1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr class and subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/DeclTemplate.h" 19 #include "clang/AST/EvaluatedExprVisitor.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/Mangle.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/CharInfo.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Lexer.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "clang/Sema/SemaDiagnostic.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 #include <cstring> 36 using namespace clang; 37 38 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 39 const Expr *E = ignoreParenBaseCasts(); 40 41 QualType DerivedType = E->getType(); 42 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 43 DerivedType = PTy->getPointeeType(); 44 45 if (DerivedType->isDependentType()) 46 return nullptr; 47 48 const RecordType *Ty = DerivedType->castAs<RecordType>(); 49 Decl *D = Ty->getDecl(); 50 return cast<CXXRecordDecl>(D); 51 } 52 53 const Expr *Expr::skipRValueSubobjectAdjustments( 54 SmallVectorImpl<const Expr *> &CommaLHSs, 55 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 56 const Expr *E = this; 57 while (true) { 58 E = E->IgnoreParens(); 59 60 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 61 if ((CE->getCastKind() == CK_DerivedToBase || 62 CE->getCastKind() == CK_UncheckedDerivedToBase) && 63 E->getType()->isRecordType()) { 64 E = CE->getSubExpr(); 65 CXXRecordDecl *Derived 66 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 67 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 68 continue; 69 } 70 71 if (CE->getCastKind() == CK_NoOp) { 72 E = CE->getSubExpr(); 73 continue; 74 } 75 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 76 if (!ME->isArrow()) { 77 assert(ME->getBase()->getType()->isRecordType()); 78 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 79 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 80 E = ME->getBase(); 81 Adjustments.push_back(SubobjectAdjustment(Field)); 82 continue; 83 } 84 } 85 } 86 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 87 if (BO->isPtrMemOp()) { 88 assert(BO->getRHS()->isRValue()); 89 E = BO->getLHS(); 90 const MemberPointerType *MPT = 91 BO->getRHS()->getType()->getAs<MemberPointerType>(); 92 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 93 continue; 94 } else if (BO->getOpcode() == BO_Comma) { 95 CommaLHSs.push_back(BO->getLHS()); 96 E = BO->getRHS(); 97 continue; 98 } 99 } 100 101 // Nothing changed. 102 break; 103 } 104 return E; 105 } 106 107 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 108 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 109 /// but also int expressions which are produced by things like comparisons in 110 /// C. 111 bool Expr::isKnownToHaveBooleanValue() const { 112 const Expr *E = IgnoreParens(); 113 114 // If this value has _Bool type, it is obvious 0/1. 115 if (E->getType()->isBooleanType()) return true; 116 // If this is a non-scalar-integer type, we don't care enough to try. 117 if (!E->getType()->isIntegralOrEnumerationType()) return false; 118 119 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 120 switch (UO->getOpcode()) { 121 case UO_Plus: 122 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 123 case UO_LNot: 124 return true; 125 default: 126 return false; 127 } 128 } 129 130 // Only look through implicit casts. If the user writes 131 // '(int) (a && b)' treat it as an arbitrary int. 132 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 133 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 134 135 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 136 switch (BO->getOpcode()) { 137 default: return false; 138 case BO_LT: // Relational operators. 139 case BO_GT: 140 case BO_LE: 141 case BO_GE: 142 case BO_EQ: // Equality operators. 143 case BO_NE: 144 case BO_LAnd: // AND operator. 145 case BO_LOr: // Logical OR operator. 146 return true; 147 148 case BO_And: // Bitwise AND operator. 149 case BO_Xor: // Bitwise XOR operator. 150 case BO_Or: // Bitwise OR operator. 151 // Handle things like (x==2)|(y==12). 152 return BO->getLHS()->isKnownToHaveBooleanValue() && 153 BO->getRHS()->isKnownToHaveBooleanValue(); 154 155 case BO_Comma: 156 case BO_Assign: 157 return BO->getRHS()->isKnownToHaveBooleanValue(); 158 } 159 } 160 161 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 162 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 163 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 164 165 return false; 166 } 167 168 // Amusing macro metaprogramming hack: check whether a class provides 169 // a more specific implementation of getExprLoc(). 170 // 171 // See also Stmt.cpp:{getLocStart(),getLocEnd()}. 172 namespace { 173 /// This implementation is used when a class provides a custom 174 /// implementation of getExprLoc. 175 template <class E, class T> 176 SourceLocation getExprLocImpl(const Expr *expr, 177 SourceLocation (T::*v)() const) { 178 return static_cast<const E*>(expr)->getExprLoc(); 179 } 180 181 /// This implementation is used when a class doesn't provide 182 /// a custom implementation of getExprLoc. Overload resolution 183 /// should pick it over the implementation above because it's 184 /// more specialized according to function template partial ordering. 185 template <class E> 186 SourceLocation getExprLocImpl(const Expr *expr, 187 SourceLocation (Expr::*v)() const) { 188 return static_cast<const E*>(expr)->getLocStart(); 189 } 190 } 191 192 SourceLocation Expr::getExprLoc() const { 193 switch (getStmtClass()) { 194 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 195 #define ABSTRACT_STMT(type) 196 #define STMT(type, base) \ 197 case Stmt::type##Class: break; 198 #define EXPR(type, base) \ 199 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 200 #include "clang/AST/StmtNodes.inc" 201 } 202 llvm_unreachable("unknown expression kind"); 203 } 204 205 //===----------------------------------------------------------------------===// 206 // Primary Expressions. 207 //===----------------------------------------------------------------------===// 208 209 /// \brief Compute the type-, value-, and instantiation-dependence of a 210 /// declaration reference 211 /// based on the declaration being referenced. 212 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 213 QualType T, bool &TypeDependent, 214 bool &ValueDependent, 215 bool &InstantiationDependent) { 216 TypeDependent = false; 217 ValueDependent = false; 218 InstantiationDependent = false; 219 220 // (TD) C++ [temp.dep.expr]p3: 221 // An id-expression is type-dependent if it contains: 222 // 223 // and 224 // 225 // (VD) C++ [temp.dep.constexpr]p2: 226 // An identifier is value-dependent if it is: 227 228 // (TD) - an identifier that was declared with dependent type 229 // (VD) - a name declared with a dependent type, 230 if (T->isDependentType()) { 231 TypeDependent = true; 232 ValueDependent = true; 233 InstantiationDependent = true; 234 return; 235 } else if (T->isInstantiationDependentType()) { 236 InstantiationDependent = true; 237 } 238 239 // (TD) - a conversion-function-id that specifies a dependent type 240 if (D->getDeclName().getNameKind() 241 == DeclarationName::CXXConversionFunctionName) { 242 QualType T = D->getDeclName().getCXXNameType(); 243 if (T->isDependentType()) { 244 TypeDependent = true; 245 ValueDependent = true; 246 InstantiationDependent = true; 247 return; 248 } 249 250 if (T->isInstantiationDependentType()) 251 InstantiationDependent = true; 252 } 253 254 // (VD) - the name of a non-type template parameter, 255 if (isa<NonTypeTemplateParmDecl>(D)) { 256 ValueDependent = true; 257 InstantiationDependent = true; 258 return; 259 } 260 261 // (VD) - a constant with integral or enumeration type and is 262 // initialized with an expression that is value-dependent. 263 // (VD) - a constant with literal type and is initialized with an 264 // expression that is value-dependent [C++11]. 265 // (VD) - FIXME: Missing from the standard: 266 // - an entity with reference type and is initialized with an 267 // expression that is value-dependent [C++11] 268 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 269 if ((Ctx.getLangOpts().CPlusPlus11 ? 270 Var->getType()->isLiteralType(Ctx) : 271 Var->getType()->isIntegralOrEnumerationType()) && 272 (Var->getType().isConstQualified() || 273 Var->getType()->isReferenceType())) { 274 if (const Expr *Init = Var->getAnyInitializer()) 275 if (Init->isValueDependent()) { 276 ValueDependent = true; 277 InstantiationDependent = true; 278 } 279 } 280 281 // (VD) - FIXME: Missing from the standard: 282 // - a member function or a static data member of the current 283 // instantiation 284 if (Var->isStaticDataMember() && 285 Var->getDeclContext()->isDependentContext()) { 286 ValueDependent = true; 287 InstantiationDependent = true; 288 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 289 if (TInfo->getType()->isIncompleteArrayType()) 290 TypeDependent = true; 291 } 292 293 return; 294 } 295 296 // (VD) - FIXME: Missing from the standard: 297 // - a member function or a static data member of the current 298 // instantiation 299 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 300 ValueDependent = true; 301 InstantiationDependent = true; 302 } 303 } 304 305 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 306 bool TypeDependent = false; 307 bool ValueDependent = false; 308 bool InstantiationDependent = false; 309 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 310 ValueDependent, InstantiationDependent); 311 312 ExprBits.TypeDependent |= TypeDependent; 313 ExprBits.ValueDependent |= ValueDependent; 314 ExprBits.InstantiationDependent |= InstantiationDependent; 315 316 // Is the declaration a parameter pack? 317 if (getDecl()->isParameterPack()) 318 ExprBits.ContainsUnexpandedParameterPack = true; 319 } 320 321 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 322 NestedNameSpecifierLoc QualifierLoc, 323 SourceLocation TemplateKWLoc, 324 ValueDecl *D, bool RefersToEnclosingVariableOrCapture, 325 const DeclarationNameInfo &NameInfo, 326 NamedDecl *FoundD, 327 const TemplateArgumentListInfo *TemplateArgs, 328 QualType T, ExprValueKind VK) 329 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 330 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 331 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 332 if (QualifierLoc) { 333 new (getTrailingObjects<NestedNameSpecifierLoc>()) 334 NestedNameSpecifierLoc(QualifierLoc); 335 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 336 if (NNS->isInstantiationDependent()) 337 ExprBits.InstantiationDependent = true; 338 if (NNS->containsUnexpandedParameterPack()) 339 ExprBits.ContainsUnexpandedParameterPack = true; 340 } 341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 342 if (FoundD) 343 *getTrailingObjects<NamedDecl *>() = FoundD; 344 DeclRefExprBits.HasTemplateKWAndArgsInfo 345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 346 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 347 RefersToEnclosingVariableOrCapture; 348 if (TemplateArgs) { 349 bool Dependent = false; 350 bool InstantiationDependent = false; 351 bool ContainsUnexpandedParameterPack = false; 352 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 353 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 354 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); 355 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 356 ExprBits.InstantiationDependent |= InstantiationDependent; 357 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 358 } else if (TemplateKWLoc.isValid()) { 359 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 360 TemplateKWLoc); 361 } 362 DeclRefExprBits.HadMultipleCandidates = 0; 363 364 computeDependence(Ctx); 365 } 366 367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 368 NestedNameSpecifierLoc QualifierLoc, 369 SourceLocation TemplateKWLoc, 370 ValueDecl *D, 371 bool RefersToEnclosingVariableOrCapture, 372 SourceLocation NameLoc, 373 QualType T, 374 ExprValueKind VK, 375 NamedDecl *FoundD, 376 const TemplateArgumentListInfo *TemplateArgs) { 377 return Create(Context, QualifierLoc, TemplateKWLoc, D, 378 RefersToEnclosingVariableOrCapture, 379 DeclarationNameInfo(D->getDeclName(), NameLoc), 380 T, VK, FoundD, TemplateArgs); 381 } 382 383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 384 NestedNameSpecifierLoc QualifierLoc, 385 SourceLocation TemplateKWLoc, 386 ValueDecl *D, 387 bool RefersToEnclosingVariableOrCapture, 388 const DeclarationNameInfo &NameInfo, 389 QualType T, 390 ExprValueKind VK, 391 NamedDecl *FoundD, 392 const TemplateArgumentListInfo *TemplateArgs) { 393 // Filter out cases where the found Decl is the same as the value refenenced. 394 if (D == FoundD) 395 FoundD = nullptr; 396 397 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 398 std::size_t Size = 399 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 400 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 401 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 402 HasTemplateKWAndArgsInfo ? 1 : 0, 403 TemplateArgs ? TemplateArgs->size() : 0); 404 405 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 406 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 407 RefersToEnclosingVariableOrCapture, 408 NameInfo, FoundD, TemplateArgs, T, VK); 409 } 410 411 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 412 bool HasQualifier, 413 bool HasFoundDecl, 414 bool HasTemplateKWAndArgsInfo, 415 unsigned NumTemplateArgs) { 416 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 417 std::size_t Size = 418 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 419 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 420 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 421 NumTemplateArgs); 422 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 423 return new (Mem) DeclRefExpr(EmptyShell()); 424 } 425 426 SourceLocation DeclRefExpr::getLocStart() const { 427 if (hasQualifier()) 428 return getQualifierLoc().getBeginLoc(); 429 return getNameInfo().getLocStart(); 430 } 431 SourceLocation DeclRefExpr::getLocEnd() const { 432 if (hasExplicitTemplateArgs()) 433 return getRAngleLoc(); 434 return getNameInfo().getLocEnd(); 435 } 436 437 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, 438 StringLiteral *SL) 439 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 440 FNTy->isDependentType(), FNTy->isDependentType(), 441 FNTy->isInstantiationDependentType(), 442 /*ContainsUnexpandedParameterPack=*/false), 443 Loc(L), Type(IT), FnName(SL) {} 444 445 StringLiteral *PredefinedExpr::getFunctionName() { 446 return cast_or_null<StringLiteral>(FnName); 447 } 448 449 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { 450 switch (IT) { 451 case Func: 452 return "__func__"; 453 case Function: 454 return "__FUNCTION__"; 455 case FuncDName: 456 return "__FUNCDNAME__"; 457 case LFunction: 458 return "L__FUNCTION__"; 459 case PrettyFunction: 460 return "__PRETTY_FUNCTION__"; 461 case FuncSig: 462 return "__FUNCSIG__"; 463 case PrettyFunctionNoVirtual: 464 break; 465 } 466 llvm_unreachable("Unknown ident type for PredefinedExpr"); 467 } 468 469 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 470 // expr" policy instead. 471 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 472 ASTContext &Context = CurrentDecl->getASTContext(); 473 474 if (IT == PredefinedExpr::FuncDName) { 475 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 476 std::unique_ptr<MangleContext> MC; 477 MC.reset(Context.createMangleContext()); 478 479 if (MC->shouldMangleDeclName(ND)) { 480 SmallString<256> Buffer; 481 llvm::raw_svector_ostream Out(Buffer); 482 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 483 MC->mangleCXXCtor(CD, Ctor_Base, Out); 484 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 485 MC->mangleCXXDtor(DD, Dtor_Base, Out); 486 else 487 MC->mangleName(ND, Out); 488 489 if (!Buffer.empty() && Buffer.front() == '\01') 490 return Buffer.substr(1); 491 return Buffer.str(); 492 } else 493 return ND->getIdentifier()->getName(); 494 } 495 return ""; 496 } 497 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) { 498 std::unique_ptr<MangleContext> MC; 499 MC.reset(Context.createMangleContext()); 500 SmallString<256> Buffer; 501 llvm::raw_svector_ostream Out(Buffer); 502 auto DC = CurrentDecl->getDeclContext(); 503 if (DC->isFileContext()) 504 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out); 505 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 506 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out); 507 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 508 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out); 509 else 510 MC->mangleBlock(DC, BD, Out); 511 return Out.str(); 512 } 513 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 514 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) 515 return FD->getNameAsString(); 516 517 SmallString<256> Name; 518 llvm::raw_svector_ostream Out(Name); 519 520 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 521 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 522 Out << "virtual "; 523 if (MD->isStatic()) 524 Out << "static "; 525 } 526 527 PrintingPolicy Policy(Context.getLangOpts()); 528 std::string Proto; 529 llvm::raw_string_ostream POut(Proto); 530 531 const FunctionDecl *Decl = FD; 532 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 533 Decl = Pattern; 534 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 535 const FunctionProtoType *FT = nullptr; 536 if (FD->hasWrittenPrototype()) 537 FT = dyn_cast<FunctionProtoType>(AFT); 538 539 if (IT == FuncSig) { 540 switch (FT->getCallConv()) { 541 case CC_C: POut << "__cdecl "; break; 542 case CC_X86StdCall: POut << "__stdcall "; break; 543 case CC_X86FastCall: POut << "__fastcall "; break; 544 case CC_X86ThisCall: POut << "__thiscall "; break; 545 case CC_X86VectorCall: POut << "__vectorcall "; break; 546 // Only bother printing the conventions that MSVC knows about. 547 default: break; 548 } 549 } 550 551 FD->printQualifiedName(POut, Policy); 552 553 POut << "("; 554 if (FT) { 555 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 556 if (i) POut << ", "; 557 POut << Decl->getParamDecl(i)->getType().stream(Policy); 558 } 559 560 if (FT->isVariadic()) { 561 if (FD->getNumParams()) POut << ", "; 562 POut << "..."; 563 } 564 } 565 POut << ")"; 566 567 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 568 const FunctionType *FT = MD->getType()->castAs<FunctionType>(); 569 if (FT->isConst()) 570 POut << " const"; 571 if (FT->isVolatile()) 572 POut << " volatile"; 573 RefQualifierKind Ref = MD->getRefQualifier(); 574 if (Ref == RQ_LValue) 575 POut << " &"; 576 else if (Ref == RQ_RValue) 577 POut << " &&"; 578 } 579 580 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 581 SpecsTy Specs; 582 const DeclContext *Ctx = FD->getDeclContext(); 583 while (Ctx && isa<NamedDecl>(Ctx)) { 584 const ClassTemplateSpecializationDecl *Spec 585 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 586 if (Spec && !Spec->isExplicitSpecialization()) 587 Specs.push_back(Spec); 588 Ctx = Ctx->getParent(); 589 } 590 591 std::string TemplateParams; 592 llvm::raw_string_ostream TOut(TemplateParams); 593 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 594 I != E; ++I) { 595 const TemplateParameterList *Params 596 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 597 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 598 assert(Params->size() == Args.size()); 599 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 600 StringRef Param = Params->getParam(i)->getName(); 601 if (Param.empty()) continue; 602 TOut << Param << " = "; 603 Args.get(i).print(Policy, TOut); 604 TOut << ", "; 605 } 606 } 607 608 FunctionTemplateSpecializationInfo *FSI 609 = FD->getTemplateSpecializationInfo(); 610 if (FSI && !FSI->isExplicitSpecialization()) { 611 const TemplateParameterList* Params 612 = FSI->getTemplate()->getTemplateParameters(); 613 const TemplateArgumentList* Args = FSI->TemplateArguments; 614 assert(Params->size() == Args->size()); 615 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 616 StringRef Param = Params->getParam(i)->getName(); 617 if (Param.empty()) continue; 618 TOut << Param << " = "; 619 Args->get(i).print(Policy, TOut); 620 TOut << ", "; 621 } 622 } 623 624 TOut.flush(); 625 if (!TemplateParams.empty()) { 626 // remove the trailing comma and space 627 TemplateParams.resize(TemplateParams.size() - 2); 628 POut << " [" << TemplateParams << "]"; 629 } 630 631 POut.flush(); 632 633 // Print "auto" for all deduced return types. This includes C++1y return 634 // type deduction and lambdas. For trailing return types resolve the 635 // decltype expression. Otherwise print the real type when this is 636 // not a constructor or destructor. 637 if (isa<CXXMethodDecl>(FD) && 638 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 639 Proto = "auto " + Proto; 640 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 641 FT->getReturnType() 642 ->getAs<DecltypeType>() 643 ->getUnderlyingType() 644 .getAsStringInternal(Proto, Policy); 645 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 646 AFT->getReturnType().getAsStringInternal(Proto, Policy); 647 648 Out << Proto; 649 650 return Name.str().str(); 651 } 652 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 653 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 654 // Skip to its enclosing function or method, but not its enclosing 655 // CapturedDecl. 656 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 657 const Decl *D = Decl::castFromDeclContext(DC); 658 return ComputeName(IT, D); 659 } 660 llvm_unreachable("CapturedDecl not inside a function or method"); 661 } 662 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 663 SmallString<256> Name; 664 llvm::raw_svector_ostream Out(Name); 665 Out << (MD->isInstanceMethod() ? '-' : '+'); 666 Out << '['; 667 668 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 669 // a null check to avoid a crash. 670 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 671 Out << *ID; 672 673 if (const ObjCCategoryImplDecl *CID = 674 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 675 Out << '(' << *CID << ')'; 676 677 Out << ' '; 678 MD->getSelector().print(Out); 679 Out << ']'; 680 681 return Name.str().str(); 682 } 683 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 684 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 685 return "top level"; 686 } 687 return ""; 688 } 689 690 void APNumericStorage::setIntValue(const ASTContext &C, 691 const llvm::APInt &Val) { 692 if (hasAllocation()) 693 C.Deallocate(pVal); 694 695 BitWidth = Val.getBitWidth(); 696 unsigned NumWords = Val.getNumWords(); 697 const uint64_t* Words = Val.getRawData(); 698 if (NumWords > 1) { 699 pVal = new (C) uint64_t[NumWords]; 700 std::copy(Words, Words + NumWords, pVal); 701 } else if (NumWords == 1) 702 VAL = Words[0]; 703 else 704 VAL = 0; 705 } 706 707 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 708 QualType type, SourceLocation l) 709 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 710 false, false), 711 Loc(l) { 712 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 713 assert(V.getBitWidth() == C.getIntWidth(type) && 714 "Integer type is not the correct size for constant."); 715 setValue(C, V); 716 } 717 718 IntegerLiteral * 719 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 720 QualType type, SourceLocation l) { 721 return new (C) IntegerLiteral(C, V, type, l); 722 } 723 724 IntegerLiteral * 725 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 726 return new (C) IntegerLiteral(Empty); 727 } 728 729 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 730 bool isexact, QualType Type, SourceLocation L) 731 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 732 false, false), Loc(L) { 733 setSemantics(V.getSemantics()); 734 FloatingLiteralBits.IsExact = isexact; 735 setValue(C, V); 736 } 737 738 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 739 : Expr(FloatingLiteralClass, Empty) { 740 setRawSemantics(IEEEhalf); 741 FloatingLiteralBits.IsExact = false; 742 } 743 744 FloatingLiteral * 745 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 746 bool isexact, QualType Type, SourceLocation L) { 747 return new (C) FloatingLiteral(C, V, isexact, Type, L); 748 } 749 750 FloatingLiteral * 751 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 752 return new (C) FloatingLiteral(C, Empty); 753 } 754 755 const llvm::fltSemantics &FloatingLiteral::getSemantics() const { 756 switch(FloatingLiteralBits.Semantics) { 757 case IEEEhalf: 758 return llvm::APFloat::IEEEhalf; 759 case IEEEsingle: 760 return llvm::APFloat::IEEEsingle; 761 case IEEEdouble: 762 return llvm::APFloat::IEEEdouble; 763 case x87DoubleExtended: 764 return llvm::APFloat::x87DoubleExtended; 765 case IEEEquad: 766 return llvm::APFloat::IEEEquad; 767 case PPCDoubleDouble: 768 return llvm::APFloat::PPCDoubleDouble; 769 } 770 llvm_unreachable("Unrecognised floating semantics"); 771 } 772 773 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { 774 if (&Sem == &llvm::APFloat::IEEEhalf) 775 FloatingLiteralBits.Semantics = IEEEhalf; 776 else if (&Sem == &llvm::APFloat::IEEEsingle) 777 FloatingLiteralBits.Semantics = IEEEsingle; 778 else if (&Sem == &llvm::APFloat::IEEEdouble) 779 FloatingLiteralBits.Semantics = IEEEdouble; 780 else if (&Sem == &llvm::APFloat::x87DoubleExtended) 781 FloatingLiteralBits.Semantics = x87DoubleExtended; 782 else if (&Sem == &llvm::APFloat::IEEEquad) 783 FloatingLiteralBits.Semantics = IEEEquad; 784 else if (&Sem == &llvm::APFloat::PPCDoubleDouble) 785 FloatingLiteralBits.Semantics = PPCDoubleDouble; 786 else 787 llvm_unreachable("Unknown floating semantics"); 788 } 789 790 /// getValueAsApproximateDouble - This returns the value as an inaccurate 791 /// double. Note that this may cause loss of precision, but is useful for 792 /// debugging dumps, etc. 793 double FloatingLiteral::getValueAsApproximateDouble() const { 794 llvm::APFloat V = getValue(); 795 bool ignored; 796 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 797 &ignored); 798 return V.convertToDouble(); 799 } 800 801 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 802 int CharByteWidth = 0; 803 switch(k) { 804 case Ascii: 805 case UTF8: 806 CharByteWidth = target.getCharWidth(); 807 break; 808 case Wide: 809 CharByteWidth = target.getWCharWidth(); 810 break; 811 case UTF16: 812 CharByteWidth = target.getChar16Width(); 813 break; 814 case UTF32: 815 CharByteWidth = target.getChar32Width(); 816 break; 817 } 818 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 819 CharByteWidth /= 8; 820 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 821 && "character byte widths supported are 1, 2, and 4 only"); 822 return CharByteWidth; 823 } 824 825 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, 826 StringKind Kind, bool Pascal, QualType Ty, 827 const SourceLocation *Loc, 828 unsigned NumStrs) { 829 assert(C.getAsConstantArrayType(Ty) && 830 "StringLiteral must be of constant array type!"); 831 832 // Allocate enough space for the StringLiteral plus an array of locations for 833 // any concatenated string tokens. 834 void *Mem = C.Allocate(sizeof(StringLiteral)+ 835 sizeof(SourceLocation)*(NumStrs-1), 836 llvm::alignOf<StringLiteral>()); 837 StringLiteral *SL = new (Mem) StringLiteral(Ty); 838 839 // OPTIMIZE: could allocate this appended to the StringLiteral. 840 SL->setString(C,Str,Kind,Pascal); 841 842 SL->TokLocs[0] = Loc[0]; 843 SL->NumConcatenated = NumStrs; 844 845 if (NumStrs != 1) 846 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 847 return SL; 848 } 849 850 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, 851 unsigned NumStrs) { 852 void *Mem = C.Allocate(sizeof(StringLiteral)+ 853 sizeof(SourceLocation)*(NumStrs-1), 854 llvm::alignOf<StringLiteral>()); 855 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 856 SL->CharByteWidth = 0; 857 SL->Length = 0; 858 SL->NumConcatenated = NumStrs; 859 return SL; 860 } 861 862 void StringLiteral::outputString(raw_ostream &OS) const { 863 switch (getKind()) { 864 case Ascii: break; // no prefix. 865 case Wide: OS << 'L'; break; 866 case UTF8: OS << "u8"; break; 867 case UTF16: OS << 'u'; break; 868 case UTF32: OS << 'U'; break; 869 } 870 OS << '"'; 871 static const char Hex[] = "0123456789ABCDEF"; 872 873 unsigned LastSlashX = getLength(); 874 for (unsigned I = 0, N = getLength(); I != N; ++I) { 875 switch (uint32_t Char = getCodeUnit(I)) { 876 default: 877 // FIXME: Convert UTF-8 back to codepoints before rendering. 878 879 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 880 // Leave invalid surrogates alone; we'll use \x for those. 881 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 882 Char <= 0xdbff) { 883 uint32_t Trail = getCodeUnit(I + 1); 884 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 885 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 886 ++I; 887 } 888 } 889 890 if (Char > 0xff) { 891 // If this is a wide string, output characters over 0xff using \x 892 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 893 // codepoint: use \x escapes for invalid codepoints. 894 if (getKind() == Wide || 895 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 896 // FIXME: Is this the best way to print wchar_t? 897 OS << "\\x"; 898 int Shift = 28; 899 while ((Char >> Shift) == 0) 900 Shift -= 4; 901 for (/**/; Shift >= 0; Shift -= 4) 902 OS << Hex[(Char >> Shift) & 15]; 903 LastSlashX = I; 904 break; 905 } 906 907 if (Char > 0xffff) 908 OS << "\\U00" 909 << Hex[(Char >> 20) & 15] 910 << Hex[(Char >> 16) & 15]; 911 else 912 OS << "\\u"; 913 OS << Hex[(Char >> 12) & 15] 914 << Hex[(Char >> 8) & 15] 915 << Hex[(Char >> 4) & 15] 916 << Hex[(Char >> 0) & 15]; 917 break; 918 } 919 920 // If we used \x... for the previous character, and this character is a 921 // hexadecimal digit, prevent it being slurped as part of the \x. 922 if (LastSlashX + 1 == I) { 923 switch (Char) { 924 case '0': case '1': case '2': case '3': case '4': 925 case '5': case '6': case '7': case '8': case '9': 926 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 927 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 928 OS << "\"\""; 929 } 930 } 931 932 assert(Char <= 0xff && 933 "Characters above 0xff should already have been handled."); 934 935 if (isPrintable(Char)) 936 OS << (char)Char; 937 else // Output anything hard as an octal escape. 938 OS << '\\' 939 << (char)('0' + ((Char >> 6) & 7)) 940 << (char)('0' + ((Char >> 3) & 7)) 941 << (char)('0' + ((Char >> 0) & 7)); 942 break; 943 // Handle some common non-printable cases to make dumps prettier. 944 case '\\': OS << "\\\\"; break; 945 case '"': OS << "\\\""; break; 946 case '\n': OS << "\\n"; break; 947 case '\t': OS << "\\t"; break; 948 case '\a': OS << "\\a"; break; 949 case '\b': OS << "\\b"; break; 950 } 951 } 952 OS << '"'; 953 } 954 955 void StringLiteral::setString(const ASTContext &C, StringRef Str, 956 StringKind Kind, bool IsPascal) { 957 //FIXME: we assume that the string data comes from a target that uses the same 958 // code unit size and endianess for the type of string. 959 this->Kind = Kind; 960 this->IsPascal = IsPascal; 961 962 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 963 assert((Str.size()%CharByteWidth == 0) 964 && "size of data must be multiple of CharByteWidth"); 965 Length = Str.size()/CharByteWidth; 966 967 switch(CharByteWidth) { 968 case 1: { 969 char *AStrData = new (C) char[Length]; 970 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 971 StrData.asChar = AStrData; 972 break; 973 } 974 case 2: { 975 uint16_t *AStrData = new (C) uint16_t[Length]; 976 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 977 StrData.asUInt16 = AStrData; 978 break; 979 } 980 case 4: { 981 uint32_t *AStrData = new (C) uint32_t[Length]; 982 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 983 StrData.asUInt32 = AStrData; 984 break; 985 } 986 default: 987 llvm_unreachable("unsupported CharByteWidth"); 988 } 989 } 990 991 /// getLocationOfByte - Return a source location that points to the specified 992 /// byte of this string literal. 993 /// 994 /// Strings are amazingly complex. They can be formed from multiple tokens and 995 /// can have escape sequences in them in addition to the usual trigraph and 996 /// escaped newline business. This routine handles this complexity. 997 /// 998 /// The *StartToken sets the first token to be searched in this function and 999 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1000 /// returning, it updates the *StartToken to the TokNo of the token being found 1001 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1002 /// string. 1003 /// Using these two parameters can reduce the time complexity from O(n^2) to 1004 /// O(n) if one wants to get the location of byte for all the tokens in a 1005 /// string. 1006 /// 1007 SourceLocation 1008 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1009 const LangOptions &Features, 1010 const TargetInfo &Target, unsigned *StartToken, 1011 unsigned *StartTokenByteOffset) const { 1012 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && 1013 "Only narrow string literals are currently supported"); 1014 1015 // Loop over all of the tokens in this string until we find the one that 1016 // contains the byte we're looking for. 1017 unsigned TokNo = 0; 1018 unsigned StringOffset = 0; 1019 if (StartToken) 1020 TokNo = *StartToken; 1021 if (StartTokenByteOffset) { 1022 StringOffset = *StartTokenByteOffset; 1023 ByteNo -= StringOffset; 1024 } 1025 while (1) { 1026 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1027 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1028 1029 // Get the spelling of the string so that we can get the data that makes up 1030 // the string literal, not the identifier for the macro it is potentially 1031 // expanded through. 1032 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1033 1034 // Re-lex the token to get its length and original spelling. 1035 std::pair<FileID, unsigned> LocInfo = 1036 SM.getDecomposedLoc(StrTokSpellingLoc); 1037 bool Invalid = false; 1038 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1039 if (Invalid) { 1040 if (StartTokenByteOffset != nullptr) 1041 *StartTokenByteOffset = StringOffset; 1042 if (StartToken != nullptr) 1043 *StartToken = TokNo; 1044 return StrTokSpellingLoc; 1045 } 1046 1047 const char *StrData = Buffer.data()+LocInfo.second; 1048 1049 // Create a lexer starting at the beginning of this token. 1050 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1051 Buffer.begin(), StrData, Buffer.end()); 1052 Token TheTok; 1053 TheLexer.LexFromRawLexer(TheTok); 1054 1055 // Use the StringLiteralParser to compute the length of the string in bytes. 1056 StringLiteralParser SLP(TheTok, SM, Features, Target); 1057 unsigned TokNumBytes = SLP.GetStringLength(); 1058 1059 // If the byte is in this token, return the location of the byte. 1060 if (ByteNo < TokNumBytes || 1061 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1062 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1063 1064 // Now that we know the offset of the token in the spelling, use the 1065 // preprocessor to get the offset in the original source. 1066 if (StartTokenByteOffset != nullptr) 1067 *StartTokenByteOffset = StringOffset; 1068 if (StartToken != nullptr) 1069 *StartToken = TokNo; 1070 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1071 } 1072 1073 // Move to the next string token. 1074 StringOffset += TokNumBytes; 1075 ++TokNo; 1076 ByteNo -= TokNumBytes; 1077 } 1078 } 1079 1080 1081 1082 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1083 /// corresponds to, e.g. "sizeof" or "[pre]++". 1084 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1085 switch (Op) { 1086 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1087 #include "clang/AST/OperationKinds.def" 1088 } 1089 llvm_unreachable("Unknown unary operator"); 1090 } 1091 1092 UnaryOperatorKind 1093 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1094 switch (OO) { 1095 default: llvm_unreachable("No unary operator for overloaded function"); 1096 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1097 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1098 case OO_Amp: return UO_AddrOf; 1099 case OO_Star: return UO_Deref; 1100 case OO_Plus: return UO_Plus; 1101 case OO_Minus: return UO_Minus; 1102 case OO_Tilde: return UO_Not; 1103 case OO_Exclaim: return UO_LNot; 1104 case OO_Coawait: return UO_Coawait; 1105 } 1106 } 1107 1108 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1109 switch (Opc) { 1110 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1111 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1112 case UO_AddrOf: return OO_Amp; 1113 case UO_Deref: return OO_Star; 1114 case UO_Plus: return OO_Plus; 1115 case UO_Minus: return OO_Minus; 1116 case UO_Not: return OO_Tilde; 1117 case UO_LNot: return OO_Exclaim; 1118 case UO_Coawait: return OO_Coawait; 1119 default: return OO_None; 1120 } 1121 } 1122 1123 1124 //===----------------------------------------------------------------------===// 1125 // Postfix Operators. 1126 //===----------------------------------------------------------------------===// 1127 1128 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, 1129 ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t, 1130 ExprValueKind VK, SourceLocation rparenloc) 1131 : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(), 1132 fn->isValueDependent(), fn->isInstantiationDependent(), 1133 fn->containsUnexpandedParameterPack()), 1134 NumArgs(args.size()) { 1135 1136 unsigned NumPreArgs = preargs.size(); 1137 SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs]; 1138 SubExprs[FN] = fn; 1139 for (unsigned i = 0; i != NumPreArgs; ++i) { 1140 updateDependenciesFromArg(preargs[i]); 1141 SubExprs[i+PREARGS_START] = preargs[i]; 1142 } 1143 for (unsigned i = 0; i != args.size(); ++i) { 1144 updateDependenciesFromArg(args[i]); 1145 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 1146 } 1147 1148 CallExprBits.NumPreArgs = NumPreArgs; 1149 RParenLoc = rparenloc; 1150 } 1151 1152 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, 1153 ArrayRef<Expr *> args, QualType t, ExprValueKind VK, 1154 SourceLocation rparenloc) 1155 : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {} 1156 1157 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args, 1158 QualType t, ExprValueKind VK, SourceLocation rparenloc) 1159 : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) { 1160 } 1161 1162 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) 1163 : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {} 1164 1165 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, 1166 EmptyShell Empty) 1167 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 1168 // FIXME: Why do we allocate this? 1169 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs](); 1170 CallExprBits.NumPreArgs = NumPreArgs; 1171 } 1172 1173 void CallExpr::updateDependenciesFromArg(Expr *Arg) { 1174 if (Arg->isTypeDependent()) 1175 ExprBits.TypeDependent = true; 1176 if (Arg->isValueDependent()) 1177 ExprBits.ValueDependent = true; 1178 if (Arg->isInstantiationDependent()) 1179 ExprBits.InstantiationDependent = true; 1180 if (Arg->containsUnexpandedParameterPack()) 1181 ExprBits.ContainsUnexpandedParameterPack = true; 1182 } 1183 1184 Decl *CallExpr::getCalleeDecl() { 1185 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 1186 1187 while (SubstNonTypeTemplateParmExpr *NTTP 1188 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1189 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1190 } 1191 1192 // If we're calling a dereference, look at the pointer instead. 1193 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1194 if (BO->isPtrMemOp()) 1195 CEE = BO->getRHS()->IgnoreParenCasts(); 1196 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1197 if (UO->getOpcode() == UO_Deref) 1198 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1199 } 1200 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1201 return DRE->getDecl(); 1202 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1203 return ME->getMemberDecl(); 1204 1205 return nullptr; 1206 } 1207 1208 FunctionDecl *CallExpr::getDirectCallee() { 1209 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 1210 } 1211 1212 /// setNumArgs - This changes the number of arguments present in this call. 1213 /// Any orphaned expressions are deleted by this, and any new operands are set 1214 /// to null. 1215 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { 1216 // No change, just return. 1217 if (NumArgs == getNumArgs()) return; 1218 1219 // If shrinking # arguments, just delete the extras and forgot them. 1220 if (NumArgs < getNumArgs()) { 1221 this->NumArgs = NumArgs; 1222 return; 1223 } 1224 1225 // Otherwise, we are growing the # arguments. New an bigger argument array. 1226 unsigned NumPreArgs = getNumPreArgs(); 1227 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 1228 // Copy over args. 1229 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 1230 NewSubExprs[i] = SubExprs[i]; 1231 // Null out new args. 1232 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 1233 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 1234 NewSubExprs[i] = nullptr; 1235 1236 if (SubExprs) C.Deallocate(SubExprs); 1237 SubExprs = NewSubExprs; 1238 this->NumArgs = NumArgs; 1239 } 1240 1241 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1242 /// not, return 0. 1243 unsigned CallExpr::getBuiltinCallee() const { 1244 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1245 // function. As a result, we try and obtain the DeclRefExpr from the 1246 // ImplicitCastExpr. 1247 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1248 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1249 return 0; 1250 1251 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1252 if (!DRE) 1253 return 0; 1254 1255 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1256 if (!FDecl) 1257 return 0; 1258 1259 if (!FDecl->getIdentifier()) 1260 return 0; 1261 1262 return FDecl->getBuiltinID(); 1263 } 1264 1265 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1266 if (unsigned BI = getBuiltinCallee()) 1267 return Ctx.BuiltinInfo.isUnevaluated(BI); 1268 return false; 1269 } 1270 1271 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1272 const Expr *Callee = getCallee(); 1273 QualType CalleeType = Callee->getType(); 1274 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1275 CalleeType = FnTypePtr->getPointeeType(); 1276 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1277 CalleeType = BPT->getPointeeType(); 1278 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1279 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1280 return Ctx.VoidTy; 1281 1282 // This should never be overloaded and so should never return null. 1283 CalleeType = Expr::findBoundMemberType(Callee); 1284 } 1285 1286 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1287 return FnType->getReturnType(); 1288 } 1289 1290 SourceLocation CallExpr::getLocStart() const { 1291 if (isa<CXXOperatorCallExpr>(this)) 1292 return cast<CXXOperatorCallExpr>(this)->getLocStart(); 1293 1294 SourceLocation begin = getCallee()->getLocStart(); 1295 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1296 begin = getArg(0)->getLocStart(); 1297 return begin; 1298 } 1299 SourceLocation CallExpr::getLocEnd() const { 1300 if (isa<CXXOperatorCallExpr>(this)) 1301 return cast<CXXOperatorCallExpr>(this)->getLocEnd(); 1302 1303 SourceLocation end = getRParenLoc(); 1304 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1305 end = getArg(getNumArgs() - 1)->getLocEnd(); 1306 return end; 1307 } 1308 1309 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1310 SourceLocation OperatorLoc, 1311 TypeSourceInfo *tsi, 1312 ArrayRef<OffsetOfNode> comps, 1313 ArrayRef<Expr*> exprs, 1314 SourceLocation RParenLoc) { 1315 void *Mem = C.Allocate( 1316 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1317 1318 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1319 RParenLoc); 1320 } 1321 1322 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1323 unsigned numComps, unsigned numExprs) { 1324 void *Mem = 1325 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1326 return new (Mem) OffsetOfExpr(numComps, numExprs); 1327 } 1328 1329 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1330 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1331 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1332 SourceLocation RParenLoc) 1333 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1334 /*TypeDependent=*/false, 1335 /*ValueDependent=*/tsi->getType()->isDependentType(), 1336 tsi->getType()->isInstantiationDependentType(), 1337 tsi->getType()->containsUnexpandedParameterPack()), 1338 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1339 NumComps(comps.size()), NumExprs(exprs.size()) 1340 { 1341 for (unsigned i = 0; i != comps.size(); ++i) { 1342 setComponent(i, comps[i]); 1343 } 1344 1345 for (unsigned i = 0; i != exprs.size(); ++i) { 1346 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1347 ExprBits.ValueDependent = true; 1348 if (exprs[i]->containsUnexpandedParameterPack()) 1349 ExprBits.ContainsUnexpandedParameterPack = true; 1350 1351 setIndexExpr(i, exprs[i]); 1352 } 1353 } 1354 1355 IdentifierInfo *OffsetOfNode::getFieldName() const { 1356 assert(getKind() == Field || getKind() == Identifier); 1357 if (getKind() == Field) 1358 return getField()->getIdentifier(); 1359 1360 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1361 } 1362 1363 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1364 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1365 SourceLocation op, SourceLocation rp) 1366 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, 1367 false, // Never type-dependent (C++ [temp.dep.expr]p3). 1368 // Value-dependent if the argument is type-dependent. 1369 E->isTypeDependent(), E->isInstantiationDependent(), 1370 E->containsUnexpandedParameterPack()), 1371 OpLoc(op), RParenLoc(rp) { 1372 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1373 UnaryExprOrTypeTraitExprBits.IsType = false; 1374 Argument.Ex = E; 1375 1376 // Check to see if we are in the situation where alignof(decl) should be 1377 // dependent because decl's alignment is dependent. 1378 if (ExprKind == UETT_AlignOf) { 1379 if (!isValueDependent() || !isInstantiationDependent()) { 1380 E = E->IgnoreParens(); 1381 1382 const ValueDecl *D = nullptr; 1383 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 1384 D = DRE->getDecl(); 1385 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 1386 D = ME->getMemberDecl(); 1387 1388 if (D) { 1389 for (const auto *I : D->specific_attrs<AlignedAttr>()) { 1390 if (I->isAlignmentDependent()) { 1391 setValueDependent(true); 1392 setInstantiationDependent(true); 1393 break; 1394 } 1395 } 1396 } 1397 } 1398 } 1399 } 1400 1401 MemberExpr *MemberExpr::Create( 1402 const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, 1403 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1404 ValueDecl *memberdecl, DeclAccessPair founddecl, 1405 DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, 1406 QualType ty, ExprValueKind vk, ExprObjectKind ok) { 1407 1408 bool hasQualOrFound = (QualifierLoc || 1409 founddecl.getDecl() != memberdecl || 1410 founddecl.getAccess() != memberdecl->getAccess()); 1411 1412 bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid(); 1413 std::size_t Size = 1414 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1415 TemplateArgumentLoc>(hasQualOrFound ? 1 : 0, 1416 HasTemplateKWAndArgsInfo ? 1 : 0, 1417 targs ? targs->size() : 0); 1418 1419 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 1420 MemberExpr *E = new (Mem) 1421 MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok); 1422 1423 if (hasQualOrFound) { 1424 // FIXME: Wrong. We should be looking at the member declaration we found. 1425 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1426 E->setValueDependent(true); 1427 E->setTypeDependent(true); 1428 E->setInstantiationDependent(true); 1429 } 1430 else if (QualifierLoc && 1431 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1432 E->setInstantiationDependent(true); 1433 1434 E->HasQualifierOrFoundDecl = true; 1435 1436 MemberExprNameQualifier *NQ = 1437 E->getTrailingObjects<MemberExprNameQualifier>(); 1438 NQ->QualifierLoc = QualifierLoc; 1439 NQ->FoundDecl = founddecl; 1440 } 1441 1442 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 1443 1444 if (targs) { 1445 bool Dependent = false; 1446 bool InstantiationDependent = false; 1447 bool ContainsUnexpandedParameterPack = false; 1448 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1449 TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(), 1450 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); 1451 if (InstantiationDependent) 1452 E->setInstantiationDependent(true); 1453 } else if (TemplateKWLoc.isValid()) { 1454 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1455 TemplateKWLoc); 1456 } 1457 1458 return E; 1459 } 1460 1461 SourceLocation MemberExpr::getLocStart() const { 1462 if (isImplicitAccess()) { 1463 if (hasQualifier()) 1464 return getQualifierLoc().getBeginLoc(); 1465 return MemberLoc; 1466 } 1467 1468 // FIXME: We don't want this to happen. Rather, we should be able to 1469 // detect all kinds of implicit accesses more cleanly. 1470 SourceLocation BaseStartLoc = getBase()->getLocStart(); 1471 if (BaseStartLoc.isValid()) 1472 return BaseStartLoc; 1473 return MemberLoc; 1474 } 1475 SourceLocation MemberExpr::getLocEnd() const { 1476 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1477 if (hasExplicitTemplateArgs()) 1478 EndLoc = getRAngleLoc(); 1479 else if (EndLoc.isInvalid()) 1480 EndLoc = getBase()->getLocEnd(); 1481 return EndLoc; 1482 } 1483 1484 bool CastExpr::CastConsistency() const { 1485 switch (getCastKind()) { 1486 case CK_DerivedToBase: 1487 case CK_UncheckedDerivedToBase: 1488 case CK_DerivedToBaseMemberPointer: 1489 case CK_BaseToDerived: 1490 case CK_BaseToDerivedMemberPointer: 1491 assert(!path_empty() && "Cast kind should have a base path!"); 1492 break; 1493 1494 case CK_CPointerToObjCPointerCast: 1495 assert(getType()->isObjCObjectPointerType()); 1496 assert(getSubExpr()->getType()->isPointerType()); 1497 goto CheckNoBasePath; 1498 1499 case CK_BlockPointerToObjCPointerCast: 1500 assert(getType()->isObjCObjectPointerType()); 1501 assert(getSubExpr()->getType()->isBlockPointerType()); 1502 goto CheckNoBasePath; 1503 1504 case CK_ReinterpretMemberPointer: 1505 assert(getType()->isMemberPointerType()); 1506 assert(getSubExpr()->getType()->isMemberPointerType()); 1507 goto CheckNoBasePath; 1508 1509 case CK_BitCast: 1510 // Arbitrary casts to C pointer types count as bitcasts. 1511 // Otherwise, we should only have block and ObjC pointer casts 1512 // here if they stay within the type kind. 1513 if (!getType()->isPointerType()) { 1514 assert(getType()->isObjCObjectPointerType() == 1515 getSubExpr()->getType()->isObjCObjectPointerType()); 1516 assert(getType()->isBlockPointerType() == 1517 getSubExpr()->getType()->isBlockPointerType()); 1518 } 1519 goto CheckNoBasePath; 1520 1521 case CK_AnyPointerToBlockPointerCast: 1522 assert(getType()->isBlockPointerType()); 1523 assert(getSubExpr()->getType()->isAnyPointerType() && 1524 !getSubExpr()->getType()->isBlockPointerType()); 1525 goto CheckNoBasePath; 1526 1527 case CK_CopyAndAutoreleaseBlockObject: 1528 assert(getType()->isBlockPointerType()); 1529 assert(getSubExpr()->getType()->isBlockPointerType()); 1530 goto CheckNoBasePath; 1531 1532 case CK_FunctionToPointerDecay: 1533 assert(getType()->isPointerType()); 1534 assert(getSubExpr()->getType()->isFunctionType()); 1535 goto CheckNoBasePath; 1536 1537 case CK_AddressSpaceConversion: 1538 assert(getType()->isPointerType()); 1539 assert(getSubExpr()->getType()->isPointerType()); 1540 assert(getType()->getPointeeType().getAddressSpace() != 1541 getSubExpr()->getType()->getPointeeType().getAddressSpace()); 1542 // These should not have an inheritance path. 1543 case CK_Dynamic: 1544 case CK_ToUnion: 1545 case CK_ArrayToPointerDecay: 1546 case CK_NullToMemberPointer: 1547 case CK_NullToPointer: 1548 case CK_ConstructorConversion: 1549 case CK_IntegralToPointer: 1550 case CK_PointerToIntegral: 1551 case CK_ToVoid: 1552 case CK_VectorSplat: 1553 case CK_IntegralCast: 1554 case CK_BooleanToSignedIntegral: 1555 case CK_IntegralToFloating: 1556 case CK_FloatingToIntegral: 1557 case CK_FloatingCast: 1558 case CK_ObjCObjectLValueCast: 1559 case CK_FloatingRealToComplex: 1560 case CK_FloatingComplexToReal: 1561 case CK_FloatingComplexCast: 1562 case CK_FloatingComplexToIntegralComplex: 1563 case CK_IntegralRealToComplex: 1564 case CK_IntegralComplexToReal: 1565 case CK_IntegralComplexCast: 1566 case CK_IntegralComplexToFloatingComplex: 1567 case CK_ARCProduceObject: 1568 case CK_ARCConsumeObject: 1569 case CK_ARCReclaimReturnedObject: 1570 case CK_ARCExtendBlockObject: 1571 case CK_ZeroToOCLEvent: 1572 case CK_IntToOCLSampler: 1573 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1574 goto CheckNoBasePath; 1575 1576 case CK_Dependent: 1577 case CK_LValueToRValue: 1578 case CK_NoOp: 1579 case CK_AtomicToNonAtomic: 1580 case CK_NonAtomicToAtomic: 1581 case CK_PointerToBoolean: 1582 case CK_IntegralToBoolean: 1583 case CK_FloatingToBoolean: 1584 case CK_MemberPointerToBoolean: 1585 case CK_FloatingComplexToBoolean: 1586 case CK_IntegralComplexToBoolean: 1587 case CK_LValueBitCast: // -> bool& 1588 case CK_UserDefinedConversion: // operator bool() 1589 case CK_BuiltinFnToFnPtr: 1590 CheckNoBasePath: 1591 assert(path_empty() && "Cast kind should not have a base path!"); 1592 break; 1593 } 1594 return true; 1595 } 1596 1597 const char *CastExpr::getCastKindName() const { 1598 switch (getCastKind()) { 1599 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1600 #include "clang/AST/OperationKinds.def" 1601 } 1602 llvm_unreachable("Unhandled cast kind!"); 1603 } 1604 1605 Expr *CastExpr::getSubExprAsWritten() { 1606 Expr *SubExpr = nullptr; 1607 CastExpr *E = this; 1608 do { 1609 SubExpr = E->getSubExpr(); 1610 1611 // Skip through reference binding to temporary. 1612 if (MaterializeTemporaryExpr *Materialize 1613 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1614 SubExpr = Materialize->GetTemporaryExpr(); 1615 1616 // Skip any temporary bindings; they're implicit. 1617 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1618 SubExpr = Binder->getSubExpr(); 1619 1620 // Conversions by constructor and conversion functions have a 1621 // subexpression describing the call; strip it off. 1622 if (E->getCastKind() == CK_ConstructorConversion) 1623 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1624 else if (E->getCastKind() == CK_UserDefinedConversion) { 1625 assert((isa<CXXMemberCallExpr>(SubExpr) || 1626 isa<BlockExpr>(SubExpr)) && 1627 "Unexpected SubExpr for CK_UserDefinedConversion."); 1628 if (isa<CXXMemberCallExpr>(SubExpr)) 1629 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1630 } 1631 1632 // If the subexpression we're left with is an implicit cast, look 1633 // through that, too. 1634 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1635 1636 return SubExpr; 1637 } 1638 1639 CXXBaseSpecifier **CastExpr::path_buffer() { 1640 switch (getStmtClass()) { 1641 #define ABSTRACT_STMT(x) 1642 #define CASTEXPR(Type, Base) \ 1643 case Stmt::Type##Class: \ 1644 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1645 #define STMT(Type, Base) 1646 #include "clang/AST/StmtNodes.inc" 1647 default: 1648 llvm_unreachable("non-cast expressions not possible here"); 1649 } 1650 } 1651 1652 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1653 CastKind Kind, Expr *Operand, 1654 const CXXCastPath *BasePath, 1655 ExprValueKind VK) { 1656 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1657 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1658 ImplicitCastExpr *E = 1659 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1660 if (PathSize) 1661 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1662 E->getTrailingObjects<CXXBaseSpecifier *>()); 1663 return E; 1664 } 1665 1666 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1667 unsigned PathSize) { 1668 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1669 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1670 } 1671 1672 1673 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1674 ExprValueKind VK, CastKind K, Expr *Op, 1675 const CXXCastPath *BasePath, 1676 TypeSourceInfo *WrittenTy, 1677 SourceLocation L, SourceLocation R) { 1678 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1679 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1680 CStyleCastExpr *E = 1681 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1682 if (PathSize) 1683 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1684 E->getTrailingObjects<CXXBaseSpecifier *>()); 1685 return E; 1686 } 1687 1688 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1689 unsigned PathSize) { 1690 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1691 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1692 } 1693 1694 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1695 /// corresponds to, e.g. "<<=". 1696 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1697 switch (Op) { 1698 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 1699 #include "clang/AST/OperationKinds.def" 1700 } 1701 llvm_unreachable("Invalid OpCode!"); 1702 } 1703 1704 BinaryOperatorKind 1705 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1706 switch (OO) { 1707 default: llvm_unreachable("Not an overloadable binary operator"); 1708 case OO_Plus: return BO_Add; 1709 case OO_Minus: return BO_Sub; 1710 case OO_Star: return BO_Mul; 1711 case OO_Slash: return BO_Div; 1712 case OO_Percent: return BO_Rem; 1713 case OO_Caret: return BO_Xor; 1714 case OO_Amp: return BO_And; 1715 case OO_Pipe: return BO_Or; 1716 case OO_Equal: return BO_Assign; 1717 case OO_Less: return BO_LT; 1718 case OO_Greater: return BO_GT; 1719 case OO_PlusEqual: return BO_AddAssign; 1720 case OO_MinusEqual: return BO_SubAssign; 1721 case OO_StarEqual: return BO_MulAssign; 1722 case OO_SlashEqual: return BO_DivAssign; 1723 case OO_PercentEqual: return BO_RemAssign; 1724 case OO_CaretEqual: return BO_XorAssign; 1725 case OO_AmpEqual: return BO_AndAssign; 1726 case OO_PipeEqual: return BO_OrAssign; 1727 case OO_LessLess: return BO_Shl; 1728 case OO_GreaterGreater: return BO_Shr; 1729 case OO_LessLessEqual: return BO_ShlAssign; 1730 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1731 case OO_EqualEqual: return BO_EQ; 1732 case OO_ExclaimEqual: return BO_NE; 1733 case OO_LessEqual: return BO_LE; 1734 case OO_GreaterEqual: return BO_GE; 1735 case OO_AmpAmp: return BO_LAnd; 1736 case OO_PipePipe: return BO_LOr; 1737 case OO_Comma: return BO_Comma; 1738 case OO_ArrowStar: return BO_PtrMemI; 1739 } 1740 } 1741 1742 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1743 static const OverloadedOperatorKind OverOps[] = { 1744 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1745 OO_Star, OO_Slash, OO_Percent, 1746 OO_Plus, OO_Minus, 1747 OO_LessLess, OO_GreaterGreater, 1748 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1749 OO_EqualEqual, OO_ExclaimEqual, 1750 OO_Amp, 1751 OO_Caret, 1752 OO_Pipe, 1753 OO_AmpAmp, 1754 OO_PipePipe, 1755 OO_Equal, OO_StarEqual, 1756 OO_SlashEqual, OO_PercentEqual, 1757 OO_PlusEqual, OO_MinusEqual, 1758 OO_LessLessEqual, OO_GreaterGreaterEqual, 1759 OO_AmpEqual, OO_CaretEqual, 1760 OO_PipeEqual, 1761 OO_Comma 1762 }; 1763 return OverOps[Opc]; 1764 } 1765 1766 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 1767 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 1768 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1769 false, false), 1770 InitExprs(C, initExprs.size()), 1771 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 1772 { 1773 sawArrayRangeDesignator(false); 1774 for (unsigned I = 0; I != initExprs.size(); ++I) { 1775 if (initExprs[I]->isTypeDependent()) 1776 ExprBits.TypeDependent = true; 1777 if (initExprs[I]->isValueDependent()) 1778 ExprBits.ValueDependent = true; 1779 if (initExprs[I]->isInstantiationDependent()) 1780 ExprBits.InstantiationDependent = true; 1781 if (initExprs[I]->containsUnexpandedParameterPack()) 1782 ExprBits.ContainsUnexpandedParameterPack = true; 1783 } 1784 1785 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 1786 } 1787 1788 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 1789 if (NumInits > InitExprs.size()) 1790 InitExprs.reserve(C, NumInits); 1791 } 1792 1793 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 1794 InitExprs.resize(C, NumInits, nullptr); 1795 } 1796 1797 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 1798 if (Init >= InitExprs.size()) { 1799 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 1800 setInit(Init, expr); 1801 return nullptr; 1802 } 1803 1804 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1805 setInit(Init, expr); 1806 return Result; 1807 } 1808 1809 void InitListExpr::setArrayFiller(Expr *filler) { 1810 assert(!hasArrayFiller() && "Filler already set!"); 1811 ArrayFillerOrUnionFieldInit = filler; 1812 // Fill out any "holes" in the array due to designated initializers. 1813 Expr **inits = getInits(); 1814 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1815 if (inits[i] == nullptr) 1816 inits[i] = filler; 1817 } 1818 1819 bool InitListExpr::isStringLiteralInit() const { 1820 if (getNumInits() != 1) 1821 return false; 1822 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 1823 if (!AT || !AT->getElementType()->isIntegerType()) 1824 return false; 1825 // It is possible for getInit() to return null. 1826 const Expr *Init = getInit(0); 1827 if (!Init) 1828 return false; 1829 Init = Init->IgnoreParens(); 1830 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 1831 } 1832 1833 SourceLocation InitListExpr::getLocStart() const { 1834 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1835 return SyntacticForm->getLocStart(); 1836 SourceLocation Beg = LBraceLoc; 1837 if (Beg.isInvalid()) { 1838 // Find the first non-null initializer. 1839 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1840 E = InitExprs.end(); 1841 I != E; ++I) { 1842 if (Stmt *S = *I) { 1843 Beg = S->getLocStart(); 1844 break; 1845 } 1846 } 1847 } 1848 return Beg; 1849 } 1850 1851 SourceLocation InitListExpr::getLocEnd() const { 1852 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1853 return SyntacticForm->getLocEnd(); 1854 SourceLocation End = RBraceLoc; 1855 if (End.isInvalid()) { 1856 // Find the first non-null initializer from the end. 1857 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1858 E = InitExprs.rend(); 1859 I != E; ++I) { 1860 if (Stmt *S = *I) { 1861 End = S->getLocEnd(); 1862 break; 1863 } 1864 } 1865 } 1866 return End; 1867 } 1868 1869 /// getFunctionType - Return the underlying function type for this block. 1870 /// 1871 const FunctionProtoType *BlockExpr::getFunctionType() const { 1872 // The block pointer is never sugared, but the function type might be. 1873 return cast<BlockPointerType>(getType()) 1874 ->getPointeeType()->castAs<FunctionProtoType>(); 1875 } 1876 1877 SourceLocation BlockExpr::getCaretLocation() const { 1878 return TheBlock->getCaretLocation(); 1879 } 1880 const Stmt *BlockExpr::getBody() const { 1881 return TheBlock->getBody(); 1882 } 1883 Stmt *BlockExpr::getBody() { 1884 return TheBlock->getBody(); 1885 } 1886 1887 1888 //===----------------------------------------------------------------------===// 1889 // Generic Expression Routines 1890 //===----------------------------------------------------------------------===// 1891 1892 /// isUnusedResultAWarning - Return true if this immediate expression should 1893 /// be warned about if the result is unused. If so, fill in Loc and Ranges 1894 /// with location to warn on and the source range[s] to report with the 1895 /// warning. 1896 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 1897 SourceRange &R1, SourceRange &R2, 1898 ASTContext &Ctx) const { 1899 // Don't warn if the expr is type dependent. The type could end up 1900 // instantiating to void. 1901 if (isTypeDependent()) 1902 return false; 1903 1904 switch (getStmtClass()) { 1905 default: 1906 if (getType()->isVoidType()) 1907 return false; 1908 WarnE = this; 1909 Loc = getExprLoc(); 1910 R1 = getSourceRange(); 1911 return true; 1912 case ParenExprClass: 1913 return cast<ParenExpr>(this)->getSubExpr()-> 1914 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1915 case GenericSelectionExprClass: 1916 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 1917 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1918 case ChooseExprClass: 1919 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 1920 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1921 case UnaryOperatorClass: { 1922 const UnaryOperator *UO = cast<UnaryOperator>(this); 1923 1924 switch (UO->getOpcode()) { 1925 case UO_Plus: 1926 case UO_Minus: 1927 case UO_AddrOf: 1928 case UO_Not: 1929 case UO_LNot: 1930 case UO_Deref: 1931 break; 1932 case UO_Coawait: 1933 // This is just the 'operator co_await' call inside the guts of a 1934 // dependent co_await call. 1935 case UO_PostInc: 1936 case UO_PostDec: 1937 case UO_PreInc: 1938 case UO_PreDec: // ++/-- 1939 return false; // Not a warning. 1940 case UO_Real: 1941 case UO_Imag: 1942 // accessing a piece of a volatile complex is a side-effect. 1943 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 1944 .isVolatileQualified()) 1945 return false; 1946 break; 1947 case UO_Extension: 1948 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1949 } 1950 WarnE = this; 1951 Loc = UO->getOperatorLoc(); 1952 R1 = UO->getSubExpr()->getSourceRange(); 1953 return true; 1954 } 1955 case BinaryOperatorClass: { 1956 const BinaryOperator *BO = cast<BinaryOperator>(this); 1957 switch (BO->getOpcode()) { 1958 default: 1959 break; 1960 // Consider the RHS of comma for side effects. LHS was checked by 1961 // Sema::CheckCommaOperands. 1962 case BO_Comma: 1963 // ((foo = <blah>), 0) is an idiom for hiding the result (and 1964 // lvalue-ness) of an assignment written in a macro. 1965 if (IntegerLiteral *IE = 1966 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 1967 if (IE->getValue() == 0) 1968 return false; 1969 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1970 // Consider '||', '&&' to have side effects if the LHS or RHS does. 1971 case BO_LAnd: 1972 case BO_LOr: 1973 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 1974 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 1975 return false; 1976 break; 1977 } 1978 if (BO->isAssignmentOp()) 1979 return false; 1980 WarnE = this; 1981 Loc = BO->getOperatorLoc(); 1982 R1 = BO->getLHS()->getSourceRange(); 1983 R2 = BO->getRHS()->getSourceRange(); 1984 return true; 1985 } 1986 case CompoundAssignOperatorClass: 1987 case VAArgExprClass: 1988 case AtomicExprClass: 1989 return false; 1990 1991 case ConditionalOperatorClass: { 1992 // If only one of the LHS or RHS is a warning, the operator might 1993 // be being used for control flow. Only warn if both the LHS and 1994 // RHS are warnings. 1995 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 1996 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 1997 return false; 1998 if (!Exp->getLHS()) 1999 return true; 2000 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2001 } 2002 2003 case MemberExprClass: 2004 WarnE = this; 2005 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2006 R1 = SourceRange(Loc, Loc); 2007 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2008 return true; 2009 2010 case ArraySubscriptExprClass: 2011 WarnE = this; 2012 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2013 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2014 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2015 return true; 2016 2017 case CXXOperatorCallExprClass: { 2018 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2019 // overloads as there is no reasonable way to define these such that they 2020 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2021 // warning: operators == and != are commonly typo'ed, and so warning on them 2022 // provides additional value as well. If this list is updated, 2023 // DiagnoseUnusedComparison should be as well. 2024 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2025 switch (Op->getOperator()) { 2026 default: 2027 break; 2028 case OO_EqualEqual: 2029 case OO_ExclaimEqual: 2030 case OO_Less: 2031 case OO_Greater: 2032 case OO_GreaterEqual: 2033 case OO_LessEqual: 2034 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2035 Op->getCallReturnType(Ctx)->isVoidType()) 2036 break; 2037 WarnE = this; 2038 Loc = Op->getOperatorLoc(); 2039 R1 = Op->getSourceRange(); 2040 return true; 2041 } 2042 2043 // Fallthrough for generic call handling. 2044 } 2045 case CallExprClass: 2046 case CXXMemberCallExprClass: 2047 case UserDefinedLiteralClass: { 2048 // If this is a direct call, get the callee. 2049 const CallExpr *CE = cast<CallExpr>(this); 2050 if (const Decl *FD = CE->getCalleeDecl()) { 2051 const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD); 2052 bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr() 2053 : FD->hasAttr<WarnUnusedResultAttr>(); 2054 2055 // If the callee has attribute pure, const, or warn_unused_result, warn 2056 // about it. void foo() { strlen("bar"); } should warn. 2057 // 2058 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2059 // updated to match for QoI. 2060 if (HasWarnUnusedResultAttr || 2061 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2062 WarnE = this; 2063 Loc = CE->getCallee()->getLocStart(); 2064 R1 = CE->getCallee()->getSourceRange(); 2065 2066 if (unsigned NumArgs = CE->getNumArgs()) 2067 R2 = SourceRange(CE->getArg(0)->getLocStart(), 2068 CE->getArg(NumArgs-1)->getLocEnd()); 2069 return true; 2070 } 2071 } 2072 return false; 2073 } 2074 2075 // If we don't know precisely what we're looking at, let's not warn. 2076 case UnresolvedLookupExprClass: 2077 case CXXUnresolvedConstructExprClass: 2078 return false; 2079 2080 case CXXTemporaryObjectExprClass: 2081 case CXXConstructExprClass: { 2082 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2083 if (Type->hasAttr<WarnUnusedAttr>()) { 2084 WarnE = this; 2085 Loc = getLocStart(); 2086 R1 = getSourceRange(); 2087 return true; 2088 } 2089 } 2090 return false; 2091 } 2092 2093 case ObjCMessageExprClass: { 2094 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2095 if (Ctx.getLangOpts().ObjCAutoRefCount && 2096 ME->isInstanceMessage() && 2097 !ME->getType()->isVoidType() && 2098 ME->getMethodFamily() == OMF_init) { 2099 WarnE = this; 2100 Loc = getExprLoc(); 2101 R1 = ME->getSourceRange(); 2102 return true; 2103 } 2104 2105 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2106 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2107 WarnE = this; 2108 Loc = getExprLoc(); 2109 return true; 2110 } 2111 2112 return false; 2113 } 2114 2115 case ObjCPropertyRefExprClass: 2116 WarnE = this; 2117 Loc = getExprLoc(); 2118 R1 = getSourceRange(); 2119 return true; 2120 2121 case PseudoObjectExprClass: { 2122 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2123 2124 // Only complain about things that have the form of a getter. 2125 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2126 isa<BinaryOperator>(PO->getSyntacticForm())) 2127 return false; 2128 2129 WarnE = this; 2130 Loc = getExprLoc(); 2131 R1 = getSourceRange(); 2132 return true; 2133 } 2134 2135 case StmtExprClass: { 2136 // Statement exprs don't logically have side effects themselves, but are 2137 // sometimes used in macros in ways that give them a type that is unused. 2138 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2139 // however, if the result of the stmt expr is dead, we don't want to emit a 2140 // warning. 2141 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2142 if (!CS->body_empty()) { 2143 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2144 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2145 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2146 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2147 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2148 } 2149 2150 if (getType()->isVoidType()) 2151 return false; 2152 WarnE = this; 2153 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2154 R1 = getSourceRange(); 2155 return true; 2156 } 2157 case CXXFunctionalCastExprClass: 2158 case CStyleCastExprClass: { 2159 // Ignore an explicit cast to void unless the operand is a non-trivial 2160 // volatile lvalue. 2161 const CastExpr *CE = cast<CastExpr>(this); 2162 if (CE->getCastKind() == CK_ToVoid) { 2163 if (CE->getSubExpr()->isGLValue() && 2164 CE->getSubExpr()->getType().isVolatileQualified()) { 2165 const DeclRefExpr *DRE = 2166 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2167 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2168 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) { 2169 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2170 R1, R2, Ctx); 2171 } 2172 } 2173 return false; 2174 } 2175 2176 // If this is a cast to a constructor conversion, check the operand. 2177 // Otherwise, the result of the cast is unused. 2178 if (CE->getCastKind() == CK_ConstructorConversion) 2179 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2180 2181 WarnE = this; 2182 if (const CXXFunctionalCastExpr *CXXCE = 2183 dyn_cast<CXXFunctionalCastExpr>(this)) { 2184 Loc = CXXCE->getLocStart(); 2185 R1 = CXXCE->getSubExpr()->getSourceRange(); 2186 } else { 2187 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2188 Loc = CStyleCE->getLParenLoc(); 2189 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2190 } 2191 return true; 2192 } 2193 case ImplicitCastExprClass: { 2194 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2195 2196 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2197 if (ICE->getCastKind() == CK_LValueToRValue && 2198 ICE->getSubExpr()->getType().isVolatileQualified()) 2199 return false; 2200 2201 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2202 } 2203 case CXXDefaultArgExprClass: 2204 return (cast<CXXDefaultArgExpr>(this) 2205 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2206 case CXXDefaultInitExprClass: 2207 return (cast<CXXDefaultInitExpr>(this) 2208 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2209 2210 case CXXNewExprClass: 2211 // FIXME: In theory, there might be new expressions that don't have side 2212 // effects (e.g. a placement new with an uninitialized POD). 2213 case CXXDeleteExprClass: 2214 return false; 2215 case CXXBindTemporaryExprClass: 2216 return (cast<CXXBindTemporaryExpr>(this) 2217 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2218 case ExprWithCleanupsClass: 2219 return (cast<ExprWithCleanups>(this) 2220 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2221 } 2222 } 2223 2224 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2225 /// returns true, if it is; false otherwise. 2226 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2227 const Expr *E = IgnoreParens(); 2228 switch (E->getStmtClass()) { 2229 default: 2230 return false; 2231 case ObjCIvarRefExprClass: 2232 return true; 2233 case Expr::UnaryOperatorClass: 2234 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2235 case ImplicitCastExprClass: 2236 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2237 case MaterializeTemporaryExprClass: 2238 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 2239 ->isOBJCGCCandidate(Ctx); 2240 case CStyleCastExprClass: 2241 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2242 case DeclRefExprClass: { 2243 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2244 2245 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2246 if (VD->hasGlobalStorage()) 2247 return true; 2248 QualType T = VD->getType(); 2249 // dereferencing to a pointer is always a gc'able candidate, 2250 // unless it is __weak. 2251 return T->isPointerType() && 2252 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2253 } 2254 return false; 2255 } 2256 case MemberExprClass: { 2257 const MemberExpr *M = cast<MemberExpr>(E); 2258 return M->getBase()->isOBJCGCCandidate(Ctx); 2259 } 2260 case ArraySubscriptExprClass: 2261 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2262 } 2263 } 2264 2265 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2266 if (isTypeDependent()) 2267 return false; 2268 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2269 } 2270 2271 QualType Expr::findBoundMemberType(const Expr *expr) { 2272 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2273 2274 // Bound member expressions are always one of these possibilities: 2275 // x->m x.m x->*y x.*y 2276 // (possibly parenthesized) 2277 2278 expr = expr->IgnoreParens(); 2279 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2280 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2281 return mem->getMemberDecl()->getType(); 2282 } 2283 2284 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2285 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2286 ->getPointeeType(); 2287 assert(type->isFunctionType()); 2288 return type; 2289 } 2290 2291 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2292 return QualType(); 2293 } 2294 2295 Expr* Expr::IgnoreParens() { 2296 Expr* E = this; 2297 while (true) { 2298 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2299 E = P->getSubExpr(); 2300 continue; 2301 } 2302 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2303 if (P->getOpcode() == UO_Extension) { 2304 E = P->getSubExpr(); 2305 continue; 2306 } 2307 } 2308 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2309 if (!P->isResultDependent()) { 2310 E = P->getResultExpr(); 2311 continue; 2312 } 2313 } 2314 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { 2315 if (!P->isConditionDependent()) { 2316 E = P->getChosenSubExpr(); 2317 continue; 2318 } 2319 } 2320 return E; 2321 } 2322 } 2323 2324 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2325 /// or CastExprs or ImplicitCastExprs, returning their operand. 2326 Expr *Expr::IgnoreParenCasts() { 2327 Expr *E = this; 2328 while (true) { 2329 E = E->IgnoreParens(); 2330 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2331 E = P->getSubExpr(); 2332 continue; 2333 } 2334 if (MaterializeTemporaryExpr *Materialize 2335 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2336 E = Materialize->GetTemporaryExpr(); 2337 continue; 2338 } 2339 if (SubstNonTypeTemplateParmExpr *NTTP 2340 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2341 E = NTTP->getReplacement(); 2342 continue; 2343 } 2344 return E; 2345 } 2346 } 2347 2348 Expr *Expr::IgnoreCasts() { 2349 Expr *E = this; 2350 while (true) { 2351 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2352 E = P->getSubExpr(); 2353 continue; 2354 } 2355 if (MaterializeTemporaryExpr *Materialize 2356 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2357 E = Materialize->GetTemporaryExpr(); 2358 continue; 2359 } 2360 if (SubstNonTypeTemplateParmExpr *NTTP 2361 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2362 E = NTTP->getReplacement(); 2363 continue; 2364 } 2365 return E; 2366 } 2367 } 2368 2369 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2370 /// casts. This is intended purely as a temporary workaround for code 2371 /// that hasn't yet been rewritten to do the right thing about those 2372 /// casts, and may disappear along with the last internal use. 2373 Expr *Expr::IgnoreParenLValueCasts() { 2374 Expr *E = this; 2375 while (true) { 2376 E = E->IgnoreParens(); 2377 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2378 if (P->getCastKind() == CK_LValueToRValue) { 2379 E = P->getSubExpr(); 2380 continue; 2381 } 2382 } else if (MaterializeTemporaryExpr *Materialize 2383 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2384 E = Materialize->GetTemporaryExpr(); 2385 continue; 2386 } else if (SubstNonTypeTemplateParmExpr *NTTP 2387 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2388 E = NTTP->getReplacement(); 2389 continue; 2390 } 2391 break; 2392 } 2393 return E; 2394 } 2395 2396 Expr *Expr::ignoreParenBaseCasts() { 2397 Expr *E = this; 2398 while (true) { 2399 E = E->IgnoreParens(); 2400 if (CastExpr *CE = dyn_cast<CastExpr>(E)) { 2401 if (CE->getCastKind() == CK_DerivedToBase || 2402 CE->getCastKind() == CK_UncheckedDerivedToBase || 2403 CE->getCastKind() == CK_NoOp) { 2404 E = CE->getSubExpr(); 2405 continue; 2406 } 2407 } 2408 2409 return E; 2410 } 2411 } 2412 2413 Expr *Expr::IgnoreParenImpCasts() { 2414 Expr *E = this; 2415 while (true) { 2416 E = E->IgnoreParens(); 2417 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2418 E = P->getSubExpr(); 2419 continue; 2420 } 2421 if (MaterializeTemporaryExpr *Materialize 2422 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2423 E = Materialize->GetTemporaryExpr(); 2424 continue; 2425 } 2426 if (SubstNonTypeTemplateParmExpr *NTTP 2427 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2428 E = NTTP->getReplacement(); 2429 continue; 2430 } 2431 return E; 2432 } 2433 } 2434 2435 Expr *Expr::IgnoreConversionOperator() { 2436 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2437 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2438 return MCE->getImplicitObjectArgument(); 2439 } 2440 return this; 2441 } 2442 2443 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2444 /// value (including ptr->int casts of the same size). Strip off any 2445 /// ParenExpr or CastExprs, returning their operand. 2446 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2447 Expr *E = this; 2448 while (true) { 2449 E = E->IgnoreParens(); 2450 2451 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2452 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2453 // ptr<->int casts of the same width. We also ignore all identity casts. 2454 Expr *SE = P->getSubExpr(); 2455 2456 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2457 E = SE; 2458 continue; 2459 } 2460 2461 if ((E->getType()->isPointerType() || 2462 E->getType()->isIntegralType(Ctx)) && 2463 (SE->getType()->isPointerType() || 2464 SE->getType()->isIntegralType(Ctx)) && 2465 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2466 E = SE; 2467 continue; 2468 } 2469 } 2470 2471 if (SubstNonTypeTemplateParmExpr *NTTP 2472 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2473 E = NTTP->getReplacement(); 2474 continue; 2475 } 2476 2477 return E; 2478 } 2479 } 2480 2481 bool Expr::isDefaultArgument() const { 2482 const Expr *E = this; 2483 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2484 E = M->GetTemporaryExpr(); 2485 2486 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2487 E = ICE->getSubExprAsWritten(); 2488 2489 return isa<CXXDefaultArgExpr>(E); 2490 } 2491 2492 /// \brief Skip over any no-op casts and any temporary-binding 2493 /// expressions. 2494 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2495 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2496 E = M->GetTemporaryExpr(); 2497 2498 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2499 if (ICE->getCastKind() == CK_NoOp) 2500 E = ICE->getSubExpr(); 2501 else 2502 break; 2503 } 2504 2505 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2506 E = BE->getSubExpr(); 2507 2508 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2509 if (ICE->getCastKind() == CK_NoOp) 2510 E = ICE->getSubExpr(); 2511 else 2512 break; 2513 } 2514 2515 return E->IgnoreParens(); 2516 } 2517 2518 /// isTemporaryObject - Determines if this expression produces a 2519 /// temporary of the given class type. 2520 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2521 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2522 return false; 2523 2524 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2525 2526 // Temporaries are by definition pr-values of class type. 2527 if (!E->Classify(C).isPRValue()) { 2528 // In this context, property reference is a message call and is pr-value. 2529 if (!isa<ObjCPropertyRefExpr>(E)) 2530 return false; 2531 } 2532 2533 // Black-list a few cases which yield pr-values of class type that don't 2534 // refer to temporaries of that type: 2535 2536 // - implicit derived-to-base conversions 2537 if (isa<ImplicitCastExpr>(E)) { 2538 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2539 case CK_DerivedToBase: 2540 case CK_UncheckedDerivedToBase: 2541 return false; 2542 default: 2543 break; 2544 } 2545 } 2546 2547 // - member expressions (all) 2548 if (isa<MemberExpr>(E)) 2549 return false; 2550 2551 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 2552 if (BO->isPtrMemOp()) 2553 return false; 2554 2555 // - opaque values (all) 2556 if (isa<OpaqueValueExpr>(E)) 2557 return false; 2558 2559 return true; 2560 } 2561 2562 bool Expr::isImplicitCXXThis() const { 2563 const Expr *E = this; 2564 2565 // Strip away parentheses and casts we don't care about. 2566 while (true) { 2567 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2568 E = Paren->getSubExpr(); 2569 continue; 2570 } 2571 2572 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2573 if (ICE->getCastKind() == CK_NoOp || 2574 ICE->getCastKind() == CK_LValueToRValue || 2575 ICE->getCastKind() == CK_DerivedToBase || 2576 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2577 E = ICE->getSubExpr(); 2578 continue; 2579 } 2580 } 2581 2582 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2583 if (UnOp->getOpcode() == UO_Extension) { 2584 E = UnOp->getSubExpr(); 2585 continue; 2586 } 2587 } 2588 2589 if (const MaterializeTemporaryExpr *M 2590 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2591 E = M->GetTemporaryExpr(); 2592 continue; 2593 } 2594 2595 break; 2596 } 2597 2598 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2599 return This->isImplicit(); 2600 2601 return false; 2602 } 2603 2604 /// hasAnyTypeDependentArguments - Determines if any of the expressions 2605 /// in Exprs is type-dependent. 2606 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 2607 for (unsigned I = 0; I < Exprs.size(); ++I) 2608 if (Exprs[I]->isTypeDependent()) 2609 return true; 2610 2611 return false; 2612 } 2613 2614 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 2615 const Expr **Culprit) const { 2616 // This function is attempting whether an expression is an initializer 2617 // which can be evaluated at compile-time. It very closely parallels 2618 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 2619 // will lead to unexpected results. Like ConstExprEmitter, it falls back 2620 // to isEvaluatable most of the time. 2621 // 2622 // If we ever capture reference-binding directly in the AST, we can 2623 // kill the second parameter. 2624 2625 if (IsForRef) { 2626 EvalResult Result; 2627 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 2628 return true; 2629 if (Culprit) 2630 *Culprit = this; 2631 return false; 2632 } 2633 2634 switch (getStmtClass()) { 2635 default: break; 2636 case StringLiteralClass: 2637 case ObjCEncodeExprClass: 2638 return true; 2639 case CXXTemporaryObjectExprClass: 2640 case CXXConstructExprClass: { 2641 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2642 2643 if (CE->getConstructor()->isTrivial() && 2644 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 2645 // Trivial default constructor 2646 if (!CE->getNumArgs()) return true; 2647 2648 // Trivial copy constructor 2649 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 2650 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 2651 } 2652 2653 break; 2654 } 2655 case CompoundLiteralExprClass: { 2656 // This handles gcc's extension that allows global initializers like 2657 // "struct x {int x;} x = (struct x) {};". 2658 // FIXME: This accepts other cases it shouldn't! 2659 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2660 return Exp->isConstantInitializer(Ctx, false, Culprit); 2661 } 2662 case DesignatedInitUpdateExprClass: { 2663 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 2664 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 2665 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 2666 } 2667 case InitListExprClass: { 2668 const InitListExpr *ILE = cast<InitListExpr>(this); 2669 if (ILE->getType()->isArrayType()) { 2670 unsigned numInits = ILE->getNumInits(); 2671 for (unsigned i = 0; i < numInits; i++) { 2672 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 2673 return false; 2674 } 2675 return true; 2676 } 2677 2678 if (ILE->getType()->isRecordType()) { 2679 unsigned ElementNo = 0; 2680 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 2681 for (const auto *Field : RD->fields()) { 2682 // If this is a union, skip all the fields that aren't being initialized. 2683 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 2684 continue; 2685 2686 // Don't emit anonymous bitfields, they just affect layout. 2687 if (Field->isUnnamedBitfield()) 2688 continue; 2689 2690 if (ElementNo < ILE->getNumInits()) { 2691 const Expr *Elt = ILE->getInit(ElementNo++); 2692 if (Field->isBitField()) { 2693 // Bitfields have to evaluate to an integer. 2694 llvm::APSInt ResultTmp; 2695 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { 2696 if (Culprit) 2697 *Culprit = Elt; 2698 return false; 2699 } 2700 } else { 2701 bool RefType = Field->getType()->isReferenceType(); 2702 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 2703 return false; 2704 } 2705 } 2706 } 2707 return true; 2708 } 2709 2710 break; 2711 } 2712 case ImplicitValueInitExprClass: 2713 case NoInitExprClass: 2714 return true; 2715 case ParenExprClass: 2716 return cast<ParenExpr>(this)->getSubExpr() 2717 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2718 case GenericSelectionExprClass: 2719 return cast<GenericSelectionExpr>(this)->getResultExpr() 2720 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2721 case ChooseExprClass: 2722 if (cast<ChooseExpr>(this)->isConditionDependent()) { 2723 if (Culprit) 2724 *Culprit = this; 2725 return false; 2726 } 2727 return cast<ChooseExpr>(this)->getChosenSubExpr() 2728 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2729 case UnaryOperatorClass: { 2730 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2731 if (Exp->getOpcode() == UO_Extension) 2732 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2733 break; 2734 } 2735 case CXXFunctionalCastExprClass: 2736 case CXXStaticCastExprClass: 2737 case ImplicitCastExprClass: 2738 case CStyleCastExprClass: 2739 case ObjCBridgedCastExprClass: 2740 case CXXDynamicCastExprClass: 2741 case CXXReinterpretCastExprClass: 2742 case CXXConstCastExprClass: { 2743 const CastExpr *CE = cast<CastExpr>(this); 2744 2745 // Handle misc casts we want to ignore. 2746 if (CE->getCastKind() == CK_NoOp || 2747 CE->getCastKind() == CK_LValueToRValue || 2748 CE->getCastKind() == CK_ToUnion || 2749 CE->getCastKind() == CK_ConstructorConversion || 2750 CE->getCastKind() == CK_NonAtomicToAtomic || 2751 CE->getCastKind() == CK_AtomicToNonAtomic || 2752 CE->getCastKind() == CK_IntToOCLSampler) 2753 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2754 2755 break; 2756 } 2757 case MaterializeTemporaryExprClass: 2758 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2759 ->isConstantInitializer(Ctx, false, Culprit); 2760 2761 case SubstNonTypeTemplateParmExprClass: 2762 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 2763 ->isConstantInitializer(Ctx, false, Culprit); 2764 case CXXDefaultArgExprClass: 2765 return cast<CXXDefaultArgExpr>(this)->getExpr() 2766 ->isConstantInitializer(Ctx, false, Culprit); 2767 case CXXDefaultInitExprClass: 2768 return cast<CXXDefaultInitExpr>(this)->getExpr() 2769 ->isConstantInitializer(Ctx, false, Culprit); 2770 } 2771 // Allow certain forms of UB in constant initializers: signed integer 2772 // overflow and floating-point division by zero. We'll give a warning on 2773 // these, but they're common enough that we have to accept them. 2774 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 2775 return true; 2776 if (Culprit) 2777 *Culprit = this; 2778 return false; 2779 } 2780 2781 namespace { 2782 /// \brief Look for any side effects within a Stmt. 2783 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 2784 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 2785 const bool IncludePossibleEffects; 2786 bool HasSideEffects; 2787 2788 public: 2789 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 2790 : Inherited(Context), 2791 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 2792 2793 bool hasSideEffects() const { return HasSideEffects; } 2794 2795 void VisitExpr(const Expr *E) { 2796 if (!HasSideEffects && 2797 E->HasSideEffects(Context, IncludePossibleEffects)) 2798 HasSideEffects = true; 2799 } 2800 }; 2801 } 2802 2803 bool Expr::HasSideEffects(const ASTContext &Ctx, 2804 bool IncludePossibleEffects) const { 2805 // In circumstances where we care about definite side effects instead of 2806 // potential side effects, we want to ignore expressions that are part of a 2807 // macro expansion as a potential side effect. 2808 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 2809 return false; 2810 2811 if (isInstantiationDependent()) 2812 return IncludePossibleEffects; 2813 2814 switch (getStmtClass()) { 2815 case NoStmtClass: 2816 #define ABSTRACT_STMT(Type) 2817 #define STMT(Type, Base) case Type##Class: 2818 #define EXPR(Type, Base) 2819 #include "clang/AST/StmtNodes.inc" 2820 llvm_unreachable("unexpected Expr kind"); 2821 2822 case DependentScopeDeclRefExprClass: 2823 case CXXUnresolvedConstructExprClass: 2824 case CXXDependentScopeMemberExprClass: 2825 case UnresolvedLookupExprClass: 2826 case UnresolvedMemberExprClass: 2827 case PackExpansionExprClass: 2828 case SubstNonTypeTemplateParmPackExprClass: 2829 case FunctionParmPackExprClass: 2830 case TypoExprClass: 2831 case CXXFoldExprClass: 2832 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 2833 2834 case DeclRefExprClass: 2835 case ObjCIvarRefExprClass: 2836 case PredefinedExprClass: 2837 case IntegerLiteralClass: 2838 case FloatingLiteralClass: 2839 case ImaginaryLiteralClass: 2840 case StringLiteralClass: 2841 case CharacterLiteralClass: 2842 case OffsetOfExprClass: 2843 case ImplicitValueInitExprClass: 2844 case UnaryExprOrTypeTraitExprClass: 2845 case AddrLabelExprClass: 2846 case GNUNullExprClass: 2847 case NoInitExprClass: 2848 case CXXBoolLiteralExprClass: 2849 case CXXNullPtrLiteralExprClass: 2850 case CXXThisExprClass: 2851 case CXXScalarValueInitExprClass: 2852 case TypeTraitExprClass: 2853 case ArrayTypeTraitExprClass: 2854 case ExpressionTraitExprClass: 2855 case CXXNoexceptExprClass: 2856 case SizeOfPackExprClass: 2857 case ObjCStringLiteralClass: 2858 case ObjCEncodeExprClass: 2859 case ObjCBoolLiteralExprClass: 2860 case ObjCAvailabilityCheckExprClass: 2861 case CXXUuidofExprClass: 2862 case OpaqueValueExprClass: 2863 // These never have a side-effect. 2864 return false; 2865 2866 case CallExprClass: 2867 case CXXOperatorCallExprClass: 2868 case CXXMemberCallExprClass: 2869 case CUDAKernelCallExprClass: 2870 case UserDefinedLiteralClass: { 2871 // We don't know a call definitely has side effects, except for calls 2872 // to pure/const functions that definitely don't. 2873 // If the call itself is considered side-effect free, check the operands. 2874 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 2875 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 2876 if (IsPure || !IncludePossibleEffects) 2877 break; 2878 return true; 2879 } 2880 2881 case BlockExprClass: 2882 case CXXBindTemporaryExprClass: 2883 if (!IncludePossibleEffects) 2884 break; 2885 return true; 2886 2887 case MSPropertyRefExprClass: 2888 case MSPropertySubscriptExprClass: 2889 case CompoundAssignOperatorClass: 2890 case VAArgExprClass: 2891 case AtomicExprClass: 2892 case CXXThrowExprClass: 2893 case CXXNewExprClass: 2894 case CXXDeleteExprClass: 2895 case CoawaitExprClass: 2896 case CoyieldExprClass: 2897 // These always have a side-effect. 2898 return true; 2899 2900 case StmtExprClass: { 2901 // StmtExprs have a side-effect if any substatement does. 2902 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 2903 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 2904 return Finder.hasSideEffects(); 2905 } 2906 2907 case ExprWithCleanupsClass: 2908 if (IncludePossibleEffects) 2909 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 2910 return true; 2911 break; 2912 2913 case ParenExprClass: 2914 case ArraySubscriptExprClass: 2915 case OMPArraySectionExprClass: 2916 case MemberExprClass: 2917 case ConditionalOperatorClass: 2918 case BinaryConditionalOperatorClass: 2919 case CompoundLiteralExprClass: 2920 case ExtVectorElementExprClass: 2921 case DesignatedInitExprClass: 2922 case DesignatedInitUpdateExprClass: 2923 case ParenListExprClass: 2924 case CXXPseudoDestructorExprClass: 2925 case CXXStdInitializerListExprClass: 2926 case SubstNonTypeTemplateParmExprClass: 2927 case MaterializeTemporaryExprClass: 2928 case ShuffleVectorExprClass: 2929 case ConvertVectorExprClass: 2930 case AsTypeExprClass: 2931 // These have a side-effect if any subexpression does. 2932 break; 2933 2934 case UnaryOperatorClass: 2935 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 2936 return true; 2937 break; 2938 2939 case BinaryOperatorClass: 2940 if (cast<BinaryOperator>(this)->isAssignmentOp()) 2941 return true; 2942 break; 2943 2944 case InitListExprClass: 2945 // FIXME: The children for an InitListExpr doesn't include the array filler. 2946 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 2947 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 2948 return true; 2949 break; 2950 2951 case GenericSelectionExprClass: 2952 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2953 HasSideEffects(Ctx, IncludePossibleEffects); 2954 2955 case ChooseExprClass: 2956 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 2957 Ctx, IncludePossibleEffects); 2958 2959 case CXXDefaultArgExprClass: 2960 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 2961 Ctx, IncludePossibleEffects); 2962 2963 case CXXDefaultInitExprClass: { 2964 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 2965 if (const Expr *E = FD->getInClassInitializer()) 2966 return E->HasSideEffects(Ctx, IncludePossibleEffects); 2967 // If we've not yet parsed the initializer, assume it has side-effects. 2968 return true; 2969 } 2970 2971 case CXXDynamicCastExprClass: { 2972 // A dynamic_cast expression has side-effects if it can throw. 2973 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 2974 if (DCE->getTypeAsWritten()->isReferenceType() && 2975 DCE->getCastKind() == CK_Dynamic) 2976 return true; 2977 } // Fall through. 2978 case ImplicitCastExprClass: 2979 case CStyleCastExprClass: 2980 case CXXStaticCastExprClass: 2981 case CXXReinterpretCastExprClass: 2982 case CXXConstCastExprClass: 2983 case CXXFunctionalCastExprClass: { 2984 // While volatile reads are side-effecting in both C and C++, we treat them 2985 // as having possible (not definite) side-effects. This allows idiomatic 2986 // code to behave without warning, such as sizeof(*v) for a volatile- 2987 // qualified pointer. 2988 if (!IncludePossibleEffects) 2989 break; 2990 2991 const CastExpr *CE = cast<CastExpr>(this); 2992 if (CE->getCastKind() == CK_LValueToRValue && 2993 CE->getSubExpr()->getType().isVolatileQualified()) 2994 return true; 2995 break; 2996 } 2997 2998 case CXXTypeidExprClass: 2999 // typeid might throw if its subexpression is potentially-evaluated, so has 3000 // side-effects in that case whether or not its subexpression does. 3001 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3002 3003 case CXXConstructExprClass: 3004 case CXXTemporaryObjectExprClass: { 3005 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3006 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3007 return true; 3008 // A trivial constructor does not add any side-effects of its own. Just look 3009 // at its arguments. 3010 break; 3011 } 3012 3013 case CXXInheritedCtorInitExprClass: { 3014 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3015 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3016 return true; 3017 break; 3018 } 3019 3020 case LambdaExprClass: { 3021 const LambdaExpr *LE = cast<LambdaExpr>(this); 3022 for (LambdaExpr::capture_iterator I = LE->capture_begin(), 3023 E = LE->capture_end(); I != E; ++I) 3024 if (I->getCaptureKind() == LCK_ByCopy) 3025 // FIXME: Only has a side-effect if the variable is volatile or if 3026 // the copy would invoke a non-trivial copy constructor. 3027 return true; 3028 return false; 3029 } 3030 3031 case PseudoObjectExprClass: { 3032 // Only look for side-effects in the semantic form, and look past 3033 // OpaqueValueExpr bindings in that form. 3034 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3035 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3036 E = PO->semantics_end(); 3037 I != E; ++I) { 3038 const Expr *Subexpr = *I; 3039 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3040 Subexpr = OVE->getSourceExpr(); 3041 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3042 return true; 3043 } 3044 return false; 3045 } 3046 3047 case ObjCBoxedExprClass: 3048 case ObjCArrayLiteralClass: 3049 case ObjCDictionaryLiteralClass: 3050 case ObjCSelectorExprClass: 3051 case ObjCProtocolExprClass: 3052 case ObjCIsaExprClass: 3053 case ObjCIndirectCopyRestoreExprClass: 3054 case ObjCSubscriptRefExprClass: 3055 case ObjCBridgedCastExprClass: 3056 case ObjCMessageExprClass: 3057 case ObjCPropertyRefExprClass: 3058 // FIXME: Classify these cases better. 3059 if (IncludePossibleEffects) 3060 return true; 3061 break; 3062 } 3063 3064 // Recurse to children. 3065 for (const Stmt *SubStmt : children()) 3066 if (SubStmt && 3067 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3068 return true; 3069 3070 return false; 3071 } 3072 3073 namespace { 3074 /// \brief Look for a call to a non-trivial function within an expression. 3075 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3076 { 3077 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3078 3079 bool NonTrivial; 3080 3081 public: 3082 explicit NonTrivialCallFinder(const ASTContext &Context) 3083 : Inherited(Context), NonTrivial(false) { } 3084 3085 bool hasNonTrivialCall() const { return NonTrivial; } 3086 3087 void VisitCallExpr(const CallExpr *E) { 3088 if (const CXXMethodDecl *Method 3089 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3090 if (Method->isTrivial()) { 3091 // Recurse to children of the call. 3092 Inherited::VisitStmt(E); 3093 return; 3094 } 3095 } 3096 3097 NonTrivial = true; 3098 } 3099 3100 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3101 if (E->getConstructor()->isTrivial()) { 3102 // Recurse to children of the call. 3103 Inherited::VisitStmt(E); 3104 return; 3105 } 3106 3107 NonTrivial = true; 3108 } 3109 3110 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3111 if (E->getTemporary()->getDestructor()->isTrivial()) { 3112 Inherited::VisitStmt(E); 3113 return; 3114 } 3115 3116 NonTrivial = true; 3117 } 3118 }; 3119 } 3120 3121 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3122 NonTrivialCallFinder Finder(Ctx); 3123 Finder.Visit(this); 3124 return Finder.hasNonTrivialCall(); 3125 } 3126 3127 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3128 /// pointer constant or not, as well as the specific kind of constant detected. 3129 /// Null pointer constants can be integer constant expressions with the 3130 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3131 /// (a GNU extension). 3132 Expr::NullPointerConstantKind 3133 Expr::isNullPointerConstant(ASTContext &Ctx, 3134 NullPointerConstantValueDependence NPC) const { 3135 if (isValueDependent() && 3136 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3137 switch (NPC) { 3138 case NPC_NeverValueDependent: 3139 llvm_unreachable("Unexpected value dependent expression!"); 3140 case NPC_ValueDependentIsNull: 3141 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3142 return NPCK_ZeroExpression; 3143 else 3144 return NPCK_NotNull; 3145 3146 case NPC_ValueDependentIsNotNull: 3147 return NPCK_NotNull; 3148 } 3149 } 3150 3151 // Strip off a cast to void*, if it exists. Except in C++. 3152 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3153 if (!Ctx.getLangOpts().CPlusPlus) { 3154 // Check that it is a cast to void*. 3155 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3156 QualType Pointee = PT->getPointeeType(); 3157 Qualifiers Q = Pointee.getQualifiers(); 3158 // In OpenCL v2.0 generic address space acts as a placeholder 3159 // and should be ignored. 3160 bool IsASValid = true; 3161 if (Ctx.getLangOpts().OpenCLVersion >= 200) { 3162 if (Pointee.getAddressSpace() == LangAS::opencl_generic) 3163 Q.removeAddressSpace(); 3164 else 3165 IsASValid = false; 3166 } 3167 3168 if (IsASValid && !Q.hasQualifiers() && 3169 Pointee->isVoidType() && // to void* 3170 CE->getSubExpr()->getType()->isIntegerType()) // from int. 3171 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3172 } 3173 } 3174 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3175 // Ignore the ImplicitCastExpr type entirely. 3176 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3177 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3178 // Accept ((void*)0) as a null pointer constant, as many other 3179 // implementations do. 3180 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3181 } else if (const GenericSelectionExpr *GE = 3182 dyn_cast<GenericSelectionExpr>(this)) { 3183 if (GE->isResultDependent()) 3184 return NPCK_NotNull; 3185 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3186 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3187 if (CE->isConditionDependent()) 3188 return NPCK_NotNull; 3189 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3190 } else if (const CXXDefaultArgExpr *DefaultArg 3191 = dyn_cast<CXXDefaultArgExpr>(this)) { 3192 // See through default argument expressions. 3193 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3194 } else if (const CXXDefaultInitExpr *DefaultInit 3195 = dyn_cast<CXXDefaultInitExpr>(this)) { 3196 // See through default initializer expressions. 3197 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3198 } else if (isa<GNUNullExpr>(this)) { 3199 // The GNU __null extension is always a null pointer constant. 3200 return NPCK_GNUNull; 3201 } else if (const MaterializeTemporaryExpr *M 3202 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3203 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 3204 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3205 if (const Expr *Source = OVE->getSourceExpr()) 3206 return Source->isNullPointerConstant(Ctx, NPC); 3207 } 3208 3209 // C++11 nullptr_t is always a null pointer constant. 3210 if (getType()->isNullPtrType()) 3211 return NPCK_CXX11_nullptr; 3212 3213 if (const RecordType *UT = getType()->getAsUnionType()) 3214 if (!Ctx.getLangOpts().CPlusPlus11 && 3215 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3216 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3217 const Expr *InitExpr = CLE->getInitializer(); 3218 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3219 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3220 } 3221 // This expression must be an integer type. 3222 if (!getType()->isIntegerType() || 3223 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3224 return NPCK_NotNull; 3225 3226 if (Ctx.getLangOpts().CPlusPlus11) { 3227 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3228 // value zero or a prvalue of type std::nullptr_t. 3229 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3230 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3231 if (Lit && !Lit->getValue()) 3232 return NPCK_ZeroLiteral; 3233 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3234 return NPCK_NotNull; 3235 } else { 3236 // If we have an integer constant expression, we need to *evaluate* it and 3237 // test for the value 0. 3238 if (!isIntegerConstantExpr(Ctx)) 3239 return NPCK_NotNull; 3240 } 3241 3242 if (EvaluateKnownConstInt(Ctx) != 0) 3243 return NPCK_NotNull; 3244 3245 if (isa<IntegerLiteral>(this)) 3246 return NPCK_ZeroLiteral; 3247 return NPCK_ZeroExpression; 3248 } 3249 3250 /// \brief If this expression is an l-value for an Objective C 3251 /// property, find the underlying property reference expression. 3252 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3253 const Expr *E = this; 3254 while (true) { 3255 assert((E->getValueKind() == VK_LValue && 3256 E->getObjectKind() == OK_ObjCProperty) && 3257 "expression is not a property reference"); 3258 E = E->IgnoreParenCasts(); 3259 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3260 if (BO->getOpcode() == BO_Comma) { 3261 E = BO->getRHS(); 3262 continue; 3263 } 3264 } 3265 3266 break; 3267 } 3268 3269 return cast<ObjCPropertyRefExpr>(E); 3270 } 3271 3272 bool Expr::isObjCSelfExpr() const { 3273 const Expr *E = IgnoreParenImpCasts(); 3274 3275 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3276 if (!DRE) 3277 return false; 3278 3279 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3280 if (!Param) 3281 return false; 3282 3283 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3284 if (!M) 3285 return false; 3286 3287 return M->getSelfDecl() == Param; 3288 } 3289 3290 FieldDecl *Expr::getSourceBitField() { 3291 Expr *E = this->IgnoreParens(); 3292 3293 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3294 if (ICE->getCastKind() == CK_LValueToRValue || 3295 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3296 E = ICE->getSubExpr()->IgnoreParens(); 3297 else 3298 break; 3299 } 3300 3301 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3302 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3303 if (Field->isBitField()) 3304 return Field; 3305 3306 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) 3307 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl())) 3308 if (Ivar->isBitField()) 3309 return Ivar; 3310 3311 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3312 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3313 if (Field->isBitField()) 3314 return Field; 3315 3316 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3317 if (Expr *E = BD->getBinding()) 3318 return E->getSourceBitField(); 3319 } 3320 3321 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3322 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3323 return BinOp->getLHS()->getSourceBitField(); 3324 3325 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3326 return BinOp->getRHS()->getSourceBitField(); 3327 } 3328 3329 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3330 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3331 return UnOp->getSubExpr()->getSourceBitField(); 3332 3333 return nullptr; 3334 } 3335 3336 bool Expr::refersToVectorElement() const { 3337 // FIXME: Why do we not just look at the ObjectKind here? 3338 const Expr *E = this->IgnoreParens(); 3339 3340 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3341 if (ICE->getValueKind() != VK_RValue && 3342 ICE->getCastKind() == CK_NoOp) 3343 E = ICE->getSubExpr()->IgnoreParens(); 3344 else 3345 break; 3346 } 3347 3348 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3349 return ASE->getBase()->getType()->isVectorType(); 3350 3351 if (isa<ExtVectorElementExpr>(E)) 3352 return true; 3353 3354 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3355 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3356 if (auto *E = BD->getBinding()) 3357 return E->refersToVectorElement(); 3358 3359 return false; 3360 } 3361 3362 bool Expr::refersToGlobalRegisterVar() const { 3363 const Expr *E = this->IgnoreParenImpCasts(); 3364 3365 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3366 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3367 if (VD->getStorageClass() == SC_Register && 3368 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3369 return true; 3370 3371 return false; 3372 } 3373 3374 /// isArrow - Return true if the base expression is a pointer to vector, 3375 /// return false if the base expression is a vector. 3376 bool ExtVectorElementExpr::isArrow() const { 3377 return getBase()->getType()->isPointerType(); 3378 } 3379 3380 unsigned ExtVectorElementExpr::getNumElements() const { 3381 if (const VectorType *VT = getType()->getAs<VectorType>()) 3382 return VT->getNumElements(); 3383 return 1; 3384 } 3385 3386 /// containsDuplicateElements - Return true if any element access is repeated. 3387 bool ExtVectorElementExpr::containsDuplicateElements() const { 3388 // FIXME: Refactor this code to an accessor on the AST node which returns the 3389 // "type" of component access, and share with code below and in Sema. 3390 StringRef Comp = Accessor->getName(); 3391 3392 // Halving swizzles do not contain duplicate elements. 3393 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 3394 return false; 3395 3396 // Advance past s-char prefix on hex swizzles. 3397 if (Comp[0] == 's' || Comp[0] == 'S') 3398 Comp = Comp.substr(1); 3399 3400 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 3401 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 3402 return true; 3403 3404 return false; 3405 } 3406 3407 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 3408 void ExtVectorElementExpr::getEncodedElementAccess( 3409 SmallVectorImpl<uint32_t> &Elts) const { 3410 StringRef Comp = Accessor->getName(); 3411 bool isNumericAccessor = false; 3412 if (Comp[0] == 's' || Comp[0] == 'S') { 3413 Comp = Comp.substr(1); 3414 isNumericAccessor = true; 3415 } 3416 3417 bool isHi = Comp == "hi"; 3418 bool isLo = Comp == "lo"; 3419 bool isEven = Comp == "even"; 3420 bool isOdd = Comp == "odd"; 3421 3422 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 3423 uint64_t Index; 3424 3425 if (isHi) 3426 Index = e + i; 3427 else if (isLo) 3428 Index = i; 3429 else if (isEven) 3430 Index = 2 * i; 3431 else if (isOdd) 3432 Index = 2 * i + 1; 3433 else 3434 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 3435 3436 Elts.push_back(Index); 3437 } 3438 } 3439 3440 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 3441 QualType Type, SourceLocation BLoc, 3442 SourceLocation RP) 3443 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 3444 Type->isDependentType(), Type->isDependentType(), 3445 Type->isInstantiationDependentType(), 3446 Type->containsUnexpandedParameterPack()), 3447 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 3448 { 3449 SubExprs = new (C) Stmt*[args.size()]; 3450 for (unsigned i = 0; i != args.size(); i++) { 3451 if (args[i]->isTypeDependent()) 3452 ExprBits.TypeDependent = true; 3453 if (args[i]->isValueDependent()) 3454 ExprBits.ValueDependent = true; 3455 if (args[i]->isInstantiationDependent()) 3456 ExprBits.InstantiationDependent = true; 3457 if (args[i]->containsUnexpandedParameterPack()) 3458 ExprBits.ContainsUnexpandedParameterPack = true; 3459 3460 SubExprs[i] = args[i]; 3461 } 3462 } 3463 3464 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 3465 if (SubExprs) C.Deallocate(SubExprs); 3466 3467 this->NumExprs = Exprs.size(); 3468 SubExprs = new (C) Stmt*[NumExprs]; 3469 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 3470 } 3471 3472 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3473 SourceLocation GenericLoc, Expr *ControllingExpr, 3474 ArrayRef<TypeSourceInfo*> AssocTypes, 3475 ArrayRef<Expr*> AssocExprs, 3476 SourceLocation DefaultLoc, 3477 SourceLocation RParenLoc, 3478 bool ContainsUnexpandedParameterPack, 3479 unsigned ResultIndex) 3480 : Expr(GenericSelectionExprClass, 3481 AssocExprs[ResultIndex]->getType(), 3482 AssocExprs[ResultIndex]->getValueKind(), 3483 AssocExprs[ResultIndex]->getObjectKind(), 3484 AssocExprs[ResultIndex]->isTypeDependent(), 3485 AssocExprs[ResultIndex]->isValueDependent(), 3486 AssocExprs[ResultIndex]->isInstantiationDependent(), 3487 ContainsUnexpandedParameterPack), 3488 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3489 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3490 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 3491 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3492 SubExprs[CONTROLLING] = ControllingExpr; 3493 assert(AssocTypes.size() == AssocExprs.size()); 3494 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3495 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3496 } 3497 3498 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3499 SourceLocation GenericLoc, Expr *ControllingExpr, 3500 ArrayRef<TypeSourceInfo*> AssocTypes, 3501 ArrayRef<Expr*> AssocExprs, 3502 SourceLocation DefaultLoc, 3503 SourceLocation RParenLoc, 3504 bool ContainsUnexpandedParameterPack) 3505 : Expr(GenericSelectionExprClass, 3506 Context.DependentTy, 3507 VK_RValue, 3508 OK_Ordinary, 3509 /*isTypeDependent=*/true, 3510 /*isValueDependent=*/true, 3511 /*isInstantiationDependent=*/true, 3512 ContainsUnexpandedParameterPack), 3513 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3514 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3515 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), 3516 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3517 SubExprs[CONTROLLING] = ControllingExpr; 3518 assert(AssocTypes.size() == AssocExprs.size()); 3519 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3520 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3521 } 3522 3523 //===----------------------------------------------------------------------===// 3524 // DesignatedInitExpr 3525 //===----------------------------------------------------------------------===// 3526 3527 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3528 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3529 if (Field.NameOrField & 0x01) 3530 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3531 else 3532 return getField()->getIdentifier(); 3533 } 3534 3535 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 3536 llvm::ArrayRef<Designator> Designators, 3537 SourceLocation EqualOrColonLoc, 3538 bool GNUSyntax, 3539 ArrayRef<Expr*> IndexExprs, 3540 Expr *Init) 3541 : Expr(DesignatedInitExprClass, Ty, 3542 Init->getValueKind(), Init->getObjectKind(), 3543 Init->isTypeDependent(), Init->isValueDependent(), 3544 Init->isInstantiationDependent(), 3545 Init->containsUnexpandedParameterPack()), 3546 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3547 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 3548 this->Designators = new (C) Designator[NumDesignators]; 3549 3550 // Record the initializer itself. 3551 child_iterator Child = child_begin(); 3552 *Child++ = Init; 3553 3554 // Copy the designators and their subexpressions, computing 3555 // value-dependence along the way. 3556 unsigned IndexIdx = 0; 3557 for (unsigned I = 0; I != NumDesignators; ++I) { 3558 this->Designators[I] = Designators[I]; 3559 3560 if (this->Designators[I].isArrayDesignator()) { 3561 // Compute type- and value-dependence. 3562 Expr *Index = IndexExprs[IndexIdx]; 3563 if (Index->isTypeDependent() || Index->isValueDependent()) 3564 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3565 if (Index->isInstantiationDependent()) 3566 ExprBits.InstantiationDependent = true; 3567 // Propagate unexpanded parameter packs. 3568 if (Index->containsUnexpandedParameterPack()) 3569 ExprBits.ContainsUnexpandedParameterPack = true; 3570 3571 // Copy the index expressions into permanent storage. 3572 *Child++ = IndexExprs[IndexIdx++]; 3573 } else if (this->Designators[I].isArrayRangeDesignator()) { 3574 // Compute type- and value-dependence. 3575 Expr *Start = IndexExprs[IndexIdx]; 3576 Expr *End = IndexExprs[IndexIdx + 1]; 3577 if (Start->isTypeDependent() || Start->isValueDependent() || 3578 End->isTypeDependent() || End->isValueDependent()) { 3579 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3580 ExprBits.InstantiationDependent = true; 3581 } else if (Start->isInstantiationDependent() || 3582 End->isInstantiationDependent()) { 3583 ExprBits.InstantiationDependent = true; 3584 } 3585 3586 // Propagate unexpanded parameter packs. 3587 if (Start->containsUnexpandedParameterPack() || 3588 End->containsUnexpandedParameterPack()) 3589 ExprBits.ContainsUnexpandedParameterPack = true; 3590 3591 // Copy the start/end expressions into permanent storage. 3592 *Child++ = IndexExprs[IndexIdx++]; 3593 *Child++ = IndexExprs[IndexIdx++]; 3594 } 3595 } 3596 3597 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 3598 } 3599 3600 DesignatedInitExpr * 3601 DesignatedInitExpr::Create(const ASTContext &C, 3602 llvm::ArrayRef<Designator> Designators, 3603 ArrayRef<Expr*> IndexExprs, 3604 SourceLocation ColonOrEqualLoc, 3605 bool UsesColonSyntax, Expr *Init) { 3606 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 3607 llvm::alignOf<DesignatedInitExpr>()); 3608 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 3609 ColonOrEqualLoc, UsesColonSyntax, 3610 IndexExprs, Init); 3611 } 3612 3613 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 3614 unsigned NumIndexExprs) { 3615 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 3616 llvm::alignOf<DesignatedInitExpr>()); 3617 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3618 } 3619 3620 void DesignatedInitExpr::setDesignators(const ASTContext &C, 3621 const Designator *Desigs, 3622 unsigned NumDesigs) { 3623 Designators = new (C) Designator[NumDesigs]; 3624 NumDesignators = NumDesigs; 3625 for (unsigned I = 0; I != NumDesigs; ++I) 3626 Designators[I] = Desigs[I]; 3627 } 3628 3629 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3630 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3631 if (size() == 1) 3632 return DIE->getDesignator(0)->getSourceRange(); 3633 return SourceRange(DIE->getDesignator(0)->getLocStart(), 3634 DIE->getDesignator(size()-1)->getLocEnd()); 3635 } 3636 3637 SourceLocation DesignatedInitExpr::getLocStart() const { 3638 SourceLocation StartLoc; 3639 auto *DIE = const_cast<DesignatedInitExpr *>(this); 3640 Designator &First = *DIE->getDesignator(0); 3641 if (First.isFieldDesignator()) { 3642 if (GNUSyntax) 3643 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3644 else 3645 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3646 } else 3647 StartLoc = 3648 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3649 return StartLoc; 3650 } 3651 3652 SourceLocation DesignatedInitExpr::getLocEnd() const { 3653 return getInit()->getLocEnd(); 3654 } 3655 3656 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 3657 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3658 return getSubExpr(D.ArrayOrRange.Index + 1); 3659 } 3660 3661 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 3662 assert(D.Kind == Designator::ArrayRangeDesignator && 3663 "Requires array range designator"); 3664 return getSubExpr(D.ArrayOrRange.Index + 1); 3665 } 3666 3667 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 3668 assert(D.Kind == Designator::ArrayRangeDesignator && 3669 "Requires array range designator"); 3670 return getSubExpr(D.ArrayOrRange.Index + 2); 3671 } 3672 3673 /// \brief Replaces the designator at index @p Idx with the series 3674 /// of designators in [First, Last). 3675 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 3676 const Designator *First, 3677 const Designator *Last) { 3678 unsigned NumNewDesignators = Last - First; 3679 if (NumNewDesignators == 0) { 3680 std::copy_backward(Designators + Idx + 1, 3681 Designators + NumDesignators, 3682 Designators + Idx); 3683 --NumNewDesignators; 3684 return; 3685 } else if (NumNewDesignators == 1) { 3686 Designators[Idx] = *First; 3687 return; 3688 } 3689 3690 Designator *NewDesignators 3691 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3692 std::copy(Designators, Designators + Idx, NewDesignators); 3693 std::copy(First, Last, NewDesignators + Idx); 3694 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3695 NewDesignators + Idx + NumNewDesignators); 3696 Designators = NewDesignators; 3697 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3698 } 3699 3700 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 3701 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) 3702 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 3703 OK_Ordinary, false, false, false, false) { 3704 BaseAndUpdaterExprs[0] = baseExpr; 3705 3706 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 3707 ILE->setType(baseExpr->getType()); 3708 BaseAndUpdaterExprs[1] = ILE; 3709 } 3710 3711 SourceLocation DesignatedInitUpdateExpr::getLocStart() const { 3712 return getBase()->getLocStart(); 3713 } 3714 3715 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const { 3716 return getBase()->getLocEnd(); 3717 } 3718 3719 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, 3720 ArrayRef<Expr*> exprs, 3721 SourceLocation rparenloc) 3722 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 3723 false, false, false, false), 3724 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3725 Exprs = new (C) Stmt*[exprs.size()]; 3726 for (unsigned i = 0; i != exprs.size(); ++i) { 3727 if (exprs[i]->isTypeDependent()) 3728 ExprBits.TypeDependent = true; 3729 if (exprs[i]->isValueDependent()) 3730 ExprBits.ValueDependent = true; 3731 if (exprs[i]->isInstantiationDependent()) 3732 ExprBits.InstantiationDependent = true; 3733 if (exprs[i]->containsUnexpandedParameterPack()) 3734 ExprBits.ContainsUnexpandedParameterPack = true; 3735 3736 Exprs[i] = exprs[i]; 3737 } 3738 } 3739 3740 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3741 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3742 e = ewc->getSubExpr(); 3743 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3744 e = m->GetTemporaryExpr(); 3745 e = cast<CXXConstructExpr>(e)->getArg(0); 3746 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3747 e = ice->getSubExpr(); 3748 return cast<OpaqueValueExpr>(e); 3749 } 3750 3751 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 3752 EmptyShell sh, 3753 unsigned numSemanticExprs) { 3754 void *buffer = 3755 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 3756 llvm::alignOf<PseudoObjectExpr>()); 3757 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 3758 } 3759 3760 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 3761 : Expr(PseudoObjectExprClass, shell) { 3762 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 3763 } 3764 3765 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 3766 ArrayRef<Expr*> semantics, 3767 unsigned resultIndex) { 3768 assert(syntax && "no syntactic expression!"); 3769 assert(semantics.size() && "no semantic expressions!"); 3770 3771 QualType type; 3772 ExprValueKind VK; 3773 if (resultIndex == NoResult) { 3774 type = C.VoidTy; 3775 VK = VK_RValue; 3776 } else { 3777 assert(resultIndex < semantics.size()); 3778 type = semantics[resultIndex]->getType(); 3779 VK = semantics[resultIndex]->getValueKind(); 3780 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 3781 } 3782 3783 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 3784 llvm::alignOf<PseudoObjectExpr>()); 3785 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 3786 resultIndex); 3787 } 3788 3789 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 3790 Expr *syntax, ArrayRef<Expr*> semantics, 3791 unsigned resultIndex) 3792 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 3793 /*filled in at end of ctor*/ false, false, false, false) { 3794 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 3795 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 3796 3797 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 3798 Expr *E = (i == 0 ? syntax : semantics[i-1]); 3799 getSubExprsBuffer()[i] = E; 3800 3801 if (E->isTypeDependent()) 3802 ExprBits.TypeDependent = true; 3803 if (E->isValueDependent()) 3804 ExprBits.ValueDependent = true; 3805 if (E->isInstantiationDependent()) 3806 ExprBits.InstantiationDependent = true; 3807 if (E->containsUnexpandedParameterPack()) 3808 ExprBits.ContainsUnexpandedParameterPack = true; 3809 3810 if (isa<OpaqueValueExpr>(E)) 3811 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 3812 "opaque-value semantic expressions for pseudo-object " 3813 "operations must have sources"); 3814 } 3815 } 3816 3817 //===----------------------------------------------------------------------===// 3818 // Child Iterators for iterating over subexpressions/substatements 3819 //===----------------------------------------------------------------------===// 3820 3821 // UnaryExprOrTypeTraitExpr 3822 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 3823 // If this is of a type and the type is a VLA type (and not a typedef), the 3824 // size expression of the VLA needs to be treated as an executable expression. 3825 // Why isn't this weirdness documented better in StmtIterator? 3826 if (isArgumentType()) { 3827 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 3828 getArgumentType().getTypePtr())) 3829 return child_range(child_iterator(T), child_iterator()); 3830 return child_range(child_iterator(), child_iterator()); 3831 } 3832 return child_range(&Argument.Ex, &Argument.Ex + 1); 3833 } 3834 3835 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 3836 QualType t, AtomicOp op, SourceLocation RP) 3837 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 3838 false, false, false, false), 3839 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 3840 { 3841 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 3842 for (unsigned i = 0; i != args.size(); i++) { 3843 if (args[i]->isTypeDependent()) 3844 ExprBits.TypeDependent = true; 3845 if (args[i]->isValueDependent()) 3846 ExprBits.ValueDependent = true; 3847 if (args[i]->isInstantiationDependent()) 3848 ExprBits.InstantiationDependent = true; 3849 if (args[i]->containsUnexpandedParameterPack()) 3850 ExprBits.ContainsUnexpandedParameterPack = true; 3851 3852 SubExprs[i] = args[i]; 3853 } 3854 } 3855 3856 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 3857 switch (Op) { 3858 case AO__c11_atomic_init: 3859 case AO__c11_atomic_load: 3860 case AO__atomic_load_n: 3861 return 2; 3862 3863 case AO__c11_atomic_store: 3864 case AO__c11_atomic_exchange: 3865 case AO__atomic_load: 3866 case AO__atomic_store: 3867 case AO__atomic_store_n: 3868 case AO__atomic_exchange_n: 3869 case AO__c11_atomic_fetch_add: 3870 case AO__c11_atomic_fetch_sub: 3871 case AO__c11_atomic_fetch_and: 3872 case AO__c11_atomic_fetch_or: 3873 case AO__c11_atomic_fetch_xor: 3874 case AO__atomic_fetch_add: 3875 case AO__atomic_fetch_sub: 3876 case AO__atomic_fetch_and: 3877 case AO__atomic_fetch_or: 3878 case AO__atomic_fetch_xor: 3879 case AO__atomic_fetch_nand: 3880 case AO__atomic_add_fetch: 3881 case AO__atomic_sub_fetch: 3882 case AO__atomic_and_fetch: 3883 case AO__atomic_or_fetch: 3884 case AO__atomic_xor_fetch: 3885 case AO__atomic_nand_fetch: 3886 return 3; 3887 3888 case AO__atomic_exchange: 3889 return 4; 3890 3891 case AO__c11_atomic_compare_exchange_strong: 3892 case AO__c11_atomic_compare_exchange_weak: 3893 return 5; 3894 3895 case AO__atomic_compare_exchange: 3896 case AO__atomic_compare_exchange_n: 3897 return 6; 3898 } 3899 llvm_unreachable("unknown atomic op"); 3900 } 3901 3902 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 3903 unsigned ArraySectionCount = 0; 3904 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 3905 Base = OASE->getBase(); 3906 ++ArraySectionCount; 3907 } 3908 while (auto *ASE = 3909 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 3910 Base = ASE->getBase(); 3911 ++ArraySectionCount; 3912 } 3913 Base = Base->IgnoreParenImpCasts(); 3914 auto OriginalTy = Base->getType(); 3915 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 3916 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 3917 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 3918 3919 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 3920 if (OriginalTy->isAnyPointerType()) 3921 OriginalTy = OriginalTy->getPointeeType(); 3922 else { 3923 assert (OriginalTy->isArrayType()); 3924 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 3925 } 3926 } 3927 return OriginalTy; 3928 } 3929