1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstring> 39 using namespace clang; 40 41 const Expr *Expr::getBestDynamicClassTypeExpr() const { 42 const Expr *E = this; 43 while (true) { 44 E = E->IgnoreParenBaseCasts(); 45 46 // Follow the RHS of a comma operator. 47 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 48 if (BO->getOpcode() == BO_Comma) { 49 E = BO->getRHS(); 50 continue; 51 } 52 } 53 54 // Step into initializer for materialized temporaries. 55 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 56 E = MTE->getSubExpr(); 57 continue; 58 } 59 60 break; 61 } 62 63 return E; 64 } 65 66 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 67 const Expr *E = getBestDynamicClassTypeExpr(); 68 QualType DerivedType = E->getType(); 69 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 70 DerivedType = PTy->getPointeeType(); 71 72 if (DerivedType->isDependentType()) 73 return nullptr; 74 75 const RecordType *Ty = DerivedType->castAs<RecordType>(); 76 Decl *D = Ty->getDecl(); 77 return cast<CXXRecordDecl>(D); 78 } 79 80 const Expr *Expr::skipRValueSubobjectAdjustments( 81 SmallVectorImpl<const Expr *> &CommaLHSs, 82 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 83 const Expr *E = this; 84 while (true) { 85 E = E->IgnoreParens(); 86 87 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 88 if ((CE->getCastKind() == CK_DerivedToBase || 89 CE->getCastKind() == CK_UncheckedDerivedToBase) && 90 E->getType()->isRecordType()) { 91 E = CE->getSubExpr(); 92 auto *Derived = 93 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 94 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 95 continue; 96 } 97 98 if (CE->getCastKind() == CK_NoOp) { 99 E = CE->getSubExpr(); 100 continue; 101 } 102 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 103 if (!ME->isArrow()) { 104 assert(ME->getBase()->getType()->isRecordType()); 105 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 106 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 107 E = ME->getBase(); 108 Adjustments.push_back(SubobjectAdjustment(Field)); 109 continue; 110 } 111 } 112 } 113 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 114 if (BO->getOpcode() == BO_PtrMemD) { 115 assert(BO->getRHS()->isPRValue()); 116 E = BO->getLHS(); 117 const MemberPointerType *MPT = 118 BO->getRHS()->getType()->getAs<MemberPointerType>(); 119 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 120 continue; 121 } 122 if (BO->getOpcode() == BO_Comma) { 123 CommaLHSs.push_back(BO->getLHS()); 124 E = BO->getRHS(); 125 continue; 126 } 127 } 128 129 // Nothing changed. 130 break; 131 } 132 return E; 133 } 134 135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 136 const Expr *E = IgnoreParens(); 137 138 // If this value has _Bool type, it is obvious 0/1. 139 if (E->getType()->isBooleanType()) return true; 140 // If this is a non-scalar-integer type, we don't care enough to try. 141 if (!E->getType()->isIntegralOrEnumerationType()) return false; 142 143 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 144 switch (UO->getOpcode()) { 145 case UO_Plus: 146 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 147 case UO_LNot: 148 return true; 149 default: 150 return false; 151 } 152 } 153 154 // Only look through implicit casts. If the user writes 155 // '(int) (a && b)' treat it as an arbitrary int. 156 // FIXME: Should we look through any cast expression in !Semantic mode? 157 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 158 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 159 160 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 161 switch (BO->getOpcode()) { 162 default: return false; 163 case BO_LT: // Relational operators. 164 case BO_GT: 165 case BO_LE: 166 case BO_GE: 167 case BO_EQ: // Equality operators. 168 case BO_NE: 169 case BO_LAnd: // AND operator. 170 case BO_LOr: // Logical OR operator. 171 return true; 172 173 case BO_And: // Bitwise AND operator. 174 case BO_Xor: // Bitwise XOR operator. 175 case BO_Or: // Bitwise OR operator. 176 // Handle things like (x==2)|(y==12). 177 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 178 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 179 180 case BO_Comma: 181 case BO_Assign: 182 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 183 } 184 } 185 186 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 187 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 188 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 189 190 if (isa<ObjCBoolLiteralExpr>(E)) 191 return true; 192 193 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 194 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 195 196 if (const FieldDecl *FD = E->getSourceBitField()) 197 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 198 !FD->getBitWidth()->isValueDependent() && 199 FD->getBitWidthValue(FD->getASTContext()) == 1) 200 return true; 201 202 return false; 203 } 204 205 // Amusing macro metaprogramming hack: check whether a class provides 206 // a more specific implementation of getExprLoc(). 207 // 208 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 209 namespace { 210 /// This implementation is used when a class provides a custom 211 /// implementation of getExprLoc. 212 template <class E, class T> 213 SourceLocation getExprLocImpl(const Expr *expr, 214 SourceLocation (T::*v)() const) { 215 return static_cast<const E*>(expr)->getExprLoc(); 216 } 217 218 /// This implementation is used when a class doesn't provide 219 /// a custom implementation of getExprLoc. Overload resolution 220 /// should pick it over the implementation above because it's 221 /// more specialized according to function template partial ordering. 222 template <class E> 223 SourceLocation getExprLocImpl(const Expr *expr, 224 SourceLocation (Expr::*v)() const) { 225 return static_cast<const E *>(expr)->getBeginLoc(); 226 } 227 } 228 229 SourceLocation Expr::getExprLoc() const { 230 switch (getStmtClass()) { 231 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 232 #define ABSTRACT_STMT(type) 233 #define STMT(type, base) \ 234 case Stmt::type##Class: break; 235 #define EXPR(type, base) \ 236 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 237 #include "clang/AST/StmtNodes.inc" 238 } 239 llvm_unreachable("unknown expression kind"); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Primary Expressions. 244 //===----------------------------------------------------------------------===// 245 246 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 247 assert((Kind == ConstantExpr::RSK_APValue || 248 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 249 "Invalid StorageKind Value"); 250 (void)Kind; 251 } 252 253 ConstantExpr::ResultStorageKind 254 ConstantExpr::getStorageKind(const APValue &Value) { 255 switch (Value.getKind()) { 256 case APValue::None: 257 case APValue::Indeterminate: 258 return ConstantExpr::RSK_None; 259 case APValue::Int: 260 if (!Value.getInt().needsCleanup()) 261 return ConstantExpr::RSK_Int64; 262 LLVM_FALLTHROUGH; 263 default: 264 return ConstantExpr::RSK_APValue; 265 } 266 } 267 268 ConstantExpr::ResultStorageKind 269 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 270 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 271 return ConstantExpr::RSK_Int64; 272 return ConstantExpr::RSK_APValue; 273 } 274 275 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 276 bool IsImmediateInvocation) 277 : FullExpr(ConstantExprClass, SubExpr) { 278 ConstantExprBits.ResultKind = StorageKind; 279 ConstantExprBits.APValueKind = APValue::None; 280 ConstantExprBits.IsUnsigned = false; 281 ConstantExprBits.BitWidth = 0; 282 ConstantExprBits.HasCleanup = false; 283 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 284 285 if (StorageKind == ConstantExpr::RSK_APValue) 286 ::new (getTrailingObjects<APValue>()) APValue(); 287 } 288 289 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 290 ResultStorageKind StorageKind, 291 bool IsImmediateInvocation) { 292 assert(!isa<ConstantExpr>(E)); 293 AssertResultStorageKind(StorageKind); 294 295 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 296 StorageKind == ConstantExpr::RSK_APValue, 297 StorageKind == ConstantExpr::RSK_Int64); 298 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 299 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 300 } 301 302 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 303 const APValue &Result) { 304 ResultStorageKind StorageKind = getStorageKind(Result); 305 ConstantExpr *Self = Create(Context, E, StorageKind); 306 Self->SetResult(Result, Context); 307 return Self; 308 } 309 310 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 311 : FullExpr(ConstantExprClass, Empty) { 312 ConstantExprBits.ResultKind = StorageKind; 313 314 if (StorageKind == ConstantExpr::RSK_APValue) 315 ::new (getTrailingObjects<APValue>()) APValue(); 316 } 317 318 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 319 ResultStorageKind StorageKind) { 320 AssertResultStorageKind(StorageKind); 321 322 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 323 StorageKind == ConstantExpr::RSK_APValue, 324 StorageKind == ConstantExpr::RSK_Int64); 325 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 326 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 327 } 328 329 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 330 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 331 "Invalid storage for this value kind"); 332 ConstantExprBits.APValueKind = Value.getKind(); 333 switch (ConstantExprBits.ResultKind) { 334 case RSK_None: 335 return; 336 case RSK_Int64: 337 Int64Result() = *Value.getInt().getRawData(); 338 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 339 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 340 return; 341 case RSK_APValue: 342 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 343 ConstantExprBits.HasCleanup = true; 344 Context.addDestruction(&APValueResult()); 345 } 346 APValueResult() = std::move(Value); 347 return; 348 } 349 llvm_unreachable("Invalid ResultKind Bits"); 350 } 351 352 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 353 switch (ConstantExprBits.ResultKind) { 354 case ConstantExpr::RSK_APValue: 355 return APValueResult().getInt(); 356 case ConstantExpr::RSK_Int64: 357 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 358 ConstantExprBits.IsUnsigned); 359 default: 360 llvm_unreachable("invalid Accessor"); 361 } 362 } 363 364 APValue ConstantExpr::getAPValueResult() const { 365 366 switch (ConstantExprBits.ResultKind) { 367 case ConstantExpr::RSK_APValue: 368 return APValueResult(); 369 case ConstantExpr::RSK_Int64: 370 return APValue( 371 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 372 ConstantExprBits.IsUnsigned)); 373 case ConstantExpr::RSK_None: 374 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 375 return APValue::IndeterminateValue(); 376 return APValue(); 377 } 378 llvm_unreachable("invalid ResultKind"); 379 } 380 381 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 382 bool RefersToEnclosingVariableOrCapture, QualType T, 383 ExprValueKind VK, SourceLocation L, 384 const DeclarationNameLoc &LocInfo, 385 NonOdrUseReason NOUR) 386 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 387 DeclRefExprBits.HasQualifier = false; 388 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 389 DeclRefExprBits.HasFoundDecl = false; 390 DeclRefExprBits.HadMultipleCandidates = false; 391 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 392 RefersToEnclosingVariableOrCapture; 393 DeclRefExprBits.NonOdrUseReason = NOUR; 394 DeclRefExprBits.Loc = L; 395 setDependence(computeDependence(this, Ctx)); 396 } 397 398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 399 NestedNameSpecifierLoc QualifierLoc, 400 SourceLocation TemplateKWLoc, ValueDecl *D, 401 bool RefersToEnclosingVariableOrCapture, 402 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 403 const TemplateArgumentListInfo *TemplateArgs, 404 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 405 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 406 DNLoc(NameInfo.getInfo()) { 407 DeclRefExprBits.Loc = NameInfo.getLoc(); 408 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 409 if (QualifierLoc) 410 new (getTrailingObjects<NestedNameSpecifierLoc>()) 411 NestedNameSpecifierLoc(QualifierLoc); 412 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 413 if (FoundD) 414 *getTrailingObjects<NamedDecl *>() = FoundD; 415 DeclRefExprBits.HasTemplateKWAndArgsInfo 416 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 417 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 418 RefersToEnclosingVariableOrCapture; 419 DeclRefExprBits.NonOdrUseReason = NOUR; 420 if (TemplateArgs) { 421 auto Deps = TemplateArgumentDependence::None; 422 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 423 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 424 Deps); 425 assert(!(Deps & TemplateArgumentDependence::Dependent) && 426 "built a DeclRefExpr with dependent template args"); 427 } else if (TemplateKWLoc.isValid()) { 428 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 429 TemplateKWLoc); 430 } 431 DeclRefExprBits.HadMultipleCandidates = 0; 432 setDependence(computeDependence(this, Ctx)); 433 } 434 435 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 436 NestedNameSpecifierLoc QualifierLoc, 437 SourceLocation TemplateKWLoc, ValueDecl *D, 438 bool RefersToEnclosingVariableOrCapture, 439 SourceLocation NameLoc, QualType T, 440 ExprValueKind VK, NamedDecl *FoundD, 441 const TemplateArgumentListInfo *TemplateArgs, 442 NonOdrUseReason NOUR) { 443 return Create(Context, QualifierLoc, TemplateKWLoc, D, 444 RefersToEnclosingVariableOrCapture, 445 DeclarationNameInfo(D->getDeclName(), NameLoc), 446 T, VK, FoundD, TemplateArgs, NOUR); 447 } 448 449 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 450 NestedNameSpecifierLoc QualifierLoc, 451 SourceLocation TemplateKWLoc, ValueDecl *D, 452 bool RefersToEnclosingVariableOrCapture, 453 const DeclarationNameInfo &NameInfo, 454 QualType T, ExprValueKind VK, 455 NamedDecl *FoundD, 456 const TemplateArgumentListInfo *TemplateArgs, 457 NonOdrUseReason NOUR) { 458 // Filter out cases where the found Decl is the same as the value refenenced. 459 if (D == FoundD) 460 FoundD = nullptr; 461 462 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 463 std::size_t Size = 464 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 465 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 466 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 467 HasTemplateKWAndArgsInfo ? 1 : 0, 468 TemplateArgs ? TemplateArgs->size() : 0); 469 470 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 471 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 472 RefersToEnclosingVariableOrCapture, NameInfo, 473 FoundD, TemplateArgs, T, VK, NOUR); 474 } 475 476 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 477 bool HasQualifier, 478 bool HasFoundDecl, 479 bool HasTemplateKWAndArgsInfo, 480 unsigned NumTemplateArgs) { 481 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 482 std::size_t Size = 483 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 484 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 485 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 486 NumTemplateArgs); 487 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 488 return new (Mem) DeclRefExpr(EmptyShell()); 489 } 490 491 void DeclRefExpr::setDecl(ValueDecl *NewD) { 492 D = NewD; 493 if (getType()->isUndeducedType()) 494 setType(NewD->getType()); 495 setDependence(computeDependence(this, NewD->getASTContext())); 496 } 497 498 SourceLocation DeclRefExpr::getBeginLoc() const { 499 if (hasQualifier()) 500 return getQualifierLoc().getBeginLoc(); 501 return getNameInfo().getBeginLoc(); 502 } 503 SourceLocation DeclRefExpr::getEndLoc() const { 504 if (hasExplicitTemplateArgs()) 505 return getRAngleLoc(); 506 return getNameInfo().getEndLoc(); 507 } 508 509 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 510 SourceLocation LParen, 511 SourceLocation RParen, 512 QualType ResultTy, 513 TypeSourceInfo *TSI) 514 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 515 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 516 setTypeSourceInfo(TSI); 517 setDependence(computeDependence(this)); 518 } 519 520 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 521 QualType ResultTy) 522 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 523 524 SYCLUniqueStableNameExpr * 525 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 526 SourceLocation LParen, SourceLocation RParen, 527 TypeSourceInfo *TSI) { 528 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 529 return new (Ctx) 530 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 531 } 532 533 SYCLUniqueStableNameExpr * 534 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 535 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 536 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 537 } 538 539 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 540 return SYCLUniqueStableNameExpr::ComputeName(Context, 541 getTypeSourceInfo()->getType()); 542 } 543 544 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 545 QualType Ty) { 546 auto MangleCallback = [](ASTContext &Ctx, 547 const NamedDecl *ND) -> llvm::Optional<unsigned> { 548 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 549 return RD->getDeviceLambdaManglingNumber(); 550 return llvm::None; 551 }; 552 553 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 554 Context, Context.getDiagnostics(), MangleCallback)}; 555 556 std::string Buffer; 557 Buffer.reserve(128); 558 llvm::raw_string_ostream Out(Buffer); 559 Ctx->mangleTypeName(Ty, Out); 560 561 return Out.str(); 562 } 563 564 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 565 StringLiteral *SL) 566 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 567 PredefinedExprBits.Kind = IK; 568 assert((getIdentKind() == IK) && 569 "IdentKind do not fit in PredefinedExprBitfields!"); 570 bool HasFunctionName = SL != nullptr; 571 PredefinedExprBits.HasFunctionName = HasFunctionName; 572 PredefinedExprBits.Loc = L; 573 if (HasFunctionName) 574 setFunctionName(SL); 575 setDependence(computeDependence(this)); 576 } 577 578 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 579 : Expr(PredefinedExprClass, Empty) { 580 PredefinedExprBits.HasFunctionName = HasFunctionName; 581 } 582 583 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 584 QualType FNTy, IdentKind IK, 585 StringLiteral *SL) { 586 bool HasFunctionName = SL != nullptr; 587 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 588 alignof(PredefinedExpr)); 589 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 590 } 591 592 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 593 bool HasFunctionName) { 594 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 595 alignof(PredefinedExpr)); 596 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 597 } 598 599 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 600 switch (IK) { 601 case Func: 602 return "__func__"; 603 case Function: 604 return "__FUNCTION__"; 605 case FuncDName: 606 return "__FUNCDNAME__"; 607 case LFunction: 608 return "L__FUNCTION__"; 609 case PrettyFunction: 610 return "__PRETTY_FUNCTION__"; 611 case FuncSig: 612 return "__FUNCSIG__"; 613 case LFuncSig: 614 return "L__FUNCSIG__"; 615 case PrettyFunctionNoVirtual: 616 break; 617 } 618 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 619 } 620 621 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 622 // expr" policy instead. 623 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 624 ASTContext &Context = CurrentDecl->getASTContext(); 625 626 if (IK == PredefinedExpr::FuncDName) { 627 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 628 std::unique_ptr<MangleContext> MC; 629 MC.reset(Context.createMangleContext()); 630 631 if (MC->shouldMangleDeclName(ND)) { 632 SmallString<256> Buffer; 633 llvm::raw_svector_ostream Out(Buffer); 634 GlobalDecl GD; 635 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 636 GD = GlobalDecl(CD, Ctor_Base); 637 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 638 GD = GlobalDecl(DD, Dtor_Base); 639 else if (ND->hasAttr<CUDAGlobalAttr>()) 640 GD = GlobalDecl(cast<FunctionDecl>(ND)); 641 else 642 GD = GlobalDecl(ND); 643 MC->mangleName(GD, Out); 644 645 if (!Buffer.empty() && Buffer.front() == '\01') 646 return std::string(Buffer.substr(1)); 647 return std::string(Buffer.str()); 648 } 649 return std::string(ND->getIdentifier()->getName()); 650 } 651 return ""; 652 } 653 if (isa<BlockDecl>(CurrentDecl)) { 654 // For blocks we only emit something if it is enclosed in a function 655 // For top-level block we'd like to include the name of variable, but we 656 // don't have it at this point. 657 auto DC = CurrentDecl->getDeclContext(); 658 if (DC->isFileContext()) 659 return ""; 660 661 SmallString<256> Buffer; 662 llvm::raw_svector_ostream Out(Buffer); 663 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 664 // For nested blocks, propagate up to the parent. 665 Out << ComputeName(IK, DCBlock); 666 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 667 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 668 return std::string(Out.str()); 669 } 670 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 671 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 672 IK != FuncSig && IK != LFuncSig) 673 return FD->getNameAsString(); 674 675 SmallString<256> Name; 676 llvm::raw_svector_ostream Out(Name); 677 678 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 679 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 680 Out << "virtual "; 681 if (MD->isStatic()) 682 Out << "static "; 683 } 684 685 PrintingPolicy Policy(Context.getLangOpts()); 686 std::string Proto; 687 llvm::raw_string_ostream POut(Proto); 688 689 const FunctionDecl *Decl = FD; 690 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 691 Decl = Pattern; 692 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 693 const FunctionProtoType *FT = nullptr; 694 if (FD->hasWrittenPrototype()) 695 FT = dyn_cast<FunctionProtoType>(AFT); 696 697 if (IK == FuncSig || IK == LFuncSig) { 698 switch (AFT->getCallConv()) { 699 case CC_C: POut << "__cdecl "; break; 700 case CC_X86StdCall: POut << "__stdcall "; break; 701 case CC_X86FastCall: POut << "__fastcall "; break; 702 case CC_X86ThisCall: POut << "__thiscall "; break; 703 case CC_X86VectorCall: POut << "__vectorcall "; break; 704 case CC_X86RegCall: POut << "__regcall "; break; 705 // Only bother printing the conventions that MSVC knows about. 706 default: break; 707 } 708 } 709 710 FD->printQualifiedName(POut, Policy); 711 712 POut << "("; 713 if (FT) { 714 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 715 if (i) POut << ", "; 716 POut << Decl->getParamDecl(i)->getType().stream(Policy); 717 } 718 719 if (FT->isVariadic()) { 720 if (FD->getNumParams()) POut << ", "; 721 POut << "..."; 722 } else if ((IK == FuncSig || IK == LFuncSig || 723 !Context.getLangOpts().CPlusPlus) && 724 !Decl->getNumParams()) { 725 POut << "void"; 726 } 727 } 728 POut << ")"; 729 730 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 731 assert(FT && "We must have a written prototype in this case."); 732 if (FT->isConst()) 733 POut << " const"; 734 if (FT->isVolatile()) 735 POut << " volatile"; 736 RefQualifierKind Ref = MD->getRefQualifier(); 737 if (Ref == RQ_LValue) 738 POut << " &"; 739 else if (Ref == RQ_RValue) 740 POut << " &&"; 741 } 742 743 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 744 SpecsTy Specs; 745 const DeclContext *Ctx = FD->getDeclContext(); 746 while (Ctx && isa<NamedDecl>(Ctx)) { 747 const ClassTemplateSpecializationDecl *Spec 748 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 749 if (Spec && !Spec->isExplicitSpecialization()) 750 Specs.push_back(Spec); 751 Ctx = Ctx->getParent(); 752 } 753 754 std::string TemplateParams; 755 llvm::raw_string_ostream TOut(TemplateParams); 756 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 757 I != E; ++I) { 758 const TemplateParameterList *Params 759 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 760 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 761 assert(Params->size() == Args.size()); 762 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 763 StringRef Param = Params->getParam(i)->getName(); 764 if (Param.empty()) continue; 765 TOut << Param << " = "; 766 Args.get(i).print( 767 Policy, TOut, 768 TemplateParameterList::shouldIncludeTypeForArgument(Params, i)); 769 TOut << ", "; 770 } 771 } 772 773 FunctionTemplateSpecializationInfo *FSI 774 = FD->getTemplateSpecializationInfo(); 775 if (FSI && !FSI->isExplicitSpecialization()) { 776 const TemplateParameterList* Params 777 = FSI->getTemplate()->getTemplateParameters(); 778 const TemplateArgumentList* Args = FSI->TemplateArguments; 779 assert(Params->size() == Args->size()); 780 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 781 StringRef Param = Params->getParam(i)->getName(); 782 if (Param.empty()) continue; 783 TOut << Param << " = "; 784 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 785 TOut << ", "; 786 } 787 } 788 789 TOut.flush(); 790 if (!TemplateParams.empty()) { 791 // remove the trailing comma and space 792 TemplateParams.resize(TemplateParams.size() - 2); 793 POut << " [" << TemplateParams << "]"; 794 } 795 796 POut.flush(); 797 798 // Print "auto" for all deduced return types. This includes C++1y return 799 // type deduction and lambdas. For trailing return types resolve the 800 // decltype expression. Otherwise print the real type when this is 801 // not a constructor or destructor. 802 if (isa<CXXMethodDecl>(FD) && 803 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 804 Proto = "auto " + Proto; 805 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 806 FT->getReturnType() 807 ->getAs<DecltypeType>() 808 ->getUnderlyingType() 809 .getAsStringInternal(Proto, Policy); 810 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 811 AFT->getReturnType().getAsStringInternal(Proto, Policy); 812 813 Out << Proto; 814 815 return std::string(Name); 816 } 817 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 818 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 819 // Skip to its enclosing function or method, but not its enclosing 820 // CapturedDecl. 821 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 822 const Decl *D = Decl::castFromDeclContext(DC); 823 return ComputeName(IK, D); 824 } 825 llvm_unreachable("CapturedDecl not inside a function or method"); 826 } 827 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 828 SmallString<256> Name; 829 llvm::raw_svector_ostream Out(Name); 830 Out << (MD->isInstanceMethod() ? '-' : '+'); 831 Out << '['; 832 833 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 834 // a null check to avoid a crash. 835 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 836 Out << *ID; 837 838 if (const ObjCCategoryImplDecl *CID = 839 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 840 Out << '(' << *CID << ')'; 841 842 Out << ' '; 843 MD->getSelector().print(Out); 844 Out << ']'; 845 846 return std::string(Name); 847 } 848 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 849 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 850 return "top level"; 851 } 852 return ""; 853 } 854 855 void APNumericStorage::setIntValue(const ASTContext &C, 856 const llvm::APInt &Val) { 857 if (hasAllocation()) 858 C.Deallocate(pVal); 859 860 BitWidth = Val.getBitWidth(); 861 unsigned NumWords = Val.getNumWords(); 862 const uint64_t* Words = Val.getRawData(); 863 if (NumWords > 1) { 864 pVal = new (C) uint64_t[NumWords]; 865 std::copy(Words, Words + NumWords, pVal); 866 } else if (NumWords == 1) 867 VAL = Words[0]; 868 else 869 VAL = 0; 870 } 871 872 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 873 QualType type, SourceLocation l) 874 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 875 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 876 assert(V.getBitWidth() == C.getIntWidth(type) && 877 "Integer type is not the correct size for constant."); 878 setValue(C, V); 879 setDependence(ExprDependence::None); 880 } 881 882 IntegerLiteral * 883 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 884 QualType type, SourceLocation l) { 885 return new (C) IntegerLiteral(C, V, type, l); 886 } 887 888 IntegerLiteral * 889 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 890 return new (C) IntegerLiteral(Empty); 891 } 892 893 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 894 QualType type, SourceLocation l, 895 unsigned Scale) 896 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 897 Scale(Scale) { 898 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 899 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 900 "Fixed point type is not the correct size for constant."); 901 setValue(C, V); 902 setDependence(ExprDependence::None); 903 } 904 905 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 906 const llvm::APInt &V, 907 QualType type, 908 SourceLocation l, 909 unsigned Scale) { 910 return new (C) FixedPointLiteral(C, V, type, l, Scale); 911 } 912 913 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 914 EmptyShell Empty) { 915 return new (C) FixedPointLiteral(Empty); 916 } 917 918 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 919 // Currently the longest decimal number that can be printed is the max for an 920 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 921 // which is 43 characters. 922 SmallString<64> S; 923 FixedPointValueToString( 924 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 925 return std::string(S.str()); 926 } 927 928 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 929 raw_ostream &OS) { 930 switch (Kind) { 931 case CharacterLiteral::Ascii: 932 break; // no prefix. 933 case CharacterLiteral::Wide: 934 OS << 'L'; 935 break; 936 case CharacterLiteral::UTF8: 937 OS << "u8"; 938 break; 939 case CharacterLiteral::UTF16: 940 OS << 'u'; 941 break; 942 case CharacterLiteral::UTF32: 943 OS << 'U'; 944 break; 945 } 946 947 switch (Val) { 948 case '\\': 949 OS << "'\\\\'"; 950 break; 951 case '\'': 952 OS << "'\\''"; 953 break; 954 case '\a': 955 // TODO: K&R: the meaning of '\\a' is different in traditional C 956 OS << "'\\a'"; 957 break; 958 case '\b': 959 OS << "'\\b'"; 960 break; 961 // Nonstandard escape sequence. 962 /*case '\e': 963 OS << "'\\e'"; 964 break;*/ 965 case '\f': 966 OS << "'\\f'"; 967 break; 968 case '\n': 969 OS << "'\\n'"; 970 break; 971 case '\r': 972 OS << "'\\r'"; 973 break; 974 case '\t': 975 OS << "'\\t'"; 976 break; 977 case '\v': 978 OS << "'\\v'"; 979 break; 980 default: 981 // A character literal might be sign-extended, which 982 // would result in an invalid \U escape sequence. 983 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 984 // are not correctly handled. 985 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 986 Val &= 0xFFu; 987 if (Val < 256 && isPrintable((unsigned char)Val)) 988 OS << "'" << (char)Val << "'"; 989 else if (Val < 256) 990 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 991 else if (Val <= 0xFFFF) 992 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 993 else 994 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 995 } 996 } 997 998 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 999 bool isexact, QualType Type, SourceLocation L) 1000 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1001 setSemantics(V.getSemantics()); 1002 FloatingLiteralBits.IsExact = isexact; 1003 setValue(C, V); 1004 setDependence(ExprDependence::None); 1005 } 1006 1007 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1008 : Expr(FloatingLiteralClass, Empty) { 1009 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1010 FloatingLiteralBits.IsExact = false; 1011 } 1012 1013 FloatingLiteral * 1014 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1015 bool isexact, QualType Type, SourceLocation L) { 1016 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1017 } 1018 1019 FloatingLiteral * 1020 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1021 return new (C) FloatingLiteral(C, Empty); 1022 } 1023 1024 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1025 /// double. Note that this may cause loss of precision, but is useful for 1026 /// debugging dumps, etc. 1027 double FloatingLiteral::getValueAsApproximateDouble() const { 1028 llvm::APFloat V = getValue(); 1029 bool ignored; 1030 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1031 &ignored); 1032 return V.convertToDouble(); 1033 } 1034 1035 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1036 StringKind SK) { 1037 unsigned CharByteWidth = 0; 1038 switch (SK) { 1039 case Ascii: 1040 case UTF8: 1041 CharByteWidth = Target.getCharWidth(); 1042 break; 1043 case Wide: 1044 CharByteWidth = Target.getWCharWidth(); 1045 break; 1046 case UTF16: 1047 CharByteWidth = Target.getChar16Width(); 1048 break; 1049 case UTF32: 1050 CharByteWidth = Target.getChar32Width(); 1051 break; 1052 } 1053 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1054 CharByteWidth /= 8; 1055 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1056 "The only supported character byte widths are 1,2 and 4!"); 1057 return CharByteWidth; 1058 } 1059 1060 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1061 StringKind Kind, bool Pascal, QualType Ty, 1062 const SourceLocation *Loc, 1063 unsigned NumConcatenated) 1064 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1065 assert(Ctx.getAsConstantArrayType(Ty) && 1066 "StringLiteral must be of constant array type!"); 1067 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1068 unsigned ByteLength = Str.size(); 1069 assert((ByteLength % CharByteWidth == 0) && 1070 "The size of the data must be a multiple of CharByteWidth!"); 1071 1072 // Avoid the expensive division. The compiler should be able to figure it 1073 // out by itself. However as of clang 7, even with the appropriate 1074 // llvm_unreachable added just here, it is not able to do so. 1075 unsigned Length; 1076 switch (CharByteWidth) { 1077 case 1: 1078 Length = ByteLength; 1079 break; 1080 case 2: 1081 Length = ByteLength / 2; 1082 break; 1083 case 4: 1084 Length = ByteLength / 4; 1085 break; 1086 default: 1087 llvm_unreachable("Unsupported character width!"); 1088 } 1089 1090 StringLiteralBits.Kind = Kind; 1091 StringLiteralBits.CharByteWidth = CharByteWidth; 1092 StringLiteralBits.IsPascal = Pascal; 1093 StringLiteralBits.NumConcatenated = NumConcatenated; 1094 *getTrailingObjects<unsigned>() = Length; 1095 1096 // Initialize the trailing array of SourceLocation. 1097 // This is safe since SourceLocation is POD-like. 1098 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1099 NumConcatenated * sizeof(SourceLocation)); 1100 1101 // Initialize the trailing array of char holding the string data. 1102 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1103 1104 setDependence(ExprDependence::None); 1105 } 1106 1107 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1108 unsigned Length, unsigned CharByteWidth) 1109 : Expr(StringLiteralClass, Empty) { 1110 StringLiteralBits.CharByteWidth = CharByteWidth; 1111 StringLiteralBits.NumConcatenated = NumConcatenated; 1112 *getTrailingObjects<unsigned>() = Length; 1113 } 1114 1115 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1116 StringKind Kind, bool Pascal, QualType Ty, 1117 const SourceLocation *Loc, 1118 unsigned NumConcatenated) { 1119 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1120 1, NumConcatenated, Str.size()), 1121 alignof(StringLiteral)); 1122 return new (Mem) 1123 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1124 } 1125 1126 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1127 unsigned NumConcatenated, 1128 unsigned Length, 1129 unsigned CharByteWidth) { 1130 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1131 1, NumConcatenated, Length * CharByteWidth), 1132 alignof(StringLiteral)); 1133 return new (Mem) 1134 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1135 } 1136 1137 void StringLiteral::outputString(raw_ostream &OS) const { 1138 switch (getKind()) { 1139 case Ascii: break; // no prefix. 1140 case Wide: OS << 'L'; break; 1141 case UTF8: OS << "u8"; break; 1142 case UTF16: OS << 'u'; break; 1143 case UTF32: OS << 'U'; break; 1144 } 1145 OS << '"'; 1146 static const char Hex[] = "0123456789ABCDEF"; 1147 1148 unsigned LastSlashX = getLength(); 1149 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1150 switch (uint32_t Char = getCodeUnit(I)) { 1151 default: 1152 // FIXME: Convert UTF-8 back to codepoints before rendering. 1153 1154 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1155 // Leave invalid surrogates alone; we'll use \x for those. 1156 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1157 Char <= 0xdbff) { 1158 uint32_t Trail = getCodeUnit(I + 1); 1159 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1160 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1161 ++I; 1162 } 1163 } 1164 1165 if (Char > 0xff) { 1166 // If this is a wide string, output characters over 0xff using \x 1167 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1168 // codepoint: use \x escapes for invalid codepoints. 1169 if (getKind() == Wide || 1170 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1171 // FIXME: Is this the best way to print wchar_t? 1172 OS << "\\x"; 1173 int Shift = 28; 1174 while ((Char >> Shift) == 0) 1175 Shift -= 4; 1176 for (/**/; Shift >= 0; Shift -= 4) 1177 OS << Hex[(Char >> Shift) & 15]; 1178 LastSlashX = I; 1179 break; 1180 } 1181 1182 if (Char > 0xffff) 1183 OS << "\\U00" 1184 << Hex[(Char >> 20) & 15] 1185 << Hex[(Char >> 16) & 15]; 1186 else 1187 OS << "\\u"; 1188 OS << Hex[(Char >> 12) & 15] 1189 << Hex[(Char >> 8) & 15] 1190 << Hex[(Char >> 4) & 15] 1191 << Hex[(Char >> 0) & 15]; 1192 break; 1193 } 1194 1195 // If we used \x... for the previous character, and this character is a 1196 // hexadecimal digit, prevent it being slurped as part of the \x. 1197 if (LastSlashX + 1 == I) { 1198 switch (Char) { 1199 case '0': case '1': case '2': case '3': case '4': 1200 case '5': case '6': case '7': case '8': case '9': 1201 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1202 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1203 OS << "\"\""; 1204 } 1205 } 1206 1207 assert(Char <= 0xff && 1208 "Characters above 0xff should already have been handled."); 1209 1210 if (isPrintable(Char)) 1211 OS << (char)Char; 1212 else // Output anything hard as an octal escape. 1213 OS << '\\' 1214 << (char)('0' + ((Char >> 6) & 7)) 1215 << (char)('0' + ((Char >> 3) & 7)) 1216 << (char)('0' + ((Char >> 0) & 7)); 1217 break; 1218 // Handle some common non-printable cases to make dumps prettier. 1219 case '\\': OS << "\\\\"; break; 1220 case '"': OS << "\\\""; break; 1221 case '\a': OS << "\\a"; break; 1222 case '\b': OS << "\\b"; break; 1223 case '\f': OS << "\\f"; break; 1224 case '\n': OS << "\\n"; break; 1225 case '\r': OS << "\\r"; break; 1226 case '\t': OS << "\\t"; break; 1227 case '\v': OS << "\\v"; break; 1228 } 1229 } 1230 OS << '"'; 1231 } 1232 1233 /// getLocationOfByte - Return a source location that points to the specified 1234 /// byte of this string literal. 1235 /// 1236 /// Strings are amazingly complex. They can be formed from multiple tokens and 1237 /// can have escape sequences in them in addition to the usual trigraph and 1238 /// escaped newline business. This routine handles this complexity. 1239 /// 1240 /// The *StartToken sets the first token to be searched in this function and 1241 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1242 /// returning, it updates the *StartToken to the TokNo of the token being found 1243 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1244 /// string. 1245 /// Using these two parameters can reduce the time complexity from O(n^2) to 1246 /// O(n) if one wants to get the location of byte for all the tokens in a 1247 /// string. 1248 /// 1249 SourceLocation 1250 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1251 const LangOptions &Features, 1252 const TargetInfo &Target, unsigned *StartToken, 1253 unsigned *StartTokenByteOffset) const { 1254 assert((getKind() == StringLiteral::Ascii || 1255 getKind() == StringLiteral::UTF8) && 1256 "Only narrow string literals are currently supported"); 1257 1258 // Loop over all of the tokens in this string until we find the one that 1259 // contains the byte we're looking for. 1260 unsigned TokNo = 0; 1261 unsigned StringOffset = 0; 1262 if (StartToken) 1263 TokNo = *StartToken; 1264 if (StartTokenByteOffset) { 1265 StringOffset = *StartTokenByteOffset; 1266 ByteNo -= StringOffset; 1267 } 1268 while (1) { 1269 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1270 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1271 1272 // Get the spelling of the string so that we can get the data that makes up 1273 // the string literal, not the identifier for the macro it is potentially 1274 // expanded through. 1275 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1276 1277 // Re-lex the token to get its length and original spelling. 1278 std::pair<FileID, unsigned> LocInfo = 1279 SM.getDecomposedLoc(StrTokSpellingLoc); 1280 bool Invalid = false; 1281 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1282 if (Invalid) { 1283 if (StartTokenByteOffset != nullptr) 1284 *StartTokenByteOffset = StringOffset; 1285 if (StartToken != nullptr) 1286 *StartToken = TokNo; 1287 return StrTokSpellingLoc; 1288 } 1289 1290 const char *StrData = Buffer.data()+LocInfo.second; 1291 1292 // Create a lexer starting at the beginning of this token. 1293 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1294 Buffer.begin(), StrData, Buffer.end()); 1295 Token TheTok; 1296 TheLexer.LexFromRawLexer(TheTok); 1297 1298 // Use the StringLiteralParser to compute the length of the string in bytes. 1299 StringLiteralParser SLP(TheTok, SM, Features, Target); 1300 unsigned TokNumBytes = SLP.GetStringLength(); 1301 1302 // If the byte is in this token, return the location of the byte. 1303 if (ByteNo < TokNumBytes || 1304 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1305 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1306 1307 // Now that we know the offset of the token in the spelling, use the 1308 // preprocessor to get the offset in the original source. 1309 if (StartTokenByteOffset != nullptr) 1310 *StartTokenByteOffset = StringOffset; 1311 if (StartToken != nullptr) 1312 *StartToken = TokNo; 1313 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1314 } 1315 1316 // Move to the next string token. 1317 StringOffset += TokNumBytes; 1318 ++TokNo; 1319 ByteNo -= TokNumBytes; 1320 } 1321 } 1322 1323 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1324 /// corresponds to, e.g. "sizeof" or "[pre]++". 1325 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1326 switch (Op) { 1327 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1328 #include "clang/AST/OperationKinds.def" 1329 } 1330 llvm_unreachable("Unknown unary operator"); 1331 } 1332 1333 UnaryOperatorKind 1334 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1335 switch (OO) { 1336 default: llvm_unreachable("No unary operator for overloaded function"); 1337 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1338 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1339 case OO_Amp: return UO_AddrOf; 1340 case OO_Star: return UO_Deref; 1341 case OO_Plus: return UO_Plus; 1342 case OO_Minus: return UO_Minus; 1343 case OO_Tilde: return UO_Not; 1344 case OO_Exclaim: return UO_LNot; 1345 case OO_Coawait: return UO_Coawait; 1346 } 1347 } 1348 1349 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1350 switch (Opc) { 1351 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1352 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1353 case UO_AddrOf: return OO_Amp; 1354 case UO_Deref: return OO_Star; 1355 case UO_Plus: return OO_Plus; 1356 case UO_Minus: return OO_Minus; 1357 case UO_Not: return OO_Tilde; 1358 case UO_LNot: return OO_Exclaim; 1359 case UO_Coawait: return OO_Coawait; 1360 default: return OO_None; 1361 } 1362 } 1363 1364 1365 //===----------------------------------------------------------------------===// 1366 // Postfix Operators. 1367 //===----------------------------------------------------------------------===// 1368 1369 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1370 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1371 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1372 unsigned MinNumArgs, ADLCallKind UsesADL) 1373 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1374 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1375 unsigned NumPreArgs = PreArgs.size(); 1376 CallExprBits.NumPreArgs = NumPreArgs; 1377 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1378 1379 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1380 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1381 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1382 "OffsetToTrailingObjects overflow!"); 1383 1384 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1385 1386 setCallee(Fn); 1387 for (unsigned I = 0; I != NumPreArgs; ++I) 1388 setPreArg(I, PreArgs[I]); 1389 for (unsigned I = 0; I != Args.size(); ++I) 1390 setArg(I, Args[I]); 1391 for (unsigned I = Args.size(); I != NumArgs; ++I) 1392 setArg(I, nullptr); 1393 1394 this->computeDependence(); 1395 1396 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1397 if (hasStoredFPFeatures()) 1398 setStoredFPFeatures(FPFeatures); 1399 } 1400 1401 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1402 bool HasFPFeatures, EmptyShell Empty) 1403 : Expr(SC, Empty), NumArgs(NumArgs) { 1404 CallExprBits.NumPreArgs = NumPreArgs; 1405 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1406 1407 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1408 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1409 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1410 "OffsetToTrailingObjects overflow!"); 1411 CallExprBits.HasFPFeatures = HasFPFeatures; 1412 } 1413 1414 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1415 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1416 SourceLocation RParenLoc, 1417 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1418 ADLCallKind UsesADL) { 1419 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1420 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1421 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1422 void *Mem = 1423 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1424 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1425 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1426 } 1427 1428 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1429 ExprValueKind VK, SourceLocation RParenLoc, 1430 ADLCallKind UsesADL) { 1431 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1432 "Misaligned memory in CallExpr::CreateTemporary!"); 1433 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1434 VK, RParenLoc, FPOptionsOverride(), 1435 /*MinNumArgs=*/0, UsesADL); 1436 } 1437 1438 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1439 bool HasFPFeatures, EmptyShell Empty) { 1440 unsigned SizeOfTrailingObjects = 1441 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1442 void *Mem = 1443 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1444 return new (Mem) 1445 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1446 } 1447 1448 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1449 switch (SC) { 1450 case CallExprClass: 1451 return sizeof(CallExpr); 1452 case CXXOperatorCallExprClass: 1453 return sizeof(CXXOperatorCallExpr); 1454 case CXXMemberCallExprClass: 1455 return sizeof(CXXMemberCallExpr); 1456 case UserDefinedLiteralClass: 1457 return sizeof(UserDefinedLiteral); 1458 case CUDAKernelCallExprClass: 1459 return sizeof(CUDAKernelCallExpr); 1460 default: 1461 llvm_unreachable("unexpected class deriving from CallExpr!"); 1462 } 1463 } 1464 1465 Decl *Expr::getReferencedDeclOfCallee() { 1466 Expr *CEE = IgnoreParenImpCasts(); 1467 1468 while (SubstNonTypeTemplateParmExpr *NTTP = 1469 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1470 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1471 } 1472 1473 // If we're calling a dereference, look at the pointer instead. 1474 while (true) { 1475 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1476 if (BO->isPtrMemOp()) { 1477 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1478 continue; 1479 } 1480 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1481 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1482 UO->getOpcode() == UO_Plus) { 1483 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1484 continue; 1485 } 1486 } 1487 break; 1488 } 1489 1490 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1491 return DRE->getDecl(); 1492 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1493 return ME->getMemberDecl(); 1494 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1495 return BE->getBlockDecl(); 1496 1497 return nullptr; 1498 } 1499 1500 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1501 unsigned CallExpr::getBuiltinCallee() const { 1502 auto *FDecl = 1503 dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee()); 1504 return FDecl ? FDecl->getBuiltinID() : 0; 1505 } 1506 1507 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1508 if (unsigned BI = getBuiltinCallee()) 1509 return Ctx.BuiltinInfo.isUnevaluated(BI); 1510 return false; 1511 } 1512 1513 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1514 const Expr *Callee = getCallee(); 1515 QualType CalleeType = Callee->getType(); 1516 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1517 CalleeType = FnTypePtr->getPointeeType(); 1518 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1519 CalleeType = BPT->getPointeeType(); 1520 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1521 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1522 return Ctx.VoidTy; 1523 1524 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1525 return Ctx.DependentTy; 1526 1527 // This should never be overloaded and so should never return null. 1528 CalleeType = Expr::findBoundMemberType(Callee); 1529 assert(!CalleeType.isNull()); 1530 } else if (CalleeType->isDependentType() || 1531 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1532 return Ctx.DependentTy; 1533 } 1534 1535 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1536 return FnType->getReturnType(); 1537 } 1538 1539 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1540 // If the return type is a struct, union, or enum that is marked nodiscard, 1541 // then return the return type attribute. 1542 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1543 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1544 return A; 1545 1546 // Otherwise, see if the callee is marked nodiscard and return that attribute 1547 // instead. 1548 const Decl *D = getCalleeDecl(); 1549 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1550 } 1551 1552 SourceLocation CallExpr::getBeginLoc() const { 1553 if (isa<CXXOperatorCallExpr>(this)) 1554 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1555 1556 SourceLocation begin = getCallee()->getBeginLoc(); 1557 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1558 begin = getArg(0)->getBeginLoc(); 1559 return begin; 1560 } 1561 SourceLocation CallExpr::getEndLoc() const { 1562 if (isa<CXXOperatorCallExpr>(this)) 1563 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1564 1565 SourceLocation end = getRParenLoc(); 1566 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1567 end = getArg(getNumArgs() - 1)->getEndLoc(); 1568 return end; 1569 } 1570 1571 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1572 SourceLocation OperatorLoc, 1573 TypeSourceInfo *tsi, 1574 ArrayRef<OffsetOfNode> comps, 1575 ArrayRef<Expr*> exprs, 1576 SourceLocation RParenLoc) { 1577 void *Mem = C.Allocate( 1578 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1579 1580 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1581 RParenLoc); 1582 } 1583 1584 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1585 unsigned numComps, unsigned numExprs) { 1586 void *Mem = 1587 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1588 return new (Mem) OffsetOfExpr(numComps, numExprs); 1589 } 1590 1591 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1592 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1593 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1594 SourceLocation RParenLoc) 1595 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1596 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1597 NumComps(comps.size()), NumExprs(exprs.size()) { 1598 for (unsigned i = 0; i != comps.size(); ++i) 1599 setComponent(i, comps[i]); 1600 for (unsigned i = 0; i != exprs.size(); ++i) 1601 setIndexExpr(i, exprs[i]); 1602 1603 setDependence(computeDependence(this)); 1604 } 1605 1606 IdentifierInfo *OffsetOfNode::getFieldName() const { 1607 assert(getKind() == Field || getKind() == Identifier); 1608 if (getKind() == Field) 1609 return getField()->getIdentifier(); 1610 1611 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1612 } 1613 1614 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1615 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1616 SourceLocation op, SourceLocation rp) 1617 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1618 OpLoc(op), RParenLoc(rp) { 1619 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1620 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1621 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1622 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1623 UnaryExprOrTypeTraitExprBits.IsType = false; 1624 Argument.Ex = E; 1625 setDependence(computeDependence(this)); 1626 } 1627 1628 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1629 ValueDecl *MemberDecl, 1630 const DeclarationNameInfo &NameInfo, QualType T, 1631 ExprValueKind VK, ExprObjectKind OK, 1632 NonOdrUseReason NOUR) 1633 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1634 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1635 assert(!NameInfo.getName() || 1636 MemberDecl->getDeclName() == NameInfo.getName()); 1637 MemberExprBits.IsArrow = IsArrow; 1638 MemberExprBits.HasQualifierOrFoundDecl = false; 1639 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1640 MemberExprBits.HadMultipleCandidates = false; 1641 MemberExprBits.NonOdrUseReason = NOUR; 1642 MemberExprBits.OperatorLoc = OperatorLoc; 1643 setDependence(computeDependence(this)); 1644 } 1645 1646 MemberExpr *MemberExpr::Create( 1647 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1648 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1649 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1650 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1651 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1652 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1653 FoundDecl.getAccess() != MemberDecl->getAccess(); 1654 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1655 std::size_t Size = 1656 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1657 TemplateArgumentLoc>( 1658 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1659 TemplateArgs ? TemplateArgs->size() : 0); 1660 1661 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1662 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1663 NameInfo, T, VK, OK, NOUR); 1664 1665 // FIXME: remove remaining dependence computation to computeDependence(). 1666 auto Deps = E->getDependence(); 1667 if (HasQualOrFound) { 1668 // FIXME: Wrong. We should be looking at the member declaration we found. 1669 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1670 Deps |= ExprDependence::TypeValueInstantiation; 1671 else if (QualifierLoc && 1672 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1673 Deps |= ExprDependence::Instantiation; 1674 1675 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1676 1677 MemberExprNameQualifier *NQ = 1678 E->getTrailingObjects<MemberExprNameQualifier>(); 1679 NQ->QualifierLoc = QualifierLoc; 1680 NQ->FoundDecl = FoundDecl; 1681 } 1682 1683 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1684 TemplateArgs || TemplateKWLoc.isValid(); 1685 1686 if (TemplateArgs) { 1687 auto TemplateArgDeps = TemplateArgumentDependence::None; 1688 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1689 TemplateKWLoc, *TemplateArgs, 1690 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1691 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1692 Deps |= ExprDependence::Instantiation; 1693 } else if (TemplateKWLoc.isValid()) { 1694 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1695 TemplateKWLoc); 1696 } 1697 E->setDependence(Deps); 1698 1699 return E; 1700 } 1701 1702 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1703 bool HasQualifier, bool HasFoundDecl, 1704 bool HasTemplateKWAndArgsInfo, 1705 unsigned NumTemplateArgs) { 1706 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1707 "template args but no template arg info?"); 1708 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1709 std::size_t Size = 1710 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1711 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1712 HasTemplateKWAndArgsInfo ? 1 : 0, 1713 NumTemplateArgs); 1714 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1715 return new (Mem) MemberExpr(EmptyShell()); 1716 } 1717 1718 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1719 MemberDecl = NewD; 1720 if (getType()->isUndeducedType()) 1721 setType(NewD->getType()); 1722 setDependence(computeDependence(this)); 1723 } 1724 1725 SourceLocation MemberExpr::getBeginLoc() const { 1726 if (isImplicitAccess()) { 1727 if (hasQualifier()) 1728 return getQualifierLoc().getBeginLoc(); 1729 return MemberLoc; 1730 } 1731 1732 // FIXME: We don't want this to happen. Rather, we should be able to 1733 // detect all kinds of implicit accesses more cleanly. 1734 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1735 if (BaseStartLoc.isValid()) 1736 return BaseStartLoc; 1737 return MemberLoc; 1738 } 1739 SourceLocation MemberExpr::getEndLoc() const { 1740 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1741 if (hasExplicitTemplateArgs()) 1742 EndLoc = getRAngleLoc(); 1743 else if (EndLoc.isInvalid()) 1744 EndLoc = getBase()->getEndLoc(); 1745 return EndLoc; 1746 } 1747 1748 bool CastExpr::CastConsistency() const { 1749 switch (getCastKind()) { 1750 case CK_DerivedToBase: 1751 case CK_UncheckedDerivedToBase: 1752 case CK_DerivedToBaseMemberPointer: 1753 case CK_BaseToDerived: 1754 case CK_BaseToDerivedMemberPointer: 1755 assert(!path_empty() && "Cast kind should have a base path!"); 1756 break; 1757 1758 case CK_CPointerToObjCPointerCast: 1759 assert(getType()->isObjCObjectPointerType()); 1760 assert(getSubExpr()->getType()->isPointerType()); 1761 goto CheckNoBasePath; 1762 1763 case CK_BlockPointerToObjCPointerCast: 1764 assert(getType()->isObjCObjectPointerType()); 1765 assert(getSubExpr()->getType()->isBlockPointerType()); 1766 goto CheckNoBasePath; 1767 1768 case CK_ReinterpretMemberPointer: 1769 assert(getType()->isMemberPointerType()); 1770 assert(getSubExpr()->getType()->isMemberPointerType()); 1771 goto CheckNoBasePath; 1772 1773 case CK_BitCast: 1774 // Arbitrary casts to C pointer types count as bitcasts. 1775 // Otherwise, we should only have block and ObjC pointer casts 1776 // here if they stay within the type kind. 1777 if (!getType()->isPointerType()) { 1778 assert(getType()->isObjCObjectPointerType() == 1779 getSubExpr()->getType()->isObjCObjectPointerType()); 1780 assert(getType()->isBlockPointerType() == 1781 getSubExpr()->getType()->isBlockPointerType()); 1782 } 1783 goto CheckNoBasePath; 1784 1785 case CK_AnyPointerToBlockPointerCast: 1786 assert(getType()->isBlockPointerType()); 1787 assert(getSubExpr()->getType()->isAnyPointerType() && 1788 !getSubExpr()->getType()->isBlockPointerType()); 1789 goto CheckNoBasePath; 1790 1791 case CK_CopyAndAutoreleaseBlockObject: 1792 assert(getType()->isBlockPointerType()); 1793 assert(getSubExpr()->getType()->isBlockPointerType()); 1794 goto CheckNoBasePath; 1795 1796 case CK_FunctionToPointerDecay: 1797 assert(getType()->isPointerType()); 1798 assert(getSubExpr()->getType()->isFunctionType()); 1799 goto CheckNoBasePath; 1800 1801 case CK_AddressSpaceConversion: { 1802 auto Ty = getType(); 1803 auto SETy = getSubExpr()->getType(); 1804 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1805 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1806 Ty = Ty->getPointeeType(); 1807 SETy = SETy->getPointeeType(); 1808 } 1809 assert((Ty->isDependentType() || SETy->isDependentType()) || 1810 (!Ty.isNull() && !SETy.isNull() && 1811 Ty.getAddressSpace() != SETy.getAddressSpace())); 1812 goto CheckNoBasePath; 1813 } 1814 // These should not have an inheritance path. 1815 case CK_Dynamic: 1816 case CK_ToUnion: 1817 case CK_ArrayToPointerDecay: 1818 case CK_NullToMemberPointer: 1819 case CK_NullToPointer: 1820 case CK_ConstructorConversion: 1821 case CK_IntegralToPointer: 1822 case CK_PointerToIntegral: 1823 case CK_ToVoid: 1824 case CK_VectorSplat: 1825 case CK_IntegralCast: 1826 case CK_BooleanToSignedIntegral: 1827 case CK_IntegralToFloating: 1828 case CK_FloatingToIntegral: 1829 case CK_FloatingCast: 1830 case CK_ObjCObjectLValueCast: 1831 case CK_FloatingRealToComplex: 1832 case CK_FloatingComplexToReal: 1833 case CK_FloatingComplexCast: 1834 case CK_FloatingComplexToIntegralComplex: 1835 case CK_IntegralRealToComplex: 1836 case CK_IntegralComplexToReal: 1837 case CK_IntegralComplexCast: 1838 case CK_IntegralComplexToFloatingComplex: 1839 case CK_ARCProduceObject: 1840 case CK_ARCConsumeObject: 1841 case CK_ARCReclaimReturnedObject: 1842 case CK_ARCExtendBlockObject: 1843 case CK_ZeroToOCLOpaqueType: 1844 case CK_IntToOCLSampler: 1845 case CK_FloatingToFixedPoint: 1846 case CK_FixedPointToFloating: 1847 case CK_FixedPointCast: 1848 case CK_FixedPointToIntegral: 1849 case CK_IntegralToFixedPoint: 1850 case CK_MatrixCast: 1851 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1852 goto CheckNoBasePath; 1853 1854 case CK_Dependent: 1855 case CK_LValueToRValue: 1856 case CK_NoOp: 1857 case CK_AtomicToNonAtomic: 1858 case CK_NonAtomicToAtomic: 1859 case CK_PointerToBoolean: 1860 case CK_IntegralToBoolean: 1861 case CK_FloatingToBoolean: 1862 case CK_MemberPointerToBoolean: 1863 case CK_FloatingComplexToBoolean: 1864 case CK_IntegralComplexToBoolean: 1865 case CK_LValueBitCast: // -> bool& 1866 case CK_LValueToRValueBitCast: 1867 case CK_UserDefinedConversion: // operator bool() 1868 case CK_BuiltinFnToFnPtr: 1869 case CK_FixedPointToBoolean: 1870 CheckNoBasePath: 1871 assert(path_empty() && "Cast kind should not have a base path!"); 1872 break; 1873 } 1874 return true; 1875 } 1876 1877 const char *CastExpr::getCastKindName(CastKind CK) { 1878 switch (CK) { 1879 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1880 #include "clang/AST/OperationKinds.def" 1881 } 1882 llvm_unreachable("Unhandled cast kind!"); 1883 } 1884 1885 namespace { 1886 const Expr *skipImplicitTemporary(const Expr *E) { 1887 // Skip through reference binding to temporary. 1888 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1889 E = Materialize->getSubExpr(); 1890 1891 // Skip any temporary bindings; they're implicit. 1892 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1893 E = Binder->getSubExpr(); 1894 1895 return E; 1896 } 1897 } 1898 1899 Expr *CastExpr::getSubExprAsWritten() { 1900 const Expr *SubExpr = nullptr; 1901 const CastExpr *E = this; 1902 do { 1903 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1904 1905 // Conversions by constructor and conversion functions have a 1906 // subexpression describing the call; strip it off. 1907 if (E->getCastKind() == CK_ConstructorConversion) 1908 SubExpr = 1909 skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0)); 1910 else if (E->getCastKind() == CK_UserDefinedConversion) { 1911 SubExpr = SubExpr->IgnoreImplicit(); 1912 assert((isa<CXXMemberCallExpr>(SubExpr) || 1913 isa<BlockExpr>(SubExpr)) && 1914 "Unexpected SubExpr for CK_UserDefinedConversion."); 1915 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1916 SubExpr = MCE->getImplicitObjectArgument(); 1917 } 1918 1919 // If the subexpression we're left with is an implicit cast, look 1920 // through that, too. 1921 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1922 1923 return const_cast<Expr*>(SubExpr); 1924 } 1925 1926 NamedDecl *CastExpr::getConversionFunction() const { 1927 const Expr *SubExpr = nullptr; 1928 1929 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1930 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1931 1932 if (E->getCastKind() == CK_ConstructorConversion) 1933 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1934 1935 if (E->getCastKind() == CK_UserDefinedConversion) { 1936 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1937 return MCE->getMethodDecl(); 1938 } 1939 } 1940 1941 return nullptr; 1942 } 1943 1944 CXXBaseSpecifier **CastExpr::path_buffer() { 1945 switch (getStmtClass()) { 1946 #define ABSTRACT_STMT(x) 1947 #define CASTEXPR(Type, Base) \ 1948 case Stmt::Type##Class: \ 1949 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1950 #define STMT(Type, Base) 1951 #include "clang/AST/StmtNodes.inc" 1952 default: 1953 llvm_unreachable("non-cast expressions not possible here"); 1954 } 1955 } 1956 1957 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1958 QualType opType) { 1959 auto RD = unionType->castAs<RecordType>()->getDecl(); 1960 return getTargetFieldForToUnionCast(RD, opType); 1961 } 1962 1963 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1964 QualType OpType) { 1965 auto &Ctx = RD->getASTContext(); 1966 RecordDecl::field_iterator Field, FieldEnd; 1967 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1968 Field != FieldEnd; ++Field) { 1969 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1970 !Field->isUnnamedBitfield()) { 1971 return *Field; 1972 } 1973 } 1974 return nullptr; 1975 } 1976 1977 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 1978 assert(hasStoredFPFeatures()); 1979 switch (getStmtClass()) { 1980 case ImplicitCastExprClass: 1981 return static_cast<ImplicitCastExpr *>(this) 1982 ->getTrailingObjects<FPOptionsOverride>(); 1983 case CStyleCastExprClass: 1984 return static_cast<CStyleCastExpr *>(this) 1985 ->getTrailingObjects<FPOptionsOverride>(); 1986 case CXXFunctionalCastExprClass: 1987 return static_cast<CXXFunctionalCastExpr *>(this) 1988 ->getTrailingObjects<FPOptionsOverride>(); 1989 case CXXStaticCastExprClass: 1990 return static_cast<CXXStaticCastExpr *>(this) 1991 ->getTrailingObjects<FPOptionsOverride>(); 1992 default: 1993 llvm_unreachable("Cast does not have FPFeatures"); 1994 } 1995 } 1996 1997 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1998 CastKind Kind, Expr *Operand, 1999 const CXXCastPath *BasePath, 2000 ExprValueKind VK, 2001 FPOptionsOverride FPO) { 2002 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2003 void *Buffer = 2004 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2005 PathSize, FPO.requiresTrailingStorage())); 2006 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2007 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2008 assert((Kind != CK_LValueToRValue || 2009 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2010 "invalid type for lvalue-to-rvalue conversion"); 2011 ImplicitCastExpr *E = 2012 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2013 if (PathSize) 2014 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2015 E->getTrailingObjects<CXXBaseSpecifier *>()); 2016 return E; 2017 } 2018 2019 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2020 unsigned PathSize, 2021 bool HasFPFeatures) { 2022 void *Buffer = 2023 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2024 PathSize, HasFPFeatures)); 2025 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2026 } 2027 2028 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2029 ExprValueKind VK, CastKind K, Expr *Op, 2030 const CXXCastPath *BasePath, 2031 FPOptionsOverride FPO, 2032 TypeSourceInfo *WrittenTy, 2033 SourceLocation L, SourceLocation R) { 2034 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2035 void *Buffer = 2036 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2037 PathSize, FPO.requiresTrailingStorage())); 2038 CStyleCastExpr *E = 2039 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2040 if (PathSize) 2041 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2042 E->getTrailingObjects<CXXBaseSpecifier *>()); 2043 return E; 2044 } 2045 2046 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2047 unsigned PathSize, 2048 bool HasFPFeatures) { 2049 void *Buffer = 2050 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2051 PathSize, HasFPFeatures)); 2052 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2053 } 2054 2055 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2056 /// corresponds to, e.g. "<<=". 2057 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2058 switch (Op) { 2059 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2060 #include "clang/AST/OperationKinds.def" 2061 } 2062 llvm_unreachable("Invalid OpCode!"); 2063 } 2064 2065 BinaryOperatorKind 2066 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2067 switch (OO) { 2068 default: llvm_unreachable("Not an overloadable binary operator"); 2069 case OO_Plus: return BO_Add; 2070 case OO_Minus: return BO_Sub; 2071 case OO_Star: return BO_Mul; 2072 case OO_Slash: return BO_Div; 2073 case OO_Percent: return BO_Rem; 2074 case OO_Caret: return BO_Xor; 2075 case OO_Amp: return BO_And; 2076 case OO_Pipe: return BO_Or; 2077 case OO_Equal: return BO_Assign; 2078 case OO_Spaceship: return BO_Cmp; 2079 case OO_Less: return BO_LT; 2080 case OO_Greater: return BO_GT; 2081 case OO_PlusEqual: return BO_AddAssign; 2082 case OO_MinusEqual: return BO_SubAssign; 2083 case OO_StarEqual: return BO_MulAssign; 2084 case OO_SlashEqual: return BO_DivAssign; 2085 case OO_PercentEqual: return BO_RemAssign; 2086 case OO_CaretEqual: return BO_XorAssign; 2087 case OO_AmpEqual: return BO_AndAssign; 2088 case OO_PipeEqual: return BO_OrAssign; 2089 case OO_LessLess: return BO_Shl; 2090 case OO_GreaterGreater: return BO_Shr; 2091 case OO_LessLessEqual: return BO_ShlAssign; 2092 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2093 case OO_EqualEqual: return BO_EQ; 2094 case OO_ExclaimEqual: return BO_NE; 2095 case OO_LessEqual: return BO_LE; 2096 case OO_GreaterEqual: return BO_GE; 2097 case OO_AmpAmp: return BO_LAnd; 2098 case OO_PipePipe: return BO_LOr; 2099 case OO_Comma: return BO_Comma; 2100 case OO_ArrowStar: return BO_PtrMemI; 2101 } 2102 } 2103 2104 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2105 static const OverloadedOperatorKind OverOps[] = { 2106 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2107 OO_Star, OO_Slash, OO_Percent, 2108 OO_Plus, OO_Minus, 2109 OO_LessLess, OO_GreaterGreater, 2110 OO_Spaceship, 2111 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2112 OO_EqualEqual, OO_ExclaimEqual, 2113 OO_Amp, 2114 OO_Caret, 2115 OO_Pipe, 2116 OO_AmpAmp, 2117 OO_PipePipe, 2118 OO_Equal, OO_StarEqual, 2119 OO_SlashEqual, OO_PercentEqual, 2120 OO_PlusEqual, OO_MinusEqual, 2121 OO_LessLessEqual, OO_GreaterGreaterEqual, 2122 OO_AmpEqual, OO_CaretEqual, 2123 OO_PipeEqual, 2124 OO_Comma 2125 }; 2126 return OverOps[Opc]; 2127 } 2128 2129 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2130 Opcode Opc, 2131 Expr *LHS, Expr *RHS) { 2132 if (Opc != BO_Add) 2133 return false; 2134 2135 // Check that we have one pointer and one integer operand. 2136 Expr *PExp; 2137 if (LHS->getType()->isPointerType()) { 2138 if (!RHS->getType()->isIntegerType()) 2139 return false; 2140 PExp = LHS; 2141 } else if (RHS->getType()->isPointerType()) { 2142 if (!LHS->getType()->isIntegerType()) 2143 return false; 2144 PExp = RHS; 2145 } else { 2146 return false; 2147 } 2148 2149 // Check that the pointer is a nullptr. 2150 if (!PExp->IgnoreParenCasts() 2151 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2152 return false; 2153 2154 // Check that the pointee type is char-sized. 2155 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2156 if (!PTy || !PTy->getPointeeType()->isCharType()) 2157 return false; 2158 2159 return true; 2160 } 2161 2162 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, 2163 SourceLocExpr::IdentKind Kind) { 2164 switch (Kind) { 2165 case SourceLocExpr::File: 2166 case SourceLocExpr::Function: { 2167 QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); 2168 return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); 2169 } 2170 case SourceLocExpr::Line: 2171 case SourceLocExpr::Column: 2172 return Ctx.UnsignedIntTy; 2173 } 2174 llvm_unreachable("unhandled case"); 2175 } 2176 2177 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2178 SourceLocation BLoc, SourceLocation RParenLoc, 2179 DeclContext *ParentContext) 2180 : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), 2181 VK_PRValue, OK_Ordinary), 2182 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2183 SourceLocExprBits.Kind = Kind; 2184 setDependence(ExprDependence::None); 2185 } 2186 2187 StringRef SourceLocExpr::getBuiltinStr() const { 2188 switch (getIdentKind()) { 2189 case File: 2190 return "__builtin_FILE"; 2191 case Function: 2192 return "__builtin_FUNCTION"; 2193 case Line: 2194 return "__builtin_LINE"; 2195 case Column: 2196 return "__builtin_COLUMN"; 2197 } 2198 llvm_unreachable("unexpected IdentKind!"); 2199 } 2200 2201 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2202 const Expr *DefaultExpr) const { 2203 SourceLocation Loc; 2204 const DeclContext *Context; 2205 2206 std::tie(Loc, 2207 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2208 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2209 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2210 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2211 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2212 return {this->getLocation(), this->getParentContext()}; 2213 }(); 2214 2215 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2216 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2217 2218 auto MakeStringLiteral = [&](StringRef Tmp) { 2219 using LValuePathEntry = APValue::LValuePathEntry; 2220 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2221 // Decay the string to a pointer to the first character. 2222 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2223 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2224 }; 2225 2226 switch (getIdentKind()) { 2227 case SourceLocExpr::File: { 2228 SmallString<256> Path(PLoc.getFilename()); 2229 Ctx.getLangOpts().remapPathPrefix(Path); 2230 return MakeStringLiteral(Path); 2231 } 2232 case SourceLocExpr::Function: { 2233 const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); 2234 return MakeStringLiteral( 2235 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2236 : std::string("")); 2237 } 2238 case SourceLocExpr::Line: 2239 case SourceLocExpr::Column: { 2240 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2241 /*isUnsigned=*/true); 2242 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2243 : PLoc.getColumn(); 2244 return APValue(IntVal); 2245 } 2246 } 2247 llvm_unreachable("unhandled case"); 2248 } 2249 2250 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2251 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2252 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2253 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2254 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2255 sawArrayRangeDesignator(false); 2256 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2257 2258 setDependence(computeDependence(this)); 2259 } 2260 2261 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2262 if (NumInits > InitExprs.size()) 2263 InitExprs.reserve(C, NumInits); 2264 } 2265 2266 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2267 InitExprs.resize(C, NumInits, nullptr); 2268 } 2269 2270 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2271 if (Init >= InitExprs.size()) { 2272 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2273 setInit(Init, expr); 2274 return nullptr; 2275 } 2276 2277 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2278 setInit(Init, expr); 2279 return Result; 2280 } 2281 2282 void InitListExpr::setArrayFiller(Expr *filler) { 2283 assert(!hasArrayFiller() && "Filler already set!"); 2284 ArrayFillerOrUnionFieldInit = filler; 2285 // Fill out any "holes" in the array due to designated initializers. 2286 Expr **inits = getInits(); 2287 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2288 if (inits[i] == nullptr) 2289 inits[i] = filler; 2290 } 2291 2292 bool InitListExpr::isStringLiteralInit() const { 2293 if (getNumInits() != 1) 2294 return false; 2295 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2296 if (!AT || !AT->getElementType()->isIntegerType()) 2297 return false; 2298 // It is possible for getInit() to return null. 2299 const Expr *Init = getInit(0); 2300 if (!Init) 2301 return false; 2302 Init = Init->IgnoreParenImpCasts(); 2303 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2304 } 2305 2306 bool InitListExpr::isTransparent() const { 2307 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2308 2309 // A glvalue InitListExpr is always just sugar. 2310 if (isGLValue()) { 2311 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2312 return true; 2313 } 2314 2315 // Otherwise, we're sugar if and only if we have exactly one initializer that 2316 // is of the same type. 2317 if (getNumInits() != 1 || !getInit(0)) 2318 return false; 2319 2320 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2321 // transparent struct copy. 2322 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2323 return false; 2324 2325 return getType().getCanonicalType() == 2326 getInit(0)->getType().getCanonicalType(); 2327 } 2328 2329 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2330 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2331 2332 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2333 return false; 2334 } 2335 2336 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2337 return Lit && Lit->getValue() == 0; 2338 } 2339 2340 SourceLocation InitListExpr::getBeginLoc() const { 2341 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2342 return SyntacticForm->getBeginLoc(); 2343 SourceLocation Beg = LBraceLoc; 2344 if (Beg.isInvalid()) { 2345 // Find the first non-null initializer. 2346 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2347 E = InitExprs.end(); 2348 I != E; ++I) { 2349 if (Stmt *S = *I) { 2350 Beg = S->getBeginLoc(); 2351 break; 2352 } 2353 } 2354 } 2355 return Beg; 2356 } 2357 2358 SourceLocation InitListExpr::getEndLoc() const { 2359 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2360 return SyntacticForm->getEndLoc(); 2361 SourceLocation End = RBraceLoc; 2362 if (End.isInvalid()) { 2363 // Find the first non-null initializer from the end. 2364 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 2365 E = InitExprs.rend(); 2366 I != E; ++I) { 2367 if (Stmt *S = *I) { 2368 End = S->getEndLoc(); 2369 break; 2370 } 2371 } 2372 } 2373 return End; 2374 } 2375 2376 /// getFunctionType - Return the underlying function type for this block. 2377 /// 2378 const FunctionProtoType *BlockExpr::getFunctionType() const { 2379 // The block pointer is never sugared, but the function type might be. 2380 return cast<BlockPointerType>(getType()) 2381 ->getPointeeType()->castAs<FunctionProtoType>(); 2382 } 2383 2384 SourceLocation BlockExpr::getCaretLocation() const { 2385 return TheBlock->getCaretLocation(); 2386 } 2387 const Stmt *BlockExpr::getBody() const { 2388 return TheBlock->getBody(); 2389 } 2390 Stmt *BlockExpr::getBody() { 2391 return TheBlock->getBody(); 2392 } 2393 2394 2395 //===----------------------------------------------------------------------===// 2396 // Generic Expression Routines 2397 //===----------------------------------------------------------------------===// 2398 2399 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2400 // In C++11, discarded-value expressions of a certain form are special, 2401 // according to [expr]p10: 2402 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2403 // expression is a glvalue of volatile-qualified type and it has 2404 // one of the following forms: 2405 if (!isGLValue() || !getType().isVolatileQualified()) 2406 return false; 2407 2408 const Expr *E = IgnoreParens(); 2409 2410 // - id-expression (5.1.1), 2411 if (isa<DeclRefExpr>(E)) 2412 return true; 2413 2414 // - subscripting (5.2.1), 2415 if (isa<ArraySubscriptExpr>(E)) 2416 return true; 2417 2418 // - class member access (5.2.5), 2419 if (isa<MemberExpr>(E)) 2420 return true; 2421 2422 // - indirection (5.3.1), 2423 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2424 if (UO->getOpcode() == UO_Deref) 2425 return true; 2426 2427 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2428 // - pointer-to-member operation (5.5), 2429 if (BO->isPtrMemOp()) 2430 return true; 2431 2432 // - comma expression (5.18) where the right operand is one of the above. 2433 if (BO->getOpcode() == BO_Comma) 2434 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2435 } 2436 2437 // - conditional expression (5.16) where both the second and the third 2438 // operands are one of the above, or 2439 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2440 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2441 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2442 // The related edge case of "*x ?: *x". 2443 if (auto *BCO = 2444 dyn_cast<BinaryConditionalOperator>(E)) { 2445 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2446 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2447 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2448 } 2449 2450 // Objective-C++ extensions to the rule. 2451 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 2452 return true; 2453 2454 return false; 2455 } 2456 2457 /// isUnusedResultAWarning - Return true if this immediate expression should 2458 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2459 /// with location to warn on and the source range[s] to report with the 2460 /// warning. 2461 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2462 SourceRange &R1, SourceRange &R2, 2463 ASTContext &Ctx) const { 2464 // Don't warn if the expr is type dependent. The type could end up 2465 // instantiating to void. 2466 if (isTypeDependent()) 2467 return false; 2468 2469 switch (getStmtClass()) { 2470 default: 2471 if (getType()->isVoidType()) 2472 return false; 2473 WarnE = this; 2474 Loc = getExprLoc(); 2475 R1 = getSourceRange(); 2476 return true; 2477 case ParenExprClass: 2478 return cast<ParenExpr>(this)->getSubExpr()-> 2479 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2480 case GenericSelectionExprClass: 2481 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2482 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2483 case CoawaitExprClass: 2484 case CoyieldExprClass: 2485 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2486 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2487 case ChooseExprClass: 2488 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2489 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2490 case UnaryOperatorClass: { 2491 const UnaryOperator *UO = cast<UnaryOperator>(this); 2492 2493 switch (UO->getOpcode()) { 2494 case UO_Plus: 2495 case UO_Minus: 2496 case UO_AddrOf: 2497 case UO_Not: 2498 case UO_LNot: 2499 case UO_Deref: 2500 break; 2501 case UO_Coawait: 2502 // This is just the 'operator co_await' call inside the guts of a 2503 // dependent co_await call. 2504 case UO_PostInc: 2505 case UO_PostDec: 2506 case UO_PreInc: 2507 case UO_PreDec: // ++/-- 2508 return false; // Not a warning. 2509 case UO_Real: 2510 case UO_Imag: 2511 // accessing a piece of a volatile complex is a side-effect. 2512 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2513 .isVolatileQualified()) 2514 return false; 2515 break; 2516 case UO_Extension: 2517 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2518 } 2519 WarnE = this; 2520 Loc = UO->getOperatorLoc(); 2521 R1 = UO->getSubExpr()->getSourceRange(); 2522 return true; 2523 } 2524 case BinaryOperatorClass: { 2525 const BinaryOperator *BO = cast<BinaryOperator>(this); 2526 switch (BO->getOpcode()) { 2527 default: 2528 break; 2529 // Consider the RHS of comma for side effects. LHS was checked by 2530 // Sema::CheckCommaOperands. 2531 case BO_Comma: 2532 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2533 // lvalue-ness) of an assignment written in a macro. 2534 if (IntegerLiteral *IE = 2535 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2536 if (IE->getValue() == 0) 2537 return false; 2538 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2539 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2540 case BO_LAnd: 2541 case BO_LOr: 2542 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2543 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2544 return false; 2545 break; 2546 } 2547 if (BO->isAssignmentOp()) 2548 return false; 2549 WarnE = this; 2550 Loc = BO->getOperatorLoc(); 2551 R1 = BO->getLHS()->getSourceRange(); 2552 R2 = BO->getRHS()->getSourceRange(); 2553 return true; 2554 } 2555 case CompoundAssignOperatorClass: 2556 case VAArgExprClass: 2557 case AtomicExprClass: 2558 return false; 2559 2560 case ConditionalOperatorClass: { 2561 // If only one of the LHS or RHS is a warning, the operator might 2562 // be being used for control flow. Only warn if both the LHS and 2563 // RHS are warnings. 2564 const auto *Exp = cast<ConditionalOperator>(this); 2565 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2566 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2567 } 2568 case BinaryConditionalOperatorClass: { 2569 const auto *Exp = cast<BinaryConditionalOperator>(this); 2570 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2571 } 2572 2573 case MemberExprClass: 2574 WarnE = this; 2575 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2576 R1 = SourceRange(Loc, Loc); 2577 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2578 return true; 2579 2580 case ArraySubscriptExprClass: 2581 WarnE = this; 2582 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2583 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2584 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2585 return true; 2586 2587 case CXXOperatorCallExprClass: { 2588 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2589 // overloads as there is no reasonable way to define these such that they 2590 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2591 // warning: operators == and != are commonly typo'ed, and so warning on them 2592 // provides additional value as well. If this list is updated, 2593 // DiagnoseUnusedComparison should be as well. 2594 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2595 switch (Op->getOperator()) { 2596 default: 2597 break; 2598 case OO_EqualEqual: 2599 case OO_ExclaimEqual: 2600 case OO_Less: 2601 case OO_Greater: 2602 case OO_GreaterEqual: 2603 case OO_LessEqual: 2604 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2605 Op->getCallReturnType(Ctx)->isVoidType()) 2606 break; 2607 WarnE = this; 2608 Loc = Op->getOperatorLoc(); 2609 R1 = Op->getSourceRange(); 2610 return true; 2611 } 2612 2613 // Fallthrough for generic call handling. 2614 LLVM_FALLTHROUGH; 2615 } 2616 case CallExprClass: 2617 case CXXMemberCallExprClass: 2618 case UserDefinedLiteralClass: { 2619 // If this is a direct call, get the callee. 2620 const CallExpr *CE = cast<CallExpr>(this); 2621 if (const Decl *FD = CE->getCalleeDecl()) { 2622 // If the callee has attribute pure, const, or warn_unused_result, warn 2623 // about it. void foo() { strlen("bar"); } should warn. 2624 // 2625 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2626 // updated to match for QoI. 2627 if (CE->hasUnusedResultAttr(Ctx) || 2628 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2629 WarnE = this; 2630 Loc = CE->getCallee()->getBeginLoc(); 2631 R1 = CE->getCallee()->getSourceRange(); 2632 2633 if (unsigned NumArgs = CE->getNumArgs()) 2634 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2635 CE->getArg(NumArgs - 1)->getEndLoc()); 2636 return true; 2637 } 2638 } 2639 return false; 2640 } 2641 2642 // If we don't know precisely what we're looking at, let's not warn. 2643 case UnresolvedLookupExprClass: 2644 case CXXUnresolvedConstructExprClass: 2645 case RecoveryExprClass: 2646 return false; 2647 2648 case CXXTemporaryObjectExprClass: 2649 case CXXConstructExprClass: { 2650 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2651 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2652 if (Type->hasAttr<WarnUnusedAttr>() || 2653 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2654 WarnE = this; 2655 Loc = getBeginLoc(); 2656 R1 = getSourceRange(); 2657 return true; 2658 } 2659 } 2660 2661 const auto *CE = cast<CXXConstructExpr>(this); 2662 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2663 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2664 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2665 WarnE = this; 2666 Loc = getBeginLoc(); 2667 R1 = getSourceRange(); 2668 2669 if (unsigned NumArgs = CE->getNumArgs()) 2670 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2671 CE->getArg(NumArgs - 1)->getEndLoc()); 2672 return true; 2673 } 2674 } 2675 2676 return false; 2677 } 2678 2679 case ObjCMessageExprClass: { 2680 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2681 if (Ctx.getLangOpts().ObjCAutoRefCount && 2682 ME->isInstanceMessage() && 2683 !ME->getType()->isVoidType() && 2684 ME->getMethodFamily() == OMF_init) { 2685 WarnE = this; 2686 Loc = getExprLoc(); 2687 R1 = ME->getSourceRange(); 2688 return true; 2689 } 2690 2691 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2692 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2693 WarnE = this; 2694 Loc = getExprLoc(); 2695 return true; 2696 } 2697 2698 return false; 2699 } 2700 2701 case ObjCPropertyRefExprClass: 2702 WarnE = this; 2703 Loc = getExprLoc(); 2704 R1 = getSourceRange(); 2705 return true; 2706 2707 case PseudoObjectExprClass: { 2708 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2709 2710 // Only complain about things that have the form of a getter. 2711 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2712 isa<BinaryOperator>(PO->getSyntacticForm())) 2713 return false; 2714 2715 WarnE = this; 2716 Loc = getExprLoc(); 2717 R1 = getSourceRange(); 2718 return true; 2719 } 2720 2721 case StmtExprClass: { 2722 // Statement exprs don't logically have side effects themselves, but are 2723 // sometimes used in macros in ways that give them a type that is unused. 2724 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2725 // however, if the result of the stmt expr is dead, we don't want to emit a 2726 // warning. 2727 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2728 if (!CS->body_empty()) { 2729 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2730 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2731 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2732 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2733 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2734 } 2735 2736 if (getType()->isVoidType()) 2737 return false; 2738 WarnE = this; 2739 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2740 R1 = getSourceRange(); 2741 return true; 2742 } 2743 case CXXFunctionalCastExprClass: 2744 case CStyleCastExprClass: { 2745 // Ignore an explicit cast to void, except in C++98 if the operand is a 2746 // volatile glvalue for which we would trigger an implicit read in any 2747 // other language mode. (Such an implicit read always happens as part of 2748 // the lvalue conversion in C, and happens in C++ for expressions of all 2749 // forms where it seems likely the user intended to trigger a volatile 2750 // load.) 2751 const CastExpr *CE = cast<CastExpr>(this); 2752 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2753 if (CE->getCastKind() == CK_ToVoid) { 2754 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2755 SubE->isReadIfDiscardedInCPlusPlus11()) { 2756 // Suppress the "unused value" warning for idiomatic usage of 2757 // '(void)var;' used to suppress "unused variable" warnings. 2758 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2759 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2760 if (!VD->isExternallyVisible()) 2761 return false; 2762 2763 // The lvalue-to-rvalue conversion would have no effect for an array. 2764 // It's implausible that the programmer expected this to result in a 2765 // volatile array load, so don't warn. 2766 if (SubE->getType()->isArrayType()) 2767 return false; 2768 2769 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2770 } 2771 return false; 2772 } 2773 2774 // If this is a cast to a constructor conversion, check the operand. 2775 // Otherwise, the result of the cast is unused. 2776 if (CE->getCastKind() == CK_ConstructorConversion) 2777 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2778 if (CE->getCastKind() == CK_Dependent) 2779 return false; 2780 2781 WarnE = this; 2782 if (const CXXFunctionalCastExpr *CXXCE = 2783 dyn_cast<CXXFunctionalCastExpr>(this)) { 2784 Loc = CXXCE->getBeginLoc(); 2785 R1 = CXXCE->getSubExpr()->getSourceRange(); 2786 } else { 2787 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2788 Loc = CStyleCE->getLParenLoc(); 2789 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2790 } 2791 return true; 2792 } 2793 case ImplicitCastExprClass: { 2794 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2795 2796 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2797 if (ICE->getCastKind() == CK_LValueToRValue && 2798 ICE->getSubExpr()->getType().isVolatileQualified()) 2799 return false; 2800 2801 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2802 } 2803 case CXXDefaultArgExprClass: 2804 return (cast<CXXDefaultArgExpr>(this) 2805 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2806 case CXXDefaultInitExprClass: 2807 return (cast<CXXDefaultInitExpr>(this) 2808 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2809 2810 case CXXNewExprClass: 2811 // FIXME: In theory, there might be new expressions that don't have side 2812 // effects (e.g. a placement new with an uninitialized POD). 2813 case CXXDeleteExprClass: 2814 return false; 2815 case MaterializeTemporaryExprClass: 2816 return cast<MaterializeTemporaryExpr>(this) 2817 ->getSubExpr() 2818 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2819 case CXXBindTemporaryExprClass: 2820 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2821 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2822 case ExprWithCleanupsClass: 2823 return cast<ExprWithCleanups>(this)->getSubExpr() 2824 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2825 } 2826 } 2827 2828 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2829 /// returns true, if it is; false otherwise. 2830 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2831 const Expr *E = IgnoreParens(); 2832 switch (E->getStmtClass()) { 2833 default: 2834 return false; 2835 case ObjCIvarRefExprClass: 2836 return true; 2837 case Expr::UnaryOperatorClass: 2838 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2839 case ImplicitCastExprClass: 2840 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2841 case MaterializeTemporaryExprClass: 2842 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2843 Ctx); 2844 case CStyleCastExprClass: 2845 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2846 case DeclRefExprClass: { 2847 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2848 2849 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2850 if (VD->hasGlobalStorage()) 2851 return true; 2852 QualType T = VD->getType(); 2853 // dereferencing to a pointer is always a gc'able candidate, 2854 // unless it is __weak. 2855 return T->isPointerType() && 2856 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2857 } 2858 return false; 2859 } 2860 case MemberExprClass: { 2861 const MemberExpr *M = cast<MemberExpr>(E); 2862 return M->getBase()->isOBJCGCCandidate(Ctx); 2863 } 2864 case ArraySubscriptExprClass: 2865 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2866 } 2867 } 2868 2869 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2870 if (isTypeDependent()) 2871 return false; 2872 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2873 } 2874 2875 QualType Expr::findBoundMemberType(const Expr *expr) { 2876 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2877 2878 // Bound member expressions are always one of these possibilities: 2879 // x->m x.m x->*y x.*y 2880 // (possibly parenthesized) 2881 2882 expr = expr->IgnoreParens(); 2883 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2884 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2885 return mem->getMemberDecl()->getType(); 2886 } 2887 2888 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2889 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2890 ->getPointeeType(); 2891 assert(type->isFunctionType()); 2892 return type; 2893 } 2894 2895 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2896 return QualType(); 2897 } 2898 2899 Expr *Expr::IgnoreImpCasts() { 2900 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 2901 } 2902 2903 Expr *Expr::IgnoreCasts() { 2904 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2905 } 2906 2907 Expr *Expr::IgnoreImplicit() { 2908 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2909 } 2910 2911 Expr *Expr::IgnoreImplicitAsWritten() { 2912 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2913 } 2914 2915 Expr *Expr::IgnoreParens() { 2916 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2917 } 2918 2919 Expr *Expr::IgnoreParenImpCasts() { 2920 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2921 IgnoreImplicitCastsExtraSingleStep); 2922 } 2923 2924 Expr *Expr::IgnoreParenCasts() { 2925 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2926 } 2927 2928 Expr *Expr::IgnoreConversionOperatorSingleStep() { 2929 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2930 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2931 return MCE->getImplicitObjectArgument(); 2932 } 2933 return this; 2934 } 2935 2936 Expr *Expr::IgnoreParenLValueCasts() { 2937 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2938 IgnoreLValueCastsSingleStep); 2939 } 2940 2941 Expr *Expr::IgnoreParenBaseCasts() { 2942 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2943 IgnoreBaseCastsSingleStep); 2944 } 2945 2946 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2947 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 2948 if (auto *CE = dyn_cast<CastExpr>(E)) { 2949 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2950 // ptr<->int casts of the same width. We also ignore all identity casts. 2951 Expr *SubExpr = CE->getSubExpr(); 2952 bool IsIdentityCast = 2953 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2954 bool IsSameWidthCast = (E->getType()->isPointerType() || 2955 E->getType()->isIntegralType(Ctx)) && 2956 (SubExpr->getType()->isPointerType() || 2957 SubExpr->getType()->isIntegralType(Ctx)) && 2958 (Ctx.getTypeSize(E->getType()) == 2959 Ctx.getTypeSize(SubExpr->getType())); 2960 2961 if (IsIdentityCast || IsSameWidthCast) 2962 return SubExpr; 2963 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2964 return NTTP->getReplacement(); 2965 2966 return E; 2967 }; 2968 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2969 IgnoreNoopCastsSingleStep); 2970 } 2971 2972 Expr *Expr::IgnoreUnlessSpelledInSource() { 2973 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 2974 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 2975 auto *SE = Cast->getSubExpr(); 2976 if (SE->getSourceRange() == E->getSourceRange()) 2977 return SE; 2978 } 2979 2980 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 2981 auto NumArgs = C->getNumArgs(); 2982 if (NumArgs == 1 || 2983 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 2984 Expr *A = C->getArg(0); 2985 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 2986 return A; 2987 } 2988 } 2989 return E; 2990 }; 2991 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 2992 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 2993 Expr *ExprNode = C->getImplicitObjectArgument(); 2994 if (ExprNode->getSourceRange() == E->getSourceRange()) { 2995 return ExprNode; 2996 } 2997 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 2998 if (PE->getSourceRange() == C->getSourceRange()) { 2999 return cast<Expr>(PE); 3000 } 3001 } 3002 ExprNode = ExprNode->IgnoreParenImpCasts(); 3003 if (ExprNode->getSourceRange() == E->getSourceRange()) 3004 return ExprNode; 3005 } 3006 return E; 3007 }; 3008 return IgnoreExprNodes( 3009 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3010 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3011 IgnoreImplicitMemberCallSingleStep); 3012 } 3013 3014 bool Expr::isDefaultArgument() const { 3015 const Expr *E = this; 3016 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3017 E = M->getSubExpr(); 3018 3019 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3020 E = ICE->getSubExprAsWritten(); 3021 3022 return isa<CXXDefaultArgExpr>(E); 3023 } 3024 3025 /// Skip over any no-op casts and any temporary-binding 3026 /// expressions. 3027 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3028 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3029 E = M->getSubExpr(); 3030 3031 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3032 if (ICE->getCastKind() == CK_NoOp) 3033 E = ICE->getSubExpr(); 3034 else 3035 break; 3036 } 3037 3038 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3039 E = BE->getSubExpr(); 3040 3041 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3042 if (ICE->getCastKind() == CK_NoOp) 3043 E = ICE->getSubExpr(); 3044 else 3045 break; 3046 } 3047 3048 return E->IgnoreParens(); 3049 } 3050 3051 /// isTemporaryObject - Determines if this expression produces a 3052 /// temporary of the given class type. 3053 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3054 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3055 return false; 3056 3057 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3058 3059 // Temporaries are by definition pr-values of class type. 3060 if (!E->Classify(C).isPRValue()) { 3061 // In this context, property reference is a message call and is pr-value. 3062 if (!isa<ObjCPropertyRefExpr>(E)) 3063 return false; 3064 } 3065 3066 // Black-list a few cases which yield pr-values of class type that don't 3067 // refer to temporaries of that type: 3068 3069 // - implicit derived-to-base conversions 3070 if (isa<ImplicitCastExpr>(E)) { 3071 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3072 case CK_DerivedToBase: 3073 case CK_UncheckedDerivedToBase: 3074 return false; 3075 default: 3076 break; 3077 } 3078 } 3079 3080 // - member expressions (all) 3081 if (isa<MemberExpr>(E)) 3082 return false; 3083 3084 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3085 if (BO->isPtrMemOp()) 3086 return false; 3087 3088 // - opaque values (all) 3089 if (isa<OpaqueValueExpr>(E)) 3090 return false; 3091 3092 return true; 3093 } 3094 3095 bool Expr::isImplicitCXXThis() const { 3096 const Expr *E = this; 3097 3098 // Strip away parentheses and casts we don't care about. 3099 while (true) { 3100 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3101 E = Paren->getSubExpr(); 3102 continue; 3103 } 3104 3105 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3106 if (ICE->getCastKind() == CK_NoOp || 3107 ICE->getCastKind() == CK_LValueToRValue || 3108 ICE->getCastKind() == CK_DerivedToBase || 3109 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3110 E = ICE->getSubExpr(); 3111 continue; 3112 } 3113 } 3114 3115 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3116 if (UnOp->getOpcode() == UO_Extension) { 3117 E = UnOp->getSubExpr(); 3118 continue; 3119 } 3120 } 3121 3122 if (const MaterializeTemporaryExpr *M 3123 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3124 E = M->getSubExpr(); 3125 continue; 3126 } 3127 3128 break; 3129 } 3130 3131 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3132 return This->isImplicit(); 3133 3134 return false; 3135 } 3136 3137 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3138 /// in Exprs is type-dependent. 3139 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3140 for (unsigned I = 0; I < Exprs.size(); ++I) 3141 if (Exprs[I]->isTypeDependent()) 3142 return true; 3143 3144 return false; 3145 } 3146 3147 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3148 const Expr **Culprit) const { 3149 assert(!isValueDependent() && 3150 "Expression evaluator can't be called on a dependent expression."); 3151 3152 // This function is attempting whether an expression is an initializer 3153 // which can be evaluated at compile-time. It very closely parallels 3154 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3155 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3156 // to isEvaluatable most of the time. 3157 // 3158 // If we ever capture reference-binding directly in the AST, we can 3159 // kill the second parameter. 3160 3161 if (IsForRef) { 3162 EvalResult Result; 3163 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3164 return true; 3165 if (Culprit) 3166 *Culprit = this; 3167 return false; 3168 } 3169 3170 switch (getStmtClass()) { 3171 default: break; 3172 case Stmt::ExprWithCleanupsClass: 3173 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3174 Ctx, IsForRef, Culprit); 3175 case StringLiteralClass: 3176 case ObjCEncodeExprClass: 3177 return true; 3178 case CXXTemporaryObjectExprClass: 3179 case CXXConstructExprClass: { 3180 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3181 3182 if (CE->getConstructor()->isTrivial() && 3183 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3184 // Trivial default constructor 3185 if (!CE->getNumArgs()) return true; 3186 3187 // Trivial copy constructor 3188 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3189 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3190 } 3191 3192 break; 3193 } 3194 case ConstantExprClass: { 3195 // FIXME: We should be able to return "true" here, but it can lead to extra 3196 // error messages. E.g. in Sema/array-init.c. 3197 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3198 return Exp->isConstantInitializer(Ctx, false, Culprit); 3199 } 3200 case CompoundLiteralExprClass: { 3201 // This handles gcc's extension that allows global initializers like 3202 // "struct x {int x;} x = (struct x) {};". 3203 // FIXME: This accepts other cases it shouldn't! 3204 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3205 return Exp->isConstantInitializer(Ctx, false, Culprit); 3206 } 3207 case DesignatedInitUpdateExprClass: { 3208 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3209 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3210 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3211 } 3212 case InitListExprClass: { 3213 const InitListExpr *ILE = cast<InitListExpr>(this); 3214 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3215 if (ILE->getType()->isArrayType()) { 3216 unsigned numInits = ILE->getNumInits(); 3217 for (unsigned i = 0; i < numInits; i++) { 3218 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3219 return false; 3220 } 3221 return true; 3222 } 3223 3224 if (ILE->getType()->isRecordType()) { 3225 unsigned ElementNo = 0; 3226 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3227 for (const auto *Field : RD->fields()) { 3228 // If this is a union, skip all the fields that aren't being initialized. 3229 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3230 continue; 3231 3232 // Don't emit anonymous bitfields, they just affect layout. 3233 if (Field->isUnnamedBitfield()) 3234 continue; 3235 3236 if (ElementNo < ILE->getNumInits()) { 3237 const Expr *Elt = ILE->getInit(ElementNo++); 3238 if (Field->isBitField()) { 3239 // Bitfields have to evaluate to an integer. 3240 EvalResult Result; 3241 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3242 if (Culprit) 3243 *Culprit = Elt; 3244 return false; 3245 } 3246 } else { 3247 bool RefType = Field->getType()->isReferenceType(); 3248 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3249 return false; 3250 } 3251 } 3252 } 3253 return true; 3254 } 3255 3256 break; 3257 } 3258 case ImplicitValueInitExprClass: 3259 case NoInitExprClass: 3260 return true; 3261 case ParenExprClass: 3262 return cast<ParenExpr>(this)->getSubExpr() 3263 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3264 case GenericSelectionExprClass: 3265 return cast<GenericSelectionExpr>(this)->getResultExpr() 3266 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3267 case ChooseExprClass: 3268 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3269 if (Culprit) 3270 *Culprit = this; 3271 return false; 3272 } 3273 return cast<ChooseExpr>(this)->getChosenSubExpr() 3274 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3275 case UnaryOperatorClass: { 3276 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3277 if (Exp->getOpcode() == UO_Extension) 3278 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3279 break; 3280 } 3281 case CXXFunctionalCastExprClass: 3282 case CXXStaticCastExprClass: 3283 case ImplicitCastExprClass: 3284 case CStyleCastExprClass: 3285 case ObjCBridgedCastExprClass: 3286 case CXXDynamicCastExprClass: 3287 case CXXReinterpretCastExprClass: 3288 case CXXAddrspaceCastExprClass: 3289 case CXXConstCastExprClass: { 3290 const CastExpr *CE = cast<CastExpr>(this); 3291 3292 // Handle misc casts we want to ignore. 3293 if (CE->getCastKind() == CK_NoOp || 3294 CE->getCastKind() == CK_LValueToRValue || 3295 CE->getCastKind() == CK_ToUnion || 3296 CE->getCastKind() == CK_ConstructorConversion || 3297 CE->getCastKind() == CK_NonAtomicToAtomic || 3298 CE->getCastKind() == CK_AtomicToNonAtomic || 3299 CE->getCastKind() == CK_IntToOCLSampler) 3300 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3301 3302 break; 3303 } 3304 case MaterializeTemporaryExprClass: 3305 return cast<MaterializeTemporaryExpr>(this) 3306 ->getSubExpr() 3307 ->isConstantInitializer(Ctx, false, Culprit); 3308 3309 case SubstNonTypeTemplateParmExprClass: 3310 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3311 ->isConstantInitializer(Ctx, false, Culprit); 3312 case CXXDefaultArgExprClass: 3313 return cast<CXXDefaultArgExpr>(this)->getExpr() 3314 ->isConstantInitializer(Ctx, false, Culprit); 3315 case CXXDefaultInitExprClass: 3316 return cast<CXXDefaultInitExpr>(this)->getExpr() 3317 ->isConstantInitializer(Ctx, false, Culprit); 3318 } 3319 // Allow certain forms of UB in constant initializers: signed integer 3320 // overflow and floating-point division by zero. We'll give a warning on 3321 // these, but they're common enough that we have to accept them. 3322 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3323 return true; 3324 if (Culprit) 3325 *Culprit = this; 3326 return false; 3327 } 3328 3329 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3330 const FunctionDecl* FD = getDirectCallee(); 3331 if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && 3332 FD->getBuiltinID() != Builtin::BI__builtin_assume)) 3333 return false; 3334 3335 const Expr* Arg = getArg(0); 3336 bool ArgVal; 3337 return !Arg->isValueDependent() && 3338 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3339 } 3340 3341 namespace { 3342 /// Look for any side effects within a Stmt. 3343 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3344 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3345 const bool IncludePossibleEffects; 3346 bool HasSideEffects; 3347 3348 public: 3349 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3350 : Inherited(Context), 3351 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3352 3353 bool hasSideEffects() const { return HasSideEffects; } 3354 3355 void VisitDecl(const Decl *D) { 3356 if (!D) 3357 return; 3358 3359 // We assume the caller checks subexpressions (eg, the initializer, VLA 3360 // bounds) for side-effects on our behalf. 3361 if (auto *VD = dyn_cast<VarDecl>(D)) { 3362 // Registering a destructor is a side-effect. 3363 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3364 VD->needsDestruction(Context)) 3365 HasSideEffects = true; 3366 } 3367 } 3368 3369 void VisitDeclStmt(const DeclStmt *DS) { 3370 for (auto *D : DS->decls()) 3371 VisitDecl(D); 3372 Inherited::VisitDeclStmt(DS); 3373 } 3374 3375 void VisitExpr(const Expr *E) { 3376 if (!HasSideEffects && 3377 E->HasSideEffects(Context, IncludePossibleEffects)) 3378 HasSideEffects = true; 3379 } 3380 }; 3381 } 3382 3383 bool Expr::HasSideEffects(const ASTContext &Ctx, 3384 bool IncludePossibleEffects) const { 3385 // In circumstances where we care about definite side effects instead of 3386 // potential side effects, we want to ignore expressions that are part of a 3387 // macro expansion as a potential side effect. 3388 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3389 return false; 3390 3391 switch (getStmtClass()) { 3392 case NoStmtClass: 3393 #define ABSTRACT_STMT(Type) 3394 #define STMT(Type, Base) case Type##Class: 3395 #define EXPR(Type, Base) 3396 #include "clang/AST/StmtNodes.inc" 3397 llvm_unreachable("unexpected Expr kind"); 3398 3399 case DependentScopeDeclRefExprClass: 3400 case CXXUnresolvedConstructExprClass: 3401 case CXXDependentScopeMemberExprClass: 3402 case UnresolvedLookupExprClass: 3403 case UnresolvedMemberExprClass: 3404 case PackExpansionExprClass: 3405 case SubstNonTypeTemplateParmPackExprClass: 3406 case FunctionParmPackExprClass: 3407 case TypoExprClass: 3408 case RecoveryExprClass: 3409 case CXXFoldExprClass: 3410 // Make a conservative assumption for dependent nodes. 3411 return IncludePossibleEffects; 3412 3413 case DeclRefExprClass: 3414 case ObjCIvarRefExprClass: 3415 case PredefinedExprClass: 3416 case IntegerLiteralClass: 3417 case FixedPointLiteralClass: 3418 case FloatingLiteralClass: 3419 case ImaginaryLiteralClass: 3420 case StringLiteralClass: 3421 case CharacterLiteralClass: 3422 case OffsetOfExprClass: 3423 case ImplicitValueInitExprClass: 3424 case UnaryExprOrTypeTraitExprClass: 3425 case AddrLabelExprClass: 3426 case GNUNullExprClass: 3427 case ArrayInitIndexExprClass: 3428 case NoInitExprClass: 3429 case CXXBoolLiteralExprClass: 3430 case CXXNullPtrLiteralExprClass: 3431 case CXXThisExprClass: 3432 case CXXScalarValueInitExprClass: 3433 case TypeTraitExprClass: 3434 case ArrayTypeTraitExprClass: 3435 case ExpressionTraitExprClass: 3436 case CXXNoexceptExprClass: 3437 case SizeOfPackExprClass: 3438 case ObjCStringLiteralClass: 3439 case ObjCEncodeExprClass: 3440 case ObjCBoolLiteralExprClass: 3441 case ObjCAvailabilityCheckExprClass: 3442 case CXXUuidofExprClass: 3443 case OpaqueValueExprClass: 3444 case SourceLocExprClass: 3445 case ConceptSpecializationExprClass: 3446 case RequiresExprClass: 3447 case SYCLUniqueStableNameExprClass: 3448 // These never have a side-effect. 3449 return false; 3450 3451 case ConstantExprClass: 3452 // FIXME: Move this into the "return false;" block above. 3453 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3454 Ctx, IncludePossibleEffects); 3455 3456 case CallExprClass: 3457 case CXXOperatorCallExprClass: 3458 case CXXMemberCallExprClass: 3459 case CUDAKernelCallExprClass: 3460 case UserDefinedLiteralClass: { 3461 // We don't know a call definitely has side effects, except for calls 3462 // to pure/const functions that definitely don't. 3463 // If the call itself is considered side-effect free, check the operands. 3464 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3465 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3466 if (IsPure || !IncludePossibleEffects) 3467 break; 3468 return true; 3469 } 3470 3471 case BlockExprClass: 3472 case CXXBindTemporaryExprClass: 3473 if (!IncludePossibleEffects) 3474 break; 3475 return true; 3476 3477 case MSPropertyRefExprClass: 3478 case MSPropertySubscriptExprClass: 3479 case CompoundAssignOperatorClass: 3480 case VAArgExprClass: 3481 case AtomicExprClass: 3482 case CXXThrowExprClass: 3483 case CXXNewExprClass: 3484 case CXXDeleteExprClass: 3485 case CoawaitExprClass: 3486 case DependentCoawaitExprClass: 3487 case CoyieldExprClass: 3488 // These always have a side-effect. 3489 return true; 3490 3491 case StmtExprClass: { 3492 // StmtExprs have a side-effect if any substatement does. 3493 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3494 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3495 return Finder.hasSideEffects(); 3496 } 3497 3498 case ExprWithCleanupsClass: 3499 if (IncludePossibleEffects) 3500 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3501 return true; 3502 break; 3503 3504 case ParenExprClass: 3505 case ArraySubscriptExprClass: 3506 case MatrixSubscriptExprClass: 3507 case OMPArraySectionExprClass: 3508 case OMPArrayShapingExprClass: 3509 case OMPIteratorExprClass: 3510 case MemberExprClass: 3511 case ConditionalOperatorClass: 3512 case BinaryConditionalOperatorClass: 3513 case CompoundLiteralExprClass: 3514 case ExtVectorElementExprClass: 3515 case DesignatedInitExprClass: 3516 case DesignatedInitUpdateExprClass: 3517 case ArrayInitLoopExprClass: 3518 case ParenListExprClass: 3519 case CXXPseudoDestructorExprClass: 3520 case CXXRewrittenBinaryOperatorClass: 3521 case CXXStdInitializerListExprClass: 3522 case SubstNonTypeTemplateParmExprClass: 3523 case MaterializeTemporaryExprClass: 3524 case ShuffleVectorExprClass: 3525 case ConvertVectorExprClass: 3526 case AsTypeExprClass: 3527 // These have a side-effect if any subexpression does. 3528 break; 3529 3530 case UnaryOperatorClass: 3531 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3532 return true; 3533 break; 3534 3535 case BinaryOperatorClass: 3536 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3537 return true; 3538 break; 3539 3540 case InitListExprClass: 3541 // FIXME: The children for an InitListExpr doesn't include the array filler. 3542 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3543 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3544 return true; 3545 break; 3546 3547 case GenericSelectionExprClass: 3548 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3549 HasSideEffects(Ctx, IncludePossibleEffects); 3550 3551 case ChooseExprClass: 3552 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3553 Ctx, IncludePossibleEffects); 3554 3555 case CXXDefaultArgExprClass: 3556 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3557 Ctx, IncludePossibleEffects); 3558 3559 case CXXDefaultInitExprClass: { 3560 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3561 if (const Expr *E = FD->getInClassInitializer()) 3562 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3563 // If we've not yet parsed the initializer, assume it has side-effects. 3564 return true; 3565 } 3566 3567 case CXXDynamicCastExprClass: { 3568 // A dynamic_cast expression has side-effects if it can throw. 3569 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3570 if (DCE->getTypeAsWritten()->isReferenceType() && 3571 DCE->getCastKind() == CK_Dynamic) 3572 return true; 3573 } 3574 LLVM_FALLTHROUGH; 3575 case ImplicitCastExprClass: 3576 case CStyleCastExprClass: 3577 case CXXStaticCastExprClass: 3578 case CXXReinterpretCastExprClass: 3579 case CXXConstCastExprClass: 3580 case CXXAddrspaceCastExprClass: 3581 case CXXFunctionalCastExprClass: 3582 case BuiltinBitCastExprClass: { 3583 // While volatile reads are side-effecting in both C and C++, we treat them 3584 // as having possible (not definite) side-effects. This allows idiomatic 3585 // code to behave without warning, such as sizeof(*v) for a volatile- 3586 // qualified pointer. 3587 if (!IncludePossibleEffects) 3588 break; 3589 3590 const CastExpr *CE = cast<CastExpr>(this); 3591 if (CE->getCastKind() == CK_LValueToRValue && 3592 CE->getSubExpr()->getType().isVolatileQualified()) 3593 return true; 3594 break; 3595 } 3596 3597 case CXXTypeidExprClass: 3598 // typeid might throw if its subexpression is potentially-evaluated, so has 3599 // side-effects in that case whether or not its subexpression does. 3600 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3601 3602 case CXXConstructExprClass: 3603 case CXXTemporaryObjectExprClass: { 3604 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3605 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3606 return true; 3607 // A trivial constructor does not add any side-effects of its own. Just look 3608 // at its arguments. 3609 break; 3610 } 3611 3612 case CXXInheritedCtorInitExprClass: { 3613 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3614 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3615 return true; 3616 break; 3617 } 3618 3619 case LambdaExprClass: { 3620 const LambdaExpr *LE = cast<LambdaExpr>(this); 3621 for (Expr *E : LE->capture_inits()) 3622 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3623 return true; 3624 return false; 3625 } 3626 3627 case PseudoObjectExprClass: { 3628 // Only look for side-effects in the semantic form, and look past 3629 // OpaqueValueExpr bindings in that form. 3630 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3631 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3632 E = PO->semantics_end(); 3633 I != E; ++I) { 3634 const Expr *Subexpr = *I; 3635 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3636 Subexpr = OVE->getSourceExpr(); 3637 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3638 return true; 3639 } 3640 return false; 3641 } 3642 3643 case ObjCBoxedExprClass: 3644 case ObjCArrayLiteralClass: 3645 case ObjCDictionaryLiteralClass: 3646 case ObjCSelectorExprClass: 3647 case ObjCProtocolExprClass: 3648 case ObjCIsaExprClass: 3649 case ObjCIndirectCopyRestoreExprClass: 3650 case ObjCSubscriptRefExprClass: 3651 case ObjCBridgedCastExprClass: 3652 case ObjCMessageExprClass: 3653 case ObjCPropertyRefExprClass: 3654 // FIXME: Classify these cases better. 3655 if (IncludePossibleEffects) 3656 return true; 3657 break; 3658 } 3659 3660 // Recurse to children. 3661 for (const Stmt *SubStmt : children()) 3662 if (SubStmt && 3663 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3664 return true; 3665 3666 return false; 3667 } 3668 3669 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3670 if (auto Call = dyn_cast<CallExpr>(this)) 3671 return Call->getFPFeaturesInEffect(LO); 3672 if (auto UO = dyn_cast<UnaryOperator>(this)) 3673 return UO->getFPFeaturesInEffect(LO); 3674 if (auto BO = dyn_cast<BinaryOperator>(this)) 3675 return BO->getFPFeaturesInEffect(LO); 3676 if (auto Cast = dyn_cast<CastExpr>(this)) 3677 return Cast->getFPFeaturesInEffect(LO); 3678 return FPOptions::defaultWithoutTrailingStorage(LO); 3679 } 3680 3681 namespace { 3682 /// Look for a call to a non-trivial function within an expression. 3683 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3684 { 3685 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3686 3687 bool NonTrivial; 3688 3689 public: 3690 explicit NonTrivialCallFinder(const ASTContext &Context) 3691 : Inherited(Context), NonTrivial(false) { } 3692 3693 bool hasNonTrivialCall() const { return NonTrivial; } 3694 3695 void VisitCallExpr(const CallExpr *E) { 3696 if (const CXXMethodDecl *Method 3697 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3698 if (Method->isTrivial()) { 3699 // Recurse to children of the call. 3700 Inherited::VisitStmt(E); 3701 return; 3702 } 3703 } 3704 3705 NonTrivial = true; 3706 } 3707 3708 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3709 if (E->getConstructor()->isTrivial()) { 3710 // Recurse to children of the call. 3711 Inherited::VisitStmt(E); 3712 return; 3713 } 3714 3715 NonTrivial = true; 3716 } 3717 3718 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3719 if (E->getTemporary()->getDestructor()->isTrivial()) { 3720 Inherited::VisitStmt(E); 3721 return; 3722 } 3723 3724 NonTrivial = true; 3725 } 3726 }; 3727 } 3728 3729 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3730 NonTrivialCallFinder Finder(Ctx); 3731 Finder.Visit(this); 3732 return Finder.hasNonTrivialCall(); 3733 } 3734 3735 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3736 /// pointer constant or not, as well as the specific kind of constant detected. 3737 /// Null pointer constants can be integer constant expressions with the 3738 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3739 /// (a GNU extension). 3740 Expr::NullPointerConstantKind 3741 Expr::isNullPointerConstant(ASTContext &Ctx, 3742 NullPointerConstantValueDependence NPC) const { 3743 if (isValueDependent() && 3744 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3745 // Error-dependent expr should never be a null pointer. 3746 if (containsErrors()) 3747 return NPCK_NotNull; 3748 switch (NPC) { 3749 case NPC_NeverValueDependent: 3750 llvm_unreachable("Unexpected value dependent expression!"); 3751 case NPC_ValueDependentIsNull: 3752 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3753 return NPCK_ZeroExpression; 3754 else 3755 return NPCK_NotNull; 3756 3757 case NPC_ValueDependentIsNotNull: 3758 return NPCK_NotNull; 3759 } 3760 } 3761 3762 // Strip off a cast to void*, if it exists. Except in C++. 3763 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3764 if (!Ctx.getLangOpts().CPlusPlus) { 3765 // Check that it is a cast to void*. 3766 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3767 QualType Pointee = PT->getPointeeType(); 3768 Qualifiers Qs = Pointee.getQualifiers(); 3769 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3770 // has non-default address space it is not treated as nullptr. 3771 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3772 // since it cannot be assigned to a pointer to constant address space. 3773 if (Ctx.getLangOpts().OpenCL && 3774 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3775 Qs.removeAddressSpace(); 3776 3777 if (Pointee->isVoidType() && Qs.empty() && // to void* 3778 CE->getSubExpr()->getType()->isIntegerType()) // from int 3779 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3780 } 3781 } 3782 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3783 // Ignore the ImplicitCastExpr type entirely. 3784 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3785 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3786 // Accept ((void*)0) as a null pointer constant, as many other 3787 // implementations do. 3788 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3789 } else if (const GenericSelectionExpr *GE = 3790 dyn_cast<GenericSelectionExpr>(this)) { 3791 if (GE->isResultDependent()) 3792 return NPCK_NotNull; 3793 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3794 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3795 if (CE->isConditionDependent()) 3796 return NPCK_NotNull; 3797 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3798 } else if (const CXXDefaultArgExpr *DefaultArg 3799 = dyn_cast<CXXDefaultArgExpr>(this)) { 3800 // See through default argument expressions. 3801 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3802 } else if (const CXXDefaultInitExpr *DefaultInit 3803 = dyn_cast<CXXDefaultInitExpr>(this)) { 3804 // See through default initializer expressions. 3805 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3806 } else if (isa<GNUNullExpr>(this)) { 3807 // The GNU __null extension is always a null pointer constant. 3808 return NPCK_GNUNull; 3809 } else if (const MaterializeTemporaryExpr *M 3810 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3811 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3812 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3813 if (const Expr *Source = OVE->getSourceExpr()) 3814 return Source->isNullPointerConstant(Ctx, NPC); 3815 } 3816 3817 // If the expression has no type information, it cannot be a null pointer 3818 // constant. 3819 if (getType().isNull()) 3820 return NPCK_NotNull; 3821 3822 // C++11 nullptr_t is always a null pointer constant. 3823 if (getType()->isNullPtrType()) 3824 return NPCK_CXX11_nullptr; 3825 3826 if (const RecordType *UT = getType()->getAsUnionType()) 3827 if (!Ctx.getLangOpts().CPlusPlus11 && 3828 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3829 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3830 const Expr *InitExpr = CLE->getInitializer(); 3831 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3832 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3833 } 3834 // This expression must be an integer type. 3835 if (!getType()->isIntegerType() || 3836 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3837 return NPCK_NotNull; 3838 3839 if (Ctx.getLangOpts().CPlusPlus11) { 3840 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3841 // value zero or a prvalue of type std::nullptr_t. 3842 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3843 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3844 if (Lit && !Lit->getValue()) 3845 return NPCK_ZeroLiteral; 3846 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3847 return NPCK_NotNull; 3848 } else { 3849 // If we have an integer constant expression, we need to *evaluate* it and 3850 // test for the value 0. 3851 if (!isIntegerConstantExpr(Ctx)) 3852 return NPCK_NotNull; 3853 } 3854 3855 if (EvaluateKnownConstInt(Ctx) != 0) 3856 return NPCK_NotNull; 3857 3858 if (isa<IntegerLiteral>(this)) 3859 return NPCK_ZeroLiteral; 3860 return NPCK_ZeroExpression; 3861 } 3862 3863 /// If this expression is an l-value for an Objective C 3864 /// property, find the underlying property reference expression. 3865 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3866 const Expr *E = this; 3867 while (true) { 3868 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 3869 "expression is not a property reference"); 3870 E = E->IgnoreParenCasts(); 3871 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3872 if (BO->getOpcode() == BO_Comma) { 3873 E = BO->getRHS(); 3874 continue; 3875 } 3876 } 3877 3878 break; 3879 } 3880 3881 return cast<ObjCPropertyRefExpr>(E); 3882 } 3883 3884 bool Expr::isObjCSelfExpr() const { 3885 const Expr *E = IgnoreParenImpCasts(); 3886 3887 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3888 if (!DRE) 3889 return false; 3890 3891 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3892 if (!Param) 3893 return false; 3894 3895 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3896 if (!M) 3897 return false; 3898 3899 return M->getSelfDecl() == Param; 3900 } 3901 3902 FieldDecl *Expr::getSourceBitField() { 3903 Expr *E = this->IgnoreParens(); 3904 3905 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3906 if (ICE->getCastKind() == CK_LValueToRValue || 3907 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 3908 E = ICE->getSubExpr()->IgnoreParens(); 3909 else 3910 break; 3911 } 3912 3913 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3914 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3915 if (Field->isBitField()) 3916 return Field; 3917 3918 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3919 FieldDecl *Ivar = IvarRef->getDecl(); 3920 if (Ivar->isBitField()) 3921 return Ivar; 3922 } 3923 3924 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3925 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3926 if (Field->isBitField()) 3927 return Field; 3928 3929 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3930 if (Expr *E = BD->getBinding()) 3931 return E->getSourceBitField(); 3932 } 3933 3934 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3935 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3936 return BinOp->getLHS()->getSourceBitField(); 3937 3938 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3939 return BinOp->getRHS()->getSourceBitField(); 3940 } 3941 3942 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3943 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3944 return UnOp->getSubExpr()->getSourceBitField(); 3945 3946 return nullptr; 3947 } 3948 3949 bool Expr::refersToVectorElement() const { 3950 // FIXME: Why do we not just look at the ObjectKind here? 3951 const Expr *E = this->IgnoreParens(); 3952 3953 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3954 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 3955 E = ICE->getSubExpr()->IgnoreParens(); 3956 else 3957 break; 3958 } 3959 3960 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3961 return ASE->getBase()->getType()->isVectorType(); 3962 3963 if (isa<ExtVectorElementExpr>(E)) 3964 return true; 3965 3966 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3967 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3968 if (auto *E = BD->getBinding()) 3969 return E->refersToVectorElement(); 3970 3971 return false; 3972 } 3973 3974 bool Expr::refersToGlobalRegisterVar() const { 3975 const Expr *E = this->IgnoreParenImpCasts(); 3976 3977 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3978 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3979 if (VD->getStorageClass() == SC_Register && 3980 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3981 return true; 3982 3983 return false; 3984 } 3985 3986 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 3987 E1 = E1->IgnoreParens(); 3988 E2 = E2->IgnoreParens(); 3989 3990 if (E1->getStmtClass() != E2->getStmtClass()) 3991 return false; 3992 3993 switch (E1->getStmtClass()) { 3994 default: 3995 return false; 3996 case CXXThisExprClass: 3997 return true; 3998 case DeclRefExprClass: { 3999 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4000 // template parameters. 4001 const auto *DRE1 = cast<DeclRefExpr>(E1); 4002 const auto *DRE2 = cast<DeclRefExpr>(E2); 4003 return DRE1->isPRValue() && DRE2->isPRValue() && 4004 DRE1->getDecl() == DRE2->getDecl(); 4005 } 4006 case ImplicitCastExprClass: { 4007 // Peel off implicit casts. 4008 while (true) { 4009 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4010 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4011 if (!ICE1 || !ICE2) 4012 return false; 4013 if (ICE1->getCastKind() != ICE2->getCastKind()) 4014 return false; 4015 E1 = ICE1->getSubExpr()->IgnoreParens(); 4016 E2 = ICE2->getSubExpr()->IgnoreParens(); 4017 // The final cast must be one of these types. 4018 if (ICE1->getCastKind() == CK_LValueToRValue || 4019 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4020 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4021 break; 4022 } 4023 } 4024 4025 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4026 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4027 if (DRE1 && DRE2) 4028 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4029 4030 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4031 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4032 if (Ivar1 && Ivar2) { 4033 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4034 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4035 } 4036 4037 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4038 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4039 if (Array1 && Array2) { 4040 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4041 return false; 4042 4043 auto Idx1 = Array1->getIdx(); 4044 auto Idx2 = Array2->getIdx(); 4045 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4046 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4047 if (Integer1 && Integer2) { 4048 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4049 Integer2->getValue())) 4050 return false; 4051 } else { 4052 if (!isSameComparisonOperand(Idx1, Idx2)) 4053 return false; 4054 } 4055 4056 return true; 4057 } 4058 4059 // Walk the MemberExpr chain. 4060 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4061 const auto *ME1 = cast<MemberExpr>(E1); 4062 const auto *ME2 = cast<MemberExpr>(E2); 4063 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4064 return false; 4065 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4066 if (D->isStaticDataMember()) 4067 return true; 4068 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4069 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4070 } 4071 4072 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4073 return true; 4074 4075 // A static member variable can end the MemberExpr chain with either 4076 // a MemberExpr or a DeclRefExpr. 4077 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4078 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4079 return DRE->getDecl(); 4080 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4081 return ME->getMemberDecl(); 4082 return nullptr; 4083 }; 4084 4085 const ValueDecl *VD1 = getAnyDecl(E1); 4086 const ValueDecl *VD2 = getAnyDecl(E2); 4087 return declaresSameEntity(VD1, VD2); 4088 } 4089 } 4090 } 4091 4092 /// isArrow - Return true if the base expression is a pointer to vector, 4093 /// return false if the base expression is a vector. 4094 bool ExtVectorElementExpr::isArrow() const { 4095 return getBase()->getType()->isPointerType(); 4096 } 4097 4098 unsigned ExtVectorElementExpr::getNumElements() const { 4099 if (const VectorType *VT = getType()->getAs<VectorType>()) 4100 return VT->getNumElements(); 4101 return 1; 4102 } 4103 4104 /// containsDuplicateElements - Return true if any element access is repeated. 4105 bool ExtVectorElementExpr::containsDuplicateElements() const { 4106 // FIXME: Refactor this code to an accessor on the AST node which returns the 4107 // "type" of component access, and share with code below and in Sema. 4108 StringRef Comp = Accessor->getName(); 4109 4110 // Halving swizzles do not contain duplicate elements. 4111 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4112 return false; 4113 4114 // Advance past s-char prefix on hex swizzles. 4115 if (Comp[0] == 's' || Comp[0] == 'S') 4116 Comp = Comp.substr(1); 4117 4118 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4119 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 4120 return true; 4121 4122 return false; 4123 } 4124 4125 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4126 void ExtVectorElementExpr::getEncodedElementAccess( 4127 SmallVectorImpl<uint32_t> &Elts) const { 4128 StringRef Comp = Accessor->getName(); 4129 bool isNumericAccessor = false; 4130 if (Comp[0] == 's' || Comp[0] == 'S') { 4131 Comp = Comp.substr(1); 4132 isNumericAccessor = true; 4133 } 4134 4135 bool isHi = Comp == "hi"; 4136 bool isLo = Comp == "lo"; 4137 bool isEven = Comp == "even"; 4138 bool isOdd = Comp == "odd"; 4139 4140 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4141 uint64_t Index; 4142 4143 if (isHi) 4144 Index = e + i; 4145 else if (isLo) 4146 Index = i; 4147 else if (isEven) 4148 Index = 2 * i; 4149 else if (isOdd) 4150 Index = 2 * i + 1; 4151 else 4152 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4153 4154 Elts.push_back(Index); 4155 } 4156 } 4157 4158 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4159 QualType Type, SourceLocation BLoc, 4160 SourceLocation RP) 4161 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4162 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4163 SubExprs = new (C) Stmt*[args.size()]; 4164 for (unsigned i = 0; i != args.size(); i++) 4165 SubExprs[i] = args[i]; 4166 4167 setDependence(computeDependence(this)); 4168 } 4169 4170 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4171 if (SubExprs) C.Deallocate(SubExprs); 4172 4173 this->NumExprs = Exprs.size(); 4174 SubExprs = new (C) Stmt*[NumExprs]; 4175 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4176 } 4177 4178 GenericSelectionExpr::GenericSelectionExpr( 4179 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4180 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4181 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4182 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4183 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4184 AssocExprs[ResultIndex]->getValueKind(), 4185 AssocExprs[ResultIndex]->getObjectKind()), 4186 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4187 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4188 assert(AssocTypes.size() == AssocExprs.size() && 4189 "Must have the same number of association expressions" 4190 " and TypeSourceInfo!"); 4191 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4192 4193 GenericSelectionExprBits.GenericLoc = GenericLoc; 4194 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4195 std::copy(AssocExprs.begin(), AssocExprs.end(), 4196 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4197 std::copy(AssocTypes.begin(), AssocTypes.end(), 4198 getTrailingObjects<TypeSourceInfo *>()); 4199 4200 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4201 } 4202 4203 GenericSelectionExpr::GenericSelectionExpr( 4204 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4205 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4206 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4207 bool ContainsUnexpandedParameterPack) 4208 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4209 OK_Ordinary), 4210 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4211 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4212 assert(AssocTypes.size() == AssocExprs.size() && 4213 "Must have the same number of association expressions" 4214 " and TypeSourceInfo!"); 4215 4216 GenericSelectionExprBits.GenericLoc = GenericLoc; 4217 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4218 std::copy(AssocExprs.begin(), AssocExprs.end(), 4219 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4220 std::copy(AssocTypes.begin(), AssocTypes.end(), 4221 getTrailingObjects<TypeSourceInfo *>()); 4222 4223 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4224 } 4225 4226 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4227 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4228 4229 GenericSelectionExpr *GenericSelectionExpr::Create( 4230 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4231 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4232 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4233 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4234 unsigned NumAssocs = AssocExprs.size(); 4235 void *Mem = Context.Allocate( 4236 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4237 alignof(GenericSelectionExpr)); 4238 return new (Mem) GenericSelectionExpr( 4239 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4240 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4241 } 4242 4243 GenericSelectionExpr *GenericSelectionExpr::Create( 4244 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4245 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4246 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4247 bool ContainsUnexpandedParameterPack) { 4248 unsigned NumAssocs = AssocExprs.size(); 4249 void *Mem = Context.Allocate( 4250 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4251 alignof(GenericSelectionExpr)); 4252 return new (Mem) GenericSelectionExpr( 4253 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4254 RParenLoc, ContainsUnexpandedParameterPack); 4255 } 4256 4257 GenericSelectionExpr * 4258 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4259 unsigned NumAssocs) { 4260 void *Mem = Context.Allocate( 4261 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4262 alignof(GenericSelectionExpr)); 4263 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4264 } 4265 4266 //===----------------------------------------------------------------------===// 4267 // DesignatedInitExpr 4268 //===----------------------------------------------------------------------===// 4269 4270 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4271 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4272 if (Field.NameOrField & 0x01) 4273 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01); 4274 return getField()->getIdentifier(); 4275 } 4276 4277 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4278 llvm::ArrayRef<Designator> Designators, 4279 SourceLocation EqualOrColonLoc, 4280 bool GNUSyntax, 4281 ArrayRef<Expr *> IndexExprs, Expr *Init) 4282 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4283 Init->getObjectKind()), 4284 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4285 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4286 this->Designators = new (C) Designator[NumDesignators]; 4287 4288 // Record the initializer itself. 4289 child_iterator Child = child_begin(); 4290 *Child++ = Init; 4291 4292 // Copy the designators and their subexpressions, computing 4293 // value-dependence along the way. 4294 unsigned IndexIdx = 0; 4295 for (unsigned I = 0; I != NumDesignators; ++I) { 4296 this->Designators[I] = Designators[I]; 4297 if (this->Designators[I].isArrayDesignator()) { 4298 // Copy the index expressions into permanent storage. 4299 *Child++ = IndexExprs[IndexIdx++]; 4300 } else if (this->Designators[I].isArrayRangeDesignator()) { 4301 // Copy the start/end expressions into permanent storage. 4302 *Child++ = IndexExprs[IndexIdx++]; 4303 *Child++ = IndexExprs[IndexIdx++]; 4304 } 4305 } 4306 4307 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4308 setDependence(computeDependence(this)); 4309 } 4310 4311 DesignatedInitExpr * 4312 DesignatedInitExpr::Create(const ASTContext &C, 4313 llvm::ArrayRef<Designator> Designators, 4314 ArrayRef<Expr*> IndexExprs, 4315 SourceLocation ColonOrEqualLoc, 4316 bool UsesColonSyntax, Expr *Init) { 4317 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4318 alignof(DesignatedInitExpr)); 4319 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4320 ColonOrEqualLoc, UsesColonSyntax, 4321 IndexExprs, Init); 4322 } 4323 4324 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4325 unsigned NumIndexExprs) { 4326 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4327 alignof(DesignatedInitExpr)); 4328 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4329 } 4330 4331 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4332 const Designator *Desigs, 4333 unsigned NumDesigs) { 4334 Designators = new (C) Designator[NumDesigs]; 4335 NumDesignators = NumDesigs; 4336 for (unsigned I = 0; I != NumDesigs; ++I) 4337 Designators[I] = Desigs[I]; 4338 } 4339 4340 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4341 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4342 if (size() == 1) 4343 return DIE->getDesignator(0)->getSourceRange(); 4344 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4345 DIE->getDesignator(size() - 1)->getEndLoc()); 4346 } 4347 4348 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4349 SourceLocation StartLoc; 4350 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4351 Designator &First = *DIE->getDesignator(0); 4352 if (First.isFieldDesignator()) 4353 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc; 4354 else 4355 StartLoc = First.ArrayOrRange.LBracketLoc; 4356 return StartLoc; 4357 } 4358 4359 SourceLocation DesignatedInitExpr::getEndLoc() const { 4360 return getInit()->getEndLoc(); 4361 } 4362 4363 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4364 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4365 return getSubExpr(D.ArrayOrRange.Index + 1); 4366 } 4367 4368 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4369 assert(D.Kind == Designator::ArrayRangeDesignator && 4370 "Requires array range designator"); 4371 return getSubExpr(D.ArrayOrRange.Index + 1); 4372 } 4373 4374 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4375 assert(D.Kind == Designator::ArrayRangeDesignator && 4376 "Requires array range designator"); 4377 return getSubExpr(D.ArrayOrRange.Index + 2); 4378 } 4379 4380 /// Replaces the designator at index @p Idx with the series 4381 /// of designators in [First, Last). 4382 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4383 const Designator *First, 4384 const Designator *Last) { 4385 unsigned NumNewDesignators = Last - First; 4386 if (NumNewDesignators == 0) { 4387 std::copy_backward(Designators + Idx + 1, 4388 Designators + NumDesignators, 4389 Designators + Idx); 4390 --NumNewDesignators; 4391 return; 4392 } 4393 if (NumNewDesignators == 1) { 4394 Designators[Idx] = *First; 4395 return; 4396 } 4397 4398 Designator *NewDesignators 4399 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4400 std::copy(Designators, Designators + Idx, NewDesignators); 4401 std::copy(First, Last, NewDesignators + Idx); 4402 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4403 NewDesignators + Idx + NumNewDesignators); 4404 Designators = NewDesignators; 4405 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4406 } 4407 4408 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4409 SourceLocation lBraceLoc, 4410 Expr *baseExpr, 4411 SourceLocation rBraceLoc) 4412 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4413 OK_Ordinary) { 4414 BaseAndUpdaterExprs[0] = baseExpr; 4415 4416 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4417 ILE->setType(baseExpr->getType()); 4418 BaseAndUpdaterExprs[1] = ILE; 4419 4420 // FIXME: this is wrong, set it correctly. 4421 setDependence(ExprDependence::None); 4422 } 4423 4424 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4425 return getBase()->getBeginLoc(); 4426 } 4427 4428 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4429 return getBase()->getEndLoc(); 4430 } 4431 4432 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4433 SourceLocation RParenLoc) 4434 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4435 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4436 ParenListExprBits.NumExprs = Exprs.size(); 4437 4438 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4439 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4440 setDependence(computeDependence(this)); 4441 } 4442 4443 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4444 : Expr(ParenListExprClass, Empty) { 4445 ParenListExprBits.NumExprs = NumExprs; 4446 } 4447 4448 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4449 SourceLocation LParenLoc, 4450 ArrayRef<Expr *> Exprs, 4451 SourceLocation RParenLoc) { 4452 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4453 alignof(ParenListExpr)); 4454 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4455 } 4456 4457 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4458 unsigned NumExprs) { 4459 void *Mem = 4460 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4461 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4462 } 4463 4464 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4465 Opcode opc, QualType ResTy, ExprValueKind VK, 4466 ExprObjectKind OK, SourceLocation opLoc, 4467 FPOptionsOverride FPFeatures) 4468 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4469 BinaryOperatorBits.Opc = opc; 4470 assert(!isCompoundAssignmentOp() && 4471 "Use CompoundAssignOperator for compound assignments"); 4472 BinaryOperatorBits.OpLoc = opLoc; 4473 SubExprs[LHS] = lhs; 4474 SubExprs[RHS] = rhs; 4475 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4476 if (hasStoredFPFeatures()) 4477 setStoredFPFeatures(FPFeatures); 4478 setDependence(computeDependence(this)); 4479 } 4480 4481 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4482 Opcode opc, QualType ResTy, ExprValueKind VK, 4483 ExprObjectKind OK, SourceLocation opLoc, 4484 FPOptionsOverride FPFeatures, bool dead2) 4485 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4486 BinaryOperatorBits.Opc = opc; 4487 assert(isCompoundAssignmentOp() && 4488 "Use CompoundAssignOperator for compound assignments"); 4489 BinaryOperatorBits.OpLoc = opLoc; 4490 SubExprs[LHS] = lhs; 4491 SubExprs[RHS] = rhs; 4492 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4493 if (hasStoredFPFeatures()) 4494 setStoredFPFeatures(FPFeatures); 4495 setDependence(computeDependence(this)); 4496 } 4497 4498 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4499 bool HasFPFeatures) { 4500 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4501 void *Mem = 4502 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4503 return new (Mem) BinaryOperator(EmptyShell()); 4504 } 4505 4506 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4507 Expr *rhs, Opcode opc, QualType ResTy, 4508 ExprValueKind VK, ExprObjectKind OK, 4509 SourceLocation opLoc, 4510 FPOptionsOverride FPFeatures) { 4511 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4512 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4513 void *Mem = 4514 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4515 return new (Mem) 4516 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4517 } 4518 4519 CompoundAssignOperator * 4520 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4521 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4522 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4523 alignof(CompoundAssignOperator)); 4524 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4525 } 4526 4527 CompoundAssignOperator * 4528 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4529 Opcode opc, QualType ResTy, ExprValueKind VK, 4530 ExprObjectKind OK, SourceLocation opLoc, 4531 FPOptionsOverride FPFeatures, 4532 QualType CompLHSType, QualType CompResultType) { 4533 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4534 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4535 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4536 alignof(CompoundAssignOperator)); 4537 return new (Mem) 4538 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4539 CompLHSType, CompResultType); 4540 } 4541 4542 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4543 bool hasFPFeatures) { 4544 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4545 alignof(UnaryOperator)); 4546 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4547 } 4548 4549 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4550 QualType type, ExprValueKind VK, ExprObjectKind OK, 4551 SourceLocation l, bool CanOverflow, 4552 FPOptionsOverride FPFeatures) 4553 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4554 UnaryOperatorBits.Opc = opc; 4555 UnaryOperatorBits.CanOverflow = CanOverflow; 4556 UnaryOperatorBits.Loc = l; 4557 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4558 if (hasStoredFPFeatures()) 4559 setStoredFPFeatures(FPFeatures); 4560 setDependence(computeDependence(this, Ctx)); 4561 } 4562 4563 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4564 Opcode opc, QualType type, 4565 ExprValueKind VK, ExprObjectKind OK, 4566 SourceLocation l, bool CanOverflow, 4567 FPOptionsOverride FPFeatures) { 4568 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4569 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4570 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4571 return new (Mem) 4572 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4573 } 4574 4575 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4576 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4577 e = ewc->getSubExpr(); 4578 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4579 e = m->getSubExpr(); 4580 e = cast<CXXConstructExpr>(e)->getArg(0); 4581 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4582 e = ice->getSubExpr(); 4583 return cast<OpaqueValueExpr>(e); 4584 } 4585 4586 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4587 EmptyShell sh, 4588 unsigned numSemanticExprs) { 4589 void *buffer = 4590 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4591 alignof(PseudoObjectExpr)); 4592 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4593 } 4594 4595 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4596 : Expr(PseudoObjectExprClass, shell) { 4597 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4598 } 4599 4600 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4601 ArrayRef<Expr*> semantics, 4602 unsigned resultIndex) { 4603 assert(syntax && "no syntactic expression!"); 4604 assert(semantics.size() && "no semantic expressions!"); 4605 4606 QualType type; 4607 ExprValueKind VK; 4608 if (resultIndex == NoResult) { 4609 type = C.VoidTy; 4610 VK = VK_PRValue; 4611 } else { 4612 assert(resultIndex < semantics.size()); 4613 type = semantics[resultIndex]->getType(); 4614 VK = semantics[resultIndex]->getValueKind(); 4615 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4616 } 4617 4618 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4619 alignof(PseudoObjectExpr)); 4620 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4621 resultIndex); 4622 } 4623 4624 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4625 Expr *syntax, ArrayRef<Expr *> semantics, 4626 unsigned resultIndex) 4627 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4628 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4629 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4630 4631 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4632 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4633 getSubExprsBuffer()[i] = E; 4634 4635 if (isa<OpaqueValueExpr>(E)) 4636 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4637 "opaque-value semantic expressions for pseudo-object " 4638 "operations must have sources"); 4639 } 4640 4641 setDependence(computeDependence(this)); 4642 } 4643 4644 //===----------------------------------------------------------------------===// 4645 // Child Iterators for iterating over subexpressions/substatements 4646 //===----------------------------------------------------------------------===// 4647 4648 // UnaryExprOrTypeTraitExpr 4649 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4650 const_child_range CCR = 4651 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4652 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4653 } 4654 4655 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4656 // If this is of a type and the type is a VLA type (and not a typedef), the 4657 // size expression of the VLA needs to be treated as an executable expression. 4658 // Why isn't this weirdness documented better in StmtIterator? 4659 if (isArgumentType()) { 4660 if (const VariableArrayType *T = 4661 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4662 return const_child_range(const_child_iterator(T), const_child_iterator()); 4663 return const_child_range(const_child_iterator(), const_child_iterator()); 4664 } 4665 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4666 } 4667 4668 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4669 AtomicOp op, SourceLocation RP) 4670 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4671 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4672 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4673 for (unsigned i = 0; i != args.size(); i++) 4674 SubExprs[i] = args[i]; 4675 setDependence(computeDependence(this)); 4676 } 4677 4678 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4679 switch (Op) { 4680 case AO__c11_atomic_init: 4681 case AO__opencl_atomic_init: 4682 case AO__c11_atomic_load: 4683 case AO__atomic_load_n: 4684 return 2; 4685 4686 case AO__opencl_atomic_load: 4687 case AO__c11_atomic_store: 4688 case AO__c11_atomic_exchange: 4689 case AO__atomic_load: 4690 case AO__atomic_store: 4691 case AO__atomic_store_n: 4692 case AO__atomic_exchange_n: 4693 case AO__c11_atomic_fetch_add: 4694 case AO__c11_atomic_fetch_sub: 4695 case AO__c11_atomic_fetch_and: 4696 case AO__c11_atomic_fetch_or: 4697 case AO__c11_atomic_fetch_xor: 4698 case AO__c11_atomic_fetch_max: 4699 case AO__c11_atomic_fetch_min: 4700 case AO__atomic_fetch_add: 4701 case AO__atomic_fetch_sub: 4702 case AO__atomic_fetch_and: 4703 case AO__atomic_fetch_or: 4704 case AO__atomic_fetch_xor: 4705 case AO__atomic_fetch_nand: 4706 case AO__atomic_add_fetch: 4707 case AO__atomic_sub_fetch: 4708 case AO__atomic_and_fetch: 4709 case AO__atomic_or_fetch: 4710 case AO__atomic_xor_fetch: 4711 case AO__atomic_nand_fetch: 4712 case AO__atomic_min_fetch: 4713 case AO__atomic_max_fetch: 4714 case AO__atomic_fetch_min: 4715 case AO__atomic_fetch_max: 4716 return 3; 4717 4718 case AO__opencl_atomic_store: 4719 case AO__opencl_atomic_exchange: 4720 case AO__opencl_atomic_fetch_add: 4721 case AO__opencl_atomic_fetch_sub: 4722 case AO__opencl_atomic_fetch_and: 4723 case AO__opencl_atomic_fetch_or: 4724 case AO__opencl_atomic_fetch_xor: 4725 case AO__opencl_atomic_fetch_min: 4726 case AO__opencl_atomic_fetch_max: 4727 case AO__atomic_exchange: 4728 return 4; 4729 4730 case AO__c11_atomic_compare_exchange_strong: 4731 case AO__c11_atomic_compare_exchange_weak: 4732 return 5; 4733 4734 case AO__opencl_atomic_compare_exchange_strong: 4735 case AO__opencl_atomic_compare_exchange_weak: 4736 case AO__atomic_compare_exchange: 4737 case AO__atomic_compare_exchange_n: 4738 return 6; 4739 } 4740 llvm_unreachable("unknown atomic op"); 4741 } 4742 4743 QualType AtomicExpr::getValueType() const { 4744 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4745 if (auto AT = T->getAs<AtomicType>()) 4746 return AT->getValueType(); 4747 return T; 4748 } 4749 4750 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4751 unsigned ArraySectionCount = 0; 4752 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4753 Base = OASE->getBase(); 4754 ++ArraySectionCount; 4755 } 4756 while (auto *ASE = 4757 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4758 Base = ASE->getBase(); 4759 ++ArraySectionCount; 4760 } 4761 Base = Base->IgnoreParenImpCasts(); 4762 auto OriginalTy = Base->getType(); 4763 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4764 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4765 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4766 4767 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4768 if (OriginalTy->isAnyPointerType()) 4769 OriginalTy = OriginalTy->getPointeeType(); 4770 else { 4771 assert (OriginalTy->isArrayType()); 4772 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4773 } 4774 } 4775 return OriginalTy; 4776 } 4777 4778 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4779 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4780 : Expr(RecoveryExprClass, T.getNonReferenceType(), 4781 T->isDependentType() ? VK_LValue : getValueKindForType(T), 4782 OK_Ordinary), 4783 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4784 assert(!T.isNull()); 4785 assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); 4786 4787 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4788 setDependence(computeDependence(this)); 4789 } 4790 4791 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4792 SourceLocation BeginLoc, 4793 SourceLocation EndLoc, 4794 ArrayRef<Expr *> SubExprs) { 4795 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4796 alignof(RecoveryExpr)); 4797 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4798 } 4799 4800 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4801 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4802 alignof(RecoveryExpr)); 4803 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4804 } 4805 4806 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4807 assert( 4808 NumDims == Dims.size() && 4809 "Preallocated number of dimensions is different from the provided one."); 4810 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4811 } 4812 4813 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4814 assert( 4815 NumDims == BR.size() && 4816 "Preallocated number of dimensions is different from the provided one."); 4817 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4818 } 4819 4820 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4821 SourceLocation L, SourceLocation R, 4822 ArrayRef<Expr *> Dims) 4823 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4824 RPLoc(R), NumDims(Dims.size()) { 4825 setBase(Op); 4826 setDimensions(Dims); 4827 setDependence(computeDependence(this)); 4828 } 4829 4830 OMPArrayShapingExpr * 4831 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4832 SourceLocation L, SourceLocation R, 4833 ArrayRef<Expr *> Dims, 4834 ArrayRef<SourceRange> BracketRanges) { 4835 assert(Dims.size() == BracketRanges.size() && 4836 "Different number of dimensions and brackets ranges."); 4837 void *Mem = Context.Allocate( 4838 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4839 alignof(OMPArrayShapingExpr)); 4840 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4841 E->setBracketsRanges(BracketRanges); 4842 return E; 4843 } 4844 4845 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4846 unsigned NumDims) { 4847 void *Mem = Context.Allocate( 4848 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4849 alignof(OMPArrayShapingExpr)); 4850 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4851 } 4852 4853 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4854 assert(I < NumIterators && 4855 "Idx is greater or equal the number of iterators definitions."); 4856 getTrailingObjects<Decl *>()[I] = D; 4857 } 4858 4859 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4860 assert(I < NumIterators && 4861 "Idx is greater or equal the number of iterators definitions."); 4862 getTrailingObjects< 4863 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4864 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 4865 } 4866 4867 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 4868 SourceLocation ColonLoc, Expr *End, 4869 SourceLocation SecondColonLoc, 4870 Expr *Step) { 4871 assert(I < NumIterators && 4872 "Idx is greater or equal the number of iterators definitions."); 4873 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4874 static_cast<int>(RangeExprOffset::Begin)] = 4875 Begin; 4876 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4877 static_cast<int>(RangeExprOffset::End)] = End; 4878 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4879 static_cast<int>(RangeExprOffset::Step)] = Step; 4880 getTrailingObjects< 4881 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4882 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 4883 ColonLoc; 4884 getTrailingObjects< 4885 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4886 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 4887 SecondColonLoc; 4888 } 4889 4890 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 4891 return getTrailingObjects<Decl *>()[I]; 4892 } 4893 4894 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 4895 IteratorRange Res; 4896 Res.Begin = 4897 getTrailingObjects<Expr *>()[I * static_cast<int>( 4898 RangeExprOffset::Total) + 4899 static_cast<int>(RangeExprOffset::Begin)]; 4900 Res.End = 4901 getTrailingObjects<Expr *>()[I * static_cast<int>( 4902 RangeExprOffset::Total) + 4903 static_cast<int>(RangeExprOffset::End)]; 4904 Res.Step = 4905 getTrailingObjects<Expr *>()[I * static_cast<int>( 4906 RangeExprOffset::Total) + 4907 static_cast<int>(RangeExprOffset::Step)]; 4908 return Res; 4909 } 4910 4911 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 4912 return getTrailingObjects< 4913 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4914 static_cast<int>(RangeLocOffset::AssignLoc)]; 4915 } 4916 4917 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 4918 return getTrailingObjects< 4919 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4920 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 4921 } 4922 4923 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 4924 return getTrailingObjects< 4925 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4926 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 4927 } 4928 4929 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 4930 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 4931 } 4932 4933 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 4934 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4935 } 4936 4937 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 4938 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4939 } 4940 4941 OMPIteratorExpr::OMPIteratorExpr( 4942 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 4943 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4944 ArrayRef<OMPIteratorHelperData> Helpers) 4945 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 4946 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 4947 NumIterators(Data.size()) { 4948 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 4949 const IteratorDefinition &D = Data[I]; 4950 setIteratorDeclaration(I, D.IteratorDecl); 4951 setAssignmentLoc(I, D.AssignmentLoc); 4952 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 4953 D.SecondColonLoc, D.Range.Step); 4954 setHelper(I, Helpers[I]); 4955 } 4956 setDependence(computeDependence(this)); 4957 } 4958 4959 OMPIteratorExpr * 4960 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 4961 SourceLocation IteratorKwLoc, SourceLocation L, 4962 SourceLocation R, 4963 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4964 ArrayRef<OMPIteratorHelperData> Helpers) { 4965 assert(Data.size() == Helpers.size() && 4966 "Data and helpers must have the same size."); 4967 void *Mem = Context.Allocate( 4968 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4969 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 4970 Data.size() * static_cast<int>(RangeLocOffset::Total), 4971 Helpers.size()), 4972 alignof(OMPIteratorExpr)); 4973 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 4974 } 4975 4976 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 4977 unsigned NumIterators) { 4978 void *Mem = Context.Allocate( 4979 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4980 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 4981 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 4982 alignof(OMPIteratorExpr)); 4983 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 4984 } 4985