VD = dyn_cast<VarDecl>(D)) {
3366         // Registering a destructor is a side-effect.
3367         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3368             VD->needsDestruction(Context))
3369           HasSideEffects = true;
3370       }
3371     }
3372 
3373     void VisitDeclStmt(const DeclStmt *DS) {
3374       for (auto *D : DS->decls())
3375         VisitDecl(D);
3376       Inherited::VisitDeclStmt(DS);
3377     }
3378 
3379     void VisitExpr(const Expr *E) {
3380       if (!HasSideEffects &&
3381           E->HasSideEffects(Context, IncludePossibleEffects))
3382         HasSideEffects = true;
3383     }
3384   };
3385 }
3386 
3387 bool Expr::HasSideEffects(const ASTContext &Ctx,
3388                           bool IncludePossibleEffects) const {
3389   // In circumstances where we care about definite side effects instead of
3390   // potential side effects, we want to ignore expressions that are part of a
3391   // macro expansion as a potential side effect.
3392   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3393     return false;
3394 
3395   if (isInstantiationDependent())
3396     return IncludePossibleEffects;
3397 
3398   switch (getStmtClass()) {
3399   case NoStmtClass:
3400   #define ABSTRACT_STMT(Type)
3401   #define STMT(Type, Base) case Type##Class:
3402   #define EXPR(Type, Base)
3403   #include "clang/AST/StmtNodes.inc"
3404     llvm_unreachable("unexpected Expr kind");
3405 
3406   case DependentScopeDeclRefExprClass:
3407   case CXXUnresolvedConstructExprClass:
3408   case CXXDependentScopeMemberExprClass:
3409   case UnresolvedLookupExprClass:
3410   case UnresolvedMemberExprClass:
3411   case PackExpansionExprClass:
3412   case SubstNonTypeTemplateParmPackExprClass:
3413   case FunctionParmPackExprClass:
3414   case TypoExprClass:
3415   case RecoveryExprClass:
3416   case CXXFoldExprClass:
3417     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3418 
3419   case DeclRefExprClass:
3420   case ObjCIvarRefExprClass:
3421   case PredefinedExprClass:
3422   case IntegerLiteralClass:
3423   case FixedPointLiteralClass:
3424   case FloatingLiteralClass:
3425   case ImaginaryLiteralClass:
3426   case StringLiteralClass:
3427   case CharacterLiteralClass:
3428   case OffsetOfExprClass:
3429   case ImplicitValueInitExprClass:
3430   case UnaryExprOrTypeTraitExprClass:
3431   case AddrLabelExprClass:
3432   case GNUNullExprClass:
3433   case ArrayInitIndexExprClass:
3434   case NoInitExprClass:
3435   case CXXBoolLiteralExprClass:
3436   case CXXNullPtrLiteralExprClass:
3437   case CXXThisExprClass:
3438   case CXXScalarValueInitExprClass:
3439   case TypeTraitExprClass:
3440   case ArrayTypeTraitExprClass:
3441   case ExpressionTraitExprClass:
3442   case CXXNoexceptExprClass:
3443   case SizeOfPackExprClass:
3444   case ObjCStringLiteralClass:
3445   case ObjCEncodeExprClass:
3446   case ObjCBoolLiteralExprClass:
3447   case ObjCAvailabilityCheckExprClass:
3448   case CXXUuidofExprClass:
3449   case OpaqueValueExprClass:
3450   case SourceLocExprClass:
3451   case ConceptSpecializationExprClass:
3452   case RequiresExprClass:
3453     // These never have a side-effect.
3454     return false;
3455 
3456   case ConstantExprClass:
3457     // FIXME: Move this into the "return false;" block above.
3458     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3459         Ctx, IncludePossibleEffects);
3460 
3461   case CallExprClass:
3462   case CXXOperatorCallExprClass:
3463   case CXXMemberCallExprClass:
3464   case CUDAKernelCallExprClass:
3465   case UserDefinedLiteralClass: {
3466     // We don't know a call definitely has side effects, except for calls
3467     // to pure/const functions that definitely don't.
3468     // If the call itself is considered side-effect free, check the operands.
3469     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3470     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3471     if (IsPure || !IncludePossibleEffects)
3472       break;
3473     return true;
3474   }
3475 
3476   case BlockExprClass:
3477   case CXXBindTemporaryExprClass:
3478     if (!IncludePossibleEffects)
3479       break;
3480     return true;
3481 
3482   case MSPropertyRefExprClass:
3483   case MSPropertySubscriptExprClass:
3484   case CompoundAssignOperatorClass:
3485   case VAArgExprClass:
3486   case AtomicExprClass:
3487   case CXXThrowExprClass:
3488   case CXXNewExprClass:
3489   case CXXDeleteExprClass:
3490   case CoawaitExprClass:
3491   case DependentCoawaitExprClass:
3492   case CoyieldExprClass:
3493     // These always have a side-effect.
3494     return true;
3495 
3496   case StmtExprClass: {
3497     // StmtExprs have a side-effect if any substatement does.
3498     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3499     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3500     return Finder.hasSideEffects();
3501   }
3502 
3503   case ExprWithCleanupsClass:
3504     if (IncludePossibleEffects)
3505       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3506         return true;
3507     break;
3508 
3509   case ParenExprClass:
3510   case ArraySubscriptExprClass:
3511   case MatrixSubscriptExprClass:
3512   case OMPArraySectionExprClass:
3513   case OMPArrayShapingExprClass:
3514   case OMPIteratorExprClass:
3515   case MemberExprClass:
3516   case ConditionalOperatorClass:
3517   case BinaryConditionalOperatorClass:
3518   case CompoundLiteralExprClass:
3519   case ExtVectorElementExprClass:
3520   case DesignatedInitExprClass:
3521   case DesignatedInitUpdateExprClass:
3522   case ArrayInitLoopExprClass:
3523   case ParenListExprClass:
3524   case CXXPseudoDestructorExprClass:
3525   case CXXRewrittenBinaryOperatorClass:
3526   case CXXStdInitializerListExprClass:
3527   case SubstNonTypeTemplateParmExprClass:
3528   case MaterializeTemporaryExprClass:
3529   case ShuffleVectorExprClass:
3530   case ConvertVectorExprClass:
3531   case AsTypeExprClass:
3532     // These have a side-effect if any subexpression does.
3533     break;
3534 
3535   case UnaryOperatorClass:
3536     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3537       return true;
3538     break;
3539 
3540   case BinaryOperatorClass:
3541     if (cast<BinaryOperator>(this)->isAssignmentOp())
3542       return true;
3543     break;
3544 
3545   case InitListExprClass:
3546     // FIXME: The children for an InitListExpr doesn't include the array filler.
3547     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3548       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3549         return true;
3550     break;
3551 
3552   case GenericSelectionExprClass:
3553     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3554         HasSideEffects(Ctx, IncludePossibleEffects);
3555 
3556   case ChooseExprClass:
3557     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3558         Ctx, IncludePossibleEffects);
3559 
3560   case CXXDefaultArgExprClass:
3561     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3562         Ctx, IncludePossibleEffects);
3563 
3564   case CXXDefaultInitExprClass: {
3565     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3566     if (const Expr *E = FD->getInClassInitializer())
3567       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3568     // If we've not yet parsed the initializer, assume it has side-effects.
3569     return true;
3570   }
3571 
3572   case CXXDynamicCastExprClass: {
3573     // A dynamic_cast expression has side-effects if it can throw.
3574     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3575     if (DCE->getTypeAsWritten()->isReferenceType() &&
3576         DCE->getCastKind() == CK_Dynamic)
3577       return true;
3578     }
3579     LLVM_FALLTHROUGH;
3580   case ImplicitCastExprClass:
3581   case CStyleCastExprClass:
3582   case CXXStaticCastExprClass:
3583   case CXXReinterpretCastExprClass:
3584   case CXXConstCastExprClass:
3585   case CXXAddrspaceCastExprClass:
3586   case CXXFunctionalCastExprClass:
3587   case BuiltinBitCastExprClass: {
3588     // While volatile reads are side-effecting in both C and C++, we treat them
3589     // as having possible (not definite) side-effects. This allows idiomatic
3590     // code to behave without warning, such as sizeof(*v) for a volatile-
3591     // qualified pointer.
3592     if (!IncludePossibleEffects)
3593       break;
3594 
3595     const CastExpr *CE = cast<CastExpr>(this);
3596     if (CE->getCastKind() == CK_LValueToRValue &&
3597         CE->getSubExpr()->getType().isVolatileQualified())
3598       return true;
3599     break;
3600   }
3601 
3602   case CXXTypeidExprClass:
3603     // typeid might throw if its subexpression is potentially-evaluated, so has
3604     // side-effects in that case whether or not its subexpression does.
3605     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3606 
3607   case CXXConstructExprClass:
3608   case CXXTemporaryObjectExprClass: {
3609     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3610     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3611       return true;
3612     // A trivial constructor does not add any side-effects of its own. Just look
3613     // at its arguments.
3614     break;
3615   }
3616 
3617   case CXXInheritedCtorInitExprClass: {
3618     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3619     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3620       return true;
3621     break;
3622   }
3623 
3624   case LambdaExprClass: {
3625     const LambdaExpr *LE = cast<LambdaExpr>(this);
3626     for (Expr *E : LE->capture_inits())
3627       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3628         return true;
3629     return false;
3630   }
3631 
3632   case PseudoObjectExprClass: {
3633     // Only look for side-effects in the semantic form, and look past
3634     // OpaqueValueExpr bindings in that form.
3635     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3636     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3637                                                     E = PO->semantics_end();
3638          I != E; ++I) {
3639       const Expr *Subexpr = *I;
3640       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3641         Subexpr = OVE->getSourceExpr();
3642       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3643         return true;
3644     }
3645     return false;
3646   }
3647 
3648   case ObjCBoxedExprClass:
3649   case ObjCArrayLiteralClass:
3650   case ObjCDictionaryLiteralClass:
3651   case ObjCSelectorExprClass:
3652   case ObjCProtocolExprClass:
3653   case ObjCIsaExprClass:
3654   case ObjCIndirectCopyRestoreExprClass:
3655   case ObjCSubscriptRefExprClass:
3656   case ObjCBridgedCastExprClass:
3657   case ObjCMessageExprClass:
3658   case ObjCPropertyRefExprClass:
3659   // FIXME: Classify these cases better.
3660     if (IncludePossibleEffects)
3661       return true;
3662     break;
3663   }
3664 
3665   // Recurse to children.
3666   for (const Stmt *SubStmt : children())
3667     if (SubStmt &&
3668         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3669       return true;
3670 
3671   return false;
3672 }
3673 
3674 namespace {
3675   /// Look for a call to a non-trivial function within an expression.
3676   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3677   {
3678     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3679 
3680     bool NonTrivial;
3681 
3682   public:
3683     explicit NonTrivialCallFinder(const ASTContext &Context)
3684       : Inherited(Context), NonTrivial(false) { }
3685 
3686     bool hasNonTrivialCall() const { return NonTrivial; }
3687 
3688     void VisitCallExpr(const CallExpr *E) {
3689       if (const CXXMethodDecl *Method
3690           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3691         if (Method->isTrivial()) {
3692           // Recurse to children of the call.
3693           Inherited::VisitStmt(E);
3694           return;
3695         }
3696       }
3697 
3698       NonTrivial = true;
3699     }
3700 
3701     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3702       if (E->getConstructor()->isTrivial()) {
3703         // Recurse to children of the call.
3704         Inherited::VisitStmt(E);
3705         return;
3706       }
3707 
3708       NonTrivial = true;
3709     }
3710 
3711     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3712       if (E->getTemporary()->getDestructor()->isTrivial()) {
3713         Inherited::VisitStmt(E);
3714         return;
3715       }
3716 
3717       NonTrivial = true;
3718     }
3719   };
3720 }
3721 
3722 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3723   NonTrivialCallFinder Finder(Ctx);
3724   Finder.Visit(this);
3725   return Finder.hasNonTrivialCall();
3726 }
3727 
3728 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3729 /// pointer constant or not, as well as the specific kind of constant detected.
3730 /// Null pointer constants can be integer constant expressions with the
3731 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3732 /// (a GNU extension).
3733 Expr::NullPointerConstantKind
3734 Expr::isNullPointerConstant(ASTContext &Ctx,
3735                             NullPointerConstantValueDependence NPC) const {
3736   if (isValueDependent() &&
3737       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3738     switch (NPC) {
3739     case NPC_NeverValueDependent:
3740       llvm_unreachable("Unexpected value dependent expression!");
3741     case NPC_ValueDependentIsNull:
3742       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3743         return NPCK_ZeroExpression;
3744       else
3745         return NPCK_NotNull;
3746 
3747     case NPC_ValueDependentIsNotNull:
3748       return NPCK_NotNull;
3749     }
3750   }
3751 
3752   // Strip off a cast to void*, if it exists. Except in C++.
3753   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3754     if (!Ctx.getLangOpts().CPlusPlus) {
3755       // Check that it is a cast to void*.
3756       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3757         QualType Pointee = PT->getPointeeType();
3758         Qualifiers Qs = Pointee.getQualifiers();
3759         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3760         // has non-default address space it is not treated as nullptr.
3761         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3762         // since it cannot be assigned to a pointer to constant address space.
3763         if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3764              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3765             (Ctx.getLangOpts().OpenCL &&
3766              Ctx.getLangOpts().OpenCLVersion < 200 &&
3767              Pointee.getAddressSpace() == LangAS::opencl_private))
3768           Qs.removeAddressSpace();
3769 
3770         if (Pointee->isVoidType() && Qs.empty() && // to void*
3771             CE->getSubExpr()->getType()->isIntegerType()) // from int
3772           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3773       }
3774     }
3775   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3776     // Ignore the ImplicitCastExpr type entirely.
3777     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3778   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3779     // Accept ((void*)0) as a null pointer constant, as many other
3780     // implementations do.
3781     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3782   } else if (const GenericSelectionExpr *GE =
3783                dyn_cast<GenericSelectionExpr>(this)) {
3784     if (GE->isResultDependent())
3785       return NPCK_NotNull;
3786     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3787   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3788     if (CE->isConditionDependent())
3789       return NPCK_NotNull;
3790     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3791   } else if (const CXXDefaultArgExpr *DefaultArg
3792                = dyn_cast<CXXDefaultArgExpr>(this)) {
3793     // See through default argument expressions.
3794     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3795   } else if (const CXXDefaultInitExpr *DefaultInit
3796                = dyn_cast<CXXDefaultInitExpr>(this)) {
3797     // See through default initializer expressions.
3798     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3799   } else if (isa<GNUNullExpr>(this)) {
3800     // The GNU __null extension is always a null pointer constant.
3801     return NPCK_GNUNull;
3802   } else if (const MaterializeTemporaryExpr *M
3803                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3804     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3805   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3806     if (const Expr *Source = OVE->getSourceExpr())
3807       return Source->isNullPointerConstant(Ctx, NPC);
3808   }
3809 
3810   // C++11 nullptr_t is always a null pointer constant.
3811   if (getType()->isNullPtrType())
3812     return NPCK_CXX11_nullptr;
3813 
3814   if (const RecordType *UT = getType()->getAsUnionType())
3815     if (!Ctx.getLangOpts().CPlusPlus11 &&
3816         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3817       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3818         const Expr *InitExpr = CLE->getInitializer();
3819         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3820           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3821       }
3822   // This expression must be an integer type.
3823   if (!getType()->isIntegerType() ||
3824       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3825     return NPCK_NotNull;
3826 
3827   if (Ctx.getLangOpts().CPlusPlus11) {
3828     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3829     // value zero or a prvalue of type std::nullptr_t.
3830     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3831     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3832     if (Lit && !Lit->getValue())
3833       return NPCK_ZeroLiteral;
3834     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3835       return NPCK_NotNull;
3836   } else {
3837     // If we have an integer constant expression, we need to *evaluate* it and
3838     // test for the value 0.
3839     if (!isIntegerConstantExpr(Ctx))
3840       return NPCK_NotNull;
3841   }
3842 
3843   if (EvaluateKnownConstInt(Ctx) != 0)
3844     return NPCK_NotNull;
3845 
3846   if (isa<IntegerLiteral>(this))
3847     return NPCK_ZeroLiteral;
3848   return NPCK_ZeroExpression;
3849 }
3850 
3851 /// If this expression is an l-value for an Objective C
3852 /// property, find the underlying property reference expression.
3853 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3854   const Expr *E = this;
3855   while (true) {
3856     assert((E->getValueKind() == VK_LValue &&
3857             E->getObjectKind() == OK_ObjCProperty) &&
3858            "expression is not a property reference");
3859     E = E->IgnoreParenCasts();
3860     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3861       if (BO->getOpcode() == BO_Comma) {
3862         E = BO->getRHS();
3863         continue;
3864       }
3865     }
3866 
3867     break;
3868   }
3869 
3870   return cast<ObjCPropertyRefExpr>(E);
3871 }
3872 
3873 bool Expr::isObjCSelfExpr() const {
3874   const Expr *E = IgnoreParenImpCasts();
3875 
3876   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3877   if (!DRE)
3878     return false;
3879 
3880   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3881   if (!Param)
3882     return false;
3883 
3884   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3885   if (!M)
3886     return false;
3887 
3888   return M->getSelfDecl() == Param;
3889 }
3890 
3891 FieldDecl *Expr::getSourceBitField() {
3892   Expr *E = this->IgnoreParens();
3893 
3894   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3895     if (ICE->getCastKind() == CK_LValueToRValue ||
3896         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3897       E = ICE->getSubExpr()->IgnoreParens();
3898     else
3899       break;
3900   }
3901 
3902   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3903     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3904       if (Field->isBitField())
3905         return Field;
3906 
3907   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3908     FieldDecl *Ivar = IvarRef->getDecl();
3909     if (Ivar->isBitField())
3910       return Ivar;
3911   }
3912 
3913   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3914     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3915       if (Field->isBitField())
3916         return Field;
3917 
3918     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3919       if (Expr *E = BD->getBinding())
3920         return E->getSourceBitField();
3921   }
3922 
3923   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3924     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3925       return BinOp->getLHS()->getSourceBitField();
3926 
3927     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3928       return BinOp->getRHS()->getSourceBitField();
3929   }
3930 
3931   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3932     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3933       return UnOp->getSubExpr()->getSourceBitField();
3934 
3935   return nullptr;
3936 }
3937 
3938 bool Expr::refersToVectorElement() const {
3939   // FIXME: Why do we not just look at the ObjectKind here?
3940   const Expr *E = this->IgnoreParens();
3941 
3942   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3943     if (ICE->getValueKind() != VK_RValue &&
3944         ICE->getCastKind() == CK_NoOp)
3945       E = ICE->getSubExpr()->IgnoreParens();
3946     else
3947       break;
3948   }
3949 
3950   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3951     return ASE->getBase()->getType()->isVectorType();
3952 
3953   if (isa<ExtVectorElementExpr>(E))
3954     return true;
3955 
3956   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3957     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3958       if (auto *E = BD->getBinding())
3959         return E->refersToVectorElement();
3960 
3961   return false;
3962 }
3963 
3964 bool Expr::refersToGlobalRegisterVar() const {
3965   const Expr *E = this->IgnoreParenImpCasts();
3966 
3967   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3968     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3969       if (VD->getStorageClass() == SC_Register &&
3970           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3971         return true;
3972 
3973   return false;
3974 }
3975 
3976 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
3977   E1 = E1->IgnoreParens();
3978   E2 = E2->IgnoreParens();
3979 
3980   if (E1->getStmtClass() != E2->getStmtClass())
3981     return false;
3982 
3983   switch (E1->getStmtClass()) {
3984     default:
3985       return false;
3986     case CXXThisExprClass:
3987       return true;
3988     case DeclRefExprClass: {
3989       // DeclRefExpr without an ImplicitCastExpr can happen for integral
3990       // template parameters.
3991       const auto *DRE1 = cast<DeclRefExpr>(E1);
3992       const auto *DRE2 = cast<DeclRefExpr>(E2);
3993       return DRE1->isRValue() && DRE2->isRValue() &&
3994              DRE1->getDecl() == DRE2->getDecl();
3995     }
3996     case ImplicitCastExprClass: {
3997       // Peel off implicit casts.
3998       while (true) {
3999         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4000         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4001         if (!ICE1 || !ICE2)
4002           return false;
4003         if (ICE1->getCastKind() != ICE2->getCastKind())
4004           return false;
4005         E1 = ICE1->getSubExpr()->IgnoreParens();
4006         E2 = ICE2->getSubExpr()->IgnoreParens();
4007         // The final cast must be one of these types.
4008         if (ICE1->getCastKind() == CK_LValueToRValue ||
4009             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4010             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4011           break;
4012         }
4013       }
4014 
4015       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4016       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4017       if (DRE1 && DRE2)
4018         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4019 
4020       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4021       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4022       if (Ivar1 && Ivar2) {
4023         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4024                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4025       }
4026 
4027       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4028       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4029       if (Array1 && Array2) {
4030         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4031           return false;
4032 
4033         auto Idx1 = Array1->getIdx();
4034         auto Idx2 = Array2->getIdx();
4035         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4036         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4037         if (Integer1 && Integer2) {
4038           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4039                                         Integer2->getValue()))
4040             return false;
4041         } else {
4042           if (!isSameComparisonOperand(Idx1, Idx2))
4043             return false;
4044         }
4045 
4046         return true;
4047       }
4048 
4049       // Walk the MemberExpr chain.
4050       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4051         const auto *ME1 = cast<MemberExpr>(E1);
4052         const auto *ME2 = cast<MemberExpr>(E2);
4053         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4054           return false;
4055         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4056           if (D->isStaticDataMember())
4057             return true;
4058         E1 = ME1->getBase()->IgnoreParenImpCasts();
4059         E2 = ME2->getBase()->IgnoreParenImpCasts();
4060       }
4061 
4062       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4063         return true;
4064 
4065       // A static member variable can end the MemberExpr chain with either
4066       // a MemberExpr or a DeclRefExpr.
4067       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4068         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4069           return DRE->getDecl();
4070         if (const auto *ME = dyn_cast<MemberExpr>(E))
4071           return ME->getMemberDecl();
4072         return nullptr;
4073       };
4074 
4075       const ValueDecl *VD1 = getAnyDecl(E1);
4076       const ValueDecl *VD2 = getAnyDecl(E2);
4077       return declaresSameEntity(VD1, VD2);
4078     }
4079   }
4080 }
4081 
4082 /// isArrow - Return true if the base expression is a pointer to vector,
4083 /// return false if the base expression is a vector.
4084 bool ExtVectorElementExpr::isArrow() const {
4085   return getBase()->getType()->isPointerType();
4086 }
4087 
4088 unsigned ExtVectorElementExpr::getNumElements() const {
4089   if (const VectorType *VT = getType()->getAs<VectorType>())
4090     return VT->getNumElements();
4091   return 1;
4092 }
4093 
4094 /// containsDuplicateElements - Return true if any element access is repeated.
4095 bool ExtVectorElementExpr::containsDuplicateElements() const {
4096   // FIXME: Refactor this code to an accessor on the AST node which returns the
4097   // "type" of component access, and share with code below and in Sema.
4098   StringRef Comp = Accessor->getName();
4099 
4100   // Halving swizzles do not contain duplicate elements.
4101   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4102     return false;
4103 
4104   // Advance past s-char prefix on hex swizzles.
4105   if (Comp[0] == 's' || Comp[0] == 'S')
4106     Comp = Comp.substr(1);
4107 
4108   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4109     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
4110         return true;
4111 
4112   return false;
4113 }
4114 
4115 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4116 void ExtVectorElementExpr::getEncodedElementAccess(
4117     SmallVectorImpl<uint32_t> &Elts) const {
4118   StringRef Comp = Accessor->getName();
4119   bool isNumericAccessor = false;
4120   if (Comp[0] == 's' || Comp[0] == 'S') {
4121     Comp = Comp.substr(1);
4122     isNumericAccessor = true;
4123   }
4124 
4125   bool isHi =   Comp == "hi";
4126   bool isLo =   Comp == "lo";
4127   bool isEven = Comp == "even";
4128   bool isOdd  = Comp == "odd";
4129 
4130   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4131     uint64_t Index;
4132 
4133     if (isHi)
4134       Index = e + i;
4135     else if (isLo)
4136       Index = i;
4137     else if (isEven)
4138       Index = 2 * i;
4139     else if (isOdd)
4140       Index = 2 * i + 1;
4141     else
4142       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4143 
4144     Elts.push_back(Index);
4145   }
4146 }
4147 
4148 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4149                                      QualType Type, SourceLocation BLoc,
4150                                      SourceLocation RP)
4151     : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary),
4152       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4153   SubExprs = new (C) Stmt*[args.size()];
4154   for (unsigned i = 0; i != args.size(); i++)
4155     SubExprs[i] = args[i];
4156 
4157   setDependence(computeDependence(this));
4158 }
4159 
4160 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4161   if (SubExprs) C.Deallocate(SubExprs);
4162 
4163   this->NumExprs = Exprs.size();
4164   SubExprs = new (C) Stmt*[NumExprs];
4165   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4166 }
4167 
4168 GenericSelectionExpr::GenericSelectionExpr(
4169     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4170     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4171     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4172     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4173     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4174            AssocExprs[ResultIndex]->getValueKind(),
4175            AssocExprs[ResultIndex]->getObjectKind()),
4176       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4177       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4178   assert(AssocTypes.size() == AssocExprs.size() &&
4179          "Must have the same number of association expressions"
4180          " and TypeSourceInfo!");
4181   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4182 
4183   GenericSelectionExprBits.GenericLoc = GenericLoc;
4184   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4185   std::copy(AssocExprs.begin(), AssocExprs.end(),
4186             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4187   std::copy(AssocTypes.begin(), AssocTypes.end(),
4188             getTrailingObjects<TypeSourceInfo *>());
4189 
4190   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4191 }
4192 
4193 GenericSelectionExpr::GenericSelectionExpr(
4194     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4195     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4196     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4197     bool ContainsUnexpandedParameterPack)
4198     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
4199            OK_Ordinary),
4200       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4201       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4202   assert(AssocTypes.size() == AssocExprs.size() &&
4203          "Must have the same number of association expressions"
4204          " and TypeSourceInfo!");
4205 
4206   GenericSelectionExprBits.GenericLoc = GenericLoc;
4207   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4208   std::copy(AssocExprs.begin(), AssocExprs.end(),
4209             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4210   std::copy(AssocTypes.begin(), AssocTypes.end(),
4211             getTrailingObjects<TypeSourceInfo *>());
4212 
4213   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4214 }
4215 
4216 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4217     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4218 
4219 GenericSelectionExpr *GenericSelectionExpr::Create(
4220     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4221     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4222     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4223     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4224   unsigned NumAssocs = AssocExprs.size();
4225   void *Mem = Context.Allocate(
4226       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4227       alignof(GenericSelectionExpr));
4228   return new (Mem) GenericSelectionExpr(
4229       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4230       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4231 }
4232 
4233 GenericSelectionExpr *GenericSelectionExpr::Create(
4234     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4235     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4236     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4237     bool ContainsUnexpandedParameterPack) {
4238   unsigned NumAssocs = AssocExprs.size();
4239   void *Mem = Context.Allocate(
4240       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4241       alignof(GenericSelectionExpr));
4242   return new (Mem) GenericSelectionExpr(
4243       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4244       RParenLoc, ContainsUnexpandedParameterPack);
4245 }
4246 
4247 GenericSelectionExpr *
4248 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4249                                   unsigned NumAssocs) {
4250   void *Mem = Context.Allocate(
4251       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4252       alignof(GenericSelectionExpr));
4253   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4254 }
4255 
4256 //===----------------------------------------------------------------------===//
4257 //  DesignatedInitExpr
4258 //===----------------------------------------------------------------------===//
4259 
4260 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4261   assert(Kind == FieldDesignator && "Only valid on a field designator");
4262   if (Field.NameOrField & 0x01)
4263     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
4264   else
4265     return getField()->getIdentifier();
4266 }
4267 
4268 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4269                                        llvm::ArrayRef<Designator> Designators,
4270                                        SourceLocation EqualOrColonLoc,
4271                                        bool GNUSyntax,
4272                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4273     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4274            Init->getObjectKind()),
4275       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4276       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4277   this->Designators = new (C) Designator[NumDesignators];
4278 
4279   // Record the initializer itself.
4280   child_iterator Child = child_begin();
4281   *Child++ = Init;
4282 
4283   // Copy the designators and their subexpressions, computing
4284   // value-dependence along the way.
4285   unsigned IndexIdx = 0;
4286   for (unsigned I = 0; I != NumDesignators; ++I) {
4287     this->Designators[I] = Designators[I];
4288     if (this->Designators[I].isArrayDesignator()) {
4289       // Copy the index expressions into permanent storage.
4290       *Child++ = IndexExprs[IndexIdx++];
4291     } else if (this->Designators[I].isArrayRangeDesignator()) {
4292       // Copy the start/end expressions into permanent storage.
4293       *Child++ = IndexExprs[IndexIdx++];
4294       *Child++ = IndexExprs[IndexIdx++];
4295     }
4296   }
4297 
4298   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4299   setDependence(computeDependence(this));
4300 }
4301 
4302 DesignatedInitExpr *
4303 DesignatedInitExpr::Create(const ASTContext &C,
4304                            llvm::ArrayRef<Designator> Designators,
4305                            ArrayRef<Expr*> IndexExprs,
4306                            SourceLocation ColonOrEqualLoc,
4307                            bool UsesColonSyntax, Expr *Init) {
4308   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4309                          alignof(DesignatedInitExpr));
4310   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4311                                       ColonOrEqualLoc, UsesColonSyntax,
4312                                       IndexExprs, Init);
4313 }
4314 
4315 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4316                                                     unsigned NumIndexExprs) {
4317   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4318                          alignof(DesignatedInitExpr));
4319   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4320 }
4321 
4322 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4323                                         const Designator *Desigs,
4324                                         unsigned NumDesigs) {
4325   Designators = new (C) Designator[NumDesigs];
4326   NumDesignators = NumDesigs;
4327   for (unsigned I = 0; I != NumDesigs; ++I)
4328     Designators[I] = Desigs[I];
4329 }
4330 
4331 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4332   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4333   if (size() == 1)
4334     return DIE->getDesignator(0)->getSourceRange();
4335   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4336                      DIE->getDesignator(size() - 1)->getEndLoc());
4337 }
4338 
4339 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4340   SourceLocation StartLoc;
4341   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4342   Designator &First = *DIE->getDesignator(0);
4343   if (First.isFieldDesignator()) {
4344     if (GNUSyntax)
4345       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
4346     else
4347       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
4348   } else
4349     StartLoc =
4350       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
4351   return StartLoc;
4352 }
4353 
4354 SourceLocation DesignatedInitExpr::getEndLoc() const {
4355   return getInit()->getEndLoc();
4356 }
4357 
4358 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4359   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4360   return getSubExpr(D.ArrayOrRange.Index + 1);
4361 }
4362 
4363 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4364   assert(D.Kind == Designator::ArrayRangeDesignator &&
4365          "Requires array range designator");
4366   return getSubExpr(D.ArrayOrRange.Index + 1);
4367 }
4368 
4369 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4370   assert(D.Kind == Designator::ArrayRangeDesignator &&
4371          "Requires array range designator");
4372   return getSubExpr(D.ArrayOrRange.Index + 2);
4373 }
4374 
4375 /// Replaces the designator at index @p Idx with the series
4376 /// of designators in [First, Last).
4377 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4378                                           const Designator *First,
4379                                           const Designator *Last) {
4380   unsigned NumNewDesignators = Last - First;
4381   if (NumNewDesignators == 0) {
4382     std::copy_backward(Designators + Idx + 1,
4383                        Designators + NumDesignators,
4384                        Designators + Idx);
4385     --NumNewDesignators;
4386     return;
4387   } else if (NumNewDesignators == 1) {
4388     Designators[Idx] = *First;
4389     return;
4390   }
4391 
4392   Designator *NewDesignators
4393     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4394   std::copy(Designators, Designators + Idx, NewDesignators);
4395   std::copy(First, Last, NewDesignators + Idx);
4396   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4397             NewDesignators + Idx + NumNewDesignators);
4398   Designators = NewDesignators;
4399   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4400 }
4401 
4402 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4403                                                    SourceLocation lBraceLoc,
4404                                                    Expr *baseExpr,
4405                                                    SourceLocation rBraceLoc)
4406     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4407            OK_Ordinary) {
4408   BaseAndUpdaterExprs[0] = baseExpr;
4409 
4410   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4411   ILE->setType(baseExpr->getType());
4412   BaseAndUpdaterExprs[1] = ILE;
4413 
4414   // FIXME: this is wrong, set it correctly.
4415   setDependence(ExprDependence::None);
4416 }
4417 
4418 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4419   return getBase()->getBeginLoc();
4420 }
4421 
4422 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4423   return getBase()->getEndLoc();
4424 }
4425 
4426 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4427                              SourceLocation RParenLoc)
4428     : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary),
4429       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4430   ParenListExprBits.NumExprs = Exprs.size();
4431 
4432   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4433     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4434   setDependence(computeDependence(this));
4435 }
4436 
4437 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4438     : Expr(ParenListExprClass, Empty) {
4439   ParenListExprBits.NumExprs = NumExprs;
4440 }
4441 
4442 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4443                                      SourceLocation LParenLoc,
4444                                      ArrayRef<Expr *> Exprs,
4445                                      SourceLocation RParenLoc) {
4446   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4447                            alignof(ParenListExpr));
4448   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4449 }
4450 
4451 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4452                                           unsigned NumExprs) {
4453   void *Mem =
4454       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4455   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4456 }
4457 
4458 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4459                                Opcode opc, QualType ResTy, ExprValueKind VK,
4460                                ExprObjectKind OK, SourceLocation opLoc,
4461                                FPOptions FPFeatures)
4462     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4463   BinaryOperatorBits.Opc = opc;
4464   assert(!isCompoundAssignmentOp() &&
4465          "Use CompoundAssignOperator for compound assignments");
4466   BinaryOperatorBits.OpLoc = opLoc;
4467   SubExprs[LHS] = lhs;
4468   SubExprs[RHS] = rhs;
4469   BinaryOperatorBits.HasFPFeatures =
4470       FPFeatures.requiresTrailingStorage(Ctx.getLangOpts());
4471   if (BinaryOperatorBits.HasFPFeatures)
4472     *getTrailingFPFeatures() = FPFeatures;
4473   setDependence(computeDependence(this));
4474 }
4475 
4476 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4477                                Opcode opc, QualType ResTy, ExprValueKind VK,
4478                                ExprObjectKind OK, SourceLocation opLoc,
4479                                FPOptions FPFeatures, bool dead2)
4480     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4481   BinaryOperatorBits.Opc = opc;
4482   assert(isCompoundAssignmentOp() &&
4483          "Use CompoundAssignOperator for compound assignments");
4484   BinaryOperatorBits.OpLoc = opLoc;
4485   SubExprs[LHS] = lhs;
4486   SubExprs[RHS] = rhs;
4487   BinaryOperatorBits.HasFPFeatures =
4488       FPFeatures.requiresTrailingStorage(Ctx.getLangOpts());
4489   if (BinaryOperatorBits.HasFPFeatures)
4490     *getTrailingFPFeatures() = FPFeatures;
4491   setDependence(computeDependence(this));
4492 }
4493 
4494 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4495                                             bool HasFPFeatures) {
4496   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4497   void *Mem =
4498       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4499   return new (Mem) BinaryOperator(EmptyShell());
4500 }
4501 
4502 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4503                                        Expr *rhs, Opcode opc, QualType ResTy,
4504                                        ExprValueKind VK, ExprObjectKind OK,
4505                                        SourceLocation opLoc,
4506                                        FPOptions FPFeatures) {
4507   bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts());
4508   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4509   void *Mem =
4510       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4511   return new (Mem)
4512       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4513 }
4514 
4515 CompoundAssignOperator *
4516 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4517   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4518   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4519                          alignof(CompoundAssignOperator));
4520   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4521 }
4522 
4523 CompoundAssignOperator *CompoundAssignOperator::Create(
4524     const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
4525     ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc,
4526     FPOptions FPFeatures, QualType CompLHSType, QualType CompResultType) {
4527   bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts());
4528   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4529   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4530                          alignof(CompoundAssignOperator));
4531   return new (Mem)
4532       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4533                              CompLHSType, CompResultType);
4534 }
4535 
4536 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4537                                           bool hasFPFeatures) {
4538   void *Mem = C.Allocate(totalSizeToAlloc<FPOptions>(hasFPFeatures),
4539                          alignof(UnaryOperator));
4540   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4541 }
4542 
4543 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4544                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4545                              SourceLocation l, bool CanOverflow,
4546                              FPOptions FPFeatures)
4547     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4548   UnaryOperatorBits.Opc = opc;
4549   UnaryOperatorBits.CanOverflow = CanOverflow;
4550   UnaryOperatorBits.Loc = l;
4551   UnaryOperatorBits.HasFPFeatures =
4552       FPFeatures.requiresTrailingStorage(Ctx.getLangOpts());
4553   setDependence(computeDependence(this));
4554 }
4555 
4556 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4557                                      Opcode opc, QualType type,
4558                                      ExprValueKind VK, ExprObjectKind OK,
4559                                      SourceLocation l, bool CanOverflow,
4560                                      FPOptions FPFeatures) {
4561   bool HasFPFeatures = FPFeatures.requiresTrailingStorage(C.getLangOpts());
4562   unsigned Size = totalSizeToAlloc<FPOptions>(HasFPFeatures);
4563   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4564   return new (Mem)
4565       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4566 }
4567 
4568 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4569   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4570     e = ewc->getSubExpr();
4571   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4572     e = m->getSubExpr();
4573   e = cast<CXXConstructExpr>(e)->getArg(0);
4574   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4575     e = ice->getSubExpr();
4576   return cast<OpaqueValueExpr>(e);
4577 }
4578 
4579 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4580                                            EmptyShell sh,
4581                                            unsigned numSemanticExprs) {
4582   void *buffer =
4583       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4584                        alignof(PseudoObjectExpr));
4585   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4586 }
4587 
4588 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4589   : Expr(PseudoObjectExprClass, shell) {
4590   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4591 }
4592 
4593 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4594                                            ArrayRef<Expr*> semantics,
4595                                            unsigned resultIndex) {
4596   assert(syntax && "no syntactic expression!");
4597   assert(semantics.size() && "no semantic expressions!");
4598 
4599   QualType type;
4600   ExprValueKind VK;
4601   if (resultIndex == NoResult) {
4602     type = C.VoidTy;
4603     VK = VK_RValue;
4604   } else {
4605     assert(resultIndex < semantics.size());
4606     type = semantics[resultIndex]->getType();
4607     VK = semantics[resultIndex]->getValueKind();
4608     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4609   }
4610 
4611   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4612                             alignof(PseudoObjectExpr));
4613   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4614                                       resultIndex);
4615 }
4616 
4617 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4618                                    Expr *syntax, ArrayRef<Expr *> semantics,
4619                                    unsigned resultIndex)
4620     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4621   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4622   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4623 
4624   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4625     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4626     getSubExprsBuffer()[i] = E;
4627 
4628     if (isa<OpaqueValueExpr>(E))
4629       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4630              "opaque-value semantic expressions for pseudo-object "
4631              "operations must have sources");
4632   }
4633 
4634   setDependence(computeDependence(this));
4635 }
4636 
4637 //===----------------------------------------------------------------------===//
4638 //  Child Iterators for iterating over subexpressions/substatements
4639 //===----------------------------------------------------------------------===//
4640 
4641 // UnaryExprOrTypeTraitExpr
4642 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4643   const_child_range CCR =
4644       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4645   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4646 }
4647 
4648 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4649   // If this is of a type and the type is a VLA type (and not a typedef), the
4650   // size expression of the VLA needs to be treated as an executable expression.
4651   // Why isn't this weirdness documented better in StmtIterator?
4652   if (isArgumentType()) {
4653     if (const VariableArrayType *T =
4654             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4655       return const_child_range(const_child_iterator(T), const_child_iterator());
4656     return const_child_range(const_child_iterator(), const_child_iterator());
4657   }
4658   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4659 }
4660 
4661 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4662                        AtomicOp op, SourceLocation RP)
4663     : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary),
4664       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4665   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4666   for (unsigned i = 0; i != args.size(); i++)
4667     SubExprs[i] = args[i];
4668   setDependence(computeDependence(this));
4669 }
4670 
4671 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4672   switch (Op) {
4673   case AO__c11_atomic_init:
4674   case AO__opencl_atomic_init:
4675   case AO__c11_atomic_load:
4676   case AO__atomic_load_n:
4677     return 2;
4678 
4679   case AO__opencl_atomic_load:
4680   case AO__c11_atomic_store:
4681   case AO__c11_atomic_exchange:
4682   case AO__atomic_load:
4683   case AO__atomic_store:
4684   case AO__atomic_store_n:
4685   case AO__atomic_exchange_n:
4686   case AO__c11_atomic_fetch_add:
4687   case AO__c11_atomic_fetch_sub:
4688   case AO__c11_atomic_fetch_and:
4689   case AO__c11_atomic_fetch_or:
4690   case AO__c11_atomic_fetch_xor:
4691   case AO__c11_atomic_fetch_max:
4692   case AO__c11_atomic_fetch_min:
4693   case AO__atomic_fetch_add:
4694   case AO__atomic_fetch_sub:
4695   case AO__atomic_fetch_and:
4696   case AO__atomic_fetch_or:
4697   case AO__atomic_fetch_xor:
4698   case AO__atomic_fetch_nand:
4699   case AO__atomic_add_fetch:
4700   case AO__atomic_sub_fetch:
4701   case AO__atomic_and_fetch:
4702   case AO__atomic_or_fetch:
4703   case AO__atomic_xor_fetch:
4704   case AO__atomic_nand_fetch:
4705   case AO__atomic_min_fetch:
4706   case AO__atomic_max_fetch:
4707   case AO__atomic_fetch_min:
4708   case AO__atomic_fetch_max:
4709     return 3;
4710 
4711   case AO__opencl_atomic_store:
4712   case AO__opencl_atomic_exchange:
4713   case AO__opencl_atomic_fetch_add:
4714   case AO__opencl_atomic_fetch_sub:
4715   case AO__opencl_atomic_fetch_and:
4716   case AO__opencl_atomic_fetch_or:
4717   case AO__opencl_atomic_fetch_xor:
4718   case AO__opencl_atomic_fetch_min:
4719   case AO__opencl_atomic_fetch_max:
4720   case AO__atomic_exchange:
4721     return 4;
4722 
4723   case AO__c11_atomic_compare_exchange_strong:
4724   case AO__c11_atomic_compare_exchange_weak:
4725     return 5;
4726 
4727   case AO__opencl_atomic_compare_exchange_strong:
4728   case AO__opencl_atomic_compare_exchange_weak:
4729   case AO__atomic_compare_exchange:
4730   case AO__atomic_compare_exchange_n:
4731     return 6;
4732   }
4733   llvm_unreachable("unknown atomic op");
4734 }
4735 
4736 QualType AtomicExpr::getValueType() const {
4737   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4738   if (auto AT = T->getAs<AtomicType>())
4739     return AT->getValueType();
4740   return T;
4741 }
4742 
4743 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4744   unsigned ArraySectionCount = 0;
4745   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4746     Base = OASE->getBase();
4747     ++ArraySectionCount;
4748   }
4749   while (auto *ASE =
4750              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4751     Base = ASE->getBase();
4752     ++ArraySectionCount;
4753   }
4754   Base = Base->IgnoreParenImpCasts();
4755   auto OriginalTy = Base->getType();
4756   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4757     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4758       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4759 
4760   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4761     if (OriginalTy->isAnyPointerType())
4762       OriginalTy = OriginalTy->getPointeeType();
4763     else {
4764       assert (OriginalTy->isArrayType());
4765       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4766     }
4767   }
4768   return OriginalTy;
4769 }
4770 
4771 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4772                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4773     : Expr(RecoveryExprClass, T, VK_LValue, OK_Ordinary), BeginLoc(BeginLoc),
4774       EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4775   assert(!T.isNull());
4776   assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4777 
4778   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4779   setDependence(computeDependence(this));
4780 }
4781 
4782 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4783                                    SourceLocation BeginLoc,
4784                                    SourceLocation EndLoc,
4785                                    ArrayRef<Expr *> SubExprs) {
4786   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4787                            alignof(RecoveryExpr));
4788   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4789 }
4790 
4791 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4792   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4793                            alignof(RecoveryExpr));
4794   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4795 }
4796 
4797 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4798   assert(
4799       NumDims == Dims.size() &&
4800       "Preallocated number of dimensions is different from the provided one.");
4801   llvm::copy(Dims, getTrailingObjects<Expr *>());
4802 }
4803 
4804 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4805   assert(
4806       NumDims == BR.size() &&
4807       "Preallocated number of dimensions is different from the provided one.");
4808   llvm::copy(BR, getTrailingObjects<SourceRange>());
4809 }
4810 
4811 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4812                                          SourceLocation L, SourceLocation R,
4813                                          ArrayRef<Expr *> Dims)
4814     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4815       RPLoc(R), NumDims(Dims.size()) {
4816   setBase(Op);
4817   setDimensions(Dims);
4818   setDependence(computeDependence(this));
4819 }
4820 
4821 OMPArrayShapingExpr *
4822 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4823                             SourceLocation L, SourceLocation R,
4824                             ArrayRef<Expr *> Dims,
4825                             ArrayRef<SourceRange> BracketRanges) {
4826   assert(Dims.size() == BracketRanges.size() &&
4827          "Different number of dimensions and brackets ranges.");
4828   void *Mem = Context.Allocate(
4829       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4830       alignof(OMPArrayShapingExpr));
4831   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4832   E->setBracketsRanges(BracketRanges);
4833   return E;
4834 }
4835 
4836 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4837                                                       unsigned NumDims) {
4838   void *Mem = Context.Allocate(
4839       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4840       alignof(OMPArrayShapingExpr));
4841   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4842 }
4843 
4844 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4845   assert(I < NumIterators &&
4846          "Idx is greater or equal the number of iterators definitions.");
4847   getTrailingObjects<Decl *>()[I] = D;
4848 }
4849 
4850 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4851   assert(I < NumIterators &&
4852          "Idx is greater or equal the number of iterators definitions.");
4853   getTrailingObjects<
4854       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4855                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4856 }
4857 
4858 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4859                                        SourceLocation ColonLoc, Expr *End,
4860                                        SourceLocation SecondColonLoc,
4861                                        Expr *Step) {
4862   assert(I < NumIterators &&
4863          "Idx is greater or equal the number of iterators definitions.");
4864   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4865                                static_cast<int>(RangeExprOffset::Begin)] =
4866       Begin;
4867   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4868                                static_cast<int>(RangeExprOffset::End)] = End;
4869   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4870                                static_cast<int>(RangeExprOffset::Step)] = Step;
4871   getTrailingObjects<
4872       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4873                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4874       ColonLoc;
4875   getTrailingObjects<
4876       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4877                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4878       SecondColonLoc;
4879 }
4880 
4881 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
4882   return getTrailingObjects<Decl *>()[I];
4883 }
4884 
4885 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
4886   IteratorRange Res;
4887   Res.Begin =
4888       getTrailingObjects<Expr *>()[I * static_cast<int>(
4889                                            RangeExprOffset::Total) +
4890                                    static_cast<int>(RangeExprOffset::Begin)];
4891   Res.End =
4892       getTrailingObjects<Expr *>()[I * static_cast<int>(
4893                                            RangeExprOffset::Total) +
4894                                    static_cast<int>(RangeExprOffset::End)];
4895   Res.Step =
4896       getTrailingObjects<Expr *>()[I * static_cast<int>(
4897                                            RangeExprOffset::Total) +
4898                                    static_cast<int>(RangeExprOffset::Step)];
4899   return Res;
4900 }
4901 
4902 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
4903   return getTrailingObjects<
4904       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4905                         static_cast<int>(RangeLocOffset::AssignLoc)];
4906 }
4907 
4908 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
4909   return getTrailingObjects<
4910       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4911                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
4912 }
4913 
4914 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
4915   return getTrailingObjects<
4916       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4917                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
4918 }
4919 
4920 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4921   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4922 }
4923 
4924 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
4925   return getTrailingObjects<OMPIteratorHelperData>()[I];
4926 }
4927 
4928 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
4929   return getTrailingObjects<OMPIteratorHelperData>()[I];
4930 }
4931 
4932 OMPIteratorExpr::OMPIteratorExpr(
4933     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4934     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4935     ArrayRef<OMPIteratorHelperData> Helpers)
4936     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4937       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4938       NumIterators(Data.size()) {
4939   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4940     const IteratorDefinition &D = Data[I];
4941     setIteratorDeclaration(I, D.IteratorDecl);
4942     setAssignmentLoc(I, D.AssignmentLoc);
4943     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
4944                      D.SecondColonLoc, D.Range.Step);
4945     setHelper(I, Helpers[I]);
4946   }
4947   setDependence(computeDependence(this));
4948 }
4949 
4950 OMPIteratorExpr *
4951 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
4952                         SourceLocation IteratorKwLoc, SourceLocation L,
4953                         SourceLocation R,
4954                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4955                         ArrayRef<OMPIteratorHelperData> Helpers) {
4956   assert(Data.size() == Helpers.size() &&
4957          "Data and helpers must have the same size.");
4958   void *Mem = Context.Allocate(
4959       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4960           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
4961           Data.size() * static_cast<int>(RangeLocOffset::Total),
4962           Helpers.size()),
4963       alignof(OMPIteratorExpr));
4964   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
4965 }
4966 
4967 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
4968                                               unsigned NumIterators) {
4969   void *Mem = Context.Allocate(
4970       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4971           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
4972           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
4973       alignof(OMPIteratorExpr));
4974   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
4975 }
4976