1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 using namespace clang; 41 42 const Expr *Expr::getBestDynamicClassTypeExpr() const { 43 const Expr *E = this; 44 while (true) { 45 E = E->IgnoreParenBaseCasts(); 46 47 // Follow the RHS of a comma operator. 48 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 49 if (BO->getOpcode() == BO_Comma) { 50 E = BO->getRHS(); 51 continue; 52 } 53 } 54 55 // Step into initializer for materialized temporaries. 56 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 57 E = MTE->getSubExpr(); 58 continue; 59 } 60 61 break; 62 } 63 64 return E; 65 } 66 67 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 68 const Expr *E = getBestDynamicClassTypeExpr(); 69 QualType DerivedType = E->getType(); 70 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 71 DerivedType = PTy->getPointeeType(); 72 73 if (DerivedType->isDependentType()) 74 return nullptr; 75 76 const RecordType *Ty = DerivedType->castAs<RecordType>(); 77 Decl *D = Ty->getDecl(); 78 return cast<CXXRecordDecl>(D); 79 } 80 81 const Expr *Expr::skipRValueSubobjectAdjustments( 82 SmallVectorImpl<const Expr *> &CommaLHSs, 83 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 84 const Expr *E = this; 85 while (true) { 86 E = E->IgnoreParens(); 87 88 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 89 if ((CE->getCastKind() == CK_DerivedToBase || 90 CE->getCastKind() == CK_UncheckedDerivedToBase) && 91 E->getType()->isRecordType()) { 92 E = CE->getSubExpr(); 93 auto *Derived = 94 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 95 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 96 continue; 97 } 98 99 if (CE->getCastKind() == CK_NoOp) { 100 E = CE->getSubExpr(); 101 continue; 102 } 103 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 104 if (!ME->isArrow()) { 105 assert(ME->getBase()->getType()->isRecordType()); 106 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 107 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 108 E = ME->getBase(); 109 Adjustments.push_back(SubobjectAdjustment(Field)); 110 continue; 111 } 112 } 113 } 114 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 115 if (BO->getOpcode() == BO_PtrMemD) { 116 assert(BO->getRHS()->isPRValue()); 117 E = BO->getLHS(); 118 const MemberPointerType *MPT = 119 BO->getRHS()->getType()->getAs<MemberPointerType>(); 120 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 121 continue; 122 } 123 if (BO->getOpcode() == BO_Comma) { 124 CommaLHSs.push_back(BO->getLHS()); 125 E = BO->getRHS(); 126 continue; 127 } 128 } 129 130 // Nothing changed. 131 break; 132 } 133 return E; 134 } 135 136 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 137 const Expr *E = IgnoreParens(); 138 139 // If this value has _Bool type, it is obvious 0/1. 140 if (E->getType()->isBooleanType()) return true; 141 // If this is a non-scalar-integer type, we don't care enough to try. 142 if (!E->getType()->isIntegralOrEnumerationType()) return false; 143 144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 145 switch (UO->getOpcode()) { 146 case UO_Plus: 147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 148 case UO_LNot: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 // Only look through implicit casts. If the user writes 156 // '(int) (a && b)' treat it as an arbitrary int. 157 // FIXME: Should we look through any cast expression in !Semantic mode? 158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 160 161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 162 switch (BO->getOpcode()) { 163 default: return false; 164 case BO_LT: // Relational operators. 165 case BO_GT: 166 case BO_LE: 167 case BO_GE: 168 case BO_EQ: // Equality operators. 169 case BO_NE: 170 case BO_LAnd: // AND operator. 171 case BO_LOr: // Logical OR operator. 172 return true; 173 174 case BO_And: // Bitwise AND operator. 175 case BO_Xor: // Bitwise XOR operator. 176 case BO_Or: // Bitwise OR operator. 177 // Handle things like (x==2)|(y==12). 178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 180 181 case BO_Comma: 182 case BO_Assign: 183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 184 } 185 } 186 187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 190 191 if (isa<ObjCBoolLiteralExpr>(E)) 192 return true; 193 194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 196 197 if (const FieldDecl *FD = E->getSourceBitField()) 198 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 199 !FD->getBitWidth()->isValueDependent() && 200 FD->getBitWidthValue(FD->getASTContext()) == 1) 201 return true; 202 203 return false; 204 } 205 206 const ValueDecl * 207 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 208 Expr::EvalResult Eval; 209 210 if (EvaluateAsConstantExpr(Eval, Context)) { 211 APValue &Value = Eval.Val; 212 213 if (Value.isMemberPointer()) 214 return Value.getMemberPointerDecl(); 215 216 if (Value.isLValue() && Value.getLValueOffset().isZero()) 217 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 218 } 219 220 return nullptr; 221 } 222 223 // Amusing macro metaprogramming hack: check whether a class provides 224 // a more specific implementation of getExprLoc(). 225 // 226 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 227 namespace { 228 /// This implementation is used when a class provides a custom 229 /// implementation of getExprLoc. 230 template <class E, class T> 231 SourceLocation getExprLocImpl(const Expr *expr, 232 SourceLocation (T::*v)() const) { 233 return static_cast<const E*>(expr)->getExprLoc(); 234 } 235 236 /// This implementation is used when a class doesn't provide 237 /// a custom implementation of getExprLoc. Overload resolution 238 /// should pick it over the implementation above because it's 239 /// more specialized according to function template partial ordering. 240 template <class E> 241 SourceLocation getExprLocImpl(const Expr *expr, 242 SourceLocation (Expr::*v)() const) { 243 return static_cast<const E *>(expr)->getBeginLoc(); 244 } 245 } 246 247 SourceLocation Expr::getExprLoc() const { 248 switch (getStmtClass()) { 249 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 250 #define ABSTRACT_STMT(type) 251 #define STMT(type, base) \ 252 case Stmt::type##Class: break; 253 #define EXPR(type, base) \ 254 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 255 #include "clang/AST/StmtNodes.inc" 256 } 257 llvm_unreachable("unknown expression kind"); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // Primary Expressions. 262 //===----------------------------------------------------------------------===// 263 264 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 265 assert((Kind == ConstantExpr::RSK_APValue || 266 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 267 "Invalid StorageKind Value"); 268 (void)Kind; 269 } 270 271 ConstantExpr::ResultStorageKind 272 ConstantExpr::getStorageKind(const APValue &Value) { 273 switch (Value.getKind()) { 274 case APValue::None: 275 case APValue::Indeterminate: 276 return ConstantExpr::RSK_None; 277 case APValue::Int: 278 if (!Value.getInt().needsCleanup()) 279 return ConstantExpr::RSK_Int64; 280 LLVM_FALLTHROUGH; 281 default: 282 return ConstantExpr::RSK_APValue; 283 } 284 } 285 286 ConstantExpr::ResultStorageKind 287 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 288 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 289 return ConstantExpr::RSK_Int64; 290 return ConstantExpr::RSK_APValue; 291 } 292 293 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 294 bool IsImmediateInvocation) 295 : FullExpr(ConstantExprClass, SubExpr) { 296 ConstantExprBits.ResultKind = StorageKind; 297 ConstantExprBits.APValueKind = APValue::None; 298 ConstantExprBits.IsUnsigned = false; 299 ConstantExprBits.BitWidth = 0; 300 ConstantExprBits.HasCleanup = false; 301 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 302 303 if (StorageKind == ConstantExpr::RSK_APValue) 304 ::new (getTrailingObjects<APValue>()) APValue(); 305 } 306 307 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 308 ResultStorageKind StorageKind, 309 bool IsImmediateInvocation) { 310 assert(!isa<ConstantExpr>(E)); 311 AssertResultStorageKind(StorageKind); 312 313 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 314 StorageKind == ConstantExpr::RSK_APValue, 315 StorageKind == ConstantExpr::RSK_Int64); 316 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 317 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 318 } 319 320 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 321 const APValue &Result) { 322 ResultStorageKind StorageKind = getStorageKind(Result); 323 ConstantExpr *Self = Create(Context, E, StorageKind); 324 Self->SetResult(Result, Context); 325 return Self; 326 } 327 328 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 329 : FullExpr(ConstantExprClass, Empty) { 330 ConstantExprBits.ResultKind = StorageKind; 331 332 if (StorageKind == ConstantExpr::RSK_APValue) 333 ::new (getTrailingObjects<APValue>()) APValue(); 334 } 335 336 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 337 ResultStorageKind StorageKind) { 338 AssertResultStorageKind(StorageKind); 339 340 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 341 StorageKind == ConstantExpr::RSK_APValue, 342 StorageKind == ConstantExpr::RSK_Int64); 343 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 344 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 345 } 346 347 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 348 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 349 "Invalid storage for this value kind"); 350 ConstantExprBits.APValueKind = Value.getKind(); 351 switch (ConstantExprBits.ResultKind) { 352 case RSK_None: 353 return; 354 case RSK_Int64: 355 Int64Result() = *Value.getInt().getRawData(); 356 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 357 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 358 return; 359 case RSK_APValue: 360 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 361 ConstantExprBits.HasCleanup = true; 362 Context.addDestruction(&APValueResult()); 363 } 364 APValueResult() = std::move(Value); 365 return; 366 } 367 llvm_unreachable("Invalid ResultKind Bits"); 368 } 369 370 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 371 switch (ConstantExprBits.ResultKind) { 372 case ConstantExpr::RSK_APValue: 373 return APValueResult().getInt(); 374 case ConstantExpr::RSK_Int64: 375 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 376 ConstantExprBits.IsUnsigned); 377 default: 378 llvm_unreachable("invalid Accessor"); 379 } 380 } 381 382 APValue ConstantExpr::getAPValueResult() const { 383 384 switch (ConstantExprBits.ResultKind) { 385 case ConstantExpr::RSK_APValue: 386 return APValueResult(); 387 case ConstantExpr::RSK_Int64: 388 return APValue( 389 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 390 ConstantExprBits.IsUnsigned)); 391 case ConstantExpr::RSK_None: 392 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 393 return APValue::IndeterminateValue(); 394 return APValue(); 395 } 396 llvm_unreachable("invalid ResultKind"); 397 } 398 399 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 400 bool RefersToEnclosingVariableOrCapture, QualType T, 401 ExprValueKind VK, SourceLocation L, 402 const DeclarationNameLoc &LocInfo, 403 NonOdrUseReason NOUR) 404 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 405 DeclRefExprBits.HasQualifier = false; 406 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 407 DeclRefExprBits.HasFoundDecl = false; 408 DeclRefExprBits.HadMultipleCandidates = false; 409 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 410 RefersToEnclosingVariableOrCapture; 411 DeclRefExprBits.NonOdrUseReason = NOUR; 412 DeclRefExprBits.Loc = L; 413 setDependence(computeDependence(this, Ctx)); 414 } 415 416 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 417 NestedNameSpecifierLoc QualifierLoc, 418 SourceLocation TemplateKWLoc, ValueDecl *D, 419 bool RefersToEnclosingVariableOrCapture, 420 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 421 const TemplateArgumentListInfo *TemplateArgs, 422 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 423 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 424 DNLoc(NameInfo.getInfo()) { 425 DeclRefExprBits.Loc = NameInfo.getLoc(); 426 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 427 if (QualifierLoc) 428 new (getTrailingObjects<NestedNameSpecifierLoc>()) 429 NestedNameSpecifierLoc(QualifierLoc); 430 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 431 if (FoundD) 432 *getTrailingObjects<NamedDecl *>() = FoundD; 433 DeclRefExprBits.HasTemplateKWAndArgsInfo 434 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 435 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 436 RefersToEnclosingVariableOrCapture; 437 DeclRefExprBits.NonOdrUseReason = NOUR; 438 if (TemplateArgs) { 439 auto Deps = TemplateArgumentDependence::None; 440 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 441 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 442 Deps); 443 assert(!(Deps & TemplateArgumentDependence::Dependent) && 444 "built a DeclRefExpr with dependent template args"); 445 } else if (TemplateKWLoc.isValid()) { 446 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 447 TemplateKWLoc); 448 } 449 DeclRefExprBits.HadMultipleCandidates = 0; 450 setDependence(computeDependence(this, Ctx)); 451 } 452 453 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 454 NestedNameSpecifierLoc QualifierLoc, 455 SourceLocation TemplateKWLoc, ValueDecl *D, 456 bool RefersToEnclosingVariableOrCapture, 457 SourceLocation NameLoc, QualType T, 458 ExprValueKind VK, NamedDecl *FoundD, 459 const TemplateArgumentListInfo *TemplateArgs, 460 NonOdrUseReason NOUR) { 461 return Create(Context, QualifierLoc, TemplateKWLoc, D, 462 RefersToEnclosingVariableOrCapture, 463 DeclarationNameInfo(D->getDeclName(), NameLoc), 464 T, VK, FoundD, TemplateArgs, NOUR); 465 } 466 467 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 468 NestedNameSpecifierLoc QualifierLoc, 469 SourceLocation TemplateKWLoc, ValueDecl *D, 470 bool RefersToEnclosingVariableOrCapture, 471 const DeclarationNameInfo &NameInfo, 472 QualType T, ExprValueKind VK, 473 NamedDecl *FoundD, 474 const TemplateArgumentListInfo *TemplateArgs, 475 NonOdrUseReason NOUR) { 476 // Filter out cases where the found Decl is the same as the value refenenced. 477 if (D == FoundD) 478 FoundD = nullptr; 479 480 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 481 std::size_t Size = 482 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 483 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 484 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 485 HasTemplateKWAndArgsInfo ? 1 : 0, 486 TemplateArgs ? TemplateArgs->size() : 0); 487 488 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 489 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 490 RefersToEnclosingVariableOrCapture, NameInfo, 491 FoundD, TemplateArgs, T, VK, NOUR); 492 } 493 494 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 495 bool HasQualifier, 496 bool HasFoundDecl, 497 bool HasTemplateKWAndArgsInfo, 498 unsigned NumTemplateArgs) { 499 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 500 std::size_t Size = 501 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 502 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 503 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 504 NumTemplateArgs); 505 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 506 return new (Mem) DeclRefExpr(EmptyShell()); 507 } 508 509 void DeclRefExpr::setDecl(ValueDecl *NewD) { 510 D = NewD; 511 if (getType()->isUndeducedType()) 512 setType(NewD->getType()); 513 setDependence(computeDependence(this, NewD->getASTContext())); 514 } 515 516 SourceLocation DeclRefExpr::getBeginLoc() const { 517 if (hasQualifier()) 518 return getQualifierLoc().getBeginLoc(); 519 return getNameInfo().getBeginLoc(); 520 } 521 SourceLocation DeclRefExpr::getEndLoc() const { 522 if (hasExplicitTemplateArgs()) 523 return getRAngleLoc(); 524 return getNameInfo().getEndLoc(); 525 } 526 527 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 528 SourceLocation LParen, 529 SourceLocation RParen, 530 QualType ResultTy, 531 TypeSourceInfo *TSI) 532 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 533 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 534 setTypeSourceInfo(TSI); 535 setDependence(computeDependence(this)); 536 } 537 538 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 539 QualType ResultTy) 540 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 541 542 SYCLUniqueStableNameExpr * 543 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 544 SourceLocation LParen, SourceLocation RParen, 545 TypeSourceInfo *TSI) { 546 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 547 return new (Ctx) 548 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 549 } 550 551 SYCLUniqueStableNameExpr * 552 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 553 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 554 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 555 } 556 557 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 558 return SYCLUniqueStableNameExpr::ComputeName(Context, 559 getTypeSourceInfo()->getType()); 560 } 561 562 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 563 QualType Ty) { 564 auto MangleCallback = [](ASTContext &Ctx, 565 const NamedDecl *ND) -> llvm::Optional<unsigned> { 566 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 567 return RD->getDeviceLambdaManglingNumber(); 568 return llvm::None; 569 }; 570 571 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 572 Context, Context.getDiagnostics(), MangleCallback)}; 573 574 std::string Buffer; 575 Buffer.reserve(128); 576 llvm::raw_string_ostream Out(Buffer); 577 Ctx->mangleTypeName(Ty, Out); 578 579 return Out.str(); 580 } 581 582 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 583 StringLiteral *SL) 584 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 585 PredefinedExprBits.Kind = IK; 586 assert((getIdentKind() == IK) && 587 "IdentKind do not fit in PredefinedExprBitfields!"); 588 bool HasFunctionName = SL != nullptr; 589 PredefinedExprBits.HasFunctionName = HasFunctionName; 590 PredefinedExprBits.Loc = L; 591 if (HasFunctionName) 592 setFunctionName(SL); 593 setDependence(computeDependence(this)); 594 } 595 596 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 597 : Expr(PredefinedExprClass, Empty) { 598 PredefinedExprBits.HasFunctionName = HasFunctionName; 599 } 600 601 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 602 QualType FNTy, IdentKind IK, 603 StringLiteral *SL) { 604 bool HasFunctionName = SL != nullptr; 605 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 606 alignof(PredefinedExpr)); 607 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 608 } 609 610 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 611 bool HasFunctionName) { 612 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 613 alignof(PredefinedExpr)); 614 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 615 } 616 617 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 618 switch (IK) { 619 case Func: 620 return "__func__"; 621 case Function: 622 return "__FUNCTION__"; 623 case FuncDName: 624 return "__FUNCDNAME__"; 625 case LFunction: 626 return "L__FUNCTION__"; 627 case PrettyFunction: 628 return "__PRETTY_FUNCTION__"; 629 case FuncSig: 630 return "__FUNCSIG__"; 631 case LFuncSig: 632 return "L__FUNCSIG__"; 633 case PrettyFunctionNoVirtual: 634 break; 635 } 636 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 637 } 638 639 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 640 // expr" policy instead. 641 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 642 ASTContext &Context = CurrentDecl->getASTContext(); 643 644 if (IK == PredefinedExpr::FuncDName) { 645 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 646 std::unique_ptr<MangleContext> MC; 647 MC.reset(Context.createMangleContext()); 648 649 if (MC->shouldMangleDeclName(ND)) { 650 SmallString<256> Buffer; 651 llvm::raw_svector_ostream Out(Buffer); 652 GlobalDecl GD; 653 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 654 GD = GlobalDecl(CD, Ctor_Base); 655 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 656 GD = GlobalDecl(DD, Dtor_Base); 657 else if (ND->hasAttr<CUDAGlobalAttr>()) 658 GD = GlobalDecl(cast<FunctionDecl>(ND)); 659 else 660 GD = GlobalDecl(ND); 661 MC->mangleName(GD, Out); 662 663 if (!Buffer.empty() && Buffer.front() == '\01') 664 return std::string(Buffer.substr(1)); 665 return std::string(Buffer.str()); 666 } 667 return std::string(ND->getIdentifier()->getName()); 668 } 669 return ""; 670 } 671 if (isa<BlockDecl>(CurrentDecl)) { 672 // For blocks we only emit something if it is enclosed in a function 673 // For top-level block we'd like to include the name of variable, but we 674 // don't have it at this point. 675 auto DC = CurrentDecl->getDeclContext(); 676 if (DC->isFileContext()) 677 return ""; 678 679 SmallString<256> Buffer; 680 llvm::raw_svector_ostream Out(Buffer); 681 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 682 // For nested blocks, propagate up to the parent. 683 Out << ComputeName(IK, DCBlock); 684 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 685 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 686 return std::string(Out.str()); 687 } 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 689 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 690 IK != FuncSig && IK != LFuncSig) 691 return FD->getNameAsString(); 692 693 SmallString<256> Name; 694 llvm::raw_svector_ostream Out(Name); 695 696 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 697 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 698 Out << "virtual "; 699 if (MD->isStatic()) 700 Out << "static "; 701 } 702 703 PrintingPolicy Policy(Context.getLangOpts()); 704 std::string Proto; 705 llvm::raw_string_ostream POut(Proto); 706 707 const FunctionDecl *Decl = FD; 708 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 709 Decl = Pattern; 710 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 711 const FunctionProtoType *FT = nullptr; 712 if (FD->hasWrittenPrototype()) 713 FT = dyn_cast<FunctionProtoType>(AFT); 714 715 if (IK == FuncSig || IK == LFuncSig) { 716 switch (AFT->getCallConv()) { 717 case CC_C: POut << "__cdecl "; break; 718 case CC_X86StdCall: POut << "__stdcall "; break; 719 case CC_X86FastCall: POut << "__fastcall "; break; 720 case CC_X86ThisCall: POut << "__thiscall "; break; 721 case CC_X86VectorCall: POut << "__vectorcall "; break; 722 case CC_X86RegCall: POut << "__regcall "; break; 723 // Only bother printing the conventions that MSVC knows about. 724 default: break; 725 } 726 } 727 728 FD->printQualifiedName(POut, Policy); 729 730 POut << "("; 731 if (FT) { 732 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 733 if (i) POut << ", "; 734 POut << Decl->getParamDecl(i)->getType().stream(Policy); 735 } 736 737 if (FT->isVariadic()) { 738 if (FD->getNumParams()) POut << ", "; 739 POut << "..."; 740 } else if ((IK == FuncSig || IK == LFuncSig || 741 !Context.getLangOpts().CPlusPlus) && 742 !Decl->getNumParams()) { 743 POut << "void"; 744 } 745 } 746 POut << ")"; 747 748 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 749 assert(FT && "We must have a written prototype in this case."); 750 if (FT->isConst()) 751 POut << " const"; 752 if (FT->isVolatile()) 753 POut << " volatile"; 754 RefQualifierKind Ref = MD->getRefQualifier(); 755 if (Ref == RQ_LValue) 756 POut << " &"; 757 else if (Ref == RQ_RValue) 758 POut << " &&"; 759 } 760 761 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 762 SpecsTy Specs; 763 const DeclContext *Ctx = FD->getDeclContext(); 764 while (Ctx && isa<NamedDecl>(Ctx)) { 765 const ClassTemplateSpecializationDecl *Spec 766 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 767 if (Spec && !Spec->isExplicitSpecialization()) 768 Specs.push_back(Spec); 769 Ctx = Ctx->getParent(); 770 } 771 772 std::string TemplateParams; 773 llvm::raw_string_ostream TOut(TemplateParams); 774 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 775 const TemplateParameterList *Params = 776 D->getSpecializedTemplate()->getTemplateParameters(); 777 const TemplateArgumentList &Args = D->getTemplateArgs(); 778 assert(Params->size() == Args.size()); 779 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 780 StringRef Param = Params->getParam(i)->getName(); 781 if (Param.empty()) continue; 782 TOut << Param << " = "; 783 Args.get(i).print(Policy, TOut, 784 TemplateParameterList::shouldIncludeTypeForArgument( 785 Policy, Params, i)); 786 TOut << ", "; 787 } 788 } 789 790 FunctionTemplateSpecializationInfo *FSI 791 = FD->getTemplateSpecializationInfo(); 792 if (FSI && !FSI->isExplicitSpecialization()) { 793 const TemplateParameterList* Params 794 = FSI->getTemplate()->getTemplateParameters(); 795 const TemplateArgumentList* Args = FSI->TemplateArguments; 796 assert(Params->size() == Args->size()); 797 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 798 StringRef Param = Params->getParam(i)->getName(); 799 if (Param.empty()) continue; 800 TOut << Param << " = "; 801 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 802 TOut << ", "; 803 } 804 } 805 806 TOut.flush(); 807 if (!TemplateParams.empty()) { 808 // remove the trailing comma and space 809 TemplateParams.resize(TemplateParams.size() - 2); 810 POut << " [" << TemplateParams << "]"; 811 } 812 813 POut.flush(); 814 815 // Print "auto" for all deduced return types. This includes C++1y return 816 // type deduction and lambdas. For trailing return types resolve the 817 // decltype expression. Otherwise print the real type when this is 818 // not a constructor or destructor. 819 if (isa<CXXMethodDecl>(FD) && 820 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 821 Proto = "auto " + Proto; 822 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 823 FT->getReturnType() 824 ->getAs<DecltypeType>() 825 ->getUnderlyingType() 826 .getAsStringInternal(Proto, Policy); 827 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 828 AFT->getReturnType().getAsStringInternal(Proto, Policy); 829 830 Out << Proto; 831 832 return std::string(Name); 833 } 834 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 835 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 836 // Skip to its enclosing function or method, but not its enclosing 837 // CapturedDecl. 838 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 839 const Decl *D = Decl::castFromDeclContext(DC); 840 return ComputeName(IK, D); 841 } 842 llvm_unreachable("CapturedDecl not inside a function or method"); 843 } 844 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 845 SmallString<256> Name; 846 llvm::raw_svector_ostream Out(Name); 847 Out << (MD->isInstanceMethod() ? '-' : '+'); 848 Out << '['; 849 850 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 851 // a null check to avoid a crash. 852 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 853 Out << *ID; 854 855 if (const ObjCCategoryImplDecl *CID = 856 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 857 Out << '(' << *CID << ')'; 858 859 Out << ' '; 860 MD->getSelector().print(Out); 861 Out << ']'; 862 863 return std::string(Name); 864 } 865 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 866 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 867 return "top level"; 868 } 869 return ""; 870 } 871 872 void APNumericStorage::setIntValue(const ASTContext &C, 873 const llvm::APInt &Val) { 874 if (hasAllocation()) 875 C.Deallocate(pVal); 876 877 BitWidth = Val.getBitWidth(); 878 unsigned NumWords = Val.getNumWords(); 879 const uint64_t* Words = Val.getRawData(); 880 if (NumWords > 1) { 881 pVal = new (C) uint64_t[NumWords]; 882 std::copy(Words, Words + NumWords, pVal); 883 } else if (NumWords == 1) 884 VAL = Words[0]; 885 else 886 VAL = 0; 887 } 888 889 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 890 QualType type, SourceLocation l) 891 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 892 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 893 assert(V.getBitWidth() == C.getIntWidth(type) && 894 "Integer type is not the correct size for constant."); 895 setValue(C, V); 896 setDependence(ExprDependence::None); 897 } 898 899 IntegerLiteral * 900 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 901 QualType type, SourceLocation l) { 902 return new (C) IntegerLiteral(C, V, type, l); 903 } 904 905 IntegerLiteral * 906 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 907 return new (C) IntegerLiteral(Empty); 908 } 909 910 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 911 QualType type, SourceLocation l, 912 unsigned Scale) 913 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 914 Scale(Scale) { 915 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 916 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 917 "Fixed point type is not the correct size for constant."); 918 setValue(C, V); 919 setDependence(ExprDependence::None); 920 } 921 922 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 923 const llvm::APInt &V, 924 QualType type, 925 SourceLocation l, 926 unsigned Scale) { 927 return new (C) FixedPointLiteral(C, V, type, l, Scale); 928 } 929 930 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 931 EmptyShell Empty) { 932 return new (C) FixedPointLiteral(Empty); 933 } 934 935 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 936 // Currently the longest decimal number that can be printed is the max for an 937 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 938 // which is 43 characters. 939 SmallString<64> S; 940 FixedPointValueToString( 941 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 942 return std::string(S.str()); 943 } 944 945 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 946 raw_ostream &OS) { 947 switch (Kind) { 948 case CharacterLiteral::Ascii: 949 break; // no prefix. 950 case CharacterLiteral::Wide: 951 OS << 'L'; 952 break; 953 case CharacterLiteral::UTF8: 954 OS << "u8"; 955 break; 956 case CharacterLiteral::UTF16: 957 OS << 'u'; 958 break; 959 case CharacterLiteral::UTF32: 960 OS << 'U'; 961 break; 962 } 963 964 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 965 if (!Escaped.empty()) { 966 OS << "'" << Escaped << "'"; 967 } else { 968 // A character literal might be sign-extended, which 969 // would result in an invalid \U escape sequence. 970 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 971 // are not correctly handled. 972 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 973 Val &= 0xFFu; 974 if (Val < 256 && isPrintable((unsigned char)Val)) 975 OS << "'" << (char)Val << "'"; 976 else if (Val < 256) 977 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 978 else if (Val <= 0xFFFF) 979 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 980 else 981 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 982 } 983 } 984 985 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 986 bool isexact, QualType Type, SourceLocation L) 987 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 988 setSemantics(V.getSemantics()); 989 FloatingLiteralBits.IsExact = isexact; 990 setValue(C, V); 991 setDependence(ExprDependence::None); 992 } 993 994 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 995 : Expr(FloatingLiteralClass, Empty) { 996 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 997 FloatingLiteralBits.IsExact = false; 998 } 999 1000 FloatingLiteral * 1001 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1002 bool isexact, QualType Type, SourceLocation L) { 1003 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1004 } 1005 1006 FloatingLiteral * 1007 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1008 return new (C) FloatingLiteral(C, Empty); 1009 } 1010 1011 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1012 /// double. Note that this may cause loss of precision, but is useful for 1013 /// debugging dumps, etc. 1014 double FloatingLiteral::getValueAsApproximateDouble() const { 1015 llvm::APFloat V = getValue(); 1016 bool ignored; 1017 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1018 &ignored); 1019 return V.convertToDouble(); 1020 } 1021 1022 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1023 StringKind SK) { 1024 unsigned CharByteWidth = 0; 1025 switch (SK) { 1026 case Ascii: 1027 case UTF8: 1028 CharByteWidth = Target.getCharWidth(); 1029 break; 1030 case Wide: 1031 CharByteWidth = Target.getWCharWidth(); 1032 break; 1033 case UTF16: 1034 CharByteWidth = Target.getChar16Width(); 1035 break; 1036 case UTF32: 1037 CharByteWidth = Target.getChar32Width(); 1038 break; 1039 } 1040 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1041 CharByteWidth /= 8; 1042 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1043 "The only supported character byte widths are 1,2 and 4!"); 1044 return CharByteWidth; 1045 } 1046 1047 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1048 StringKind Kind, bool Pascal, QualType Ty, 1049 const SourceLocation *Loc, 1050 unsigned NumConcatenated) 1051 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1052 assert(Ctx.getAsConstantArrayType(Ty) && 1053 "StringLiteral must be of constant array type!"); 1054 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1055 unsigned ByteLength = Str.size(); 1056 assert((ByteLength % CharByteWidth == 0) && 1057 "The size of the data must be a multiple of CharByteWidth!"); 1058 1059 // Avoid the expensive division. The compiler should be able to figure it 1060 // out by itself. However as of clang 7, even with the appropriate 1061 // llvm_unreachable added just here, it is not able to do so. 1062 unsigned Length; 1063 switch (CharByteWidth) { 1064 case 1: 1065 Length = ByteLength; 1066 break; 1067 case 2: 1068 Length = ByteLength / 2; 1069 break; 1070 case 4: 1071 Length = ByteLength / 4; 1072 break; 1073 default: 1074 llvm_unreachable("Unsupported character width!"); 1075 } 1076 1077 StringLiteralBits.Kind = Kind; 1078 StringLiteralBits.CharByteWidth = CharByteWidth; 1079 StringLiteralBits.IsPascal = Pascal; 1080 StringLiteralBits.NumConcatenated = NumConcatenated; 1081 *getTrailingObjects<unsigned>() = Length; 1082 1083 // Initialize the trailing array of SourceLocation. 1084 // This is safe since SourceLocation is POD-like. 1085 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1086 NumConcatenated * sizeof(SourceLocation)); 1087 1088 // Initialize the trailing array of char holding the string data. 1089 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1090 1091 setDependence(ExprDependence::None); 1092 } 1093 1094 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1095 unsigned Length, unsigned CharByteWidth) 1096 : Expr(StringLiteralClass, Empty) { 1097 StringLiteralBits.CharByteWidth = CharByteWidth; 1098 StringLiteralBits.NumConcatenated = NumConcatenated; 1099 *getTrailingObjects<unsigned>() = Length; 1100 } 1101 1102 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1103 StringKind Kind, bool Pascal, QualType Ty, 1104 const SourceLocation *Loc, 1105 unsigned NumConcatenated) { 1106 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1107 1, NumConcatenated, Str.size()), 1108 alignof(StringLiteral)); 1109 return new (Mem) 1110 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1111 } 1112 1113 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1114 unsigned NumConcatenated, 1115 unsigned Length, 1116 unsigned CharByteWidth) { 1117 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1118 1, NumConcatenated, Length * CharByteWidth), 1119 alignof(StringLiteral)); 1120 return new (Mem) 1121 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1122 } 1123 1124 void StringLiteral::outputString(raw_ostream &OS) const { 1125 switch (getKind()) { 1126 case Ascii: break; // no prefix. 1127 case Wide: OS << 'L'; break; 1128 case UTF8: OS << "u8"; break; 1129 case UTF16: OS << 'u'; break; 1130 case UTF32: OS << 'U'; break; 1131 } 1132 OS << '"'; 1133 static const char Hex[] = "0123456789ABCDEF"; 1134 1135 unsigned LastSlashX = getLength(); 1136 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1137 uint32_t Char = getCodeUnit(I); 1138 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1139 if (Escaped.empty()) { 1140 // FIXME: Convert UTF-8 back to codepoints before rendering. 1141 1142 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1143 // Leave invalid surrogates alone; we'll use \x for those. 1144 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1145 Char <= 0xdbff) { 1146 uint32_t Trail = getCodeUnit(I + 1); 1147 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1148 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1149 ++I; 1150 } 1151 } 1152 1153 if (Char > 0xff) { 1154 // If this is a wide string, output characters over 0xff using \x 1155 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1156 // codepoint: use \x escapes for invalid codepoints. 1157 if (getKind() == Wide || 1158 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1159 // FIXME: Is this the best way to print wchar_t? 1160 OS << "\\x"; 1161 int Shift = 28; 1162 while ((Char >> Shift) == 0) 1163 Shift -= 4; 1164 for (/**/; Shift >= 0; Shift -= 4) 1165 OS << Hex[(Char >> Shift) & 15]; 1166 LastSlashX = I; 1167 continue; 1168 } 1169 1170 if (Char > 0xffff) 1171 OS << "\\U00" 1172 << Hex[(Char >> 20) & 15] 1173 << Hex[(Char >> 16) & 15]; 1174 else 1175 OS << "\\u"; 1176 OS << Hex[(Char >> 12) & 15] 1177 << Hex[(Char >> 8) & 15] 1178 << Hex[(Char >> 4) & 15] 1179 << Hex[(Char >> 0) & 15]; 1180 continue; 1181 } 1182 1183 // If we used \x... for the previous character, and this character is a 1184 // hexadecimal digit, prevent it being slurped as part of the \x. 1185 if (LastSlashX + 1 == I) { 1186 switch (Char) { 1187 case '0': case '1': case '2': case '3': case '4': 1188 case '5': case '6': case '7': case '8': case '9': 1189 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1190 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1191 OS << "\"\""; 1192 } 1193 } 1194 1195 assert(Char <= 0xff && 1196 "Characters above 0xff should already have been handled."); 1197 1198 if (isPrintable(Char)) 1199 OS << (char)Char; 1200 else // Output anything hard as an octal escape. 1201 OS << '\\' 1202 << (char)('0' + ((Char >> 6) & 7)) 1203 << (char)('0' + ((Char >> 3) & 7)) 1204 << (char)('0' + ((Char >> 0) & 7)); 1205 } else { 1206 // Handle some common non-printable cases to make dumps prettier. 1207 OS << Escaped; 1208 } 1209 } 1210 OS << '"'; 1211 } 1212 1213 /// getLocationOfByte - Return a source location that points to the specified 1214 /// byte of this string literal. 1215 /// 1216 /// Strings are amazingly complex. They can be formed from multiple tokens and 1217 /// can have escape sequences in them in addition to the usual trigraph and 1218 /// escaped newline business. This routine handles this complexity. 1219 /// 1220 /// The *StartToken sets the first token to be searched in this function and 1221 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1222 /// returning, it updates the *StartToken to the TokNo of the token being found 1223 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1224 /// string. 1225 /// Using these two parameters can reduce the time complexity from O(n^2) to 1226 /// O(n) if one wants to get the location of byte for all the tokens in a 1227 /// string. 1228 /// 1229 SourceLocation 1230 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1231 const LangOptions &Features, 1232 const TargetInfo &Target, unsigned *StartToken, 1233 unsigned *StartTokenByteOffset) const { 1234 assert((getKind() == StringLiteral::Ascii || 1235 getKind() == StringLiteral::UTF8) && 1236 "Only narrow string literals are currently supported"); 1237 1238 // Loop over all of the tokens in this string until we find the one that 1239 // contains the byte we're looking for. 1240 unsigned TokNo = 0; 1241 unsigned StringOffset = 0; 1242 if (StartToken) 1243 TokNo = *StartToken; 1244 if (StartTokenByteOffset) { 1245 StringOffset = *StartTokenByteOffset; 1246 ByteNo -= StringOffset; 1247 } 1248 while (true) { 1249 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1250 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1251 1252 // Get the spelling of the string so that we can get the data that makes up 1253 // the string literal, not the identifier for the macro it is potentially 1254 // expanded through. 1255 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1256 1257 // Re-lex the token to get its length and original spelling. 1258 std::pair<FileID, unsigned> LocInfo = 1259 SM.getDecomposedLoc(StrTokSpellingLoc); 1260 bool Invalid = false; 1261 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1262 if (Invalid) { 1263 if (StartTokenByteOffset != nullptr) 1264 *StartTokenByteOffset = StringOffset; 1265 if (StartToken != nullptr) 1266 *StartToken = TokNo; 1267 return StrTokSpellingLoc; 1268 } 1269 1270 const char *StrData = Buffer.data()+LocInfo.second; 1271 1272 // Create a lexer starting at the beginning of this token. 1273 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1274 Buffer.begin(), StrData, Buffer.end()); 1275 Token TheTok; 1276 TheLexer.LexFromRawLexer(TheTok); 1277 1278 // Use the StringLiteralParser to compute the length of the string in bytes. 1279 StringLiteralParser SLP(TheTok, SM, Features, Target); 1280 unsigned TokNumBytes = SLP.GetStringLength(); 1281 1282 // If the byte is in this token, return the location of the byte. 1283 if (ByteNo < TokNumBytes || 1284 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1285 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1286 1287 // Now that we know the offset of the token in the spelling, use the 1288 // preprocessor to get the offset in the original source. 1289 if (StartTokenByteOffset != nullptr) 1290 *StartTokenByteOffset = StringOffset; 1291 if (StartToken != nullptr) 1292 *StartToken = TokNo; 1293 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1294 } 1295 1296 // Move to the next string token. 1297 StringOffset += TokNumBytes; 1298 ++TokNo; 1299 ByteNo -= TokNumBytes; 1300 } 1301 } 1302 1303 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1304 /// corresponds to, e.g. "sizeof" or "[pre]++". 1305 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1306 switch (Op) { 1307 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1308 #include "clang/AST/OperationKinds.def" 1309 } 1310 llvm_unreachable("Unknown unary operator"); 1311 } 1312 1313 UnaryOperatorKind 1314 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1315 switch (OO) { 1316 default: llvm_unreachable("No unary operator for overloaded function"); 1317 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1318 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1319 case OO_Amp: return UO_AddrOf; 1320 case OO_Star: return UO_Deref; 1321 case OO_Plus: return UO_Plus; 1322 case OO_Minus: return UO_Minus; 1323 case OO_Tilde: return UO_Not; 1324 case OO_Exclaim: return UO_LNot; 1325 case OO_Coawait: return UO_Coawait; 1326 } 1327 } 1328 1329 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1330 switch (Opc) { 1331 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1332 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1333 case UO_AddrOf: return OO_Amp; 1334 case UO_Deref: return OO_Star; 1335 case UO_Plus: return OO_Plus; 1336 case UO_Minus: return OO_Minus; 1337 case UO_Not: return OO_Tilde; 1338 case UO_LNot: return OO_Exclaim; 1339 case UO_Coawait: return OO_Coawait; 1340 default: return OO_None; 1341 } 1342 } 1343 1344 1345 //===----------------------------------------------------------------------===// 1346 // Postfix Operators. 1347 //===----------------------------------------------------------------------===// 1348 1349 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1350 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1351 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1352 unsigned MinNumArgs, ADLCallKind UsesADL) 1353 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1354 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1355 unsigned NumPreArgs = PreArgs.size(); 1356 CallExprBits.NumPreArgs = NumPreArgs; 1357 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1358 1359 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1360 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1361 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1362 "OffsetToTrailingObjects overflow!"); 1363 1364 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1365 1366 setCallee(Fn); 1367 for (unsigned I = 0; I != NumPreArgs; ++I) 1368 setPreArg(I, PreArgs[I]); 1369 for (unsigned I = 0; I != Args.size(); ++I) 1370 setArg(I, Args[I]); 1371 for (unsigned I = Args.size(); I != NumArgs; ++I) 1372 setArg(I, nullptr); 1373 1374 this->computeDependence(); 1375 1376 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1377 if (hasStoredFPFeatures()) 1378 setStoredFPFeatures(FPFeatures); 1379 } 1380 1381 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1382 bool HasFPFeatures, EmptyShell Empty) 1383 : Expr(SC, Empty), NumArgs(NumArgs) { 1384 CallExprBits.NumPreArgs = NumPreArgs; 1385 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1386 1387 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1388 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1389 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1390 "OffsetToTrailingObjects overflow!"); 1391 CallExprBits.HasFPFeatures = HasFPFeatures; 1392 } 1393 1394 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1395 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1396 SourceLocation RParenLoc, 1397 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1398 ADLCallKind UsesADL) { 1399 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1400 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1401 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1402 void *Mem = 1403 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1404 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1405 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1406 } 1407 1408 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1409 ExprValueKind VK, SourceLocation RParenLoc, 1410 ADLCallKind UsesADL) { 1411 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1412 "Misaligned memory in CallExpr::CreateTemporary!"); 1413 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1414 VK, RParenLoc, FPOptionsOverride(), 1415 /*MinNumArgs=*/0, UsesADL); 1416 } 1417 1418 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1419 bool HasFPFeatures, EmptyShell Empty) { 1420 unsigned SizeOfTrailingObjects = 1421 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1422 void *Mem = 1423 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1424 return new (Mem) 1425 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1426 } 1427 1428 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1429 switch (SC) { 1430 case CallExprClass: 1431 return sizeof(CallExpr); 1432 case CXXOperatorCallExprClass: 1433 return sizeof(CXXOperatorCallExpr); 1434 case CXXMemberCallExprClass: 1435 return sizeof(CXXMemberCallExpr); 1436 case UserDefinedLiteralClass: 1437 return sizeof(UserDefinedLiteral); 1438 case CUDAKernelCallExprClass: 1439 return sizeof(CUDAKernelCallExpr); 1440 default: 1441 llvm_unreachable("unexpected class deriving from CallExpr!"); 1442 } 1443 } 1444 1445 Decl *Expr::getReferencedDeclOfCallee() { 1446 Expr *CEE = IgnoreParenImpCasts(); 1447 1448 while (SubstNonTypeTemplateParmExpr *NTTP = 1449 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1450 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1451 } 1452 1453 // If we're calling a dereference, look at the pointer instead. 1454 while (true) { 1455 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1456 if (BO->isPtrMemOp()) { 1457 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1458 continue; 1459 } 1460 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1461 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1462 UO->getOpcode() == UO_Plus) { 1463 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1464 continue; 1465 } 1466 } 1467 break; 1468 } 1469 1470 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1471 return DRE->getDecl(); 1472 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1473 return ME->getMemberDecl(); 1474 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1475 return BE->getBlockDecl(); 1476 1477 return nullptr; 1478 } 1479 1480 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1481 unsigned CallExpr::getBuiltinCallee() const { 1482 auto *FDecl = getDirectCallee(); 1483 return FDecl ? FDecl->getBuiltinID() : 0; 1484 } 1485 1486 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1487 if (unsigned BI = getBuiltinCallee()) 1488 return Ctx.BuiltinInfo.isUnevaluated(BI); 1489 return false; 1490 } 1491 1492 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1493 const Expr *Callee = getCallee(); 1494 QualType CalleeType = Callee->getType(); 1495 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1496 CalleeType = FnTypePtr->getPointeeType(); 1497 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1498 CalleeType = BPT->getPointeeType(); 1499 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1500 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1501 return Ctx.VoidTy; 1502 1503 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1504 return Ctx.DependentTy; 1505 1506 // This should never be overloaded and so should never return null. 1507 CalleeType = Expr::findBoundMemberType(Callee); 1508 assert(!CalleeType.isNull()); 1509 } else if (CalleeType->isDependentType() || 1510 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1511 return Ctx.DependentTy; 1512 } 1513 1514 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1515 return FnType->getReturnType(); 1516 } 1517 1518 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1519 // If the return type is a struct, union, or enum that is marked nodiscard, 1520 // then return the return type attribute. 1521 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1522 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1523 return A; 1524 1525 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1526 TD = TD->desugar()->getAs<TypedefType>()) 1527 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1528 return A; 1529 1530 // Otherwise, see if the callee is marked nodiscard and return that attribute 1531 // instead. 1532 const Decl *D = getCalleeDecl(); 1533 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1534 } 1535 1536 SourceLocation CallExpr::getBeginLoc() const { 1537 if (isa<CXXOperatorCallExpr>(this)) 1538 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1539 1540 SourceLocation begin = getCallee()->getBeginLoc(); 1541 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1542 begin = getArg(0)->getBeginLoc(); 1543 return begin; 1544 } 1545 SourceLocation CallExpr::getEndLoc() const { 1546 if (isa<CXXOperatorCallExpr>(this)) 1547 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1548 1549 SourceLocation end = getRParenLoc(); 1550 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1551 end = getArg(getNumArgs() - 1)->getEndLoc(); 1552 return end; 1553 } 1554 1555 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1556 SourceLocation OperatorLoc, 1557 TypeSourceInfo *tsi, 1558 ArrayRef<OffsetOfNode> comps, 1559 ArrayRef<Expr*> exprs, 1560 SourceLocation RParenLoc) { 1561 void *Mem = C.Allocate( 1562 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1563 1564 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1565 RParenLoc); 1566 } 1567 1568 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1569 unsigned numComps, unsigned numExprs) { 1570 void *Mem = 1571 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1572 return new (Mem) OffsetOfExpr(numComps, numExprs); 1573 } 1574 1575 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1576 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1577 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1578 SourceLocation RParenLoc) 1579 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1580 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1581 NumComps(comps.size()), NumExprs(exprs.size()) { 1582 for (unsigned i = 0; i != comps.size(); ++i) 1583 setComponent(i, comps[i]); 1584 for (unsigned i = 0; i != exprs.size(); ++i) 1585 setIndexExpr(i, exprs[i]); 1586 1587 setDependence(computeDependence(this)); 1588 } 1589 1590 IdentifierInfo *OffsetOfNode::getFieldName() const { 1591 assert(getKind() == Field || getKind() == Identifier); 1592 if (getKind() == Field) 1593 return getField()->getIdentifier(); 1594 1595 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1596 } 1597 1598 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1599 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1600 SourceLocation op, SourceLocation rp) 1601 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1602 OpLoc(op), RParenLoc(rp) { 1603 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1604 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1605 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1606 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1607 UnaryExprOrTypeTraitExprBits.IsType = false; 1608 Argument.Ex = E; 1609 setDependence(computeDependence(this)); 1610 } 1611 1612 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1613 ValueDecl *MemberDecl, 1614 const DeclarationNameInfo &NameInfo, QualType T, 1615 ExprValueKind VK, ExprObjectKind OK, 1616 NonOdrUseReason NOUR) 1617 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1618 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1619 assert(!NameInfo.getName() || 1620 MemberDecl->getDeclName() == NameInfo.getName()); 1621 MemberExprBits.IsArrow = IsArrow; 1622 MemberExprBits.HasQualifierOrFoundDecl = false; 1623 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1624 MemberExprBits.HadMultipleCandidates = false; 1625 MemberExprBits.NonOdrUseReason = NOUR; 1626 MemberExprBits.OperatorLoc = OperatorLoc; 1627 setDependence(computeDependence(this)); 1628 } 1629 1630 MemberExpr *MemberExpr::Create( 1631 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1632 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1633 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1634 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1635 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1636 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1637 FoundDecl.getAccess() != MemberDecl->getAccess(); 1638 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1639 std::size_t Size = 1640 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1641 TemplateArgumentLoc>( 1642 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1643 TemplateArgs ? TemplateArgs->size() : 0); 1644 1645 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1646 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1647 NameInfo, T, VK, OK, NOUR); 1648 1649 // FIXME: remove remaining dependence computation to computeDependence(). 1650 auto Deps = E->getDependence(); 1651 if (HasQualOrFound) { 1652 // FIXME: Wrong. We should be looking at the member declaration we found. 1653 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1654 Deps |= ExprDependence::TypeValueInstantiation; 1655 else if (QualifierLoc && 1656 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1657 Deps |= ExprDependence::Instantiation; 1658 1659 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1660 1661 MemberExprNameQualifier *NQ = 1662 E->getTrailingObjects<MemberExprNameQualifier>(); 1663 NQ->QualifierLoc = QualifierLoc; 1664 NQ->FoundDecl = FoundDecl; 1665 } 1666 1667 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1668 TemplateArgs || TemplateKWLoc.isValid(); 1669 1670 if (TemplateArgs) { 1671 auto TemplateArgDeps = TemplateArgumentDependence::None; 1672 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1673 TemplateKWLoc, *TemplateArgs, 1674 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1675 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1676 Deps |= ExprDependence::Instantiation; 1677 } else if (TemplateKWLoc.isValid()) { 1678 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1679 TemplateKWLoc); 1680 } 1681 E->setDependence(Deps); 1682 1683 return E; 1684 } 1685 1686 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1687 bool HasQualifier, bool HasFoundDecl, 1688 bool HasTemplateKWAndArgsInfo, 1689 unsigned NumTemplateArgs) { 1690 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1691 "template args but no template arg info?"); 1692 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1693 std::size_t Size = 1694 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1695 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1696 HasTemplateKWAndArgsInfo ? 1 : 0, 1697 NumTemplateArgs); 1698 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1699 return new (Mem) MemberExpr(EmptyShell()); 1700 } 1701 1702 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1703 MemberDecl = NewD; 1704 if (getType()->isUndeducedType()) 1705 setType(NewD->getType()); 1706 setDependence(computeDependence(this)); 1707 } 1708 1709 SourceLocation MemberExpr::getBeginLoc() const { 1710 if (isImplicitAccess()) { 1711 if (hasQualifier()) 1712 return getQualifierLoc().getBeginLoc(); 1713 return MemberLoc; 1714 } 1715 1716 // FIXME: We don't want this to happen. Rather, we should be able to 1717 // detect all kinds of implicit accesses more cleanly. 1718 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1719 if (BaseStartLoc.isValid()) 1720 return BaseStartLoc; 1721 return MemberLoc; 1722 } 1723 SourceLocation MemberExpr::getEndLoc() const { 1724 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1725 if (hasExplicitTemplateArgs()) 1726 EndLoc = getRAngleLoc(); 1727 else if (EndLoc.isInvalid()) 1728 EndLoc = getBase()->getEndLoc(); 1729 return EndLoc; 1730 } 1731 1732 bool CastExpr::CastConsistency() const { 1733 switch (getCastKind()) { 1734 case CK_DerivedToBase: 1735 case CK_UncheckedDerivedToBase: 1736 case CK_DerivedToBaseMemberPointer: 1737 case CK_BaseToDerived: 1738 case CK_BaseToDerivedMemberPointer: 1739 assert(!path_empty() && "Cast kind should have a base path!"); 1740 break; 1741 1742 case CK_CPointerToObjCPointerCast: 1743 assert(getType()->isObjCObjectPointerType()); 1744 assert(getSubExpr()->getType()->isPointerType()); 1745 goto CheckNoBasePath; 1746 1747 case CK_BlockPointerToObjCPointerCast: 1748 assert(getType()->isObjCObjectPointerType()); 1749 assert(getSubExpr()->getType()->isBlockPointerType()); 1750 goto CheckNoBasePath; 1751 1752 case CK_ReinterpretMemberPointer: 1753 assert(getType()->isMemberPointerType()); 1754 assert(getSubExpr()->getType()->isMemberPointerType()); 1755 goto CheckNoBasePath; 1756 1757 case CK_BitCast: 1758 // Arbitrary casts to C pointer types count as bitcasts. 1759 // Otherwise, we should only have block and ObjC pointer casts 1760 // here if they stay within the type kind. 1761 if (!getType()->isPointerType()) { 1762 assert(getType()->isObjCObjectPointerType() == 1763 getSubExpr()->getType()->isObjCObjectPointerType()); 1764 assert(getType()->isBlockPointerType() == 1765 getSubExpr()->getType()->isBlockPointerType()); 1766 } 1767 goto CheckNoBasePath; 1768 1769 case CK_AnyPointerToBlockPointerCast: 1770 assert(getType()->isBlockPointerType()); 1771 assert(getSubExpr()->getType()->isAnyPointerType() && 1772 !getSubExpr()->getType()->isBlockPointerType()); 1773 goto CheckNoBasePath; 1774 1775 case CK_CopyAndAutoreleaseBlockObject: 1776 assert(getType()->isBlockPointerType()); 1777 assert(getSubExpr()->getType()->isBlockPointerType()); 1778 goto CheckNoBasePath; 1779 1780 case CK_FunctionToPointerDecay: 1781 assert(getType()->isPointerType()); 1782 assert(getSubExpr()->getType()->isFunctionType()); 1783 goto CheckNoBasePath; 1784 1785 case CK_AddressSpaceConversion: { 1786 auto Ty = getType(); 1787 auto SETy = getSubExpr()->getType(); 1788 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1789 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1790 Ty = Ty->getPointeeType(); 1791 SETy = SETy->getPointeeType(); 1792 } 1793 assert((Ty->isDependentType() || SETy->isDependentType()) || 1794 (!Ty.isNull() && !SETy.isNull() && 1795 Ty.getAddressSpace() != SETy.getAddressSpace())); 1796 goto CheckNoBasePath; 1797 } 1798 // These should not have an inheritance path. 1799 case CK_Dynamic: 1800 case CK_ToUnion: 1801 case CK_ArrayToPointerDecay: 1802 case CK_NullToMemberPointer: 1803 case CK_NullToPointer: 1804 case CK_ConstructorConversion: 1805 case CK_IntegralToPointer: 1806 case CK_PointerToIntegral: 1807 case CK_ToVoid: 1808 case CK_VectorSplat: 1809 case CK_IntegralCast: 1810 case CK_BooleanToSignedIntegral: 1811 case CK_IntegralToFloating: 1812 case CK_FloatingToIntegral: 1813 case CK_FloatingCast: 1814 case CK_ObjCObjectLValueCast: 1815 case CK_FloatingRealToComplex: 1816 case CK_FloatingComplexToReal: 1817 case CK_FloatingComplexCast: 1818 case CK_FloatingComplexToIntegralComplex: 1819 case CK_IntegralRealToComplex: 1820 case CK_IntegralComplexToReal: 1821 case CK_IntegralComplexCast: 1822 case CK_IntegralComplexToFloatingComplex: 1823 case CK_ARCProduceObject: 1824 case CK_ARCConsumeObject: 1825 case CK_ARCReclaimReturnedObject: 1826 case CK_ARCExtendBlockObject: 1827 case CK_ZeroToOCLOpaqueType: 1828 case CK_IntToOCLSampler: 1829 case CK_FloatingToFixedPoint: 1830 case CK_FixedPointToFloating: 1831 case CK_FixedPointCast: 1832 case CK_FixedPointToIntegral: 1833 case CK_IntegralToFixedPoint: 1834 case CK_MatrixCast: 1835 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1836 goto CheckNoBasePath; 1837 1838 case CK_Dependent: 1839 case CK_LValueToRValue: 1840 case CK_NoOp: 1841 case CK_AtomicToNonAtomic: 1842 case CK_NonAtomicToAtomic: 1843 case CK_PointerToBoolean: 1844 case CK_IntegralToBoolean: 1845 case CK_FloatingToBoolean: 1846 case CK_MemberPointerToBoolean: 1847 case CK_FloatingComplexToBoolean: 1848 case CK_IntegralComplexToBoolean: 1849 case CK_LValueBitCast: // -> bool& 1850 case CK_LValueToRValueBitCast: 1851 case CK_UserDefinedConversion: // operator bool() 1852 case CK_BuiltinFnToFnPtr: 1853 case CK_FixedPointToBoolean: 1854 CheckNoBasePath: 1855 assert(path_empty() && "Cast kind should not have a base path!"); 1856 break; 1857 } 1858 return true; 1859 } 1860 1861 const char *CastExpr::getCastKindName(CastKind CK) { 1862 switch (CK) { 1863 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1864 #include "clang/AST/OperationKinds.def" 1865 } 1866 llvm_unreachable("Unhandled cast kind!"); 1867 } 1868 1869 namespace { 1870 // Skip over implicit nodes produced as part of semantic analysis. 1871 // Designed for use with IgnoreExprNodes. 1872 Expr *ignoreImplicitSemaNodes(Expr *E) { 1873 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1874 return Materialize->getSubExpr(); 1875 1876 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1877 return Binder->getSubExpr(); 1878 1879 if (auto *Full = dyn_cast<FullExpr>(E)) 1880 return Full->getSubExpr(); 1881 1882 return E; 1883 } 1884 } // namespace 1885 1886 Expr *CastExpr::getSubExprAsWritten() { 1887 const Expr *SubExpr = nullptr; 1888 1889 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1890 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1891 1892 // Conversions by constructor and conversion functions have a 1893 // subexpression describing the call; strip it off. 1894 if (E->getCastKind() == CK_ConstructorConversion) { 1895 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 1896 ignoreImplicitSemaNodes); 1897 } else if (E->getCastKind() == CK_UserDefinedConversion) { 1898 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 1899 "Unexpected SubExpr for CK_UserDefinedConversion."); 1900 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1901 SubExpr = MCE->getImplicitObjectArgument(); 1902 } 1903 } 1904 1905 return const_cast<Expr *>(SubExpr); 1906 } 1907 1908 NamedDecl *CastExpr::getConversionFunction() const { 1909 const Expr *SubExpr = nullptr; 1910 1911 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1912 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1913 1914 if (E->getCastKind() == CK_ConstructorConversion) 1915 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1916 1917 if (E->getCastKind() == CK_UserDefinedConversion) { 1918 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1919 return MCE->getMethodDecl(); 1920 } 1921 } 1922 1923 return nullptr; 1924 } 1925 1926 CXXBaseSpecifier **CastExpr::path_buffer() { 1927 switch (getStmtClass()) { 1928 #define ABSTRACT_STMT(x) 1929 #define CASTEXPR(Type, Base) \ 1930 case Stmt::Type##Class: \ 1931 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1932 #define STMT(Type, Base) 1933 #include "clang/AST/StmtNodes.inc" 1934 default: 1935 llvm_unreachable("non-cast expressions not possible here"); 1936 } 1937 } 1938 1939 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1940 QualType opType) { 1941 auto RD = unionType->castAs<RecordType>()->getDecl(); 1942 return getTargetFieldForToUnionCast(RD, opType); 1943 } 1944 1945 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1946 QualType OpType) { 1947 auto &Ctx = RD->getASTContext(); 1948 RecordDecl::field_iterator Field, FieldEnd; 1949 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1950 Field != FieldEnd; ++Field) { 1951 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1952 !Field->isUnnamedBitfield()) { 1953 return *Field; 1954 } 1955 } 1956 return nullptr; 1957 } 1958 1959 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 1960 assert(hasStoredFPFeatures()); 1961 switch (getStmtClass()) { 1962 case ImplicitCastExprClass: 1963 return static_cast<ImplicitCastExpr *>(this) 1964 ->getTrailingObjects<FPOptionsOverride>(); 1965 case CStyleCastExprClass: 1966 return static_cast<CStyleCastExpr *>(this) 1967 ->getTrailingObjects<FPOptionsOverride>(); 1968 case CXXFunctionalCastExprClass: 1969 return static_cast<CXXFunctionalCastExpr *>(this) 1970 ->getTrailingObjects<FPOptionsOverride>(); 1971 case CXXStaticCastExprClass: 1972 return static_cast<CXXStaticCastExpr *>(this) 1973 ->getTrailingObjects<FPOptionsOverride>(); 1974 default: 1975 llvm_unreachable("Cast does not have FPFeatures"); 1976 } 1977 } 1978 1979 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1980 CastKind Kind, Expr *Operand, 1981 const CXXCastPath *BasePath, 1982 ExprValueKind VK, 1983 FPOptionsOverride FPO) { 1984 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1985 void *Buffer = 1986 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 1987 PathSize, FPO.requiresTrailingStorage())); 1988 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 1989 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 1990 assert((Kind != CK_LValueToRValue || 1991 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 1992 "invalid type for lvalue-to-rvalue conversion"); 1993 ImplicitCastExpr *E = 1994 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 1995 if (PathSize) 1996 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1997 E->getTrailingObjects<CXXBaseSpecifier *>()); 1998 return E; 1999 } 2000 2001 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2002 unsigned PathSize, 2003 bool HasFPFeatures) { 2004 void *Buffer = 2005 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2006 PathSize, HasFPFeatures)); 2007 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2008 } 2009 2010 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2011 ExprValueKind VK, CastKind K, Expr *Op, 2012 const CXXCastPath *BasePath, 2013 FPOptionsOverride FPO, 2014 TypeSourceInfo *WrittenTy, 2015 SourceLocation L, SourceLocation R) { 2016 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2017 void *Buffer = 2018 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2019 PathSize, FPO.requiresTrailingStorage())); 2020 CStyleCastExpr *E = 2021 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2022 if (PathSize) 2023 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2024 E->getTrailingObjects<CXXBaseSpecifier *>()); 2025 return E; 2026 } 2027 2028 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2029 unsigned PathSize, 2030 bool HasFPFeatures) { 2031 void *Buffer = 2032 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2033 PathSize, HasFPFeatures)); 2034 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2035 } 2036 2037 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2038 /// corresponds to, e.g. "<<=". 2039 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2040 switch (Op) { 2041 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2042 #include "clang/AST/OperationKinds.def" 2043 } 2044 llvm_unreachable("Invalid OpCode!"); 2045 } 2046 2047 BinaryOperatorKind 2048 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2049 switch (OO) { 2050 default: llvm_unreachable("Not an overloadable binary operator"); 2051 case OO_Plus: return BO_Add; 2052 case OO_Minus: return BO_Sub; 2053 case OO_Star: return BO_Mul; 2054 case OO_Slash: return BO_Div; 2055 case OO_Percent: return BO_Rem; 2056 case OO_Caret: return BO_Xor; 2057 case OO_Amp: return BO_And; 2058 case OO_Pipe: return BO_Or; 2059 case OO_Equal: return BO_Assign; 2060 case OO_Spaceship: return BO_Cmp; 2061 case OO_Less: return BO_LT; 2062 case OO_Greater: return BO_GT; 2063 case OO_PlusEqual: return BO_AddAssign; 2064 case OO_MinusEqual: return BO_SubAssign; 2065 case OO_StarEqual: return BO_MulAssign; 2066 case OO_SlashEqual: return BO_DivAssign; 2067 case OO_PercentEqual: return BO_RemAssign; 2068 case OO_CaretEqual: return BO_XorAssign; 2069 case OO_AmpEqual: return BO_AndAssign; 2070 case OO_PipeEqual: return BO_OrAssign; 2071 case OO_LessLess: return BO_Shl; 2072 case OO_GreaterGreater: return BO_Shr; 2073 case OO_LessLessEqual: return BO_ShlAssign; 2074 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2075 case OO_EqualEqual: return BO_EQ; 2076 case OO_ExclaimEqual: return BO_NE; 2077 case OO_LessEqual: return BO_LE; 2078 case OO_GreaterEqual: return BO_GE; 2079 case OO_AmpAmp: return BO_LAnd; 2080 case OO_PipePipe: return BO_LOr; 2081 case OO_Comma: return BO_Comma; 2082 case OO_ArrowStar: return BO_PtrMemI; 2083 } 2084 } 2085 2086 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2087 static const OverloadedOperatorKind OverOps[] = { 2088 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2089 OO_Star, OO_Slash, OO_Percent, 2090 OO_Plus, OO_Minus, 2091 OO_LessLess, OO_GreaterGreater, 2092 OO_Spaceship, 2093 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2094 OO_EqualEqual, OO_ExclaimEqual, 2095 OO_Amp, 2096 OO_Caret, 2097 OO_Pipe, 2098 OO_AmpAmp, 2099 OO_PipePipe, 2100 OO_Equal, OO_StarEqual, 2101 OO_SlashEqual, OO_PercentEqual, 2102 OO_PlusEqual, OO_MinusEqual, 2103 OO_LessLessEqual, OO_GreaterGreaterEqual, 2104 OO_AmpEqual, OO_CaretEqual, 2105 OO_PipeEqual, 2106 OO_Comma 2107 }; 2108 return OverOps[Opc]; 2109 } 2110 2111 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2112 Opcode Opc, 2113 Expr *LHS, Expr *RHS) { 2114 if (Opc != BO_Add) 2115 return false; 2116 2117 // Check that we have one pointer and one integer operand. 2118 Expr *PExp; 2119 if (LHS->getType()->isPointerType()) { 2120 if (!RHS->getType()->isIntegerType()) 2121 return false; 2122 PExp = LHS; 2123 } else if (RHS->getType()->isPointerType()) { 2124 if (!LHS->getType()->isIntegerType()) 2125 return false; 2126 PExp = RHS; 2127 } else { 2128 return false; 2129 } 2130 2131 // Check that the pointer is a nullptr. 2132 if (!PExp->IgnoreParenCasts() 2133 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2134 return false; 2135 2136 // Check that the pointee type is char-sized. 2137 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2138 if (!PTy || !PTy->getPointeeType()->isCharType()) 2139 return false; 2140 2141 return true; 2142 } 2143 2144 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2145 QualType ResultTy, SourceLocation BLoc, 2146 SourceLocation RParenLoc, 2147 DeclContext *ParentContext) 2148 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2149 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2150 SourceLocExprBits.Kind = Kind; 2151 setDependence(ExprDependence::None); 2152 } 2153 2154 StringRef SourceLocExpr::getBuiltinStr() const { 2155 switch (getIdentKind()) { 2156 case File: 2157 return "__builtin_FILE"; 2158 case Function: 2159 return "__builtin_FUNCTION"; 2160 case Line: 2161 return "__builtin_LINE"; 2162 case Column: 2163 return "__builtin_COLUMN"; 2164 case SourceLocStruct: 2165 return "__builtin_source_location"; 2166 } 2167 llvm_unreachable("unexpected IdentKind!"); 2168 } 2169 2170 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2171 const Expr *DefaultExpr) const { 2172 SourceLocation Loc; 2173 const DeclContext *Context; 2174 2175 std::tie(Loc, 2176 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2177 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2178 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2179 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2180 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2181 return {this->getLocation(), this->getParentContext()}; 2182 }(); 2183 2184 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2185 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2186 2187 auto MakeStringLiteral = [&](StringRef Tmp) { 2188 using LValuePathEntry = APValue::LValuePathEntry; 2189 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2190 // Decay the string to a pointer to the first character. 2191 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2192 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2193 }; 2194 2195 switch (getIdentKind()) { 2196 case SourceLocExpr::File: { 2197 SmallString<256> Path(PLoc.getFilename()); 2198 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2199 Ctx.getTargetInfo()); 2200 return MakeStringLiteral(Path); 2201 } 2202 case SourceLocExpr::Function: { 2203 const auto *CurDecl = dyn_cast<Decl>(Context); 2204 return MakeStringLiteral( 2205 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2206 : std::string("")); 2207 } 2208 case SourceLocExpr::Line: 2209 case SourceLocExpr::Column: { 2210 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2211 /*isUnsigned=*/true); 2212 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2213 : PLoc.getColumn(); 2214 return APValue(IntVal); 2215 } 2216 case SourceLocExpr::SourceLocStruct: { 2217 // Fill in a std::source_location::__impl structure, by creating an 2218 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2219 // that. 2220 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2221 assert(ImplDecl); 2222 2223 // Construct an APValue for the __impl struct, and get or create a Decl 2224 // corresponding to that. Note that we've already verified that the shape of 2225 // the ImplDecl type is as expected. 2226 2227 APValue Value(APValue::UninitStruct(), 0, 4); 2228 for (FieldDecl *F : ImplDecl->fields()) { 2229 StringRef Name = F->getName(); 2230 if (Name == "_M_file_name") { 2231 SmallString<256> Path(PLoc.getFilename()); 2232 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2233 Ctx.getTargetInfo()); 2234 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2235 } else if (Name == "_M_function_name") { 2236 // Note: this emits the PrettyFunction name -- different than what 2237 // __builtin_FUNCTION() above returns! 2238 const auto *CurDecl = dyn_cast<Decl>(Context); 2239 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2240 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2241 ? StringRef(PredefinedExpr::ComputeName( 2242 PredefinedExpr::PrettyFunction, CurDecl)) 2243 : ""); 2244 } else if (Name == "_M_line") { 2245 QualType Ty = F->getType(); 2246 llvm::APSInt IntVal(Ctx.getIntWidth(Ty), 2247 Ty->hasUnsignedIntegerRepresentation()); 2248 IntVal = PLoc.getLine(); 2249 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2250 } else if (Name == "_M_column") { 2251 QualType Ty = F->getType(); 2252 llvm::APSInt IntVal(Ctx.getIntWidth(Ty), 2253 Ty->hasUnsignedIntegerRepresentation()); 2254 IntVal = PLoc.getColumn(); 2255 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2256 } 2257 } 2258 2259 UnnamedGlobalConstantDecl *GV = 2260 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2261 2262 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2263 false); 2264 } 2265 } 2266 llvm_unreachable("unhandled case"); 2267 } 2268 2269 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2270 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2271 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2272 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2273 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2274 sawArrayRangeDesignator(false); 2275 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2276 2277 setDependence(computeDependence(this)); 2278 } 2279 2280 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2281 if (NumInits > InitExprs.size()) 2282 InitExprs.reserve(C, NumInits); 2283 } 2284 2285 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2286 InitExprs.resize(C, NumInits, nullptr); 2287 } 2288 2289 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2290 if (Init >= InitExprs.size()) { 2291 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2292 setInit(Init, expr); 2293 return nullptr; 2294 } 2295 2296 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2297 setInit(Init, expr); 2298 return Result; 2299 } 2300 2301 void InitListExpr::setArrayFiller(Expr *filler) { 2302 assert(!hasArrayFiller() && "Filler already set!"); 2303 ArrayFillerOrUnionFieldInit = filler; 2304 // Fill out any "holes" in the array due to designated initializers. 2305 Expr **inits = getInits(); 2306 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2307 if (inits[i] == nullptr) 2308 inits[i] = filler; 2309 } 2310 2311 bool InitListExpr::isStringLiteralInit() const { 2312 if (getNumInits() != 1) 2313 return false; 2314 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2315 if (!AT || !AT->getElementType()->isIntegerType()) 2316 return false; 2317 // It is possible for getInit() to return null. 2318 const Expr *Init = getInit(0); 2319 if (!Init) 2320 return false; 2321 Init = Init->IgnoreParenImpCasts(); 2322 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2323 } 2324 2325 bool InitListExpr::isTransparent() const { 2326 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2327 2328 // A glvalue InitListExpr is always just sugar. 2329 if (isGLValue()) { 2330 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2331 return true; 2332 } 2333 2334 // Otherwise, we're sugar if and only if we have exactly one initializer that 2335 // is of the same type. 2336 if (getNumInits() != 1 || !getInit(0)) 2337 return false; 2338 2339 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2340 // transparent struct copy. 2341 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2342 return false; 2343 2344 return getType().getCanonicalType() == 2345 getInit(0)->getType().getCanonicalType(); 2346 } 2347 2348 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2349 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2350 2351 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2352 return false; 2353 } 2354 2355 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2356 return Lit && Lit->getValue() == 0; 2357 } 2358 2359 SourceLocation InitListExpr::getBeginLoc() const { 2360 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2361 return SyntacticForm->getBeginLoc(); 2362 SourceLocation Beg = LBraceLoc; 2363 if (Beg.isInvalid()) { 2364 // Find the first non-null initializer. 2365 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2366 E = InitExprs.end(); 2367 I != E; ++I) { 2368 if (Stmt *S = *I) { 2369 Beg = S->getBeginLoc(); 2370 break; 2371 } 2372 } 2373 } 2374 return Beg; 2375 } 2376 2377 SourceLocation InitListExpr::getEndLoc() const { 2378 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2379 return SyntacticForm->getEndLoc(); 2380 SourceLocation End = RBraceLoc; 2381 if (End.isInvalid()) { 2382 // Find the first non-null initializer from the end. 2383 for (Stmt *S : llvm::reverse(InitExprs)) { 2384 if (S) { 2385 End = S->getEndLoc(); 2386 break; 2387 } 2388 } 2389 } 2390 return End; 2391 } 2392 2393 /// getFunctionType - Return the underlying function type for this block. 2394 /// 2395 const FunctionProtoType *BlockExpr::getFunctionType() const { 2396 // The block pointer is never sugared, but the function type might be. 2397 return cast<BlockPointerType>(getType()) 2398 ->getPointeeType()->castAs<FunctionProtoType>(); 2399 } 2400 2401 SourceLocation BlockExpr::getCaretLocation() const { 2402 return TheBlock->getCaretLocation(); 2403 } 2404 const Stmt *BlockExpr::getBody() const { 2405 return TheBlock->getBody(); 2406 } 2407 Stmt *BlockExpr::getBody() { 2408 return TheBlock->getBody(); 2409 } 2410 2411 2412 //===----------------------------------------------------------------------===// 2413 // Generic Expression Routines 2414 //===----------------------------------------------------------------------===// 2415 2416 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2417 // In C++11, discarded-value expressions of a certain form are special, 2418 // according to [expr]p10: 2419 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2420 // expression is a glvalue of volatile-qualified type and it has 2421 // one of the following forms: 2422 if (!isGLValue() || !getType().isVolatileQualified()) 2423 return false; 2424 2425 const Expr *E = IgnoreParens(); 2426 2427 // - id-expression (5.1.1), 2428 if (isa<DeclRefExpr>(E)) 2429 return true; 2430 2431 // - subscripting (5.2.1), 2432 if (isa<ArraySubscriptExpr>(E)) 2433 return true; 2434 2435 // - class member access (5.2.5), 2436 if (isa<MemberExpr>(E)) 2437 return true; 2438 2439 // - indirection (5.3.1), 2440 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2441 if (UO->getOpcode() == UO_Deref) 2442 return true; 2443 2444 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2445 // - pointer-to-member operation (5.5), 2446 if (BO->isPtrMemOp()) 2447 return true; 2448 2449 // - comma expression (5.18) where the right operand is one of the above. 2450 if (BO->getOpcode() == BO_Comma) 2451 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2452 } 2453 2454 // - conditional expression (5.16) where both the second and the third 2455 // operands are one of the above, or 2456 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2457 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2458 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2459 // The related edge case of "*x ?: *x". 2460 if (auto *BCO = 2461 dyn_cast<BinaryConditionalOperator>(E)) { 2462 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2463 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2464 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2465 } 2466 2467 // Objective-C++ extensions to the rule. 2468 if (isa<ObjCIvarRefExpr>(E)) 2469 return true; 2470 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2471 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2472 return true; 2473 } 2474 2475 return false; 2476 } 2477 2478 /// isUnusedResultAWarning - Return true if this immediate expression should 2479 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2480 /// with location to warn on and the source range[s] to report with the 2481 /// warning. 2482 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2483 SourceRange &R1, SourceRange &R2, 2484 ASTContext &Ctx) const { 2485 // Don't warn if the expr is type dependent. The type could end up 2486 // instantiating to void. 2487 if (isTypeDependent()) 2488 return false; 2489 2490 switch (getStmtClass()) { 2491 default: 2492 if (getType()->isVoidType()) 2493 return false; 2494 WarnE = this; 2495 Loc = getExprLoc(); 2496 R1 = getSourceRange(); 2497 return true; 2498 case ParenExprClass: 2499 return cast<ParenExpr>(this)->getSubExpr()-> 2500 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2501 case GenericSelectionExprClass: 2502 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2503 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2504 case CoawaitExprClass: 2505 case CoyieldExprClass: 2506 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2507 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2508 case ChooseExprClass: 2509 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2510 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2511 case UnaryOperatorClass: { 2512 const UnaryOperator *UO = cast<UnaryOperator>(this); 2513 2514 switch (UO->getOpcode()) { 2515 case UO_Plus: 2516 case UO_Minus: 2517 case UO_AddrOf: 2518 case UO_Not: 2519 case UO_LNot: 2520 case UO_Deref: 2521 break; 2522 case UO_Coawait: 2523 // This is just the 'operator co_await' call inside the guts of a 2524 // dependent co_await call. 2525 case UO_PostInc: 2526 case UO_PostDec: 2527 case UO_PreInc: 2528 case UO_PreDec: // ++/-- 2529 return false; // Not a warning. 2530 case UO_Real: 2531 case UO_Imag: 2532 // accessing a piece of a volatile complex is a side-effect. 2533 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2534 .isVolatileQualified()) 2535 return false; 2536 break; 2537 case UO_Extension: 2538 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2539 } 2540 WarnE = this; 2541 Loc = UO->getOperatorLoc(); 2542 R1 = UO->getSubExpr()->getSourceRange(); 2543 return true; 2544 } 2545 case BinaryOperatorClass: { 2546 const BinaryOperator *BO = cast<BinaryOperator>(this); 2547 switch (BO->getOpcode()) { 2548 default: 2549 break; 2550 // Consider the RHS of comma for side effects. LHS was checked by 2551 // Sema::CheckCommaOperands. 2552 case BO_Comma: 2553 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2554 // lvalue-ness) of an assignment written in a macro. 2555 if (IntegerLiteral *IE = 2556 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2557 if (IE->getValue() == 0) 2558 return false; 2559 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2560 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2561 case BO_LAnd: 2562 case BO_LOr: 2563 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2564 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2565 return false; 2566 break; 2567 } 2568 if (BO->isAssignmentOp()) 2569 return false; 2570 WarnE = this; 2571 Loc = BO->getOperatorLoc(); 2572 R1 = BO->getLHS()->getSourceRange(); 2573 R2 = BO->getRHS()->getSourceRange(); 2574 return true; 2575 } 2576 case CompoundAssignOperatorClass: 2577 case VAArgExprClass: 2578 case AtomicExprClass: 2579 return false; 2580 2581 case ConditionalOperatorClass: { 2582 // If only one of the LHS or RHS is a warning, the operator might 2583 // be being used for control flow. Only warn if both the LHS and 2584 // RHS are warnings. 2585 const auto *Exp = cast<ConditionalOperator>(this); 2586 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2587 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2588 } 2589 case BinaryConditionalOperatorClass: { 2590 const auto *Exp = cast<BinaryConditionalOperator>(this); 2591 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2592 } 2593 2594 case MemberExprClass: 2595 WarnE = this; 2596 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2597 R1 = SourceRange(Loc, Loc); 2598 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2599 return true; 2600 2601 case ArraySubscriptExprClass: 2602 WarnE = this; 2603 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2604 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2605 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2606 return true; 2607 2608 case CXXOperatorCallExprClass: { 2609 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2610 // overloads as there is no reasonable way to define these such that they 2611 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2612 // warning: operators == and != are commonly typo'ed, and so warning on them 2613 // provides additional value as well. If this list is updated, 2614 // DiagnoseUnusedComparison should be as well. 2615 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2616 switch (Op->getOperator()) { 2617 default: 2618 break; 2619 case OO_EqualEqual: 2620 case OO_ExclaimEqual: 2621 case OO_Less: 2622 case OO_Greater: 2623 case OO_GreaterEqual: 2624 case OO_LessEqual: 2625 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2626 Op->getCallReturnType(Ctx)->isVoidType()) 2627 break; 2628 WarnE = this; 2629 Loc = Op->getOperatorLoc(); 2630 R1 = Op->getSourceRange(); 2631 return true; 2632 } 2633 2634 // Fallthrough for generic call handling. 2635 LLVM_FALLTHROUGH; 2636 } 2637 case CallExprClass: 2638 case CXXMemberCallExprClass: 2639 case UserDefinedLiteralClass: { 2640 // If this is a direct call, get the callee. 2641 const CallExpr *CE = cast<CallExpr>(this); 2642 if (const Decl *FD = CE->getCalleeDecl()) { 2643 // If the callee has attribute pure, const, or warn_unused_result, warn 2644 // about it. void foo() { strlen("bar"); } should warn. 2645 // 2646 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2647 // updated to match for QoI. 2648 if (CE->hasUnusedResultAttr(Ctx) || 2649 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2650 WarnE = this; 2651 Loc = CE->getCallee()->getBeginLoc(); 2652 R1 = CE->getCallee()->getSourceRange(); 2653 2654 if (unsigned NumArgs = CE->getNumArgs()) 2655 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2656 CE->getArg(NumArgs - 1)->getEndLoc()); 2657 return true; 2658 } 2659 } 2660 return false; 2661 } 2662 2663 // If we don't know precisely what we're looking at, let's not warn. 2664 case UnresolvedLookupExprClass: 2665 case CXXUnresolvedConstructExprClass: 2666 case RecoveryExprClass: 2667 return false; 2668 2669 case CXXTemporaryObjectExprClass: 2670 case CXXConstructExprClass: { 2671 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2672 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2673 if (Type->hasAttr<WarnUnusedAttr>() || 2674 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2675 WarnE = this; 2676 Loc = getBeginLoc(); 2677 R1 = getSourceRange(); 2678 return true; 2679 } 2680 } 2681 2682 const auto *CE = cast<CXXConstructExpr>(this); 2683 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2684 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2685 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2686 WarnE = this; 2687 Loc = getBeginLoc(); 2688 R1 = getSourceRange(); 2689 2690 if (unsigned NumArgs = CE->getNumArgs()) 2691 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2692 CE->getArg(NumArgs - 1)->getEndLoc()); 2693 return true; 2694 } 2695 } 2696 2697 return false; 2698 } 2699 2700 case ObjCMessageExprClass: { 2701 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2702 if (Ctx.getLangOpts().ObjCAutoRefCount && 2703 ME->isInstanceMessage() && 2704 !ME->getType()->isVoidType() && 2705 ME->getMethodFamily() == OMF_init) { 2706 WarnE = this; 2707 Loc = getExprLoc(); 2708 R1 = ME->getSourceRange(); 2709 return true; 2710 } 2711 2712 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2713 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2714 WarnE = this; 2715 Loc = getExprLoc(); 2716 return true; 2717 } 2718 2719 return false; 2720 } 2721 2722 case ObjCPropertyRefExprClass: 2723 case ObjCSubscriptRefExprClass: 2724 WarnE = this; 2725 Loc = getExprLoc(); 2726 R1 = getSourceRange(); 2727 return true; 2728 2729 case PseudoObjectExprClass: { 2730 const auto *POE = cast<PseudoObjectExpr>(this); 2731 2732 // For some syntactic forms, we should always warn. 2733 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2734 POE->getSyntacticForm())) { 2735 WarnE = this; 2736 Loc = getExprLoc(); 2737 R1 = getSourceRange(); 2738 return true; 2739 } 2740 2741 // For others, we should never warn. 2742 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2743 if (BO->isAssignmentOp()) 2744 return false; 2745 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2746 if (UO->isIncrementDecrementOp()) 2747 return false; 2748 2749 // Otherwise, warn if the result expression would warn. 2750 const Expr *Result = POE->getResultExpr(); 2751 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2752 } 2753 2754 case StmtExprClass: { 2755 // Statement exprs don't logically have side effects themselves, but are 2756 // sometimes used in macros in ways that give them a type that is unused. 2757 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2758 // however, if the result of the stmt expr is dead, we don't want to emit a 2759 // warning. 2760 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2761 if (!CS->body_empty()) { 2762 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2763 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2764 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2765 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2766 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2767 } 2768 2769 if (getType()->isVoidType()) 2770 return false; 2771 WarnE = this; 2772 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2773 R1 = getSourceRange(); 2774 return true; 2775 } 2776 case CXXFunctionalCastExprClass: 2777 case CStyleCastExprClass: { 2778 // Ignore an explicit cast to void, except in C++98 if the operand is a 2779 // volatile glvalue for which we would trigger an implicit read in any 2780 // other language mode. (Such an implicit read always happens as part of 2781 // the lvalue conversion in C, and happens in C++ for expressions of all 2782 // forms where it seems likely the user intended to trigger a volatile 2783 // load.) 2784 const CastExpr *CE = cast<CastExpr>(this); 2785 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2786 if (CE->getCastKind() == CK_ToVoid) { 2787 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2788 SubE->isReadIfDiscardedInCPlusPlus11()) { 2789 // Suppress the "unused value" warning for idiomatic usage of 2790 // '(void)var;' used to suppress "unused variable" warnings. 2791 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2792 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2793 if (!VD->isExternallyVisible()) 2794 return false; 2795 2796 // The lvalue-to-rvalue conversion would have no effect for an array. 2797 // It's implausible that the programmer expected this to result in a 2798 // volatile array load, so don't warn. 2799 if (SubE->getType()->isArrayType()) 2800 return false; 2801 2802 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2803 } 2804 return false; 2805 } 2806 2807 // If this is a cast to a constructor conversion, check the operand. 2808 // Otherwise, the result of the cast is unused. 2809 if (CE->getCastKind() == CK_ConstructorConversion) 2810 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2811 if (CE->getCastKind() == CK_Dependent) 2812 return false; 2813 2814 WarnE = this; 2815 if (const CXXFunctionalCastExpr *CXXCE = 2816 dyn_cast<CXXFunctionalCastExpr>(this)) { 2817 Loc = CXXCE->getBeginLoc(); 2818 R1 = CXXCE->getSubExpr()->getSourceRange(); 2819 } else { 2820 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2821 Loc = CStyleCE->getLParenLoc(); 2822 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2823 } 2824 return true; 2825 } 2826 case ImplicitCastExprClass: { 2827 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2828 2829 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2830 if (ICE->getCastKind() == CK_LValueToRValue && 2831 ICE->getSubExpr()->getType().isVolatileQualified()) 2832 return false; 2833 2834 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2835 } 2836 case CXXDefaultArgExprClass: 2837 return (cast<CXXDefaultArgExpr>(this) 2838 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2839 case CXXDefaultInitExprClass: 2840 return (cast<CXXDefaultInitExpr>(this) 2841 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2842 2843 case CXXNewExprClass: 2844 // FIXME: In theory, there might be new expressions that don't have side 2845 // effects (e.g. a placement new with an uninitialized POD). 2846 case CXXDeleteExprClass: 2847 return false; 2848 case MaterializeTemporaryExprClass: 2849 return cast<MaterializeTemporaryExpr>(this) 2850 ->getSubExpr() 2851 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2852 case CXXBindTemporaryExprClass: 2853 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2854 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2855 case ExprWithCleanupsClass: 2856 return cast<ExprWithCleanups>(this)->getSubExpr() 2857 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2858 } 2859 } 2860 2861 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2862 /// returns true, if it is; false otherwise. 2863 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2864 const Expr *E = IgnoreParens(); 2865 switch (E->getStmtClass()) { 2866 default: 2867 return false; 2868 case ObjCIvarRefExprClass: 2869 return true; 2870 case Expr::UnaryOperatorClass: 2871 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2872 case ImplicitCastExprClass: 2873 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2874 case MaterializeTemporaryExprClass: 2875 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2876 Ctx); 2877 case CStyleCastExprClass: 2878 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2879 case DeclRefExprClass: { 2880 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2881 2882 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2883 if (VD->hasGlobalStorage()) 2884 return true; 2885 QualType T = VD->getType(); 2886 // dereferencing to a pointer is always a gc'able candidate, 2887 // unless it is __weak. 2888 return T->isPointerType() && 2889 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2890 } 2891 return false; 2892 } 2893 case MemberExprClass: { 2894 const MemberExpr *M = cast<MemberExpr>(E); 2895 return M->getBase()->isOBJCGCCandidate(Ctx); 2896 } 2897 case ArraySubscriptExprClass: 2898 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2899 } 2900 } 2901 2902 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2903 if (isTypeDependent()) 2904 return false; 2905 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2906 } 2907 2908 QualType Expr::findBoundMemberType(const Expr *expr) { 2909 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2910 2911 // Bound member expressions are always one of these possibilities: 2912 // x->m x.m x->*y x.*y 2913 // (possibly parenthesized) 2914 2915 expr = expr->IgnoreParens(); 2916 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2917 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2918 return mem->getMemberDecl()->getType(); 2919 } 2920 2921 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2922 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2923 ->getPointeeType(); 2924 assert(type->isFunctionType()); 2925 return type; 2926 } 2927 2928 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2929 return QualType(); 2930 } 2931 2932 Expr *Expr::IgnoreImpCasts() { 2933 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 2934 } 2935 2936 Expr *Expr::IgnoreCasts() { 2937 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2938 } 2939 2940 Expr *Expr::IgnoreImplicit() { 2941 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2942 } 2943 2944 Expr *Expr::IgnoreImplicitAsWritten() { 2945 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2946 } 2947 2948 Expr *Expr::IgnoreParens() { 2949 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2950 } 2951 2952 Expr *Expr::IgnoreParenImpCasts() { 2953 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2954 IgnoreImplicitCastsExtraSingleStep); 2955 } 2956 2957 Expr *Expr::IgnoreParenCasts() { 2958 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2959 } 2960 2961 Expr *Expr::IgnoreConversionOperatorSingleStep() { 2962 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2963 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2964 return MCE->getImplicitObjectArgument(); 2965 } 2966 return this; 2967 } 2968 2969 Expr *Expr::IgnoreParenLValueCasts() { 2970 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2971 IgnoreLValueCastsSingleStep); 2972 } 2973 2974 Expr *Expr::IgnoreParenBaseCasts() { 2975 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2976 IgnoreBaseCastsSingleStep); 2977 } 2978 2979 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2980 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 2981 if (auto *CE = dyn_cast<CastExpr>(E)) { 2982 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2983 // ptr<->int casts of the same width. We also ignore all identity casts. 2984 Expr *SubExpr = CE->getSubExpr(); 2985 bool IsIdentityCast = 2986 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2987 bool IsSameWidthCast = (E->getType()->isPointerType() || 2988 E->getType()->isIntegralType(Ctx)) && 2989 (SubExpr->getType()->isPointerType() || 2990 SubExpr->getType()->isIntegralType(Ctx)) && 2991 (Ctx.getTypeSize(E->getType()) == 2992 Ctx.getTypeSize(SubExpr->getType())); 2993 2994 if (IsIdentityCast || IsSameWidthCast) 2995 return SubExpr; 2996 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2997 return NTTP->getReplacement(); 2998 2999 return E; 3000 }; 3001 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3002 IgnoreNoopCastsSingleStep); 3003 } 3004 3005 Expr *Expr::IgnoreUnlessSpelledInSource() { 3006 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3007 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3008 auto *SE = Cast->getSubExpr(); 3009 if (SE->getSourceRange() == E->getSourceRange()) 3010 return SE; 3011 } 3012 3013 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3014 auto NumArgs = C->getNumArgs(); 3015 if (NumArgs == 1 || 3016 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3017 Expr *A = C->getArg(0); 3018 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3019 return A; 3020 } 3021 } 3022 return E; 3023 }; 3024 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3025 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3026 Expr *ExprNode = C->getImplicitObjectArgument(); 3027 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3028 return ExprNode; 3029 } 3030 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3031 if (PE->getSourceRange() == C->getSourceRange()) { 3032 return cast<Expr>(PE); 3033 } 3034 } 3035 ExprNode = ExprNode->IgnoreParenImpCasts(); 3036 if (ExprNode->getSourceRange() == E->getSourceRange()) 3037 return ExprNode; 3038 } 3039 return E; 3040 }; 3041 return IgnoreExprNodes( 3042 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3043 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3044 IgnoreImplicitMemberCallSingleStep); 3045 } 3046 3047 bool Expr::isDefaultArgument() const { 3048 const Expr *E = this; 3049 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3050 E = M->getSubExpr(); 3051 3052 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3053 E = ICE->getSubExprAsWritten(); 3054 3055 return isa<CXXDefaultArgExpr>(E); 3056 } 3057 3058 /// Skip over any no-op casts and any temporary-binding 3059 /// expressions. 3060 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3061 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3062 E = M->getSubExpr(); 3063 3064 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3065 if (ICE->getCastKind() == CK_NoOp) 3066 E = ICE->getSubExpr(); 3067 else 3068 break; 3069 } 3070 3071 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3072 E = BE->getSubExpr(); 3073 3074 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3075 if (ICE->getCastKind() == CK_NoOp) 3076 E = ICE->getSubExpr(); 3077 else 3078 break; 3079 } 3080 3081 return E->IgnoreParens(); 3082 } 3083 3084 /// isTemporaryObject - Determines if this expression produces a 3085 /// temporary of the given class type. 3086 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3087 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3088 return false; 3089 3090 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3091 3092 // Temporaries are by definition pr-values of class type. 3093 if (!E->Classify(C).isPRValue()) { 3094 // In this context, property reference is a message call and is pr-value. 3095 if (!isa<ObjCPropertyRefExpr>(E)) 3096 return false; 3097 } 3098 3099 // Black-list a few cases which yield pr-values of class type that don't 3100 // refer to temporaries of that type: 3101 3102 // - implicit derived-to-base conversions 3103 if (isa<ImplicitCastExpr>(E)) { 3104 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3105 case CK_DerivedToBase: 3106 case CK_UncheckedDerivedToBase: 3107 return false; 3108 default: 3109 break; 3110 } 3111 } 3112 3113 // - member expressions (all) 3114 if (isa<MemberExpr>(E)) 3115 return false; 3116 3117 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3118 if (BO->isPtrMemOp()) 3119 return false; 3120 3121 // - opaque values (all) 3122 if (isa<OpaqueValueExpr>(E)) 3123 return false; 3124 3125 return true; 3126 } 3127 3128 bool Expr::isImplicitCXXThis() const { 3129 const Expr *E = this; 3130 3131 // Strip away parentheses and casts we don't care about. 3132 while (true) { 3133 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3134 E = Paren->getSubExpr(); 3135 continue; 3136 } 3137 3138 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3139 if (ICE->getCastKind() == CK_NoOp || 3140 ICE->getCastKind() == CK_LValueToRValue || 3141 ICE->getCastKind() == CK_DerivedToBase || 3142 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3143 E = ICE->getSubExpr(); 3144 continue; 3145 } 3146 } 3147 3148 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3149 if (UnOp->getOpcode() == UO_Extension) { 3150 E = UnOp->getSubExpr(); 3151 continue; 3152 } 3153 } 3154 3155 if (const MaterializeTemporaryExpr *M 3156 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3157 E = M->getSubExpr(); 3158 continue; 3159 } 3160 3161 break; 3162 } 3163 3164 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3165 return This->isImplicit(); 3166 3167 return false; 3168 } 3169 3170 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3171 /// in Exprs is type-dependent. 3172 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3173 for (unsigned I = 0; I < Exprs.size(); ++I) 3174 if (Exprs[I]->isTypeDependent()) 3175 return true; 3176 3177 return false; 3178 } 3179 3180 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3181 const Expr **Culprit) const { 3182 assert(!isValueDependent() && 3183 "Expression evaluator can't be called on a dependent expression."); 3184 3185 // This function is attempting whether an expression is an initializer 3186 // which can be evaluated at compile-time. It very closely parallels 3187 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3188 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3189 // to isEvaluatable most of the time. 3190 // 3191 // If we ever capture reference-binding directly in the AST, we can 3192 // kill the second parameter. 3193 3194 if (IsForRef) { 3195 EvalResult Result; 3196 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3197 return true; 3198 if (Culprit) 3199 *Culprit = this; 3200 return false; 3201 } 3202 3203 switch (getStmtClass()) { 3204 default: break; 3205 case Stmt::ExprWithCleanupsClass: 3206 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3207 Ctx, IsForRef, Culprit); 3208 case StringLiteralClass: 3209 case ObjCEncodeExprClass: 3210 return true; 3211 case CXXTemporaryObjectExprClass: 3212 case CXXConstructExprClass: { 3213 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3214 3215 if (CE->getConstructor()->isTrivial() && 3216 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3217 // Trivial default constructor 3218 if (!CE->getNumArgs()) return true; 3219 3220 // Trivial copy constructor 3221 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3222 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3223 } 3224 3225 break; 3226 } 3227 case ConstantExprClass: { 3228 // FIXME: We should be able to return "true" here, but it can lead to extra 3229 // error messages. E.g. in Sema/array-init.c. 3230 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3231 return Exp->isConstantInitializer(Ctx, false, Culprit); 3232 } 3233 case CompoundLiteralExprClass: { 3234 // This handles gcc's extension that allows global initializers like 3235 // "struct x {int x;} x = (struct x) {};". 3236 // FIXME: This accepts other cases it shouldn't! 3237 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3238 return Exp->isConstantInitializer(Ctx, false, Culprit); 3239 } 3240 case DesignatedInitUpdateExprClass: { 3241 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3242 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3243 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3244 } 3245 case InitListExprClass: { 3246 const InitListExpr *ILE = cast<InitListExpr>(this); 3247 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3248 if (ILE->getType()->isArrayType()) { 3249 unsigned numInits = ILE->getNumInits(); 3250 for (unsigned i = 0; i < numInits; i++) { 3251 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3252 return false; 3253 } 3254 return true; 3255 } 3256 3257 if (ILE->getType()->isRecordType()) { 3258 unsigned ElementNo = 0; 3259 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3260 for (const auto *Field : RD->fields()) { 3261 // If this is a union, skip all the fields that aren't being initialized. 3262 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3263 continue; 3264 3265 // Don't emit anonymous bitfields, they just affect layout. 3266 if (Field->isUnnamedBitfield()) 3267 continue; 3268 3269 if (ElementNo < ILE->getNumInits()) { 3270 const Expr *Elt = ILE->getInit(ElementNo++); 3271 if (Field->isBitField()) { 3272 // Bitfields have to evaluate to an integer. 3273 EvalResult Result; 3274 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3275 if (Culprit) 3276 *Culprit = Elt; 3277 return false; 3278 } 3279 } else { 3280 bool RefType = Field->getType()->isReferenceType(); 3281 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3282 return false; 3283 } 3284 } 3285 } 3286 return true; 3287 } 3288 3289 break; 3290 } 3291 case ImplicitValueInitExprClass: 3292 case NoInitExprClass: 3293 return true; 3294 case ParenExprClass: 3295 return cast<ParenExpr>(this)->getSubExpr() 3296 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3297 case GenericSelectionExprClass: 3298 return cast<GenericSelectionExpr>(this)->getResultExpr() 3299 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3300 case ChooseExprClass: 3301 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3302 if (Culprit) 3303 *Culprit = this; 3304 return false; 3305 } 3306 return cast<ChooseExpr>(this)->getChosenSubExpr() 3307 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3308 case UnaryOperatorClass: { 3309 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3310 if (Exp->getOpcode() == UO_Extension) 3311 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3312 break; 3313 } 3314 case CXXFunctionalCastExprClass: 3315 case CXXStaticCastExprClass: 3316 case ImplicitCastExprClass: 3317 case CStyleCastExprClass: 3318 case ObjCBridgedCastExprClass: 3319 case CXXDynamicCastExprClass: 3320 case CXXReinterpretCastExprClass: 3321 case CXXAddrspaceCastExprClass: 3322 case CXXConstCastExprClass: { 3323 const CastExpr *CE = cast<CastExpr>(this); 3324 3325 // Handle misc casts we want to ignore. 3326 if (CE->getCastKind() == CK_NoOp || 3327 CE->getCastKind() == CK_LValueToRValue || 3328 CE->getCastKind() == CK_ToUnion || 3329 CE->getCastKind() == CK_ConstructorConversion || 3330 CE->getCastKind() == CK_NonAtomicToAtomic || 3331 CE->getCastKind() == CK_AtomicToNonAtomic || 3332 CE->getCastKind() == CK_IntToOCLSampler) 3333 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3334 3335 break; 3336 } 3337 case MaterializeTemporaryExprClass: 3338 return cast<MaterializeTemporaryExpr>(this) 3339 ->getSubExpr() 3340 ->isConstantInitializer(Ctx, false, Culprit); 3341 3342 case SubstNonTypeTemplateParmExprClass: 3343 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3344 ->isConstantInitializer(Ctx, false, Culprit); 3345 case CXXDefaultArgExprClass: 3346 return cast<CXXDefaultArgExpr>(this)->getExpr() 3347 ->isConstantInitializer(Ctx, false, Culprit); 3348 case CXXDefaultInitExprClass: 3349 return cast<CXXDefaultInitExpr>(this)->getExpr() 3350 ->isConstantInitializer(Ctx, false, Culprit); 3351 } 3352 // Allow certain forms of UB in constant initializers: signed integer 3353 // overflow and floating-point division by zero. We'll give a warning on 3354 // these, but they're common enough that we have to accept them. 3355 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3356 return true; 3357 if (Culprit) 3358 *Culprit = this; 3359 return false; 3360 } 3361 3362 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3363 unsigned BuiltinID = getBuiltinCallee(); 3364 if (BuiltinID != Builtin::BI__assume && 3365 BuiltinID != Builtin::BI__builtin_assume) 3366 return false; 3367 3368 const Expr* Arg = getArg(0); 3369 bool ArgVal; 3370 return !Arg->isValueDependent() && 3371 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3372 } 3373 3374 bool CallExpr::isCallToStdMove() const { 3375 return getBuiltinCallee() == Builtin::BImove; 3376 } 3377 3378 namespace { 3379 /// Look for any side effects within a Stmt. 3380 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3381 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3382 const bool IncludePossibleEffects; 3383 bool HasSideEffects; 3384 3385 public: 3386 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3387 : Inherited(Context), 3388 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3389 3390 bool hasSideEffects() const { return HasSideEffects; } 3391 3392 void VisitDecl(const Decl *D) { 3393 if (!D) 3394 return; 3395 3396 // We assume the caller checks subexpressions (eg, the initializer, VLA 3397 // bounds) for side-effects on our behalf. 3398 if (auto *VD = dyn_cast<VarDecl>(D)) { 3399 // Registering a destructor is a side-effect. 3400 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3401 VD->needsDestruction(Context)) 3402 HasSideEffects = true; 3403 } 3404 } 3405 3406 void VisitDeclStmt(const DeclStmt *DS) { 3407 for (auto *D : DS->decls()) 3408 VisitDecl(D); 3409 Inherited::VisitDeclStmt(DS); 3410 } 3411 3412 void VisitExpr(const Expr *E) { 3413 if (!HasSideEffects && 3414 E->HasSideEffects(Context, IncludePossibleEffects)) 3415 HasSideEffects = true; 3416 } 3417 }; 3418 } 3419 3420 bool Expr::HasSideEffects(const ASTContext &Ctx, 3421 bool IncludePossibleEffects) const { 3422 // In circumstances where we care about definite side effects instead of 3423 // potential side effects, we want to ignore expressions that are part of a 3424 // macro expansion as a potential side effect. 3425 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3426 return false; 3427 3428 switch (getStmtClass()) { 3429 case NoStmtClass: 3430 #define ABSTRACT_STMT(Type) 3431 #define STMT(Type, Base) case Type##Class: 3432 #define EXPR(Type, Base) 3433 #include "clang/AST/StmtNodes.inc" 3434 llvm_unreachable("unexpected Expr kind"); 3435 3436 case DependentScopeDeclRefExprClass: 3437 case CXXUnresolvedConstructExprClass: 3438 case CXXDependentScopeMemberExprClass: 3439 case UnresolvedLookupExprClass: 3440 case UnresolvedMemberExprClass: 3441 case PackExpansionExprClass: 3442 case SubstNonTypeTemplateParmPackExprClass: 3443 case FunctionParmPackExprClass: 3444 case TypoExprClass: 3445 case RecoveryExprClass: 3446 case CXXFoldExprClass: 3447 // Make a conservative assumption for dependent nodes. 3448 return IncludePossibleEffects; 3449 3450 case DeclRefExprClass: 3451 case ObjCIvarRefExprClass: 3452 case PredefinedExprClass: 3453 case IntegerLiteralClass: 3454 case FixedPointLiteralClass: 3455 case FloatingLiteralClass: 3456 case ImaginaryLiteralClass: 3457 case StringLiteralClass: 3458 case CharacterLiteralClass: 3459 case OffsetOfExprClass: 3460 case ImplicitValueInitExprClass: 3461 case UnaryExprOrTypeTraitExprClass: 3462 case AddrLabelExprClass: 3463 case GNUNullExprClass: 3464 case ArrayInitIndexExprClass: 3465 case NoInitExprClass: 3466 case CXXBoolLiteralExprClass: 3467 case CXXNullPtrLiteralExprClass: 3468 case CXXThisExprClass: 3469 case CXXScalarValueInitExprClass: 3470 case TypeTraitExprClass: 3471 case ArrayTypeTraitExprClass: 3472 case ExpressionTraitExprClass: 3473 case CXXNoexceptExprClass: 3474 case SizeOfPackExprClass: 3475 case ObjCStringLiteralClass: 3476 case ObjCEncodeExprClass: 3477 case ObjCBoolLiteralExprClass: 3478 case ObjCAvailabilityCheckExprClass: 3479 case CXXUuidofExprClass: 3480 case OpaqueValueExprClass: 3481 case SourceLocExprClass: 3482 case ConceptSpecializationExprClass: 3483 case RequiresExprClass: 3484 case SYCLUniqueStableNameExprClass: 3485 // These never have a side-effect. 3486 return false; 3487 3488 case ConstantExprClass: 3489 // FIXME: Move this into the "return false;" block above. 3490 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3491 Ctx, IncludePossibleEffects); 3492 3493 case CallExprClass: 3494 case CXXOperatorCallExprClass: 3495 case CXXMemberCallExprClass: 3496 case CUDAKernelCallExprClass: 3497 case UserDefinedLiteralClass: { 3498 // We don't know a call definitely has side effects, except for calls 3499 // to pure/const functions that definitely don't. 3500 // If the call itself is considered side-effect free, check the operands. 3501 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3502 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3503 if (IsPure || !IncludePossibleEffects) 3504 break; 3505 return true; 3506 } 3507 3508 case BlockExprClass: 3509 case CXXBindTemporaryExprClass: 3510 if (!IncludePossibleEffects) 3511 break; 3512 return true; 3513 3514 case MSPropertyRefExprClass: 3515 case MSPropertySubscriptExprClass: 3516 case CompoundAssignOperatorClass: 3517 case VAArgExprClass: 3518 case AtomicExprClass: 3519 case CXXThrowExprClass: 3520 case CXXNewExprClass: 3521 case CXXDeleteExprClass: 3522 case CoawaitExprClass: 3523 case DependentCoawaitExprClass: 3524 case CoyieldExprClass: 3525 // These always have a side-effect. 3526 return true; 3527 3528 case StmtExprClass: { 3529 // StmtExprs have a side-effect if any substatement does. 3530 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3531 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3532 return Finder.hasSideEffects(); 3533 } 3534 3535 case ExprWithCleanupsClass: 3536 if (IncludePossibleEffects) 3537 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3538 return true; 3539 break; 3540 3541 case ParenExprClass: 3542 case ArraySubscriptExprClass: 3543 case MatrixSubscriptExprClass: 3544 case OMPArraySectionExprClass: 3545 case OMPArrayShapingExprClass: 3546 case OMPIteratorExprClass: 3547 case MemberExprClass: 3548 case ConditionalOperatorClass: 3549 case BinaryConditionalOperatorClass: 3550 case CompoundLiteralExprClass: 3551 case ExtVectorElementExprClass: 3552 case DesignatedInitExprClass: 3553 case DesignatedInitUpdateExprClass: 3554 case ArrayInitLoopExprClass: 3555 case ParenListExprClass: 3556 case CXXPseudoDestructorExprClass: 3557 case CXXRewrittenBinaryOperatorClass: 3558 case CXXStdInitializerListExprClass: 3559 case SubstNonTypeTemplateParmExprClass: 3560 case MaterializeTemporaryExprClass: 3561 case ShuffleVectorExprClass: 3562 case ConvertVectorExprClass: 3563 case AsTypeExprClass: 3564 // These have a side-effect if any subexpression does. 3565 break; 3566 3567 case UnaryOperatorClass: 3568 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3569 return true; 3570 break; 3571 3572 case BinaryOperatorClass: 3573 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3574 return true; 3575 break; 3576 3577 case InitListExprClass: 3578 // FIXME: The children for an InitListExpr doesn't include the array filler. 3579 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3580 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3581 return true; 3582 break; 3583 3584 case GenericSelectionExprClass: 3585 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3586 HasSideEffects(Ctx, IncludePossibleEffects); 3587 3588 case ChooseExprClass: 3589 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3590 Ctx, IncludePossibleEffects); 3591 3592 case CXXDefaultArgExprClass: 3593 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3594 Ctx, IncludePossibleEffects); 3595 3596 case CXXDefaultInitExprClass: { 3597 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3598 if (const Expr *E = FD->getInClassInitializer()) 3599 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3600 // If we've not yet parsed the initializer, assume it has side-effects. 3601 return true; 3602 } 3603 3604 case CXXDynamicCastExprClass: { 3605 // A dynamic_cast expression has side-effects if it can throw. 3606 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3607 if (DCE->getTypeAsWritten()->isReferenceType() && 3608 DCE->getCastKind() == CK_Dynamic) 3609 return true; 3610 } 3611 LLVM_FALLTHROUGH; 3612 case ImplicitCastExprClass: 3613 case CStyleCastExprClass: 3614 case CXXStaticCastExprClass: 3615 case CXXReinterpretCastExprClass: 3616 case CXXConstCastExprClass: 3617 case CXXAddrspaceCastExprClass: 3618 case CXXFunctionalCastExprClass: 3619 case BuiltinBitCastExprClass: { 3620 // While volatile reads are side-effecting in both C and C++, we treat them 3621 // as having possible (not definite) side-effects. This allows idiomatic 3622 // code to behave without warning, such as sizeof(*v) for a volatile- 3623 // qualified pointer. 3624 if (!IncludePossibleEffects) 3625 break; 3626 3627 const CastExpr *CE = cast<CastExpr>(this); 3628 if (CE->getCastKind() == CK_LValueToRValue && 3629 CE->getSubExpr()->getType().isVolatileQualified()) 3630 return true; 3631 break; 3632 } 3633 3634 case CXXTypeidExprClass: 3635 // typeid might throw if its subexpression is potentially-evaluated, so has 3636 // side-effects in that case whether or not its subexpression does. 3637 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3638 3639 case CXXConstructExprClass: 3640 case CXXTemporaryObjectExprClass: { 3641 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3642 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3643 return true; 3644 // A trivial constructor does not add any side-effects of its own. Just look 3645 // at its arguments. 3646 break; 3647 } 3648 3649 case CXXInheritedCtorInitExprClass: { 3650 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3651 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3652 return true; 3653 break; 3654 } 3655 3656 case LambdaExprClass: { 3657 const LambdaExpr *LE = cast<LambdaExpr>(this); 3658 for (Expr *E : LE->capture_inits()) 3659 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3660 return true; 3661 return false; 3662 } 3663 3664 case PseudoObjectExprClass: { 3665 // Only look for side-effects in the semantic form, and look past 3666 // OpaqueValueExpr bindings in that form. 3667 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3668 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3669 E = PO->semantics_end(); 3670 I != E; ++I) { 3671 const Expr *Subexpr = *I; 3672 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3673 Subexpr = OVE->getSourceExpr(); 3674 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3675 return true; 3676 } 3677 return false; 3678 } 3679 3680 case ObjCBoxedExprClass: 3681 case ObjCArrayLiteralClass: 3682 case ObjCDictionaryLiteralClass: 3683 case ObjCSelectorExprClass: 3684 case ObjCProtocolExprClass: 3685 case ObjCIsaExprClass: 3686 case ObjCIndirectCopyRestoreExprClass: 3687 case ObjCSubscriptRefExprClass: 3688 case ObjCBridgedCastExprClass: 3689 case ObjCMessageExprClass: 3690 case ObjCPropertyRefExprClass: 3691 // FIXME: Classify these cases better. 3692 if (IncludePossibleEffects) 3693 return true; 3694 break; 3695 } 3696 3697 // Recurse to children. 3698 for (const Stmt *SubStmt : children()) 3699 if (SubStmt && 3700 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3701 return true; 3702 3703 return false; 3704 } 3705 3706 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3707 if (auto Call = dyn_cast<CallExpr>(this)) 3708 return Call->getFPFeaturesInEffect(LO); 3709 if (auto UO = dyn_cast<UnaryOperator>(this)) 3710 return UO->getFPFeaturesInEffect(LO); 3711 if (auto BO = dyn_cast<BinaryOperator>(this)) 3712 return BO->getFPFeaturesInEffect(LO); 3713 if (auto Cast = dyn_cast<CastExpr>(this)) 3714 return Cast->getFPFeaturesInEffect(LO); 3715 return FPOptions::defaultWithoutTrailingStorage(LO); 3716 } 3717 3718 namespace { 3719 /// Look for a call to a non-trivial function within an expression. 3720 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3721 { 3722 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3723 3724 bool NonTrivial; 3725 3726 public: 3727 explicit NonTrivialCallFinder(const ASTContext &Context) 3728 : Inherited(Context), NonTrivial(false) { } 3729 3730 bool hasNonTrivialCall() const { return NonTrivial; } 3731 3732 void VisitCallExpr(const CallExpr *E) { 3733 if (const CXXMethodDecl *Method 3734 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3735 if (Method->isTrivial()) { 3736 // Recurse to children of the call. 3737 Inherited::VisitStmt(E); 3738 return; 3739 } 3740 } 3741 3742 NonTrivial = true; 3743 } 3744 3745 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3746 if (E->getConstructor()->isTrivial()) { 3747 // Recurse to children of the call. 3748 Inherited::VisitStmt(E); 3749 return; 3750 } 3751 3752 NonTrivial = true; 3753 } 3754 3755 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3756 if (E->getTemporary()->getDestructor()->isTrivial()) { 3757 Inherited::VisitStmt(E); 3758 return; 3759 } 3760 3761 NonTrivial = true; 3762 } 3763 }; 3764 } 3765 3766 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3767 NonTrivialCallFinder Finder(Ctx); 3768 Finder.Visit(this); 3769 return Finder.hasNonTrivialCall(); 3770 } 3771 3772 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3773 /// pointer constant or not, as well as the specific kind of constant detected. 3774 /// Null pointer constants can be integer constant expressions with the 3775 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3776 /// (a GNU extension). 3777 Expr::NullPointerConstantKind 3778 Expr::isNullPointerConstant(ASTContext &Ctx, 3779 NullPointerConstantValueDependence NPC) const { 3780 if (isValueDependent() && 3781 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3782 // Error-dependent expr should never be a null pointer. 3783 if (containsErrors()) 3784 return NPCK_NotNull; 3785 switch (NPC) { 3786 case NPC_NeverValueDependent: 3787 llvm_unreachable("Unexpected value dependent expression!"); 3788 case NPC_ValueDependentIsNull: 3789 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3790 return NPCK_ZeroExpression; 3791 else 3792 return NPCK_NotNull; 3793 3794 case NPC_ValueDependentIsNotNull: 3795 return NPCK_NotNull; 3796 } 3797 } 3798 3799 // Strip off a cast to void*, if it exists. Except in C++. 3800 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3801 if (!Ctx.getLangOpts().CPlusPlus) { 3802 // Check that it is a cast to void*. 3803 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3804 QualType Pointee = PT->getPointeeType(); 3805 Qualifiers Qs = Pointee.getQualifiers(); 3806 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3807 // has non-default address space it is not treated as nullptr. 3808 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3809 // since it cannot be assigned to a pointer to constant address space. 3810 if (Ctx.getLangOpts().OpenCL && 3811 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3812 Qs.removeAddressSpace(); 3813 3814 if (Pointee->isVoidType() && Qs.empty() && // to void* 3815 CE->getSubExpr()->getType()->isIntegerType()) // from int 3816 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3817 } 3818 } 3819 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3820 // Ignore the ImplicitCastExpr type entirely. 3821 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3822 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3823 // Accept ((void*)0) as a null pointer constant, as many other 3824 // implementations do. 3825 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3826 } else if (const GenericSelectionExpr *GE = 3827 dyn_cast<GenericSelectionExpr>(this)) { 3828 if (GE->isResultDependent()) 3829 return NPCK_NotNull; 3830 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3831 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3832 if (CE->isConditionDependent()) 3833 return NPCK_NotNull; 3834 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3835 } else if (const CXXDefaultArgExpr *DefaultArg 3836 = dyn_cast<CXXDefaultArgExpr>(this)) { 3837 // See through default argument expressions. 3838 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3839 } else if (const CXXDefaultInitExpr *DefaultInit 3840 = dyn_cast<CXXDefaultInitExpr>(this)) { 3841 // See through default initializer expressions. 3842 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3843 } else if (isa<GNUNullExpr>(this)) { 3844 // The GNU __null extension is always a null pointer constant. 3845 return NPCK_GNUNull; 3846 } else if (const MaterializeTemporaryExpr *M 3847 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3848 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3849 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3850 if (const Expr *Source = OVE->getSourceExpr()) 3851 return Source->isNullPointerConstant(Ctx, NPC); 3852 } 3853 3854 // If the expression has no type information, it cannot be a null pointer 3855 // constant. 3856 if (getType().isNull()) 3857 return NPCK_NotNull; 3858 3859 // C++11 nullptr_t is always a null pointer constant. 3860 if (getType()->isNullPtrType()) 3861 return NPCK_CXX11_nullptr; 3862 3863 if (const RecordType *UT = getType()->getAsUnionType()) 3864 if (!Ctx.getLangOpts().CPlusPlus11 && 3865 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3866 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3867 const Expr *InitExpr = CLE->getInitializer(); 3868 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3869 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3870 } 3871 // This expression must be an integer type. 3872 if (!getType()->isIntegerType() || 3873 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3874 return NPCK_NotNull; 3875 3876 if (Ctx.getLangOpts().CPlusPlus11) { 3877 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3878 // value zero or a prvalue of type std::nullptr_t. 3879 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3880 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3881 if (Lit && !Lit->getValue()) 3882 return NPCK_ZeroLiteral; 3883 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3884 return NPCK_NotNull; 3885 } else { 3886 // If we have an integer constant expression, we need to *evaluate* it and 3887 // test for the value 0. 3888 if (!isIntegerConstantExpr(Ctx)) 3889 return NPCK_NotNull; 3890 } 3891 3892 if (EvaluateKnownConstInt(Ctx) != 0) 3893 return NPCK_NotNull; 3894 3895 if (isa<IntegerLiteral>(this)) 3896 return NPCK_ZeroLiteral; 3897 return NPCK_ZeroExpression; 3898 } 3899 3900 /// If this expression is an l-value for an Objective C 3901 /// property, find the underlying property reference expression. 3902 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3903 const Expr *E = this; 3904 while (true) { 3905 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 3906 "expression is not a property reference"); 3907 E = E->IgnoreParenCasts(); 3908 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3909 if (BO->getOpcode() == BO_Comma) { 3910 E = BO->getRHS(); 3911 continue; 3912 } 3913 } 3914 3915 break; 3916 } 3917 3918 return cast<ObjCPropertyRefExpr>(E); 3919 } 3920 3921 bool Expr::isObjCSelfExpr() const { 3922 const Expr *E = IgnoreParenImpCasts(); 3923 3924 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3925 if (!DRE) 3926 return false; 3927 3928 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3929 if (!Param) 3930 return false; 3931 3932 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3933 if (!M) 3934 return false; 3935 3936 return M->getSelfDecl() == Param; 3937 } 3938 3939 FieldDecl *Expr::getSourceBitField() { 3940 Expr *E = this->IgnoreParens(); 3941 3942 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3943 if (ICE->getCastKind() == CK_LValueToRValue || 3944 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 3945 E = ICE->getSubExpr()->IgnoreParens(); 3946 else 3947 break; 3948 } 3949 3950 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3951 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3952 if (Field->isBitField()) 3953 return Field; 3954 3955 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3956 FieldDecl *Ivar = IvarRef->getDecl(); 3957 if (Ivar->isBitField()) 3958 return Ivar; 3959 } 3960 3961 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3962 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3963 if (Field->isBitField()) 3964 return Field; 3965 3966 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3967 if (Expr *E = BD->getBinding()) 3968 return E->getSourceBitField(); 3969 } 3970 3971 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3972 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3973 return BinOp->getLHS()->getSourceBitField(); 3974 3975 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3976 return BinOp->getRHS()->getSourceBitField(); 3977 } 3978 3979 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3980 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3981 return UnOp->getSubExpr()->getSourceBitField(); 3982 3983 return nullptr; 3984 } 3985 3986 bool Expr::refersToVectorElement() const { 3987 // FIXME: Why do we not just look at the ObjectKind here? 3988 const Expr *E = this->IgnoreParens(); 3989 3990 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3991 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 3992 E = ICE->getSubExpr()->IgnoreParens(); 3993 else 3994 break; 3995 } 3996 3997 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3998 return ASE->getBase()->getType()->isVectorType(); 3999 4000 if (isa<ExtVectorElementExpr>(E)) 4001 return true; 4002 4003 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4004 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4005 if (auto *E = BD->getBinding()) 4006 return E->refersToVectorElement(); 4007 4008 return false; 4009 } 4010 4011 bool Expr::refersToGlobalRegisterVar() const { 4012 const Expr *E = this->IgnoreParenImpCasts(); 4013 4014 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4015 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4016 if (VD->getStorageClass() == SC_Register && 4017 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4018 return true; 4019 4020 return false; 4021 } 4022 4023 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4024 E1 = E1->IgnoreParens(); 4025 E2 = E2->IgnoreParens(); 4026 4027 if (E1->getStmtClass() != E2->getStmtClass()) 4028 return false; 4029 4030 switch (E1->getStmtClass()) { 4031 default: 4032 return false; 4033 case CXXThisExprClass: 4034 return true; 4035 case DeclRefExprClass: { 4036 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4037 // template parameters. 4038 const auto *DRE1 = cast<DeclRefExpr>(E1); 4039 const auto *DRE2 = cast<DeclRefExpr>(E2); 4040 return DRE1->isPRValue() && DRE2->isPRValue() && 4041 DRE1->getDecl() == DRE2->getDecl(); 4042 } 4043 case ImplicitCastExprClass: { 4044 // Peel off implicit casts. 4045 while (true) { 4046 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4047 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4048 if (!ICE1 || !ICE2) 4049 return false; 4050 if (ICE1->getCastKind() != ICE2->getCastKind()) 4051 return false; 4052 E1 = ICE1->getSubExpr()->IgnoreParens(); 4053 E2 = ICE2->getSubExpr()->IgnoreParens(); 4054 // The final cast must be one of these types. 4055 if (ICE1->getCastKind() == CK_LValueToRValue || 4056 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4057 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4058 break; 4059 } 4060 } 4061 4062 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4063 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4064 if (DRE1 && DRE2) 4065 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4066 4067 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4068 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4069 if (Ivar1 && Ivar2) { 4070 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4071 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4072 } 4073 4074 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4075 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4076 if (Array1 && Array2) { 4077 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4078 return false; 4079 4080 auto Idx1 = Array1->getIdx(); 4081 auto Idx2 = Array2->getIdx(); 4082 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4083 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4084 if (Integer1 && Integer2) { 4085 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4086 Integer2->getValue())) 4087 return false; 4088 } else { 4089 if (!isSameComparisonOperand(Idx1, Idx2)) 4090 return false; 4091 } 4092 4093 return true; 4094 } 4095 4096 // Walk the MemberExpr chain. 4097 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4098 const auto *ME1 = cast<MemberExpr>(E1); 4099 const auto *ME2 = cast<MemberExpr>(E2); 4100 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4101 return false; 4102 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4103 if (D->isStaticDataMember()) 4104 return true; 4105 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4106 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4107 } 4108 4109 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4110 return true; 4111 4112 // A static member variable can end the MemberExpr chain with either 4113 // a MemberExpr or a DeclRefExpr. 4114 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4115 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4116 return DRE->getDecl(); 4117 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4118 return ME->getMemberDecl(); 4119 return nullptr; 4120 }; 4121 4122 const ValueDecl *VD1 = getAnyDecl(E1); 4123 const ValueDecl *VD2 = getAnyDecl(E2); 4124 return declaresSameEntity(VD1, VD2); 4125 } 4126 } 4127 } 4128 4129 /// isArrow - Return true if the base expression is a pointer to vector, 4130 /// return false if the base expression is a vector. 4131 bool ExtVectorElementExpr::isArrow() const { 4132 return getBase()->getType()->isPointerType(); 4133 } 4134 4135 unsigned ExtVectorElementExpr::getNumElements() const { 4136 if (const VectorType *VT = getType()->getAs<VectorType>()) 4137 return VT->getNumElements(); 4138 return 1; 4139 } 4140 4141 /// containsDuplicateElements - Return true if any element access is repeated. 4142 bool ExtVectorElementExpr::containsDuplicateElements() const { 4143 // FIXME: Refactor this code to an accessor on the AST node which returns the 4144 // "type" of component access, and share with code below and in Sema. 4145 StringRef Comp = Accessor->getName(); 4146 4147 // Halving swizzles do not contain duplicate elements. 4148 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4149 return false; 4150 4151 // Advance past s-char prefix on hex swizzles. 4152 if (Comp[0] == 's' || Comp[0] == 'S') 4153 Comp = Comp.substr(1); 4154 4155 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4156 if (Comp.substr(i + 1).contains(Comp[i])) 4157 return true; 4158 4159 return false; 4160 } 4161 4162 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4163 void ExtVectorElementExpr::getEncodedElementAccess( 4164 SmallVectorImpl<uint32_t> &Elts) const { 4165 StringRef Comp = Accessor->getName(); 4166 bool isNumericAccessor = false; 4167 if (Comp[0] == 's' || Comp[0] == 'S') { 4168 Comp = Comp.substr(1); 4169 isNumericAccessor = true; 4170 } 4171 4172 bool isHi = Comp == "hi"; 4173 bool isLo = Comp == "lo"; 4174 bool isEven = Comp == "even"; 4175 bool isOdd = Comp == "odd"; 4176 4177 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4178 uint64_t Index; 4179 4180 if (isHi) 4181 Index = e + i; 4182 else if (isLo) 4183 Index = i; 4184 else if (isEven) 4185 Index = 2 * i; 4186 else if (isOdd) 4187 Index = 2 * i + 1; 4188 else 4189 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4190 4191 Elts.push_back(Index); 4192 } 4193 } 4194 4195 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4196 QualType Type, SourceLocation BLoc, 4197 SourceLocation RP) 4198 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4199 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4200 SubExprs = new (C) Stmt*[args.size()]; 4201 for (unsigned i = 0; i != args.size(); i++) 4202 SubExprs[i] = args[i]; 4203 4204 setDependence(computeDependence(this)); 4205 } 4206 4207 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4208 if (SubExprs) C.Deallocate(SubExprs); 4209 4210 this->NumExprs = Exprs.size(); 4211 SubExprs = new (C) Stmt*[NumExprs]; 4212 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4213 } 4214 4215 GenericSelectionExpr::GenericSelectionExpr( 4216 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4217 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4218 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4219 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4220 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4221 AssocExprs[ResultIndex]->getValueKind(), 4222 AssocExprs[ResultIndex]->getObjectKind()), 4223 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4224 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4225 assert(AssocTypes.size() == AssocExprs.size() && 4226 "Must have the same number of association expressions" 4227 " and TypeSourceInfo!"); 4228 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4229 4230 GenericSelectionExprBits.GenericLoc = GenericLoc; 4231 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4232 std::copy(AssocExprs.begin(), AssocExprs.end(), 4233 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4234 std::copy(AssocTypes.begin(), AssocTypes.end(), 4235 getTrailingObjects<TypeSourceInfo *>()); 4236 4237 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4238 } 4239 4240 GenericSelectionExpr::GenericSelectionExpr( 4241 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4242 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4243 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4244 bool ContainsUnexpandedParameterPack) 4245 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4246 OK_Ordinary), 4247 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4248 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4249 assert(AssocTypes.size() == AssocExprs.size() && 4250 "Must have the same number of association expressions" 4251 " and TypeSourceInfo!"); 4252 4253 GenericSelectionExprBits.GenericLoc = GenericLoc; 4254 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4255 std::copy(AssocExprs.begin(), AssocExprs.end(), 4256 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4257 std::copy(AssocTypes.begin(), AssocTypes.end(), 4258 getTrailingObjects<TypeSourceInfo *>()); 4259 4260 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4261 } 4262 4263 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4264 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4265 4266 GenericSelectionExpr *GenericSelectionExpr::Create( 4267 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4268 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4269 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4270 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4271 unsigned NumAssocs = AssocExprs.size(); 4272 void *Mem = Context.Allocate( 4273 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4274 alignof(GenericSelectionExpr)); 4275 return new (Mem) GenericSelectionExpr( 4276 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4277 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4278 } 4279 4280 GenericSelectionExpr *GenericSelectionExpr::Create( 4281 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4282 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4283 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4284 bool ContainsUnexpandedParameterPack) { 4285 unsigned NumAssocs = AssocExprs.size(); 4286 void *Mem = Context.Allocate( 4287 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4288 alignof(GenericSelectionExpr)); 4289 return new (Mem) GenericSelectionExpr( 4290 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4291 RParenLoc, ContainsUnexpandedParameterPack); 4292 } 4293 4294 GenericSelectionExpr * 4295 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4296 unsigned NumAssocs) { 4297 void *Mem = Context.Allocate( 4298 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4299 alignof(GenericSelectionExpr)); 4300 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4301 } 4302 4303 //===----------------------------------------------------------------------===// 4304 // DesignatedInitExpr 4305 //===----------------------------------------------------------------------===// 4306 4307 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4308 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4309 if (Field.NameOrField & 0x01) 4310 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01); 4311 return getField()->getIdentifier(); 4312 } 4313 4314 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4315 llvm::ArrayRef<Designator> Designators, 4316 SourceLocation EqualOrColonLoc, 4317 bool GNUSyntax, 4318 ArrayRef<Expr *> IndexExprs, Expr *Init) 4319 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4320 Init->getObjectKind()), 4321 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4322 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4323 this->Designators = new (C) Designator[NumDesignators]; 4324 4325 // Record the initializer itself. 4326 child_iterator Child = child_begin(); 4327 *Child++ = Init; 4328 4329 // Copy the designators and their subexpressions, computing 4330 // value-dependence along the way. 4331 unsigned IndexIdx = 0; 4332 for (unsigned I = 0; I != NumDesignators; ++I) { 4333 this->Designators[I] = Designators[I]; 4334 if (this->Designators[I].isArrayDesignator()) { 4335 // Copy the index expressions into permanent storage. 4336 *Child++ = IndexExprs[IndexIdx++]; 4337 } else if (this->Designators[I].isArrayRangeDesignator()) { 4338 // Copy the start/end expressions into permanent storage. 4339 *Child++ = IndexExprs[IndexIdx++]; 4340 *Child++ = IndexExprs[IndexIdx++]; 4341 } 4342 } 4343 4344 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4345 setDependence(computeDependence(this)); 4346 } 4347 4348 DesignatedInitExpr * 4349 DesignatedInitExpr::Create(const ASTContext &C, 4350 llvm::ArrayRef<Designator> Designators, 4351 ArrayRef<Expr*> IndexExprs, 4352 SourceLocation ColonOrEqualLoc, 4353 bool UsesColonSyntax, Expr *Init) { 4354 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4355 alignof(DesignatedInitExpr)); 4356 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4357 ColonOrEqualLoc, UsesColonSyntax, 4358 IndexExprs, Init); 4359 } 4360 4361 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4362 unsigned NumIndexExprs) { 4363 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4364 alignof(DesignatedInitExpr)); 4365 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4366 } 4367 4368 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4369 const Designator *Desigs, 4370 unsigned NumDesigs) { 4371 Designators = new (C) Designator[NumDesigs]; 4372 NumDesignators = NumDesigs; 4373 for (unsigned I = 0; I != NumDesigs; ++I) 4374 Designators[I] = Desigs[I]; 4375 } 4376 4377 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4378 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4379 if (size() == 1) 4380 return DIE->getDesignator(0)->getSourceRange(); 4381 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4382 DIE->getDesignator(size() - 1)->getEndLoc()); 4383 } 4384 4385 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4386 SourceLocation StartLoc; 4387 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4388 Designator &First = *DIE->getDesignator(0); 4389 if (First.isFieldDesignator()) 4390 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc; 4391 else 4392 StartLoc = First.ArrayOrRange.LBracketLoc; 4393 return StartLoc; 4394 } 4395 4396 SourceLocation DesignatedInitExpr::getEndLoc() const { 4397 return getInit()->getEndLoc(); 4398 } 4399 4400 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4401 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4402 return getSubExpr(D.ArrayOrRange.Index + 1); 4403 } 4404 4405 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4406 assert(D.Kind == Designator::ArrayRangeDesignator && 4407 "Requires array range designator"); 4408 return getSubExpr(D.ArrayOrRange.Index + 1); 4409 } 4410 4411 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4412 assert(D.Kind == Designator::ArrayRangeDesignator && 4413 "Requires array range designator"); 4414 return getSubExpr(D.ArrayOrRange.Index + 2); 4415 } 4416 4417 /// Replaces the designator at index @p Idx with the series 4418 /// of designators in [First, Last). 4419 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4420 const Designator *First, 4421 const Designator *Last) { 4422 unsigned NumNewDesignators = Last - First; 4423 if (NumNewDesignators == 0) { 4424 std::copy_backward(Designators + Idx + 1, 4425 Designators + NumDesignators, 4426 Designators + Idx); 4427 --NumNewDesignators; 4428 return; 4429 } 4430 if (NumNewDesignators == 1) { 4431 Designators[Idx] = *First; 4432 return; 4433 } 4434 4435 Designator *NewDesignators 4436 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4437 std::copy(Designators, Designators + Idx, NewDesignators); 4438 std::copy(First, Last, NewDesignators + Idx); 4439 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4440 NewDesignators + Idx + NumNewDesignators); 4441 Designators = NewDesignators; 4442 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4443 } 4444 4445 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4446 SourceLocation lBraceLoc, 4447 Expr *baseExpr, 4448 SourceLocation rBraceLoc) 4449 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4450 OK_Ordinary) { 4451 BaseAndUpdaterExprs[0] = baseExpr; 4452 4453 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4454 ILE->setType(baseExpr->getType()); 4455 BaseAndUpdaterExprs[1] = ILE; 4456 4457 // FIXME: this is wrong, set it correctly. 4458 setDependence(ExprDependence::None); 4459 } 4460 4461 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4462 return getBase()->getBeginLoc(); 4463 } 4464 4465 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4466 return getBase()->getEndLoc(); 4467 } 4468 4469 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4470 SourceLocation RParenLoc) 4471 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4472 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4473 ParenListExprBits.NumExprs = Exprs.size(); 4474 4475 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4476 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4477 setDependence(computeDependence(this)); 4478 } 4479 4480 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4481 : Expr(ParenListExprClass, Empty) { 4482 ParenListExprBits.NumExprs = NumExprs; 4483 } 4484 4485 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4486 SourceLocation LParenLoc, 4487 ArrayRef<Expr *> Exprs, 4488 SourceLocation RParenLoc) { 4489 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4490 alignof(ParenListExpr)); 4491 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4492 } 4493 4494 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4495 unsigned NumExprs) { 4496 void *Mem = 4497 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4498 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4499 } 4500 4501 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4502 Opcode opc, QualType ResTy, ExprValueKind VK, 4503 ExprObjectKind OK, SourceLocation opLoc, 4504 FPOptionsOverride FPFeatures) 4505 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4506 BinaryOperatorBits.Opc = opc; 4507 assert(!isCompoundAssignmentOp() && 4508 "Use CompoundAssignOperator for compound assignments"); 4509 BinaryOperatorBits.OpLoc = opLoc; 4510 SubExprs[LHS] = lhs; 4511 SubExprs[RHS] = rhs; 4512 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4513 if (hasStoredFPFeatures()) 4514 setStoredFPFeatures(FPFeatures); 4515 setDependence(computeDependence(this)); 4516 } 4517 4518 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4519 Opcode opc, QualType ResTy, ExprValueKind VK, 4520 ExprObjectKind OK, SourceLocation opLoc, 4521 FPOptionsOverride FPFeatures, bool dead2) 4522 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4523 BinaryOperatorBits.Opc = opc; 4524 assert(isCompoundAssignmentOp() && 4525 "Use CompoundAssignOperator for compound assignments"); 4526 BinaryOperatorBits.OpLoc = opLoc; 4527 SubExprs[LHS] = lhs; 4528 SubExprs[RHS] = rhs; 4529 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4530 if (hasStoredFPFeatures()) 4531 setStoredFPFeatures(FPFeatures); 4532 setDependence(computeDependence(this)); 4533 } 4534 4535 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4536 bool HasFPFeatures) { 4537 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4538 void *Mem = 4539 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4540 return new (Mem) BinaryOperator(EmptyShell()); 4541 } 4542 4543 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4544 Expr *rhs, Opcode opc, QualType ResTy, 4545 ExprValueKind VK, ExprObjectKind OK, 4546 SourceLocation opLoc, 4547 FPOptionsOverride FPFeatures) { 4548 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4549 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4550 void *Mem = 4551 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4552 return new (Mem) 4553 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4554 } 4555 4556 CompoundAssignOperator * 4557 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4558 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4559 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4560 alignof(CompoundAssignOperator)); 4561 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4562 } 4563 4564 CompoundAssignOperator * 4565 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4566 Opcode opc, QualType ResTy, ExprValueKind VK, 4567 ExprObjectKind OK, SourceLocation opLoc, 4568 FPOptionsOverride FPFeatures, 4569 QualType CompLHSType, QualType CompResultType) { 4570 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4571 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4572 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4573 alignof(CompoundAssignOperator)); 4574 return new (Mem) 4575 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4576 CompLHSType, CompResultType); 4577 } 4578 4579 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4580 bool hasFPFeatures) { 4581 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4582 alignof(UnaryOperator)); 4583 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4584 } 4585 4586 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4587 QualType type, ExprValueKind VK, ExprObjectKind OK, 4588 SourceLocation l, bool CanOverflow, 4589 FPOptionsOverride FPFeatures) 4590 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4591 UnaryOperatorBits.Opc = opc; 4592 UnaryOperatorBits.CanOverflow = CanOverflow; 4593 UnaryOperatorBits.Loc = l; 4594 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4595 if (hasStoredFPFeatures()) 4596 setStoredFPFeatures(FPFeatures); 4597 setDependence(computeDependence(this, Ctx)); 4598 } 4599 4600 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4601 Opcode opc, QualType type, 4602 ExprValueKind VK, ExprObjectKind OK, 4603 SourceLocation l, bool CanOverflow, 4604 FPOptionsOverride FPFeatures) { 4605 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4606 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4607 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4608 return new (Mem) 4609 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4610 } 4611 4612 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4613 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4614 e = ewc->getSubExpr(); 4615 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4616 e = m->getSubExpr(); 4617 e = cast<CXXConstructExpr>(e)->getArg(0); 4618 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4619 e = ice->getSubExpr(); 4620 return cast<OpaqueValueExpr>(e); 4621 } 4622 4623 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4624 EmptyShell sh, 4625 unsigned numSemanticExprs) { 4626 void *buffer = 4627 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4628 alignof(PseudoObjectExpr)); 4629 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4630 } 4631 4632 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4633 : Expr(PseudoObjectExprClass, shell) { 4634 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4635 } 4636 4637 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4638 ArrayRef<Expr*> semantics, 4639 unsigned resultIndex) { 4640 assert(syntax && "no syntactic expression!"); 4641 assert(semantics.size() && "no semantic expressions!"); 4642 4643 QualType type; 4644 ExprValueKind VK; 4645 if (resultIndex == NoResult) { 4646 type = C.VoidTy; 4647 VK = VK_PRValue; 4648 } else { 4649 assert(resultIndex < semantics.size()); 4650 type = semantics[resultIndex]->getType(); 4651 VK = semantics[resultIndex]->getValueKind(); 4652 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4653 } 4654 4655 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4656 alignof(PseudoObjectExpr)); 4657 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4658 resultIndex); 4659 } 4660 4661 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4662 Expr *syntax, ArrayRef<Expr *> semantics, 4663 unsigned resultIndex) 4664 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4665 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4666 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4667 4668 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4669 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4670 getSubExprsBuffer()[i] = E; 4671 4672 if (isa<OpaqueValueExpr>(E)) 4673 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4674 "opaque-value semantic expressions for pseudo-object " 4675 "operations must have sources"); 4676 } 4677 4678 setDependence(computeDependence(this)); 4679 } 4680 4681 //===----------------------------------------------------------------------===// 4682 // Child Iterators for iterating over subexpressions/substatements 4683 //===----------------------------------------------------------------------===// 4684 4685 // UnaryExprOrTypeTraitExpr 4686 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4687 const_child_range CCR = 4688 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4689 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4690 } 4691 4692 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4693 // If this is of a type and the type is a VLA type (and not a typedef), the 4694 // size expression of the VLA needs to be treated as an executable expression. 4695 // Why isn't this weirdness documented better in StmtIterator? 4696 if (isArgumentType()) { 4697 if (const VariableArrayType *T = 4698 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4699 return const_child_range(const_child_iterator(T), const_child_iterator()); 4700 return const_child_range(const_child_iterator(), const_child_iterator()); 4701 } 4702 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4703 } 4704 4705 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4706 AtomicOp op, SourceLocation RP) 4707 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4708 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4709 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4710 for (unsigned i = 0; i != args.size(); i++) 4711 SubExprs[i] = args[i]; 4712 setDependence(computeDependence(this)); 4713 } 4714 4715 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4716 switch (Op) { 4717 case AO__c11_atomic_init: 4718 case AO__opencl_atomic_init: 4719 case AO__c11_atomic_load: 4720 case AO__atomic_load_n: 4721 return 2; 4722 4723 case AO__opencl_atomic_load: 4724 case AO__hip_atomic_load: 4725 case AO__c11_atomic_store: 4726 case AO__c11_atomic_exchange: 4727 case AO__atomic_load: 4728 case AO__atomic_store: 4729 case AO__atomic_store_n: 4730 case AO__atomic_exchange_n: 4731 case AO__c11_atomic_fetch_add: 4732 case AO__c11_atomic_fetch_sub: 4733 case AO__c11_atomic_fetch_and: 4734 case AO__c11_atomic_fetch_or: 4735 case AO__c11_atomic_fetch_xor: 4736 case AO__c11_atomic_fetch_nand: 4737 case AO__c11_atomic_fetch_max: 4738 case AO__c11_atomic_fetch_min: 4739 case AO__atomic_fetch_add: 4740 case AO__atomic_fetch_sub: 4741 case AO__atomic_fetch_and: 4742 case AO__atomic_fetch_or: 4743 case AO__atomic_fetch_xor: 4744 case AO__atomic_fetch_nand: 4745 case AO__atomic_add_fetch: 4746 case AO__atomic_sub_fetch: 4747 case AO__atomic_and_fetch: 4748 case AO__atomic_or_fetch: 4749 case AO__atomic_xor_fetch: 4750 case AO__atomic_nand_fetch: 4751 case AO__atomic_min_fetch: 4752 case AO__atomic_max_fetch: 4753 case AO__atomic_fetch_min: 4754 case AO__atomic_fetch_max: 4755 return 3; 4756 4757 case AO__hip_atomic_exchange: 4758 case AO__hip_atomic_fetch_add: 4759 case AO__hip_atomic_fetch_and: 4760 case AO__hip_atomic_fetch_or: 4761 case AO__hip_atomic_fetch_xor: 4762 case AO__hip_atomic_fetch_min: 4763 case AO__hip_atomic_fetch_max: 4764 case AO__opencl_atomic_store: 4765 case AO__hip_atomic_store: 4766 case AO__opencl_atomic_exchange: 4767 case AO__opencl_atomic_fetch_add: 4768 case AO__opencl_atomic_fetch_sub: 4769 case AO__opencl_atomic_fetch_and: 4770 case AO__opencl_atomic_fetch_or: 4771 case AO__opencl_atomic_fetch_xor: 4772 case AO__opencl_atomic_fetch_min: 4773 case AO__opencl_atomic_fetch_max: 4774 case AO__atomic_exchange: 4775 return 4; 4776 4777 case AO__c11_atomic_compare_exchange_strong: 4778 case AO__c11_atomic_compare_exchange_weak: 4779 return 5; 4780 case AO__hip_atomic_compare_exchange_strong: 4781 case AO__opencl_atomic_compare_exchange_strong: 4782 case AO__opencl_atomic_compare_exchange_weak: 4783 case AO__hip_atomic_compare_exchange_weak: 4784 case AO__atomic_compare_exchange: 4785 case AO__atomic_compare_exchange_n: 4786 return 6; 4787 } 4788 llvm_unreachable("unknown atomic op"); 4789 } 4790 4791 QualType AtomicExpr::getValueType() const { 4792 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4793 if (auto AT = T->getAs<AtomicType>()) 4794 return AT->getValueType(); 4795 return T; 4796 } 4797 4798 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4799 unsigned ArraySectionCount = 0; 4800 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4801 Base = OASE->getBase(); 4802 ++ArraySectionCount; 4803 } 4804 while (auto *ASE = 4805 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4806 Base = ASE->getBase(); 4807 ++ArraySectionCount; 4808 } 4809 Base = Base->IgnoreParenImpCasts(); 4810 auto OriginalTy = Base->getType(); 4811 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4812 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4813 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4814 4815 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4816 if (OriginalTy->isAnyPointerType()) 4817 OriginalTy = OriginalTy->getPointeeType(); 4818 else { 4819 assert (OriginalTy->isArrayType()); 4820 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4821 } 4822 } 4823 return OriginalTy; 4824 } 4825 4826 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4827 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4828 : Expr(RecoveryExprClass, T.getNonReferenceType(), 4829 T->isDependentType() ? VK_LValue : getValueKindForType(T), 4830 OK_Ordinary), 4831 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4832 assert(!T.isNull()); 4833 assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); 4834 4835 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4836 setDependence(computeDependence(this)); 4837 } 4838 4839 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4840 SourceLocation BeginLoc, 4841 SourceLocation EndLoc, 4842 ArrayRef<Expr *> SubExprs) { 4843 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4844 alignof(RecoveryExpr)); 4845 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4846 } 4847 4848 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4849 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4850 alignof(RecoveryExpr)); 4851 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4852 } 4853 4854 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4855 assert( 4856 NumDims == Dims.size() && 4857 "Preallocated number of dimensions is different from the provided one."); 4858 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4859 } 4860 4861 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4862 assert( 4863 NumDims == BR.size() && 4864 "Preallocated number of dimensions is different from the provided one."); 4865 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4866 } 4867 4868 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4869 SourceLocation L, SourceLocation R, 4870 ArrayRef<Expr *> Dims) 4871 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4872 RPLoc(R), NumDims(Dims.size()) { 4873 setBase(Op); 4874 setDimensions(Dims); 4875 setDependence(computeDependence(this)); 4876 } 4877 4878 OMPArrayShapingExpr * 4879 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4880 SourceLocation L, SourceLocation R, 4881 ArrayRef<Expr *> Dims, 4882 ArrayRef<SourceRange> BracketRanges) { 4883 assert(Dims.size() == BracketRanges.size() && 4884 "Different number of dimensions and brackets ranges."); 4885 void *Mem = Context.Allocate( 4886 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4887 alignof(OMPArrayShapingExpr)); 4888 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4889 E->setBracketsRanges(BracketRanges); 4890 return E; 4891 } 4892 4893 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4894 unsigned NumDims) { 4895 void *Mem = Context.Allocate( 4896 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4897 alignof(OMPArrayShapingExpr)); 4898 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4899 } 4900 4901 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4902 assert(I < NumIterators && 4903 "Idx is greater or equal the number of iterators definitions."); 4904 getTrailingObjects<Decl *>()[I] = D; 4905 } 4906 4907 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4908 assert(I < NumIterators && 4909 "Idx is greater or equal the number of iterators definitions."); 4910 getTrailingObjects< 4911 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4912 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 4913 } 4914 4915 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 4916 SourceLocation ColonLoc, Expr *End, 4917 SourceLocation SecondColonLoc, 4918 Expr *Step) { 4919 assert(I < NumIterators && 4920 "Idx is greater or equal the number of iterators definitions."); 4921 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4922 static_cast<int>(RangeExprOffset::Begin)] = 4923 Begin; 4924 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4925 static_cast<int>(RangeExprOffset::End)] = End; 4926 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4927 static_cast<int>(RangeExprOffset::Step)] = Step; 4928 getTrailingObjects< 4929 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4930 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 4931 ColonLoc; 4932 getTrailingObjects< 4933 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4934 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 4935 SecondColonLoc; 4936 } 4937 4938 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 4939 return getTrailingObjects<Decl *>()[I]; 4940 } 4941 4942 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 4943 IteratorRange Res; 4944 Res.Begin = 4945 getTrailingObjects<Expr *>()[I * static_cast<int>( 4946 RangeExprOffset::Total) + 4947 static_cast<int>(RangeExprOffset::Begin)]; 4948 Res.End = 4949 getTrailingObjects<Expr *>()[I * static_cast<int>( 4950 RangeExprOffset::Total) + 4951 static_cast<int>(RangeExprOffset::End)]; 4952 Res.Step = 4953 getTrailingObjects<Expr *>()[I * static_cast<int>( 4954 RangeExprOffset::Total) + 4955 static_cast<int>(RangeExprOffset::Step)]; 4956 return Res; 4957 } 4958 4959 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 4960 return getTrailingObjects< 4961 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4962 static_cast<int>(RangeLocOffset::AssignLoc)]; 4963 } 4964 4965 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 4966 return getTrailingObjects< 4967 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4968 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 4969 } 4970 4971 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 4972 return getTrailingObjects< 4973 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4974 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 4975 } 4976 4977 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 4978 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 4979 } 4980 4981 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 4982 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4983 } 4984 4985 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 4986 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4987 } 4988 4989 OMPIteratorExpr::OMPIteratorExpr( 4990 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 4991 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4992 ArrayRef<OMPIteratorHelperData> Helpers) 4993 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 4994 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 4995 NumIterators(Data.size()) { 4996 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 4997 const IteratorDefinition &D = Data[I]; 4998 setIteratorDeclaration(I, D.IteratorDecl); 4999 setAssignmentLoc(I, D.AssignmentLoc); 5000 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5001 D.SecondColonLoc, D.Range.Step); 5002 setHelper(I, Helpers[I]); 5003 } 5004 setDependence(computeDependence(this)); 5005 } 5006 5007 OMPIteratorExpr * 5008 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5009 SourceLocation IteratorKwLoc, SourceLocation L, 5010 SourceLocation R, 5011 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5012 ArrayRef<OMPIteratorHelperData> Helpers) { 5013 assert(Data.size() == Helpers.size() && 5014 "Data and helpers must have the same size."); 5015 void *Mem = Context.Allocate( 5016 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5017 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5018 Data.size() * static_cast<int>(RangeLocOffset::Total), 5019 Helpers.size()), 5020 alignof(OMPIteratorExpr)); 5021 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5022 } 5023 5024 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5025 unsigned NumIterators) { 5026 void *Mem = Context.Allocate( 5027 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5028 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5029 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5030 alignof(OMPIteratorExpr)); 5031 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5032 } 5033