1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Decl subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Decl.h" 15 #include "Linkage.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/CanonicalType.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclOpenMP.h" 24 #include "clang/AST/DeclTemplate.h" 25 #include "clang/AST/DeclarationName.h" 26 #include "clang/AST/Expr.h" 27 #include "clang/AST/ExprCXX.h" 28 #include "clang/AST/ExternalASTSource.h" 29 #include "clang/AST/ODRHash.h" 30 #include "clang/AST/PrettyDeclStackTrace.h" 31 #include "clang/AST/PrettyPrinter.h" 32 #include "clang/AST/Redeclarable.h" 33 #include "clang/AST/Stmt.h" 34 #include "clang/AST/TemplateBase.h" 35 #include "clang/AST/Type.h" 36 #include "clang/AST/TypeLoc.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/IdentifierTable.h" 39 #include "clang/Basic/LLVM.h" 40 #include "clang/Basic/LangOptions.h" 41 #include "clang/Basic/Linkage.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/PartialDiagnostic.h" 44 #include "clang/Basic/SanitizerBlacklist.h" 45 #include "clang/Basic/Sanitizers.h" 46 #include "clang/Basic/SourceLocation.h" 47 #include "clang/Basic/SourceManager.h" 48 #include "clang/Basic/Specifiers.h" 49 #include "clang/Basic/TargetCXXABI.h" 50 #include "clang/Basic/TargetInfo.h" 51 #include "clang/Basic/Visibility.h" 52 #include "clang/Frontend/FrontendDiagnostic.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringSwitch.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 static bool isExportedFromModuleIntefaceUnit(const NamedDecl *D) { 572 // FIXME: Handle isModulePrivate. 573 switch (D->getModuleOwnershipKind()) { 574 case Decl::ModuleOwnershipKind::Unowned: 575 case Decl::ModuleOwnershipKind::ModulePrivate: 576 return false; 577 case Decl::ModuleOwnershipKind::Visible: 578 case Decl::ModuleOwnershipKind::VisibleWhenImported: 579 if (auto *M = D->getOwningModule()) 580 return M->Kind == Module::ModuleInterfaceUnit; 581 } 582 llvm_unreachable("unexpected module ownership kind"); 583 } 584 585 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 586 // Internal linkage declarations within a module interface unit are modeled 587 // as "module-internal linkage", which means that they have internal linkage 588 // formally but can be indirectly accessed from outside the module via inline 589 // functions and templates defined within the module. 590 if (auto *M = D->getOwningModule()) 591 if (M->Kind == Module::ModuleInterfaceUnit) 592 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 593 594 return LinkageInfo::internal(); 595 } 596 597 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 598 // C++ Modules TS [basic.link]/6.8: 599 // - A name declared at namespace scope that does not have internal linkage 600 // by the previous rules and that is introduced by a non-exported 601 // declaration has module linkage. 602 if (auto *M = D->getOwningModule()) 603 if (M->Kind == Module::ModuleInterfaceUnit) 604 if (!isExportedFromModuleIntefaceUnit( 605 cast<NamedDecl>(D->getCanonicalDecl()))) 606 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 607 608 return LinkageInfo::external(); 609 } 610 611 LinkageInfo 612 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 613 LVComputationKind computation, 614 bool IgnoreVarTypeLinkage) { 615 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 616 "Not a name having namespace scope"); 617 ASTContext &Context = D->getASTContext(); 618 619 // C++ [basic.link]p3: 620 // A name having namespace scope (3.3.6) has internal linkage if it 621 // is the name of 622 // - an object, reference, function or function template that is 623 // explicitly declared static; or, 624 // (This bullet corresponds to C99 6.2.2p3.) 625 if (const auto *Var = dyn_cast<VarDecl>(D)) { 626 // Explicitly declared static. 627 if (Var->getStorageClass() == SC_Static) 628 return getInternalLinkageFor(Var); 629 630 // - a non-inline, non-volatile object or reference that is explicitly 631 // declared const or constexpr and neither explicitly declared extern 632 // nor previously declared to have external linkage; or (there is no 633 // equivalent in C99) 634 // The C++ modules TS adds "non-exported" to this list. 635 if (Context.getLangOpts().CPlusPlus && 636 Var->getType().isConstQualified() && 637 !Var->getType().isVolatileQualified() && 638 !Var->isInline() && 639 !isExportedFromModuleIntefaceUnit(Var)) { 640 const VarDecl *PrevVar = Var->getPreviousDecl(); 641 if (PrevVar) 642 return getLVForDecl(PrevVar, computation); 643 644 if (Var->getStorageClass() != SC_Extern && 645 Var->getStorageClass() != SC_PrivateExtern && 646 !isSingleLineLanguageLinkage(*Var)) 647 return getInternalLinkageFor(Var); 648 } 649 650 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 651 PrevVar = PrevVar->getPreviousDecl()) { 652 if (PrevVar->getStorageClass() == SC_PrivateExtern && 653 Var->getStorageClass() == SC_None) 654 return getDeclLinkageAndVisibility(PrevVar); 655 // Explicitly declared static. 656 if (PrevVar->getStorageClass() == SC_Static) 657 return getInternalLinkageFor(Var); 658 } 659 } else if (const FunctionDecl *Function = D->getAsFunction()) { 660 // C++ [temp]p4: 661 // A non-member function template can have internal linkage; any 662 // other template name shall have external linkage. 663 664 // Explicitly declared static. 665 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 666 return getInternalLinkageFor(Function); 667 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 668 // - a data member of an anonymous union. 669 const VarDecl *VD = IFD->getVarDecl(); 670 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 671 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 672 } 673 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 674 675 if (D->isInAnonymousNamespace()) { 676 const auto *Var = dyn_cast<VarDecl>(D); 677 const auto *Func = dyn_cast<FunctionDecl>(D); 678 // FIXME: The check for extern "C" here is not justified by the standard 679 // wording, but we retain it from the pre-DR1113 model to avoid breaking 680 // code. 681 // 682 // C++11 [basic.link]p4: 683 // An unnamed namespace or a namespace declared directly or indirectly 684 // within an unnamed namespace has internal linkage. 685 if ((!Var || !isFirstInExternCContext(Var)) && 686 (!Func || !isFirstInExternCContext(Func))) 687 return getInternalLinkageFor(D); 688 } 689 690 // Set up the defaults. 691 692 // C99 6.2.2p5: 693 // If the declaration of an identifier for an object has file 694 // scope and no storage-class specifier, its linkage is 695 // external. 696 LinkageInfo LV = getExternalLinkageFor(D); 697 698 if (!hasExplicitVisibilityAlready(computation)) { 699 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 700 LV.mergeVisibility(*Vis, true); 701 } else { 702 // If we're declared in a namespace with a visibility attribute, 703 // use that namespace's visibility, and it still counts as explicit. 704 for (const DeclContext *DC = D->getDeclContext(); 705 !isa<TranslationUnitDecl>(DC); 706 DC = DC->getParent()) { 707 const auto *ND = dyn_cast<NamespaceDecl>(DC); 708 if (!ND) continue; 709 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 710 LV.mergeVisibility(*Vis, true); 711 break; 712 } 713 } 714 } 715 716 // Add in global settings if the above didn't give us direct visibility. 717 if (!LV.isVisibilityExplicit()) { 718 // Use global type/value visibility as appropriate. 719 Visibility globalVisibility = 720 computation.isValueVisibility() 721 ? Context.getLangOpts().getValueVisibilityMode() 722 : Context.getLangOpts().getTypeVisibilityMode(); 723 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 724 725 // If we're paying attention to global visibility, apply 726 // -finline-visibility-hidden if this is an inline method. 727 if (useInlineVisibilityHidden(D)) 728 LV.mergeVisibility(HiddenVisibility, true); 729 } 730 } 731 732 // C++ [basic.link]p4: 733 734 // A name having namespace scope has external linkage if it is the 735 // name of 736 // 737 // - an object or reference, unless it has internal linkage; or 738 if (const auto *Var = dyn_cast<VarDecl>(D)) { 739 // GCC applies the following optimization to variables and static 740 // data members, but not to functions: 741 // 742 // Modify the variable's LV by the LV of its type unless this is 743 // C or extern "C". This follows from [basic.link]p9: 744 // A type without linkage shall not be used as the type of a 745 // variable or function with external linkage unless 746 // - the entity has C language linkage, or 747 // - the entity is declared within an unnamed namespace, or 748 // - the entity is not used or is defined in the same 749 // translation unit. 750 // and [basic.link]p10: 751 // ...the types specified by all declarations referring to a 752 // given variable or function shall be identical... 753 // C does not have an equivalent rule. 754 // 755 // Ignore this if we've got an explicit attribute; the user 756 // probably knows what they're doing. 757 // 758 // Note that we don't want to make the variable non-external 759 // because of this, but unique-external linkage suits us. 760 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 761 !IgnoreVarTypeLinkage) { 762 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 763 if (!isExternallyVisible(TypeLV.getLinkage())) 764 return LinkageInfo::uniqueExternal(); 765 if (!LV.isVisibilityExplicit()) 766 LV.mergeVisibility(TypeLV); 767 } 768 769 if (Var->getStorageClass() == SC_PrivateExtern) 770 LV.mergeVisibility(HiddenVisibility, true); 771 772 // Note that Sema::MergeVarDecl already takes care of implementing 773 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 774 // to do it here. 775 776 // As per function and class template specializations (below), 777 // consider LV for the template and template arguments. We're at file 778 // scope, so we do not need to worry about nested specializations. 779 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 780 mergeTemplateLV(LV, spec, computation); 781 } 782 783 // - a function, unless it has internal linkage; or 784 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 785 // In theory, we can modify the function's LV by the LV of its 786 // type unless it has C linkage (see comment above about variables 787 // for justification). In practice, GCC doesn't do this, so it's 788 // just too painful to make work. 789 790 if (Function->getStorageClass() == SC_PrivateExtern) 791 LV.mergeVisibility(HiddenVisibility, true); 792 793 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 794 // merging storage classes and visibility attributes, so we don't have to 795 // look at previous decls in here. 796 797 // In C++, then if the type of the function uses a type with 798 // unique-external linkage, it's not legally usable from outside 799 // this translation unit. However, we should use the C linkage 800 // rules instead for extern "C" declarations. 801 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 802 // Only look at the type-as-written. Otherwise, deducing the return type 803 // of a function could change its linkage. 804 QualType TypeAsWritten = Function->getType(); 805 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 806 TypeAsWritten = TSI->getType(); 807 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 808 return LinkageInfo::uniqueExternal(); 809 } 810 811 // Consider LV from the template and the template arguments. 812 // We're at file scope, so we do not need to worry about nested 813 // specializations. 814 if (FunctionTemplateSpecializationInfo *specInfo 815 = Function->getTemplateSpecializationInfo()) { 816 mergeTemplateLV(LV, Function, specInfo, computation); 817 } 818 819 // - a named class (Clause 9), or an unnamed class defined in a 820 // typedef declaration in which the class has the typedef name 821 // for linkage purposes (7.1.3); or 822 // - a named enumeration (7.2), or an unnamed enumeration 823 // defined in a typedef declaration in which the enumeration 824 // has the typedef name for linkage purposes (7.1.3); or 825 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 826 // Unnamed tags have no linkage. 827 if (!Tag->hasNameForLinkage()) 828 return LinkageInfo::none(); 829 830 // If this is a class template specialization, consider the 831 // linkage of the template and template arguments. We're at file 832 // scope, so we do not need to worry about nested specializations. 833 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 834 mergeTemplateLV(LV, spec, computation); 835 } 836 837 // - an enumerator belonging to an enumeration with external linkage; 838 } else if (isa<EnumConstantDecl>(D)) { 839 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 840 computation); 841 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 842 return LinkageInfo::none(); 843 LV.merge(EnumLV); 844 845 // - a template, unless it is a function template that has 846 // internal linkage (Clause 14); 847 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 848 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 849 LinkageInfo tempLV = 850 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 851 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 852 853 // - a namespace (7.3), unless it is declared within an unnamed 854 // namespace. 855 // 856 // We handled names in anonymous namespaces above. 857 } else if (isa<NamespaceDecl>(D)) { 858 return LV; 859 860 // By extension, we assign external linkage to Objective-C 861 // interfaces. 862 } else if (isa<ObjCInterfaceDecl>(D)) { 863 // fallout 864 865 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 866 // A typedef declaration has linkage if it gives a type a name for 867 // linkage purposes. 868 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 869 return LinkageInfo::none(); 870 871 // Everything not covered here has no linkage. 872 } else { 873 return LinkageInfo::none(); 874 } 875 876 // If we ended up with non-externally-visible linkage, visibility should 877 // always be default. 878 if (!isExternallyVisible(LV.getLinkage())) 879 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 880 881 return LV; 882 } 883 884 LinkageInfo 885 LinkageComputer::getLVForClassMember(const NamedDecl *D, 886 LVComputationKind computation, 887 bool IgnoreVarTypeLinkage) { 888 // Only certain class members have linkage. Note that fields don't 889 // really have linkage, but it's convenient to say they do for the 890 // purposes of calculating linkage of pointer-to-data-member 891 // template arguments. 892 // 893 // Templates also don't officially have linkage, but since we ignore 894 // the C++ standard and look at template arguments when determining 895 // linkage and visibility of a template specialization, we might hit 896 // a template template argument that way. If we do, we need to 897 // consider its linkage. 898 if (!(isa<CXXMethodDecl>(D) || 899 isa<VarDecl>(D) || 900 isa<FieldDecl>(D) || 901 isa<IndirectFieldDecl>(D) || 902 isa<TagDecl>(D) || 903 isa<TemplateDecl>(D))) 904 return LinkageInfo::none(); 905 906 LinkageInfo LV; 907 908 // If we have an explicit visibility attribute, merge that in. 909 if (!hasExplicitVisibilityAlready(computation)) { 910 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 911 LV.mergeVisibility(*Vis, true); 912 // If we're paying attention to global visibility, apply 913 // -finline-visibility-hidden if this is an inline method. 914 // 915 // Note that we do this before merging information about 916 // the class visibility. 917 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 918 LV.mergeVisibility(HiddenVisibility, true); 919 } 920 921 // If this class member has an explicit visibility attribute, the only 922 // thing that can change its visibility is the template arguments, so 923 // only look for them when processing the class. 924 LVComputationKind classComputation = computation; 925 if (LV.isVisibilityExplicit()) 926 classComputation = withExplicitVisibilityAlready(computation); 927 928 LinkageInfo classLV = 929 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 930 // The member has the same linkage as the class. If that's not externally 931 // visible, we don't need to compute anything about the linkage. 932 // FIXME: If we're only computing linkage, can we bail out here? 933 if (!isExternallyVisible(classLV.getLinkage())) 934 return classLV; 935 936 937 // Otherwise, don't merge in classLV yet, because in certain cases 938 // we need to completely ignore the visibility from it. 939 940 // Specifically, if this decl exists and has an explicit attribute. 941 const NamedDecl *explicitSpecSuppressor = nullptr; 942 943 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 944 // Only look at the type-as-written. Otherwise, deducing the return type 945 // of a function could change its linkage. 946 QualType TypeAsWritten = MD->getType(); 947 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 948 TypeAsWritten = TSI->getType(); 949 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 950 return LinkageInfo::uniqueExternal(); 951 952 // If this is a method template specialization, use the linkage for 953 // the template parameters and arguments. 954 if (FunctionTemplateSpecializationInfo *spec 955 = MD->getTemplateSpecializationInfo()) { 956 mergeTemplateLV(LV, MD, spec, computation); 957 if (spec->isExplicitSpecialization()) { 958 explicitSpecSuppressor = MD; 959 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 960 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 961 } 962 } else if (isExplicitMemberSpecialization(MD)) { 963 explicitSpecSuppressor = MD; 964 } 965 966 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 967 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 968 mergeTemplateLV(LV, spec, computation); 969 if (spec->isExplicitSpecialization()) { 970 explicitSpecSuppressor = spec; 971 } else { 972 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 973 if (isExplicitMemberSpecialization(temp)) { 974 explicitSpecSuppressor = temp->getTemplatedDecl(); 975 } 976 } 977 } else if (isExplicitMemberSpecialization(RD)) { 978 explicitSpecSuppressor = RD; 979 } 980 981 // Static data members. 982 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 983 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 984 mergeTemplateLV(LV, spec, computation); 985 986 // Modify the variable's linkage by its type, but ignore the 987 // type's visibility unless it's a definition. 988 if (!IgnoreVarTypeLinkage) { 989 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 990 // FIXME: If the type's linkage is not externally visible, we can 991 // give this static data member UniqueExternalLinkage. 992 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 993 LV.mergeVisibility(typeLV); 994 LV.mergeExternalVisibility(typeLV); 995 } 996 997 if (isExplicitMemberSpecialization(VD)) { 998 explicitSpecSuppressor = VD; 999 } 1000 1001 // Template members. 1002 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1003 bool considerVisibility = 1004 (!LV.isVisibilityExplicit() && 1005 !classLV.isVisibilityExplicit() && 1006 !hasExplicitVisibilityAlready(computation)); 1007 LinkageInfo tempLV = 1008 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1009 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1010 1011 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1012 if (isExplicitMemberSpecialization(redeclTemp)) { 1013 explicitSpecSuppressor = temp->getTemplatedDecl(); 1014 } 1015 } 1016 } 1017 1018 // We should never be looking for an attribute directly on a template. 1019 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1020 1021 // If this member is an explicit member specialization, and it has 1022 // an explicit attribute, ignore visibility from the parent. 1023 bool considerClassVisibility = true; 1024 if (explicitSpecSuppressor && 1025 // optimization: hasDVA() is true only with explicit visibility. 1026 LV.isVisibilityExplicit() && 1027 classLV.getVisibility() != DefaultVisibility && 1028 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1029 considerClassVisibility = false; 1030 } 1031 1032 // Finally, merge in information from the class. 1033 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1034 return LV; 1035 } 1036 1037 void NamedDecl::anchor() {} 1038 1039 bool NamedDecl::isLinkageValid() const { 1040 if (!hasCachedLinkage()) 1041 return true; 1042 1043 Linkage L = LinkageComputer{} 1044 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1045 .getLinkage(); 1046 return L == getCachedLinkage(); 1047 } 1048 1049 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1050 StringRef name = getName(); 1051 if (name.empty()) return SFF_None; 1052 1053 if (name.front() == 'C') 1054 if (name == "CFStringCreateWithFormat" || 1055 name == "CFStringCreateWithFormatAndArguments" || 1056 name == "CFStringAppendFormat" || 1057 name == "CFStringAppendFormatAndArguments") 1058 return SFF_CFString; 1059 return SFF_None; 1060 } 1061 1062 Linkage NamedDecl::getLinkageInternal() const { 1063 // We don't care about visibility here, so ask for the cheapest 1064 // possible visibility analysis. 1065 return LinkageComputer{} 1066 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1067 .getLinkage(); 1068 } 1069 1070 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1071 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1072 } 1073 1074 static Optional<Visibility> 1075 getExplicitVisibilityAux(const NamedDecl *ND, 1076 NamedDecl::ExplicitVisibilityKind kind, 1077 bool IsMostRecent) { 1078 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1079 1080 // Check the declaration itself first. 1081 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1082 return V; 1083 1084 // If this is a member class of a specialization of a class template 1085 // and the corresponding decl has explicit visibility, use that. 1086 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1087 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1088 if (InstantiatedFrom) 1089 return getVisibilityOf(InstantiatedFrom, kind); 1090 } 1091 1092 // If there wasn't explicit visibility there, and this is a 1093 // specialization of a class template, check for visibility 1094 // on the pattern. 1095 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1096 // Walk all the template decl till this point to see if there are 1097 // explicit visibility attributes. 1098 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1099 while (TD != nullptr) { 1100 auto Vis = getVisibilityOf(TD, kind); 1101 if (Vis != None) 1102 return Vis; 1103 TD = TD->getPreviousDecl(); 1104 } 1105 return None; 1106 } 1107 1108 // Use the most recent declaration. 1109 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1110 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1111 if (MostRecent != ND) 1112 return getExplicitVisibilityAux(MostRecent, kind, true); 1113 } 1114 1115 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1116 if (Var->isStaticDataMember()) { 1117 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1118 if (InstantiatedFrom) 1119 return getVisibilityOf(InstantiatedFrom, kind); 1120 } 1121 1122 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1123 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1124 kind); 1125 1126 return None; 1127 } 1128 // Also handle function template specializations. 1129 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1130 // If the function is a specialization of a template with an 1131 // explicit visibility attribute, use that. 1132 if (FunctionTemplateSpecializationInfo *templateInfo 1133 = fn->getTemplateSpecializationInfo()) 1134 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1135 kind); 1136 1137 // If the function is a member of a specialization of a class template 1138 // and the corresponding decl has explicit visibility, use that. 1139 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1140 if (InstantiatedFrom) 1141 return getVisibilityOf(InstantiatedFrom, kind); 1142 1143 return None; 1144 } 1145 1146 // The visibility of a template is stored in the templated decl. 1147 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1148 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1149 1150 return None; 1151 } 1152 1153 Optional<Visibility> 1154 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1155 return getExplicitVisibilityAux(this, kind, false); 1156 } 1157 1158 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1159 Decl *ContextDecl, 1160 LVComputationKind computation) { 1161 // This lambda has its linkage/visibility determined by its owner. 1162 const NamedDecl *Owner; 1163 if (!ContextDecl) 1164 Owner = dyn_cast<NamedDecl>(DC); 1165 else if (isa<ParmVarDecl>(ContextDecl)) 1166 Owner = 1167 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1168 else 1169 Owner = cast<NamedDecl>(ContextDecl); 1170 1171 if (!Owner) 1172 return LinkageInfo::none(); 1173 1174 // If the owner has a deduced type, we need to skip querying the linkage and 1175 // visibility of that type, because it might involve this closure type. The 1176 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1177 // than NoLinkage when we don't strictly need to, which is benign. 1178 auto *VD = dyn_cast<VarDecl>(Owner); 1179 LinkageInfo OwnerLV = 1180 VD && VD->getType()->getContainedDeducedType() 1181 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1182 : getLVForDecl(Owner, computation); 1183 1184 // A lambda never formally has linkage. But if the owner is externally 1185 // visible, then the lambda is too. We apply the same rules to blocks. 1186 if (!isExternallyVisible(OwnerLV.getLinkage())) 1187 return LinkageInfo::none(); 1188 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1189 OwnerLV.isVisibilityExplicit()); 1190 } 1191 1192 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1193 LVComputationKind computation) { 1194 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1195 if (Function->isInAnonymousNamespace() && 1196 !isFirstInExternCContext(Function)) 1197 return getInternalLinkageFor(Function); 1198 1199 // This is a "void f();" which got merged with a file static. 1200 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1201 return getInternalLinkageFor(Function); 1202 1203 LinkageInfo LV; 1204 if (!hasExplicitVisibilityAlready(computation)) { 1205 if (Optional<Visibility> Vis = 1206 getExplicitVisibility(Function, computation)) 1207 LV.mergeVisibility(*Vis, true); 1208 } 1209 1210 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1211 // merging storage classes and visibility attributes, so we don't have to 1212 // look at previous decls in here. 1213 1214 return LV; 1215 } 1216 1217 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1218 if (Var->hasExternalStorage()) { 1219 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1220 return getInternalLinkageFor(Var); 1221 1222 LinkageInfo LV; 1223 if (Var->getStorageClass() == SC_PrivateExtern) 1224 LV.mergeVisibility(HiddenVisibility, true); 1225 else if (!hasExplicitVisibilityAlready(computation)) { 1226 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1227 LV.mergeVisibility(*Vis, true); 1228 } 1229 1230 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1231 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1232 if (PrevLV.getLinkage()) 1233 LV.setLinkage(PrevLV.getLinkage()); 1234 LV.mergeVisibility(PrevLV); 1235 } 1236 1237 return LV; 1238 } 1239 1240 if (!Var->isStaticLocal()) 1241 return LinkageInfo::none(); 1242 } 1243 1244 ASTContext &Context = D->getASTContext(); 1245 if (!Context.getLangOpts().CPlusPlus) 1246 return LinkageInfo::none(); 1247 1248 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1249 if (!OuterD || OuterD->isInvalidDecl()) 1250 return LinkageInfo::none(); 1251 1252 LinkageInfo LV; 1253 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1254 if (!BD->getBlockManglingNumber()) 1255 return LinkageInfo::none(); 1256 1257 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1258 BD->getBlockManglingContextDecl(), computation); 1259 } else { 1260 const auto *FD = cast<FunctionDecl>(OuterD); 1261 if (!FD->isInlined() && 1262 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1263 return LinkageInfo::none(); 1264 1265 LV = getLVForDecl(FD, computation); 1266 } 1267 if (!isExternallyVisible(LV.getLinkage())) 1268 return LinkageInfo::none(); 1269 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1270 LV.isVisibilityExplicit()); 1271 } 1272 1273 static inline const CXXRecordDecl* 1274 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1275 const CXXRecordDecl *Ret = Record; 1276 while (Record && Record->isLambda()) { 1277 Ret = Record; 1278 if (!Record->getParent()) break; 1279 // Get the Containing Class of this Lambda Class 1280 Record = dyn_cast_or_null<CXXRecordDecl>( 1281 Record->getParent()->getParent()); 1282 } 1283 return Ret; 1284 } 1285 1286 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1287 LVComputationKind computation, 1288 bool IgnoreVarTypeLinkage) { 1289 // Internal_linkage attribute overrides other considerations. 1290 if (D->hasAttr<InternalLinkageAttr>()) 1291 return getInternalLinkageFor(D); 1292 1293 // Objective-C: treat all Objective-C declarations as having external 1294 // linkage. 1295 switch (D->getKind()) { 1296 default: 1297 break; 1298 1299 // Per C++ [basic.link]p2, only the names of objects, references, 1300 // functions, types, templates, namespaces, and values ever have linkage. 1301 // 1302 // Note that the name of a typedef, namespace alias, using declaration, 1303 // and so on are not the name of the corresponding type, namespace, or 1304 // declaration, so they do *not* have linkage. 1305 case Decl::ImplicitParam: 1306 case Decl::Label: 1307 case Decl::NamespaceAlias: 1308 case Decl::ParmVar: 1309 case Decl::Using: 1310 case Decl::UsingShadow: 1311 case Decl::UsingDirective: 1312 return LinkageInfo::none(); 1313 1314 case Decl::EnumConstant: 1315 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1316 if (D->getASTContext().getLangOpts().CPlusPlus) 1317 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1318 return LinkageInfo::visible_none(); 1319 1320 case Decl::Typedef: 1321 case Decl::TypeAlias: 1322 // A typedef declaration has linkage if it gives a type a name for 1323 // linkage purposes. 1324 if (!cast<TypedefNameDecl>(D) 1325 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1326 return LinkageInfo::none(); 1327 break; 1328 1329 case Decl::TemplateTemplateParm: // count these as external 1330 case Decl::NonTypeTemplateParm: 1331 case Decl::ObjCAtDefsField: 1332 case Decl::ObjCCategory: 1333 case Decl::ObjCCategoryImpl: 1334 case Decl::ObjCCompatibleAlias: 1335 case Decl::ObjCImplementation: 1336 case Decl::ObjCMethod: 1337 case Decl::ObjCProperty: 1338 case Decl::ObjCPropertyImpl: 1339 case Decl::ObjCProtocol: 1340 return getExternalLinkageFor(D); 1341 1342 case Decl::CXXRecord: { 1343 const auto *Record = cast<CXXRecordDecl>(D); 1344 if (Record->isLambda()) { 1345 if (!Record->getLambdaManglingNumber()) { 1346 // This lambda has no mangling number, so it's internal. 1347 return getInternalLinkageFor(D); 1348 } 1349 1350 // This lambda has its linkage/visibility determined: 1351 // - either by the outermost lambda if that lambda has no mangling 1352 // number. 1353 // - or by the parent of the outer most lambda 1354 // This prevents infinite recursion in settings such as nested lambdas 1355 // used in NSDMI's, for e.g. 1356 // struct L { 1357 // int t{}; 1358 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1359 // }; 1360 const CXXRecordDecl *OuterMostLambda = 1361 getOutermostEnclosingLambda(Record); 1362 if (!OuterMostLambda->getLambdaManglingNumber()) 1363 return getInternalLinkageFor(D); 1364 1365 return getLVForClosure( 1366 OuterMostLambda->getDeclContext()->getRedeclContext(), 1367 OuterMostLambda->getLambdaContextDecl(), computation); 1368 } 1369 1370 break; 1371 } 1372 } 1373 1374 // Handle linkage for namespace-scope names. 1375 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1376 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1377 1378 // C++ [basic.link]p5: 1379 // In addition, a member function, static data member, a named 1380 // class or enumeration of class scope, or an unnamed class or 1381 // enumeration defined in a class-scope typedef declaration such 1382 // that the class or enumeration has the typedef name for linkage 1383 // purposes (7.1.3), has external linkage if the name of the class 1384 // has external linkage. 1385 if (D->getDeclContext()->isRecord()) 1386 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1387 1388 // C++ [basic.link]p6: 1389 // The name of a function declared in block scope and the name of 1390 // an object declared by a block scope extern declaration have 1391 // linkage. If there is a visible declaration of an entity with 1392 // linkage having the same name and type, ignoring entities 1393 // declared outside the innermost enclosing namespace scope, the 1394 // block scope declaration declares that same entity and receives 1395 // the linkage of the previous declaration. If there is more than 1396 // one such matching entity, the program is ill-formed. Otherwise, 1397 // if no matching entity is found, the block scope entity receives 1398 // external linkage. 1399 if (D->getDeclContext()->isFunctionOrMethod()) 1400 return getLVForLocalDecl(D, computation); 1401 1402 // C++ [basic.link]p6: 1403 // Names not covered by these rules have no linkage. 1404 return LinkageInfo::none(); 1405 } 1406 1407 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1408 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1409 LVComputationKind computation) { 1410 // Internal_linkage attribute overrides other considerations. 1411 if (D->hasAttr<InternalLinkageAttr>()) 1412 return getInternalLinkageFor(D); 1413 1414 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1415 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1416 1417 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1418 return *LI; 1419 1420 LinkageInfo LV = computeLVForDecl(D, computation); 1421 if (D->hasCachedLinkage()) 1422 assert(D->getCachedLinkage() == LV.getLinkage()); 1423 1424 D->setCachedLinkage(LV.getLinkage()); 1425 cache(D, computation, LV); 1426 1427 #ifndef NDEBUG 1428 // In C (because of gnu inline) and in c++ with microsoft extensions an 1429 // static can follow an extern, so we can have two decls with different 1430 // linkages. 1431 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1432 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1433 return LV; 1434 1435 // We have just computed the linkage for this decl. By induction we know 1436 // that all other computed linkages match, check that the one we just 1437 // computed also does. 1438 NamedDecl *Old = nullptr; 1439 for (auto I : D->redecls()) { 1440 auto *T = cast<NamedDecl>(I); 1441 if (T == D) 1442 continue; 1443 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1444 Old = T; 1445 break; 1446 } 1447 } 1448 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1449 #endif 1450 1451 return LV; 1452 } 1453 1454 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1455 return getLVForDecl(D, 1456 LVComputationKind(usesTypeVisibility(D) 1457 ? NamedDecl::VisibilityForType 1458 : NamedDecl::VisibilityForValue)); 1459 } 1460 1461 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1462 Module *M = getOwningModule(); 1463 if (!M) 1464 return nullptr; 1465 1466 switch (M->Kind) { 1467 case Module::ModuleMapModule: 1468 // Module map modules have no special linkage semantics. 1469 return nullptr; 1470 1471 case Module::ModuleInterfaceUnit: 1472 return M; 1473 1474 case Module::GlobalModuleFragment: { 1475 // External linkage declarations in the global module have no owning module 1476 // for linkage purposes. But internal linkage declarations in the global 1477 // module fragment of a particular module are owned by that module for 1478 // linkage purposes. 1479 if (IgnoreLinkage) 1480 return nullptr; 1481 bool InternalLinkage; 1482 if (auto *ND = dyn_cast<NamedDecl>(this)) 1483 InternalLinkage = !ND->hasExternalFormalLinkage(); 1484 else { 1485 auto *NSD = dyn_cast<NamespaceDecl>(this); 1486 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1487 isInAnonymousNamespace(); 1488 } 1489 return InternalLinkage ? M->Parent : nullptr; 1490 } 1491 } 1492 1493 llvm_unreachable("unknown module kind"); 1494 } 1495 1496 void NamedDecl::printName(raw_ostream &os) const { 1497 os << Name; 1498 } 1499 1500 std::string NamedDecl::getQualifiedNameAsString() const { 1501 std::string QualName; 1502 llvm::raw_string_ostream OS(QualName); 1503 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1504 return OS.str(); 1505 } 1506 1507 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1508 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1509 } 1510 1511 void NamedDecl::printQualifiedName(raw_ostream &OS, 1512 const PrintingPolicy &P) const { 1513 const DeclContext *Ctx = getDeclContext(); 1514 1515 // For ObjC methods, look through categories and use the interface as context. 1516 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) 1517 if (auto *ID = MD->getClassInterface()) 1518 Ctx = ID; 1519 1520 if (Ctx->isFunctionOrMethod()) { 1521 printName(OS); 1522 return; 1523 } 1524 1525 using ContextsTy = SmallVector<const DeclContext *, 8>; 1526 ContextsTy Contexts; 1527 1528 // Collect named contexts. 1529 while (Ctx) { 1530 if (isa<NamedDecl>(Ctx)) 1531 Contexts.push_back(Ctx); 1532 Ctx = Ctx->getParent(); 1533 } 1534 1535 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1536 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1537 OS << Spec->getName(); 1538 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1539 printTemplateArgumentList(OS, TemplateArgs.asArray(), P); 1540 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1541 if (P.SuppressUnwrittenScope && 1542 (ND->isAnonymousNamespace() || ND->isInline())) 1543 continue; 1544 if (ND->isAnonymousNamespace()) { 1545 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1546 : "(anonymous namespace)"); 1547 } 1548 else 1549 OS << *ND; 1550 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1551 if (!RD->getIdentifier()) 1552 OS << "(anonymous " << RD->getKindName() << ')'; 1553 else 1554 OS << *RD; 1555 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1556 const FunctionProtoType *FT = nullptr; 1557 if (FD->hasWrittenPrototype()) 1558 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1559 1560 OS << *FD << '('; 1561 if (FT) { 1562 unsigned NumParams = FD->getNumParams(); 1563 for (unsigned i = 0; i < NumParams; ++i) { 1564 if (i) 1565 OS << ", "; 1566 OS << FD->getParamDecl(i)->getType().stream(P); 1567 } 1568 1569 if (FT->isVariadic()) { 1570 if (NumParams > 0) 1571 OS << ", "; 1572 OS << "..."; 1573 } 1574 } 1575 OS << ')'; 1576 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1577 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1578 // enumerator is declared in the scope that immediately contains 1579 // the enum-specifier. Each scoped enumerator is declared in the 1580 // scope of the enumeration. 1581 // For the case of unscoped enumerator, do not include in the qualified 1582 // name any information about its enum enclosing scope, as its visibility 1583 // is global. 1584 if (ED->isScoped()) 1585 OS << *ED; 1586 else 1587 continue; 1588 } else { 1589 OS << *cast<NamedDecl>(DC); 1590 } 1591 OS << "::"; 1592 } 1593 1594 if (getDeclName() || isa<DecompositionDecl>(this)) 1595 OS << *this; 1596 else 1597 OS << "(anonymous)"; 1598 } 1599 1600 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1601 const PrintingPolicy &Policy, 1602 bool Qualified) const { 1603 if (Qualified) 1604 printQualifiedName(OS, Policy); 1605 else 1606 printName(OS); 1607 } 1608 1609 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1610 return true; 1611 } 1612 static bool isRedeclarableImpl(...) { return false; } 1613 static bool isRedeclarable(Decl::Kind K) { 1614 switch (K) { 1615 #define DECL(Type, Base) \ 1616 case Decl::Type: \ 1617 return isRedeclarableImpl((Type##Decl *)nullptr); 1618 #define ABSTRACT_DECL(DECL) 1619 #include "clang/AST/DeclNodes.inc" 1620 } 1621 llvm_unreachable("unknown decl kind"); 1622 } 1623 1624 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1625 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1626 1627 // Never replace one imported declaration with another; we need both results 1628 // when re-exporting. 1629 if (OldD->isFromASTFile() && isFromASTFile()) 1630 return false; 1631 1632 // A kind mismatch implies that the declaration is not replaced. 1633 if (OldD->getKind() != getKind()) 1634 return false; 1635 1636 // For method declarations, we never replace. (Why?) 1637 if (isa<ObjCMethodDecl>(this)) 1638 return false; 1639 1640 // For parameters, pick the newer one. This is either an error or (in 1641 // Objective-C) permitted as an extension. 1642 if (isa<ParmVarDecl>(this)) 1643 return true; 1644 1645 // Inline namespaces can give us two declarations with the same 1646 // name and kind in the same scope but different contexts; we should 1647 // keep both declarations in this case. 1648 if (!this->getDeclContext()->getRedeclContext()->Equals( 1649 OldD->getDeclContext()->getRedeclContext())) 1650 return false; 1651 1652 // Using declarations can be replaced if they import the same name from the 1653 // same context. 1654 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1655 ASTContext &Context = getASTContext(); 1656 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1657 Context.getCanonicalNestedNameSpecifier( 1658 cast<UsingDecl>(OldD)->getQualifier()); 1659 } 1660 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1661 ASTContext &Context = getASTContext(); 1662 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1663 Context.getCanonicalNestedNameSpecifier( 1664 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1665 } 1666 1667 if (isRedeclarable(getKind())) { 1668 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1669 return false; 1670 1671 if (IsKnownNewer) 1672 return true; 1673 1674 // Check whether this is actually newer than OldD. We want to keep the 1675 // newer declaration. This loop will usually only iterate once, because 1676 // OldD is usually the previous declaration. 1677 for (auto D : redecls()) { 1678 if (D == OldD) 1679 break; 1680 1681 // If we reach the canonical declaration, then OldD is not actually older 1682 // than this one. 1683 // 1684 // FIXME: In this case, we should not add this decl to the lookup table. 1685 if (D->isCanonicalDecl()) 1686 return false; 1687 } 1688 1689 // It's a newer declaration of the same kind of declaration in the same 1690 // scope: we want this decl instead of the existing one. 1691 return true; 1692 } 1693 1694 // In all other cases, we need to keep both declarations in case they have 1695 // different visibility. Any attempt to use the name will result in an 1696 // ambiguity if more than one is visible. 1697 return false; 1698 } 1699 1700 bool NamedDecl::hasLinkage() const { 1701 return getFormalLinkage() != NoLinkage; 1702 } 1703 1704 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1705 NamedDecl *ND = this; 1706 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1707 ND = UD->getTargetDecl(); 1708 1709 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1710 return AD->getClassInterface(); 1711 1712 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1713 return AD->getNamespace(); 1714 1715 return ND; 1716 } 1717 1718 bool NamedDecl::isCXXInstanceMember() const { 1719 if (!isCXXClassMember()) 1720 return false; 1721 1722 const NamedDecl *D = this; 1723 if (isa<UsingShadowDecl>(D)) 1724 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1725 1726 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1727 return true; 1728 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1729 return MD->isInstance(); 1730 return false; 1731 } 1732 1733 //===----------------------------------------------------------------------===// 1734 // DeclaratorDecl Implementation 1735 //===----------------------------------------------------------------------===// 1736 1737 template <typename DeclT> 1738 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1739 if (decl->getNumTemplateParameterLists() > 0) 1740 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1741 else 1742 return decl->getInnerLocStart(); 1743 } 1744 1745 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1746 TypeSourceInfo *TSI = getTypeSourceInfo(); 1747 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1748 return SourceLocation(); 1749 } 1750 1751 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1752 if (QualifierLoc) { 1753 // Make sure the extended decl info is allocated. 1754 if (!hasExtInfo()) { 1755 // Save (non-extended) type source info pointer. 1756 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1757 // Allocate external info struct. 1758 DeclInfo = new (getASTContext()) ExtInfo; 1759 // Restore savedTInfo into (extended) decl info. 1760 getExtInfo()->TInfo = savedTInfo; 1761 } 1762 // Set qualifier info. 1763 getExtInfo()->QualifierLoc = QualifierLoc; 1764 } else { 1765 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1766 if (hasExtInfo()) { 1767 if (getExtInfo()->NumTemplParamLists == 0) { 1768 // Save type source info pointer. 1769 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1770 // Deallocate the extended decl info. 1771 getASTContext().Deallocate(getExtInfo()); 1772 // Restore savedTInfo into (non-extended) decl info. 1773 DeclInfo = savedTInfo; 1774 } 1775 else 1776 getExtInfo()->QualifierLoc = QualifierLoc; 1777 } 1778 } 1779 } 1780 1781 void DeclaratorDecl::setTemplateParameterListsInfo( 1782 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1783 assert(!TPLists.empty()); 1784 // Make sure the extended decl info is allocated. 1785 if (!hasExtInfo()) { 1786 // Save (non-extended) type source info pointer. 1787 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1788 // Allocate external info struct. 1789 DeclInfo = new (getASTContext()) ExtInfo; 1790 // Restore savedTInfo into (extended) decl info. 1791 getExtInfo()->TInfo = savedTInfo; 1792 } 1793 // Set the template parameter lists info. 1794 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1795 } 1796 1797 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1798 return getTemplateOrInnerLocStart(this); 1799 } 1800 1801 // Helper function: returns true if QT is or contains a type 1802 // having a postfix component. 1803 static bool typeIsPostfix(QualType QT) { 1804 while (true) { 1805 const Type* T = QT.getTypePtr(); 1806 switch (T->getTypeClass()) { 1807 default: 1808 return false; 1809 case Type::Pointer: 1810 QT = cast<PointerType>(T)->getPointeeType(); 1811 break; 1812 case Type::BlockPointer: 1813 QT = cast<BlockPointerType>(T)->getPointeeType(); 1814 break; 1815 case Type::MemberPointer: 1816 QT = cast<MemberPointerType>(T)->getPointeeType(); 1817 break; 1818 case Type::LValueReference: 1819 case Type::RValueReference: 1820 QT = cast<ReferenceType>(T)->getPointeeType(); 1821 break; 1822 case Type::PackExpansion: 1823 QT = cast<PackExpansionType>(T)->getPattern(); 1824 break; 1825 case Type::Paren: 1826 case Type::ConstantArray: 1827 case Type::DependentSizedArray: 1828 case Type::IncompleteArray: 1829 case Type::VariableArray: 1830 case Type::FunctionProto: 1831 case Type::FunctionNoProto: 1832 return true; 1833 } 1834 } 1835 } 1836 1837 SourceRange DeclaratorDecl::getSourceRange() const { 1838 SourceLocation RangeEnd = getLocation(); 1839 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1840 // If the declaration has no name or the type extends past the name take the 1841 // end location of the type. 1842 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1843 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1844 } 1845 return SourceRange(getOuterLocStart(), RangeEnd); 1846 } 1847 1848 void QualifierInfo::setTemplateParameterListsInfo( 1849 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1850 // Free previous template parameters (if any). 1851 if (NumTemplParamLists > 0) { 1852 Context.Deallocate(TemplParamLists); 1853 TemplParamLists = nullptr; 1854 NumTemplParamLists = 0; 1855 } 1856 // Set info on matched template parameter lists (if any). 1857 if (!TPLists.empty()) { 1858 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1859 NumTemplParamLists = TPLists.size(); 1860 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1861 } 1862 } 1863 1864 //===----------------------------------------------------------------------===// 1865 // VarDecl Implementation 1866 //===----------------------------------------------------------------------===// 1867 1868 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1869 switch (SC) { 1870 case SC_None: break; 1871 case SC_Auto: return "auto"; 1872 case SC_Extern: return "extern"; 1873 case SC_PrivateExtern: return "__private_extern__"; 1874 case SC_Register: return "register"; 1875 case SC_Static: return "static"; 1876 } 1877 1878 llvm_unreachable("Invalid storage class"); 1879 } 1880 1881 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1882 SourceLocation StartLoc, SourceLocation IdLoc, 1883 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1884 StorageClass SC) 1885 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1886 redeclarable_base(C) { 1887 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1888 "VarDeclBitfields too large!"); 1889 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1890 "ParmVarDeclBitfields too large!"); 1891 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 1892 "NonParmVarDeclBitfields too large!"); 1893 AllBits = 0; 1894 VarDeclBits.SClass = SC; 1895 // Everything else is implicitly initialized to false. 1896 } 1897 1898 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1899 SourceLocation StartL, SourceLocation IdL, 1900 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1901 StorageClass S) { 1902 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1903 } 1904 1905 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1906 return new (C, ID) 1907 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1908 QualType(), nullptr, SC_None); 1909 } 1910 1911 void VarDecl::setStorageClass(StorageClass SC) { 1912 assert(isLegalForVariable(SC)); 1913 VarDeclBits.SClass = SC; 1914 } 1915 1916 VarDecl::TLSKind VarDecl::getTLSKind() const { 1917 switch (VarDeclBits.TSCSpec) { 1918 case TSCS_unspecified: 1919 if (!hasAttr<ThreadAttr>() && 1920 !(getASTContext().getLangOpts().OpenMPUseTLS && 1921 getASTContext().getTargetInfo().isTLSSupported() && 1922 hasAttr<OMPThreadPrivateDeclAttr>())) 1923 return TLS_None; 1924 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 1925 LangOptions::MSVC2015)) || 1926 hasAttr<OMPThreadPrivateDeclAttr>()) 1927 ? TLS_Dynamic 1928 : TLS_Static; 1929 case TSCS___thread: // Fall through. 1930 case TSCS__Thread_local: 1931 return TLS_Static; 1932 case TSCS_thread_local: 1933 return TLS_Dynamic; 1934 } 1935 llvm_unreachable("Unknown thread storage class specifier!"); 1936 } 1937 1938 SourceRange VarDecl::getSourceRange() const { 1939 if (const Expr *Init = getInit()) { 1940 SourceLocation InitEnd = Init->getLocEnd(); 1941 // If Init is implicit, ignore its source range and fallback on 1942 // DeclaratorDecl::getSourceRange() to handle postfix elements. 1943 if (InitEnd.isValid() && InitEnd != getLocation()) 1944 return SourceRange(getOuterLocStart(), InitEnd); 1945 } 1946 return DeclaratorDecl::getSourceRange(); 1947 } 1948 1949 template<typename T> 1950 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 1951 // C++ [dcl.link]p1: All function types, function names with external linkage, 1952 // and variable names with external linkage have a language linkage. 1953 if (!D.hasExternalFormalLinkage()) 1954 return NoLanguageLinkage; 1955 1956 // Language linkage is a C++ concept, but saying that everything else in C has 1957 // C language linkage fits the implementation nicely. 1958 ASTContext &Context = D.getASTContext(); 1959 if (!Context.getLangOpts().CPlusPlus) 1960 return CLanguageLinkage; 1961 1962 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 1963 // language linkage of the names of class members and the function type of 1964 // class member functions. 1965 const DeclContext *DC = D.getDeclContext(); 1966 if (DC->isRecord()) 1967 return CXXLanguageLinkage; 1968 1969 // If the first decl is in an extern "C" context, any other redeclaration 1970 // will have C language linkage. If the first one is not in an extern "C" 1971 // context, we would have reported an error for any other decl being in one. 1972 if (isFirstInExternCContext(&D)) 1973 return CLanguageLinkage; 1974 return CXXLanguageLinkage; 1975 } 1976 1977 template<typename T> 1978 static bool isDeclExternC(const T &D) { 1979 // Since the context is ignored for class members, they can only have C++ 1980 // language linkage or no language linkage. 1981 const DeclContext *DC = D.getDeclContext(); 1982 if (DC->isRecord()) { 1983 assert(D.getASTContext().getLangOpts().CPlusPlus); 1984 return false; 1985 } 1986 1987 return D.getLanguageLinkage() == CLanguageLinkage; 1988 } 1989 1990 LanguageLinkage VarDecl::getLanguageLinkage() const { 1991 return getDeclLanguageLinkage(*this); 1992 } 1993 1994 bool VarDecl::isExternC() const { 1995 return isDeclExternC(*this); 1996 } 1997 1998 bool VarDecl::isInExternCContext() const { 1999 return getLexicalDeclContext()->isExternCContext(); 2000 } 2001 2002 bool VarDecl::isInExternCXXContext() const { 2003 return getLexicalDeclContext()->isExternCXXContext(); 2004 } 2005 2006 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2007 2008 VarDecl::DefinitionKind 2009 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2010 if (isThisDeclarationADemotedDefinition()) 2011 return DeclarationOnly; 2012 2013 // C++ [basic.def]p2: 2014 // A declaration is a definition unless [...] it contains the 'extern' 2015 // specifier or a linkage-specification and neither an initializer [...], 2016 // it declares a non-inline static data member in a class declaration [...], 2017 // it declares a static data member outside a class definition and the variable 2018 // was defined within the class with the constexpr specifier [...], 2019 // C++1y [temp.expl.spec]p15: 2020 // An explicit specialization of a static data member or an explicit 2021 // specialization of a static data member template is a definition if the 2022 // declaration includes an initializer; otherwise, it is a declaration. 2023 // 2024 // FIXME: How do you declare (but not define) a partial specialization of 2025 // a static data member template outside the containing class? 2026 if (isStaticDataMember()) { 2027 if (isOutOfLine() && 2028 !(getCanonicalDecl()->isInline() && 2029 getCanonicalDecl()->isConstexpr()) && 2030 (hasInit() || 2031 // If the first declaration is out-of-line, this may be an 2032 // instantiation of an out-of-line partial specialization of a variable 2033 // template for which we have not yet instantiated the initializer. 2034 (getFirstDecl()->isOutOfLine() 2035 ? getTemplateSpecializationKind() == TSK_Undeclared 2036 : getTemplateSpecializationKind() != 2037 TSK_ExplicitSpecialization) || 2038 isa<VarTemplatePartialSpecializationDecl>(this))) 2039 return Definition; 2040 else if (!isOutOfLine() && isInline()) 2041 return Definition; 2042 else 2043 return DeclarationOnly; 2044 } 2045 // C99 6.7p5: 2046 // A definition of an identifier is a declaration for that identifier that 2047 // [...] causes storage to be reserved for that object. 2048 // Note: that applies for all non-file-scope objects. 2049 // C99 6.9.2p1: 2050 // If the declaration of an identifier for an object has file scope and an 2051 // initializer, the declaration is an external definition for the identifier 2052 if (hasInit()) 2053 return Definition; 2054 2055 if (hasDefiningAttr()) 2056 return Definition; 2057 2058 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2059 if (!SAA->isInherited()) 2060 return Definition; 2061 2062 // A variable template specialization (other than a static data member 2063 // template or an explicit specialization) is a declaration until we 2064 // instantiate its initializer. 2065 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2066 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2067 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2068 !VTSD->IsCompleteDefinition) 2069 return DeclarationOnly; 2070 } 2071 2072 if (hasExternalStorage()) 2073 return DeclarationOnly; 2074 2075 // [dcl.link] p7: 2076 // A declaration directly contained in a linkage-specification is treated 2077 // as if it contains the extern specifier for the purpose of determining 2078 // the linkage of the declared name and whether it is a definition. 2079 if (isSingleLineLanguageLinkage(*this)) 2080 return DeclarationOnly; 2081 2082 // C99 6.9.2p2: 2083 // A declaration of an object that has file scope without an initializer, 2084 // and without a storage class specifier or the scs 'static', constitutes 2085 // a tentative definition. 2086 // No such thing in C++. 2087 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2088 return TentativeDefinition; 2089 2090 // What's left is (in C, block-scope) declarations without initializers or 2091 // external storage. These are definitions. 2092 return Definition; 2093 } 2094 2095 VarDecl *VarDecl::getActingDefinition() { 2096 DefinitionKind Kind = isThisDeclarationADefinition(); 2097 if (Kind != TentativeDefinition) 2098 return nullptr; 2099 2100 VarDecl *LastTentative = nullptr; 2101 VarDecl *First = getFirstDecl(); 2102 for (auto I : First->redecls()) { 2103 Kind = I->isThisDeclarationADefinition(); 2104 if (Kind == Definition) 2105 return nullptr; 2106 else if (Kind == TentativeDefinition) 2107 LastTentative = I; 2108 } 2109 return LastTentative; 2110 } 2111 2112 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2113 VarDecl *First = getFirstDecl(); 2114 for (auto I : First->redecls()) { 2115 if (I->isThisDeclarationADefinition(C) == Definition) 2116 return I; 2117 } 2118 return nullptr; 2119 } 2120 2121 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2122 DefinitionKind Kind = DeclarationOnly; 2123 2124 const VarDecl *First = getFirstDecl(); 2125 for (auto I : First->redecls()) { 2126 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2127 if (Kind == Definition) 2128 break; 2129 } 2130 2131 return Kind; 2132 } 2133 2134 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2135 for (auto I : redecls()) { 2136 if (auto Expr = I->getInit()) { 2137 D = I; 2138 return Expr; 2139 } 2140 } 2141 return nullptr; 2142 } 2143 2144 bool VarDecl::hasInit() const { 2145 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2146 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2147 return false; 2148 2149 return !Init.isNull(); 2150 } 2151 2152 Expr *VarDecl::getInit() { 2153 if (!hasInit()) 2154 return nullptr; 2155 2156 if (auto *S = Init.dyn_cast<Stmt *>()) 2157 return cast<Expr>(S); 2158 2159 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2160 } 2161 2162 Stmt **VarDecl::getInitAddress() { 2163 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2164 return &ES->Value; 2165 2166 return Init.getAddrOfPtr1(); 2167 } 2168 2169 bool VarDecl::isOutOfLine() const { 2170 if (Decl::isOutOfLine()) 2171 return true; 2172 2173 if (!isStaticDataMember()) 2174 return false; 2175 2176 // If this static data member was instantiated from a static data member of 2177 // a class template, check whether that static data member was defined 2178 // out-of-line. 2179 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2180 return VD->isOutOfLine(); 2181 2182 return false; 2183 } 2184 2185 void VarDecl::setInit(Expr *I) { 2186 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2187 Eval->~EvaluatedStmt(); 2188 getASTContext().Deallocate(Eval); 2189 } 2190 2191 Init = I; 2192 } 2193 2194 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { 2195 const LangOptions &Lang = C.getLangOpts(); 2196 2197 if (!Lang.CPlusPlus) 2198 return false; 2199 2200 // In C++11, any variable of reference type can be used in a constant 2201 // expression if it is initialized by a constant expression. 2202 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2203 return true; 2204 2205 // Only const objects can be used in constant expressions in C++. C++98 does 2206 // not require the variable to be non-volatile, but we consider this to be a 2207 // defect. 2208 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2209 return false; 2210 2211 // In C++, const, non-volatile variables of integral or enumeration types 2212 // can be used in constant expressions. 2213 if (getType()->isIntegralOrEnumerationType()) 2214 return true; 2215 2216 // Additionally, in C++11, non-volatile constexpr variables can be used in 2217 // constant expressions. 2218 return Lang.CPlusPlus11 && isConstexpr(); 2219 } 2220 2221 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2222 /// form, which contains extra information on the evaluated value of the 2223 /// initializer. 2224 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2225 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2226 if (!Eval) { 2227 // Note: EvaluatedStmt contains an APValue, which usually holds 2228 // resources not allocated from the ASTContext. We need to do some 2229 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2230 // where we can detect whether there's anything to clean up or not. 2231 Eval = new (getASTContext()) EvaluatedStmt; 2232 Eval->Value = Init.get<Stmt *>(); 2233 Init = Eval; 2234 } 2235 return Eval; 2236 } 2237 2238 APValue *VarDecl::evaluateValue() const { 2239 SmallVector<PartialDiagnosticAt, 8> Notes; 2240 return evaluateValue(Notes); 2241 } 2242 2243 APValue *VarDecl::evaluateValue( 2244 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2245 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2246 2247 // We only produce notes indicating why an initializer is non-constant the 2248 // first time it is evaluated. FIXME: The notes won't always be emitted the 2249 // first time we try evaluation, so might not be produced at all. 2250 if (Eval->WasEvaluated) 2251 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; 2252 2253 const auto *Init = cast<Expr>(Eval->Value); 2254 assert(!Init->isValueDependent()); 2255 2256 if (Eval->IsEvaluating) { 2257 // FIXME: Produce a diagnostic for self-initialization. 2258 Eval->CheckedICE = true; 2259 Eval->IsICE = false; 2260 return nullptr; 2261 } 2262 2263 Eval->IsEvaluating = true; 2264 2265 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2266 this, Notes); 2267 2268 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2269 // or that it's empty (so that there's nothing to clean up) if evaluation 2270 // failed. 2271 if (!Result) 2272 Eval->Evaluated = APValue(); 2273 else if (Eval->Evaluated.needsCleanup()) 2274 getASTContext().addDestruction(&Eval->Evaluated); 2275 2276 Eval->IsEvaluating = false; 2277 Eval->WasEvaluated = true; 2278 2279 // In C++11, we have determined whether the initializer was a constant 2280 // expression as a side-effect. 2281 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2282 Eval->CheckedICE = true; 2283 Eval->IsICE = Result && Notes.empty(); 2284 } 2285 2286 return Result ? &Eval->Evaluated : nullptr; 2287 } 2288 2289 APValue *VarDecl::getEvaluatedValue() const { 2290 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2291 if (Eval->WasEvaluated) 2292 return &Eval->Evaluated; 2293 2294 return nullptr; 2295 } 2296 2297 bool VarDecl::isInitKnownICE() const { 2298 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2299 return Eval->CheckedICE; 2300 2301 return false; 2302 } 2303 2304 bool VarDecl::isInitICE() const { 2305 assert(isInitKnownICE() && 2306 "Check whether we already know that the initializer is an ICE"); 2307 return Init.get<EvaluatedStmt *>()->IsICE; 2308 } 2309 2310 bool VarDecl::checkInitIsICE() const { 2311 // Initializers of weak variables are never ICEs. 2312 if (isWeak()) 2313 return false; 2314 2315 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2316 if (Eval->CheckedICE) 2317 // We have already checked whether this subexpression is an 2318 // integral constant expression. 2319 return Eval->IsICE; 2320 2321 const auto *Init = cast<Expr>(Eval->Value); 2322 assert(!Init->isValueDependent()); 2323 2324 // In C++11, evaluate the initializer to check whether it's a constant 2325 // expression. 2326 if (getASTContext().getLangOpts().CPlusPlus11) { 2327 SmallVector<PartialDiagnosticAt, 8> Notes; 2328 evaluateValue(Notes); 2329 return Eval->IsICE; 2330 } 2331 2332 // It's an ICE whether or not the definition we found is 2333 // out-of-line. See DR 721 and the discussion in Clang PR 2334 // 6206 for details. 2335 2336 if (Eval->CheckingICE) 2337 return false; 2338 Eval->CheckingICE = true; 2339 2340 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2341 Eval->CheckingICE = false; 2342 Eval->CheckedICE = true; 2343 return Eval->IsICE; 2344 } 2345 2346 template<typename DeclT> 2347 static DeclT *getDefinitionOrSelf(DeclT *D) { 2348 assert(D); 2349 if (auto *Def = D->getDefinition()) 2350 return Def; 2351 return D; 2352 } 2353 2354 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2355 // If it's a variable template specialization, find the template or partial 2356 // specialization from which it was instantiated. 2357 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2358 auto From = VDTemplSpec->getInstantiatedFrom(); 2359 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2360 while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) { 2361 if (NewVTD->isMemberSpecialization()) 2362 break; 2363 VTD = NewVTD; 2364 } 2365 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2366 } 2367 if (auto *VTPSD = 2368 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2369 while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) { 2370 if (NewVTPSD->isMemberSpecialization()) 2371 break; 2372 VTPSD = NewVTPSD; 2373 } 2374 return getDefinitionOrSelf<VarDecl>(VTPSD); 2375 } 2376 } 2377 2378 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 2379 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2380 VarDecl *VD = getInstantiatedFromStaticDataMember(); 2381 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2382 VD = NewVD; 2383 return getDefinitionOrSelf(VD); 2384 } 2385 } 2386 2387 if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) { 2388 while (VarTemplate->getInstantiatedFromMemberTemplate()) { 2389 if (VarTemplate->isMemberSpecialization()) 2390 break; 2391 VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate(); 2392 } 2393 2394 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2395 } 2396 return nullptr; 2397 } 2398 2399 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2400 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2401 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2402 2403 return nullptr; 2404 } 2405 2406 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2407 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2408 return Spec->getSpecializationKind(); 2409 2410 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2411 return MSI->getTemplateSpecializationKind(); 2412 2413 return TSK_Undeclared; 2414 } 2415 2416 SourceLocation VarDecl::getPointOfInstantiation() const { 2417 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2418 return Spec->getPointOfInstantiation(); 2419 2420 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2421 return MSI->getPointOfInstantiation(); 2422 2423 return SourceLocation(); 2424 } 2425 2426 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2427 return getASTContext().getTemplateOrSpecializationInfo(this) 2428 .dyn_cast<VarTemplateDecl *>(); 2429 } 2430 2431 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2432 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2433 } 2434 2435 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2436 if (isStaticDataMember()) 2437 // FIXME: Remove ? 2438 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2439 return getASTContext().getTemplateOrSpecializationInfo(this) 2440 .dyn_cast<MemberSpecializationInfo *>(); 2441 return nullptr; 2442 } 2443 2444 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2445 SourceLocation PointOfInstantiation) { 2446 assert((isa<VarTemplateSpecializationDecl>(this) || 2447 getMemberSpecializationInfo()) && 2448 "not a variable or static data member template specialization"); 2449 2450 if (VarTemplateSpecializationDecl *Spec = 2451 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2452 Spec->setSpecializationKind(TSK); 2453 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2454 Spec->getPointOfInstantiation().isInvalid()) { 2455 Spec->setPointOfInstantiation(PointOfInstantiation); 2456 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2457 L->InstantiationRequested(this); 2458 } 2459 } 2460 2461 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2462 MSI->setTemplateSpecializationKind(TSK); 2463 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2464 MSI->getPointOfInstantiation().isInvalid()) { 2465 MSI->setPointOfInstantiation(PointOfInstantiation); 2466 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2467 L->InstantiationRequested(this); 2468 } 2469 } 2470 } 2471 2472 void 2473 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2474 TemplateSpecializationKind TSK) { 2475 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2476 "Previous template or instantiation?"); 2477 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2478 } 2479 2480 //===----------------------------------------------------------------------===// 2481 // ParmVarDecl Implementation 2482 //===----------------------------------------------------------------------===// 2483 2484 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2485 SourceLocation StartLoc, 2486 SourceLocation IdLoc, IdentifierInfo *Id, 2487 QualType T, TypeSourceInfo *TInfo, 2488 StorageClass S, Expr *DefArg) { 2489 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2490 S, DefArg); 2491 } 2492 2493 QualType ParmVarDecl::getOriginalType() const { 2494 TypeSourceInfo *TSI = getTypeSourceInfo(); 2495 QualType T = TSI ? TSI->getType() : getType(); 2496 if (const auto *DT = dyn_cast<DecayedType>(T)) 2497 return DT->getOriginalType(); 2498 return T; 2499 } 2500 2501 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2502 return new (C, ID) 2503 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2504 nullptr, QualType(), nullptr, SC_None, nullptr); 2505 } 2506 2507 SourceRange ParmVarDecl::getSourceRange() const { 2508 if (!hasInheritedDefaultArg()) { 2509 SourceRange ArgRange = getDefaultArgRange(); 2510 if (ArgRange.isValid()) 2511 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2512 } 2513 2514 // DeclaratorDecl considers the range of postfix types as overlapping with the 2515 // declaration name, but this is not the case with parameters in ObjC methods. 2516 if (isa<ObjCMethodDecl>(getDeclContext())) 2517 return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); 2518 2519 return DeclaratorDecl::getSourceRange(); 2520 } 2521 2522 Expr *ParmVarDecl::getDefaultArg() { 2523 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2524 assert(!hasUninstantiatedDefaultArg() && 2525 "Default argument is not yet instantiated!"); 2526 2527 Expr *Arg = getInit(); 2528 if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) 2529 return E->getSubExpr(); 2530 2531 return Arg; 2532 } 2533 2534 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2535 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2536 Init = defarg; 2537 } 2538 2539 SourceRange ParmVarDecl::getDefaultArgRange() const { 2540 switch (ParmVarDeclBits.DefaultArgKind) { 2541 case DAK_None: 2542 case DAK_Unparsed: 2543 // Nothing we can do here. 2544 return SourceRange(); 2545 2546 case DAK_Uninstantiated: 2547 return getUninstantiatedDefaultArg()->getSourceRange(); 2548 2549 case DAK_Normal: 2550 if (const Expr *E = getInit()) 2551 return E->getSourceRange(); 2552 2553 // Missing an actual expression, may be invalid. 2554 return SourceRange(); 2555 } 2556 llvm_unreachable("Invalid default argument kind."); 2557 } 2558 2559 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2560 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2561 Init = arg; 2562 } 2563 2564 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2565 assert(hasUninstantiatedDefaultArg() && 2566 "Wrong kind of initialization expression!"); 2567 return cast_or_null<Expr>(Init.get<Stmt *>()); 2568 } 2569 2570 bool ParmVarDecl::hasDefaultArg() const { 2571 // FIXME: We should just return false for DAK_None here once callers are 2572 // prepared for the case that we encountered an invalid default argument and 2573 // were unable to even build an invalid expression. 2574 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2575 !Init.isNull(); 2576 } 2577 2578 bool ParmVarDecl::isParameterPack() const { 2579 return isa<PackExpansionType>(getType()); 2580 } 2581 2582 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2583 getASTContext().setParameterIndex(this, parameterIndex); 2584 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2585 } 2586 2587 unsigned ParmVarDecl::getParameterIndexLarge() const { 2588 return getASTContext().getParameterIndex(this); 2589 } 2590 2591 //===----------------------------------------------------------------------===// 2592 // FunctionDecl Implementation 2593 //===----------------------------------------------------------------------===// 2594 2595 void FunctionDecl::getNameForDiagnostic( 2596 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2597 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2598 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2599 if (TemplateArgs) 2600 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2601 } 2602 2603 bool FunctionDecl::isVariadic() const { 2604 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2605 return FT->isVariadic(); 2606 return false; 2607 } 2608 2609 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2610 for (auto I : redecls()) { 2611 if (I->doesThisDeclarationHaveABody()) { 2612 Definition = I; 2613 return true; 2614 } 2615 } 2616 2617 return false; 2618 } 2619 2620 bool FunctionDecl::hasTrivialBody() const 2621 { 2622 Stmt *S = getBody(); 2623 if (!S) { 2624 // Since we don't have a body for this function, we don't know if it's 2625 // trivial or not. 2626 return false; 2627 } 2628 2629 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2630 return true; 2631 return false; 2632 } 2633 2634 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2635 for (auto I : redecls()) { 2636 if (I->isThisDeclarationADefinition()) { 2637 Definition = I; 2638 return true; 2639 } 2640 } 2641 2642 return false; 2643 } 2644 2645 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2646 if (!hasBody(Definition)) 2647 return nullptr; 2648 2649 if (Definition->Body) 2650 return Definition->Body.get(getASTContext().getExternalSource()); 2651 2652 return nullptr; 2653 } 2654 2655 void FunctionDecl::setBody(Stmt *B) { 2656 Body = B; 2657 if (B) 2658 EndRangeLoc = B->getLocEnd(); 2659 } 2660 2661 void FunctionDecl::setPure(bool P) { 2662 IsPure = P; 2663 if (P) 2664 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2665 Parent->markedVirtualFunctionPure(); 2666 } 2667 2668 template<std::size_t Len> 2669 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2670 IdentifierInfo *II = ND->getIdentifier(); 2671 return II && II->isStr(Str); 2672 } 2673 2674 bool FunctionDecl::isMain() const { 2675 const TranslationUnitDecl *tunit = 2676 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2677 return tunit && 2678 !tunit->getASTContext().getLangOpts().Freestanding && 2679 isNamed(this, "main"); 2680 } 2681 2682 bool FunctionDecl::isMSVCRTEntryPoint() const { 2683 const TranslationUnitDecl *TUnit = 2684 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2685 if (!TUnit) 2686 return false; 2687 2688 // Even though we aren't really targeting MSVCRT if we are freestanding, 2689 // semantic analysis for these functions remains the same. 2690 2691 // MSVCRT entry points only exist on MSVCRT targets. 2692 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2693 return false; 2694 2695 // Nameless functions like constructors cannot be entry points. 2696 if (!getIdentifier()) 2697 return false; 2698 2699 return llvm::StringSwitch<bool>(getName()) 2700 .Cases("main", // an ANSI console app 2701 "wmain", // a Unicode console App 2702 "WinMain", // an ANSI GUI app 2703 "wWinMain", // a Unicode GUI app 2704 "DllMain", // a DLL 2705 true) 2706 .Default(false); 2707 } 2708 2709 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2710 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2711 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2712 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2713 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2714 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2715 2716 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2717 return false; 2718 2719 const auto *proto = getType()->castAs<FunctionProtoType>(); 2720 if (proto->getNumParams() != 2 || proto->isVariadic()) 2721 return false; 2722 2723 ASTContext &Context = 2724 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2725 ->getASTContext(); 2726 2727 // The result type and first argument type are constant across all 2728 // these operators. The second argument must be exactly void*. 2729 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2730 } 2731 2732 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const { 2733 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2734 return false; 2735 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2736 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2737 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2738 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2739 return false; 2740 2741 if (isa<CXXRecordDecl>(getDeclContext())) 2742 return false; 2743 2744 // This can only fail for an invalid 'operator new' declaration. 2745 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2746 return false; 2747 2748 const auto *FPT = getType()->castAs<FunctionProtoType>(); 2749 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 2750 return false; 2751 2752 // If this is a single-parameter function, it must be a replaceable global 2753 // allocation or deallocation function. 2754 if (FPT->getNumParams() == 1) 2755 return true; 2756 2757 unsigned Params = 1; 2758 QualType Ty = FPT->getParamType(Params); 2759 ASTContext &Ctx = getASTContext(); 2760 2761 auto Consume = [&] { 2762 ++Params; 2763 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 2764 }; 2765 2766 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 2767 bool IsSizedDelete = false; 2768 if (Ctx.getLangOpts().SizedDeallocation && 2769 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 2770 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 2771 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 2772 IsSizedDelete = true; 2773 Consume(); 2774 } 2775 2776 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 2777 // new/delete. 2778 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 2779 if (IsAligned) 2780 *IsAligned = true; 2781 Consume(); 2782 } 2783 2784 // Finally, if this is not a sized delete, the final parameter can 2785 // be a 'const std::nothrow_t&'. 2786 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 2787 Ty = Ty->getPointeeType(); 2788 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2789 return false; 2790 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 2791 if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace()) 2792 Consume(); 2793 } 2794 2795 return Params == FPT->getNumParams(); 2796 } 2797 2798 bool FunctionDecl::isDestroyingOperatorDelete() const { 2799 // C++ P0722: 2800 // Within a class C, a single object deallocation function with signature 2801 // (T, std::destroying_delete_t, <more params>) 2802 // is a destroying operator delete. 2803 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 2804 getNumParams() < 2) 2805 return false; 2806 2807 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 2808 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 2809 RD->getIdentifier()->isStr("destroying_delete_t"); 2810 } 2811 2812 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 2813 return getDeclLanguageLinkage(*this); 2814 } 2815 2816 bool FunctionDecl::isExternC() const { 2817 return isDeclExternC(*this); 2818 } 2819 2820 bool FunctionDecl::isInExternCContext() const { 2821 return getLexicalDeclContext()->isExternCContext(); 2822 } 2823 2824 bool FunctionDecl::isInExternCXXContext() const { 2825 return getLexicalDeclContext()->isExternCXXContext(); 2826 } 2827 2828 bool FunctionDecl::isGlobal() const { 2829 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 2830 return Method->isStatic(); 2831 2832 if (getCanonicalDecl()->getStorageClass() == SC_Static) 2833 return false; 2834 2835 for (const DeclContext *DC = getDeclContext(); 2836 DC->isNamespace(); 2837 DC = DC->getParent()) { 2838 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 2839 if (!Namespace->getDeclName()) 2840 return false; 2841 break; 2842 } 2843 } 2844 2845 return true; 2846 } 2847 2848 bool FunctionDecl::isNoReturn() const { 2849 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 2850 hasAttr<C11NoReturnAttr>()) 2851 return true; 2852 2853 if (auto *FnTy = getType()->getAs<FunctionType>()) 2854 return FnTy->getNoReturnAttr(); 2855 2856 return false; 2857 } 2858 2859 void 2860 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 2861 redeclarable_base::setPreviousDecl(PrevDecl); 2862 2863 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 2864 FunctionTemplateDecl *PrevFunTmpl 2865 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 2866 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 2867 FunTmpl->setPreviousDecl(PrevFunTmpl); 2868 } 2869 2870 if (PrevDecl && PrevDecl->IsInline) 2871 IsInline = true; 2872 } 2873 2874 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 2875 2876 /// Returns a value indicating whether this function 2877 /// corresponds to a builtin function. 2878 /// 2879 /// The function corresponds to a built-in function if it is 2880 /// declared at translation scope or within an extern "C" block and 2881 /// its name matches with the name of a builtin. The returned value 2882 /// will be 0 for functions that do not correspond to a builtin, a 2883 /// value of type \c Builtin::ID if in the target-independent range 2884 /// \c [1,Builtin::First), or a target-specific builtin value. 2885 unsigned FunctionDecl::getBuiltinID() const { 2886 if (!getIdentifier()) 2887 return 0; 2888 2889 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 2890 if (!BuiltinID) 2891 return 0; 2892 2893 ASTContext &Context = getASTContext(); 2894 if (Context.getLangOpts().CPlusPlus) { 2895 const auto *LinkageDecl = 2896 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); 2897 // In C++, the first declaration of a builtin is always inside an implicit 2898 // extern "C". 2899 // FIXME: A recognised library function may not be directly in an extern "C" 2900 // declaration, for instance "extern "C" { namespace std { decl } }". 2901 if (!LinkageDecl) { 2902 if (BuiltinID == Builtin::BI__GetExceptionInfo && 2903 Context.getTargetInfo().getCXXABI().isMicrosoft()) 2904 return Builtin::BI__GetExceptionInfo; 2905 return 0; 2906 } 2907 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 2908 return 0; 2909 } 2910 2911 // If the function is marked "overloadable", it has a different mangled name 2912 // and is not the C library function. 2913 if (hasAttr<OverloadableAttr>()) 2914 return 0; 2915 2916 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2917 return BuiltinID; 2918 2919 // This function has the name of a known C library 2920 // function. Determine whether it actually refers to the C library 2921 // function or whether it just has the same name. 2922 2923 // If this is a static function, it's not a builtin. 2924 if (getStorageClass() == SC_Static) 2925 return 0; 2926 2927 // OpenCL v1.2 s6.9.f - The library functions defined in 2928 // the C99 standard headers are not available. 2929 if (Context.getLangOpts().OpenCL && 2930 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2931 return 0; 2932 2933 // CUDA does not have device-side standard library. printf and malloc are the 2934 // only special cases that are supported by device-side runtime. 2935 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 2936 !hasAttr<CUDAHostAttr>() && 2937 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 2938 return 0; 2939 2940 return BuiltinID; 2941 } 2942 2943 /// getNumParams - Return the number of parameters this function must have 2944 /// based on its FunctionType. This is the length of the ParamInfo array 2945 /// after it has been created. 2946 unsigned FunctionDecl::getNumParams() const { 2947 const auto *FPT = getType()->getAs<FunctionProtoType>(); 2948 return FPT ? FPT->getNumParams() : 0; 2949 } 2950 2951 void FunctionDecl::setParams(ASTContext &C, 2952 ArrayRef<ParmVarDecl *> NewParamInfo) { 2953 assert(!ParamInfo && "Already has param info!"); 2954 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 2955 2956 // Zero params -> null pointer. 2957 if (!NewParamInfo.empty()) { 2958 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 2959 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 2960 } 2961 } 2962 2963 /// getMinRequiredArguments - Returns the minimum number of arguments 2964 /// needed to call this function. This may be fewer than the number of 2965 /// function parameters, if some of the parameters have default 2966 /// arguments (in C++) or are parameter packs (C++11). 2967 unsigned FunctionDecl::getMinRequiredArguments() const { 2968 if (!getASTContext().getLangOpts().CPlusPlus) 2969 return getNumParams(); 2970 2971 unsigned NumRequiredArgs = 0; 2972 for (auto *Param : parameters()) 2973 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 2974 ++NumRequiredArgs; 2975 return NumRequiredArgs; 2976 } 2977 2978 /// The combination of the extern and inline keywords under MSVC forces 2979 /// the function to be required. 2980 /// 2981 /// Note: This function assumes that we will only get called when isInlined() 2982 /// would return true for this FunctionDecl. 2983 bool FunctionDecl::isMSExternInline() const { 2984 assert(isInlined() && "expected to get called on an inlined function!"); 2985 2986 const ASTContext &Context = getASTContext(); 2987 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 2988 !hasAttr<DLLExportAttr>()) 2989 return false; 2990 2991 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 2992 FD = FD->getPreviousDecl()) 2993 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2994 return true; 2995 2996 return false; 2997 } 2998 2999 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3000 if (Redecl->getStorageClass() != SC_Extern) 3001 return false; 3002 3003 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3004 FD = FD->getPreviousDecl()) 3005 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3006 return false; 3007 3008 return true; 3009 } 3010 3011 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3012 // Only consider file-scope declarations in this test. 3013 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3014 return false; 3015 3016 // Only consider explicit declarations; the presence of a builtin for a 3017 // libcall shouldn't affect whether a definition is externally visible. 3018 if (Redecl->isImplicit()) 3019 return false; 3020 3021 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3022 return true; // Not an inline definition 3023 3024 return false; 3025 } 3026 3027 /// For a function declaration in C or C++, determine whether this 3028 /// declaration causes the definition to be externally visible. 3029 /// 3030 /// For instance, this determines if adding the current declaration to the set 3031 /// of redeclarations of the given functions causes 3032 /// isInlineDefinitionExternallyVisible to change from false to true. 3033 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3034 assert(!doesThisDeclarationHaveABody() && 3035 "Must have a declaration without a body."); 3036 3037 ASTContext &Context = getASTContext(); 3038 3039 if (Context.getLangOpts().MSVCCompat) { 3040 const FunctionDecl *Definition; 3041 if (hasBody(Definition) && Definition->isInlined() && 3042 redeclForcesDefMSVC(this)) 3043 return true; 3044 } 3045 3046 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3047 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3048 // an externally visible definition. 3049 // 3050 // FIXME: What happens if gnu_inline gets added on after the first 3051 // declaration? 3052 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3053 return false; 3054 3055 const FunctionDecl *Prev = this; 3056 bool FoundBody = false; 3057 while ((Prev = Prev->getPreviousDecl())) { 3058 FoundBody |= Prev->Body.isValid(); 3059 3060 if (Prev->Body) { 3061 // If it's not the case that both 'inline' and 'extern' are 3062 // specified on the definition, then it is always externally visible. 3063 if (!Prev->isInlineSpecified() || 3064 Prev->getStorageClass() != SC_Extern) 3065 return false; 3066 } else if (Prev->isInlineSpecified() && 3067 Prev->getStorageClass() != SC_Extern) { 3068 return false; 3069 } 3070 } 3071 return FoundBody; 3072 } 3073 3074 if (Context.getLangOpts().CPlusPlus) 3075 return false; 3076 3077 // C99 6.7.4p6: 3078 // [...] If all of the file scope declarations for a function in a 3079 // translation unit include the inline function specifier without extern, 3080 // then the definition in that translation unit is an inline definition. 3081 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3082 return false; 3083 const FunctionDecl *Prev = this; 3084 bool FoundBody = false; 3085 while ((Prev = Prev->getPreviousDecl())) { 3086 FoundBody |= Prev->Body.isValid(); 3087 if (RedeclForcesDefC99(Prev)) 3088 return false; 3089 } 3090 return FoundBody; 3091 } 3092 3093 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3094 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3095 if (!TSI) 3096 return SourceRange(); 3097 FunctionTypeLoc FTL = 3098 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 3099 if (!FTL) 3100 return SourceRange(); 3101 3102 // Skip self-referential return types. 3103 const SourceManager &SM = getASTContext().getSourceManager(); 3104 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3105 SourceLocation Boundary = getNameInfo().getLocStart(); 3106 if (RTRange.isInvalid() || Boundary.isInvalid() || 3107 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3108 return SourceRange(); 3109 3110 return RTRange; 3111 } 3112 3113 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3114 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3115 if (!TSI) 3116 return SourceRange(); 3117 FunctionTypeLoc FTL = 3118 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 3119 if (!FTL) 3120 return SourceRange(); 3121 3122 return FTL.getExceptionSpecRange(); 3123 } 3124 3125 const Attr *FunctionDecl::getUnusedResultAttr() const { 3126 QualType RetType = getReturnType(); 3127 if (RetType->isRecordType()) { 3128 if (const auto *Ret = 3129 dyn_cast_or_null<RecordDecl>(RetType->getAsTagDecl())) { 3130 if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>()) 3131 return R; 3132 } 3133 } else if (const auto *ET = RetType->getAs<EnumType>()) { 3134 if (const EnumDecl *ED = ET->getDecl()) { 3135 if (const auto *R = ED->getAttr<WarnUnusedResultAttr>()) 3136 return R; 3137 } 3138 } 3139 return getAttr<WarnUnusedResultAttr>(); 3140 } 3141 3142 /// For an inline function definition in C, or for a gnu_inline function 3143 /// in C++, determine whether the definition will be externally visible. 3144 /// 3145 /// Inline function definitions are always available for inlining optimizations. 3146 /// However, depending on the language dialect, declaration specifiers, and 3147 /// attributes, the definition of an inline function may or may not be 3148 /// "externally" visible to other translation units in the program. 3149 /// 3150 /// In C99, inline definitions are not externally visible by default. However, 3151 /// if even one of the global-scope declarations is marked "extern inline", the 3152 /// inline definition becomes externally visible (C99 6.7.4p6). 3153 /// 3154 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3155 /// definition, we use the GNU semantics for inline, which are nearly the 3156 /// opposite of C99 semantics. In particular, "inline" by itself will create 3157 /// an externally visible symbol, but "extern inline" will not create an 3158 /// externally visible symbol. 3159 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3160 assert((doesThisDeclarationHaveABody() || willHaveBody()) && 3161 "Must be a function definition"); 3162 assert(isInlined() && "Function must be inline"); 3163 ASTContext &Context = getASTContext(); 3164 3165 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3166 // Note: If you change the logic here, please change 3167 // doesDeclarationForceExternallyVisibleDefinition as well. 3168 // 3169 // If it's not the case that both 'inline' and 'extern' are 3170 // specified on the definition, then this inline definition is 3171 // externally visible. 3172 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3173 return true; 3174 3175 // If any declaration is 'inline' but not 'extern', then this definition 3176 // is externally visible. 3177 for (auto Redecl : redecls()) { 3178 if (Redecl->isInlineSpecified() && 3179 Redecl->getStorageClass() != SC_Extern) 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 // The rest of this function is C-only. 3187 assert(!Context.getLangOpts().CPlusPlus && 3188 "should not use C inline rules in C++"); 3189 3190 // C99 6.7.4p6: 3191 // [...] If all of the file scope declarations for a function in a 3192 // translation unit include the inline function specifier without extern, 3193 // then the definition in that translation unit is an inline definition. 3194 for (auto Redecl : redecls()) { 3195 if (RedeclForcesDefC99(Redecl)) 3196 return true; 3197 } 3198 3199 // C99 6.7.4p6: 3200 // An inline definition does not provide an external definition for the 3201 // function, and does not forbid an external definition in another 3202 // translation unit. 3203 return false; 3204 } 3205 3206 /// getOverloadedOperator - Which C++ overloaded operator this 3207 /// function represents, if any. 3208 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3209 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3210 return getDeclName().getCXXOverloadedOperator(); 3211 else 3212 return OO_None; 3213 } 3214 3215 /// getLiteralIdentifier - The literal suffix identifier this function 3216 /// represents, if any. 3217 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3218 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3219 return getDeclName().getCXXLiteralIdentifier(); 3220 else 3221 return nullptr; 3222 } 3223 3224 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3225 if (TemplateOrSpecialization.isNull()) 3226 return TK_NonTemplate; 3227 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3228 return TK_FunctionTemplate; 3229 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3230 return TK_MemberSpecialization; 3231 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3232 return TK_FunctionTemplateSpecialization; 3233 if (TemplateOrSpecialization.is 3234 <DependentFunctionTemplateSpecializationInfo*>()) 3235 return TK_DependentFunctionTemplateSpecialization; 3236 3237 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3238 } 3239 3240 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3241 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3242 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3243 3244 return nullptr; 3245 } 3246 3247 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3248 return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>(); 3249 } 3250 3251 void 3252 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3253 FunctionDecl *FD, 3254 TemplateSpecializationKind TSK) { 3255 assert(TemplateOrSpecialization.isNull() && 3256 "Member function is already a specialization"); 3257 MemberSpecializationInfo *Info 3258 = new (C) MemberSpecializationInfo(FD, TSK); 3259 TemplateOrSpecialization = Info; 3260 } 3261 3262 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3263 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3264 } 3265 3266 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3267 TemplateOrSpecialization = Template; 3268 } 3269 3270 bool FunctionDecl::isImplicitlyInstantiable() const { 3271 // If the function is invalid, it can't be implicitly instantiated. 3272 if (isInvalidDecl()) 3273 return false; 3274 3275 switch (getTemplateSpecializationKind()) { 3276 case TSK_Undeclared: 3277 case TSK_ExplicitInstantiationDefinition: 3278 return false; 3279 3280 case TSK_ImplicitInstantiation: 3281 return true; 3282 3283 // It is possible to instantiate TSK_ExplicitSpecialization kind 3284 // if the FunctionDecl has a class scope specialization pattern. 3285 case TSK_ExplicitSpecialization: 3286 return getClassScopeSpecializationPattern() != nullptr; 3287 3288 case TSK_ExplicitInstantiationDeclaration: 3289 // Handled below. 3290 break; 3291 } 3292 3293 // Find the actual template from which we will instantiate. 3294 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3295 bool HasPattern = false; 3296 if (PatternDecl) 3297 HasPattern = PatternDecl->hasBody(PatternDecl); 3298 3299 // C++0x [temp.explicit]p9: 3300 // Except for inline functions, other explicit instantiation declarations 3301 // have the effect of suppressing the implicit instantiation of the entity 3302 // to which they refer. 3303 if (!HasPattern || !PatternDecl) 3304 return true; 3305 3306 return PatternDecl->isInlined(); 3307 } 3308 3309 bool FunctionDecl::isTemplateInstantiation() const { 3310 switch (getTemplateSpecializationKind()) { 3311 case TSK_Undeclared: 3312 case TSK_ExplicitSpecialization: 3313 return false; 3314 case TSK_ImplicitInstantiation: 3315 case TSK_ExplicitInstantiationDeclaration: 3316 case TSK_ExplicitInstantiationDefinition: 3317 return true; 3318 } 3319 llvm_unreachable("All TSK values handled."); 3320 } 3321 3322 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 3323 // Handle class scope explicit specialization special case. 3324 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 3325 if (auto *Spec = getClassScopeSpecializationPattern()) 3326 return getDefinitionOrSelf(Spec); 3327 return nullptr; 3328 } 3329 3330 // If this is a generic lambda call operator specialization, its 3331 // instantiation pattern is always its primary template's pattern 3332 // even if its primary template was instantiated from another 3333 // member template (which happens with nested generic lambdas). 3334 // Since a lambda's call operator's body is transformed eagerly, 3335 // we don't have to go hunting for a prototype definition template 3336 // (i.e. instantiated-from-member-template) to use as an instantiation 3337 // pattern. 3338 3339 if (isGenericLambdaCallOperatorSpecialization( 3340 dyn_cast<CXXMethodDecl>(this))) { 3341 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3342 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3343 } 3344 3345 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3346 while (Primary->getInstantiatedFromMemberTemplate()) { 3347 // If we have hit a point where the user provided a specialization of 3348 // this template, we're done looking. 3349 if (Primary->isMemberSpecialization()) 3350 break; 3351 Primary = Primary->getInstantiatedFromMemberTemplate(); 3352 } 3353 3354 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3355 } 3356 3357 if (auto *MFD = getInstantiatedFromMemberFunction()) 3358 return getDefinitionOrSelf(MFD); 3359 3360 return nullptr; 3361 } 3362 3363 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3364 if (FunctionTemplateSpecializationInfo *Info 3365 = TemplateOrSpecialization 3366 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3367 return Info->Template.getPointer(); 3368 } 3369 return nullptr; 3370 } 3371 3372 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { 3373 return getASTContext().getClassScopeSpecializationPattern(this); 3374 } 3375 3376 FunctionTemplateSpecializationInfo * 3377 FunctionDecl::getTemplateSpecializationInfo() const { 3378 return TemplateOrSpecialization 3379 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3380 } 3381 3382 const TemplateArgumentList * 3383 FunctionDecl::getTemplateSpecializationArgs() const { 3384 if (FunctionTemplateSpecializationInfo *Info 3385 = TemplateOrSpecialization 3386 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3387 return Info->TemplateArguments; 3388 } 3389 return nullptr; 3390 } 3391 3392 const ASTTemplateArgumentListInfo * 3393 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3394 if (FunctionTemplateSpecializationInfo *Info 3395 = TemplateOrSpecialization 3396 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3397 return Info->TemplateArgumentsAsWritten; 3398 } 3399 return nullptr; 3400 } 3401 3402 void 3403 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3404 FunctionTemplateDecl *Template, 3405 const TemplateArgumentList *TemplateArgs, 3406 void *InsertPos, 3407 TemplateSpecializationKind TSK, 3408 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3409 SourceLocation PointOfInstantiation) { 3410 assert(TSK != TSK_Undeclared && 3411 "Must specify the type of function template specialization"); 3412 FunctionTemplateSpecializationInfo *Info 3413 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3414 if (!Info) 3415 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, 3416 TemplateArgs, 3417 TemplateArgsAsWritten, 3418 PointOfInstantiation); 3419 TemplateOrSpecialization = Info; 3420 Template->addSpecialization(Info, InsertPos); 3421 } 3422 3423 void 3424 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3425 const UnresolvedSetImpl &Templates, 3426 const TemplateArgumentListInfo &TemplateArgs) { 3427 assert(TemplateOrSpecialization.isNull()); 3428 DependentFunctionTemplateSpecializationInfo *Info = 3429 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3430 TemplateArgs); 3431 TemplateOrSpecialization = Info; 3432 } 3433 3434 DependentFunctionTemplateSpecializationInfo * 3435 FunctionDecl::getDependentSpecializationInfo() const { 3436 return TemplateOrSpecialization 3437 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3438 } 3439 3440 DependentFunctionTemplateSpecializationInfo * 3441 DependentFunctionTemplateSpecializationInfo::Create( 3442 ASTContext &Context, const UnresolvedSetImpl &Ts, 3443 const TemplateArgumentListInfo &TArgs) { 3444 void *Buffer = Context.Allocate( 3445 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3446 TArgs.size(), Ts.size())); 3447 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3448 } 3449 3450 DependentFunctionTemplateSpecializationInfo:: 3451 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3452 const TemplateArgumentListInfo &TArgs) 3453 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3454 NumTemplates = Ts.size(); 3455 NumArgs = TArgs.size(); 3456 3457 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3458 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3459 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3460 3461 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3462 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3463 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3464 } 3465 3466 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3467 // For a function template specialization, query the specialization 3468 // information object. 3469 FunctionTemplateSpecializationInfo *FTSInfo 3470 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3471 if (FTSInfo) 3472 return FTSInfo->getTemplateSpecializationKind(); 3473 3474 MemberSpecializationInfo *MSInfo 3475 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); 3476 if (MSInfo) 3477 return MSInfo->getTemplateSpecializationKind(); 3478 3479 return TSK_Undeclared; 3480 } 3481 3482 void 3483 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3484 SourceLocation PointOfInstantiation) { 3485 if (FunctionTemplateSpecializationInfo *FTSInfo 3486 = TemplateOrSpecialization.dyn_cast< 3487 FunctionTemplateSpecializationInfo*>()) { 3488 FTSInfo->setTemplateSpecializationKind(TSK); 3489 if (TSK != TSK_ExplicitSpecialization && 3490 PointOfInstantiation.isValid() && 3491 FTSInfo->getPointOfInstantiation().isInvalid()) { 3492 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3493 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3494 L->InstantiationRequested(this); 3495 } 3496 } else if (MemberSpecializationInfo *MSInfo 3497 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3498 MSInfo->setTemplateSpecializationKind(TSK); 3499 if (TSK != TSK_ExplicitSpecialization && 3500 PointOfInstantiation.isValid() && 3501 MSInfo->getPointOfInstantiation().isInvalid()) { 3502 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3503 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3504 L->InstantiationRequested(this); 3505 } 3506 } else 3507 llvm_unreachable("Function cannot have a template specialization kind"); 3508 } 3509 3510 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3511 if (FunctionTemplateSpecializationInfo *FTSInfo 3512 = TemplateOrSpecialization.dyn_cast< 3513 FunctionTemplateSpecializationInfo*>()) 3514 return FTSInfo->getPointOfInstantiation(); 3515 else if (MemberSpecializationInfo *MSInfo 3516 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3517 return MSInfo->getPointOfInstantiation(); 3518 3519 return SourceLocation(); 3520 } 3521 3522 bool FunctionDecl::isOutOfLine() const { 3523 if (Decl::isOutOfLine()) 3524 return true; 3525 3526 // If this function was instantiated from a member function of a 3527 // class template, check whether that member function was defined out-of-line. 3528 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3529 const FunctionDecl *Definition; 3530 if (FD->hasBody(Definition)) 3531 return Definition->isOutOfLine(); 3532 } 3533 3534 // If this function was instantiated from a function template, 3535 // check whether that function template was defined out-of-line. 3536 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3537 const FunctionDecl *Definition; 3538 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3539 return Definition->isOutOfLine(); 3540 } 3541 3542 return false; 3543 } 3544 3545 SourceRange FunctionDecl::getSourceRange() const { 3546 return SourceRange(getOuterLocStart(), EndRangeLoc); 3547 } 3548 3549 unsigned FunctionDecl::getMemoryFunctionKind() const { 3550 IdentifierInfo *FnInfo = getIdentifier(); 3551 3552 if (!FnInfo) 3553 return 0; 3554 3555 // Builtin handling. 3556 switch (getBuiltinID()) { 3557 case Builtin::BI__builtin_memset: 3558 case Builtin::BI__builtin___memset_chk: 3559 case Builtin::BImemset: 3560 return Builtin::BImemset; 3561 3562 case Builtin::BI__builtin_memcpy: 3563 case Builtin::BI__builtin___memcpy_chk: 3564 case Builtin::BImemcpy: 3565 return Builtin::BImemcpy; 3566 3567 case Builtin::BI__builtin_memmove: 3568 case Builtin::BI__builtin___memmove_chk: 3569 case Builtin::BImemmove: 3570 return Builtin::BImemmove; 3571 3572 case Builtin::BIstrlcpy: 3573 case Builtin::BI__builtin___strlcpy_chk: 3574 return Builtin::BIstrlcpy; 3575 3576 case Builtin::BIstrlcat: 3577 case Builtin::BI__builtin___strlcat_chk: 3578 return Builtin::BIstrlcat; 3579 3580 case Builtin::BI__builtin_memcmp: 3581 case Builtin::BImemcmp: 3582 return Builtin::BImemcmp; 3583 3584 case Builtin::BI__builtin_strncpy: 3585 case Builtin::BI__builtin___strncpy_chk: 3586 case Builtin::BIstrncpy: 3587 return Builtin::BIstrncpy; 3588 3589 case Builtin::BI__builtin_strncmp: 3590 case Builtin::BIstrncmp: 3591 return Builtin::BIstrncmp; 3592 3593 case Builtin::BI__builtin_strncasecmp: 3594 case Builtin::BIstrncasecmp: 3595 return Builtin::BIstrncasecmp; 3596 3597 case Builtin::BI__builtin_strncat: 3598 case Builtin::BI__builtin___strncat_chk: 3599 case Builtin::BIstrncat: 3600 return Builtin::BIstrncat; 3601 3602 case Builtin::BI__builtin_strndup: 3603 case Builtin::BIstrndup: 3604 return Builtin::BIstrndup; 3605 3606 case Builtin::BI__builtin_strlen: 3607 case Builtin::BIstrlen: 3608 return Builtin::BIstrlen; 3609 3610 case Builtin::BI__builtin_bzero: 3611 case Builtin::BIbzero: 3612 return Builtin::BIbzero; 3613 3614 default: 3615 if (isExternC()) { 3616 if (FnInfo->isStr("memset")) 3617 return Builtin::BImemset; 3618 else if (FnInfo->isStr("memcpy")) 3619 return Builtin::BImemcpy; 3620 else if (FnInfo->isStr("memmove")) 3621 return Builtin::BImemmove; 3622 else if (FnInfo->isStr("memcmp")) 3623 return Builtin::BImemcmp; 3624 else if (FnInfo->isStr("strncpy")) 3625 return Builtin::BIstrncpy; 3626 else if (FnInfo->isStr("strncmp")) 3627 return Builtin::BIstrncmp; 3628 else if (FnInfo->isStr("strncasecmp")) 3629 return Builtin::BIstrncasecmp; 3630 else if (FnInfo->isStr("strncat")) 3631 return Builtin::BIstrncat; 3632 else if (FnInfo->isStr("strndup")) 3633 return Builtin::BIstrndup; 3634 else if (FnInfo->isStr("strlen")) 3635 return Builtin::BIstrlen; 3636 else if (FnInfo->isStr("bzero")) 3637 return Builtin::BIbzero; 3638 } 3639 break; 3640 } 3641 return 0; 3642 } 3643 3644 unsigned FunctionDecl::getODRHash() { 3645 if (HasODRHash) 3646 return ODRHash; 3647 3648 if (FunctionDecl *Definition = getDefinition()) { 3649 if (Definition != this) { 3650 HasODRHash = true; 3651 ODRHash = Definition->getODRHash(); 3652 return ODRHash; 3653 } 3654 } 3655 3656 if (auto *FT = getInstantiatedFromMemberFunction()) { 3657 HasODRHash = true; 3658 ODRHash = FT->getODRHash(); 3659 return ODRHash; 3660 } 3661 3662 class ODRHash Hash; 3663 Hash.AddFunctionDecl(this); 3664 HasODRHash = true; 3665 ODRHash = Hash.CalculateHash(); 3666 return ODRHash; 3667 } 3668 3669 //===----------------------------------------------------------------------===// 3670 // FieldDecl Implementation 3671 //===----------------------------------------------------------------------===// 3672 3673 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3674 SourceLocation StartLoc, SourceLocation IdLoc, 3675 IdentifierInfo *Id, QualType T, 3676 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3677 InClassInitStyle InitStyle) { 3678 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3679 BW, Mutable, InitStyle); 3680 } 3681 3682 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3683 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3684 SourceLocation(), nullptr, QualType(), nullptr, 3685 nullptr, false, ICIS_NoInit); 3686 } 3687 3688 bool FieldDecl::isAnonymousStructOrUnion() const { 3689 if (!isImplicit() || getDeclName()) 3690 return false; 3691 3692 if (const auto *Record = getType()->getAs<RecordType>()) 3693 return Record->getDecl()->isAnonymousStructOrUnion(); 3694 3695 return false; 3696 } 3697 3698 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3699 assert(isBitField() && "not a bitfield"); 3700 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 3701 } 3702 3703 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 3704 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 3705 getBitWidthValue(Ctx) == 0; 3706 } 3707 3708 unsigned FieldDecl::getFieldIndex() const { 3709 const FieldDecl *Canonical = getCanonicalDecl(); 3710 if (Canonical != this) 3711 return Canonical->getFieldIndex(); 3712 3713 if (CachedFieldIndex) return CachedFieldIndex - 1; 3714 3715 unsigned Index = 0; 3716 const RecordDecl *RD = getParent()->getDefinition(); 3717 assert(RD && "requested index for field of struct with no definition"); 3718 3719 for (auto *Field : RD->fields()) { 3720 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 3721 ++Index; 3722 } 3723 3724 assert(CachedFieldIndex && "failed to find field in parent"); 3725 return CachedFieldIndex - 1; 3726 } 3727 3728 SourceRange FieldDecl::getSourceRange() const { 3729 const Expr *FinalExpr = getInClassInitializer(); 3730 if (!FinalExpr) 3731 FinalExpr = getBitWidth(); 3732 if (FinalExpr) 3733 return SourceRange(getInnerLocStart(), FinalExpr->getLocEnd()); 3734 return DeclaratorDecl::getSourceRange(); 3735 } 3736 3737 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 3738 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 3739 "capturing type in non-lambda or captured record."); 3740 assert(InitStorage.getInt() == ISK_NoInit && 3741 InitStorage.getPointer() == nullptr && 3742 "bit width, initializer or captured type already set"); 3743 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 3744 ISK_CapturedVLAType); 3745 } 3746 3747 //===----------------------------------------------------------------------===// 3748 // TagDecl Implementation 3749 //===----------------------------------------------------------------------===// 3750 3751 SourceLocation TagDecl::getOuterLocStart() const { 3752 return getTemplateOrInnerLocStart(this); 3753 } 3754 3755 SourceRange TagDecl::getSourceRange() const { 3756 SourceLocation RBraceLoc = BraceRange.getEnd(); 3757 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 3758 return SourceRange(getOuterLocStart(), E); 3759 } 3760 3761 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 3762 3763 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 3764 TypedefNameDeclOrQualifier = TDD; 3765 if (const Type *T = getTypeForDecl()) { 3766 (void)T; 3767 assert(T->isLinkageValid()); 3768 } 3769 assert(isLinkageValid()); 3770 } 3771 3772 void TagDecl::startDefinition() { 3773 IsBeingDefined = true; 3774 3775 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 3776 struct CXXRecordDecl::DefinitionData *Data = 3777 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 3778 for (auto I : redecls()) 3779 cast<CXXRecordDecl>(I)->DefinitionData = Data; 3780 } 3781 } 3782 3783 void TagDecl::completeDefinition() { 3784 assert((!isa<CXXRecordDecl>(this) || 3785 cast<CXXRecordDecl>(this)->hasDefinition()) && 3786 "definition completed but not started"); 3787 3788 IsCompleteDefinition = true; 3789 IsBeingDefined = false; 3790 3791 if (ASTMutationListener *L = getASTMutationListener()) 3792 L->CompletedTagDefinition(this); 3793 } 3794 3795 TagDecl *TagDecl::getDefinition() const { 3796 if (isCompleteDefinition()) 3797 return const_cast<TagDecl *>(this); 3798 3799 // If it's possible for us to have an out-of-date definition, check now. 3800 if (MayHaveOutOfDateDef) { 3801 if (IdentifierInfo *II = getIdentifier()) { 3802 if (II->isOutOfDate()) { 3803 updateOutOfDate(*II); 3804 } 3805 } 3806 } 3807 3808 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 3809 return CXXRD->getDefinition(); 3810 3811 for (auto R : redecls()) 3812 if (R->isCompleteDefinition()) 3813 return R; 3814 3815 return nullptr; 3816 } 3817 3818 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 3819 if (QualifierLoc) { 3820 // Make sure the extended qualifier info is allocated. 3821 if (!hasExtInfo()) 3822 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3823 // Set qualifier info. 3824 getExtInfo()->QualifierLoc = QualifierLoc; 3825 } else { 3826 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 3827 if (hasExtInfo()) { 3828 if (getExtInfo()->NumTemplParamLists == 0) { 3829 getASTContext().Deallocate(getExtInfo()); 3830 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 3831 } 3832 else 3833 getExtInfo()->QualifierLoc = QualifierLoc; 3834 } 3835 } 3836 } 3837 3838 void TagDecl::setTemplateParameterListsInfo( 3839 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 3840 assert(!TPLists.empty()); 3841 // Make sure the extended decl info is allocated. 3842 if (!hasExtInfo()) 3843 // Allocate external info struct. 3844 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3845 // Set the template parameter lists info. 3846 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 3847 } 3848 3849 //===----------------------------------------------------------------------===// 3850 // EnumDecl Implementation 3851 //===----------------------------------------------------------------------===// 3852 3853 void EnumDecl::anchor() {} 3854 3855 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 3856 SourceLocation StartLoc, SourceLocation IdLoc, 3857 IdentifierInfo *Id, 3858 EnumDecl *PrevDecl, bool IsScoped, 3859 bool IsScopedUsingClassTag, bool IsFixed) { 3860 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 3861 IsScoped, IsScopedUsingClassTag, IsFixed); 3862 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3863 C.getTypeDeclType(Enum, PrevDecl); 3864 return Enum; 3865 } 3866 3867 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3868 EnumDecl *Enum = 3869 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 3870 nullptr, nullptr, false, false, false); 3871 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3872 return Enum; 3873 } 3874 3875 SourceRange EnumDecl::getIntegerTypeRange() const { 3876 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 3877 return TI->getTypeLoc().getSourceRange(); 3878 return SourceRange(); 3879 } 3880 3881 void EnumDecl::completeDefinition(QualType NewType, 3882 QualType NewPromotionType, 3883 unsigned NumPositiveBits, 3884 unsigned NumNegativeBits) { 3885 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 3886 if (!IntegerType) 3887 IntegerType = NewType.getTypePtr(); 3888 PromotionType = NewPromotionType; 3889 setNumPositiveBits(NumPositiveBits); 3890 setNumNegativeBits(NumNegativeBits); 3891 TagDecl::completeDefinition(); 3892 } 3893 3894 bool EnumDecl::isClosed() const { 3895 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 3896 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 3897 return true; 3898 } 3899 3900 bool EnumDecl::isClosedFlag() const { 3901 return isClosed() && hasAttr<FlagEnumAttr>(); 3902 } 3903 3904 bool EnumDecl::isClosedNonFlag() const { 3905 return isClosed() && !hasAttr<FlagEnumAttr>(); 3906 } 3907 3908 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 3909 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 3910 return MSI->getTemplateSpecializationKind(); 3911 3912 return TSK_Undeclared; 3913 } 3914 3915 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3916 SourceLocation PointOfInstantiation) { 3917 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 3918 assert(MSI && "Not an instantiated member enumeration?"); 3919 MSI->setTemplateSpecializationKind(TSK); 3920 if (TSK != TSK_ExplicitSpecialization && 3921 PointOfInstantiation.isValid() && 3922 MSI->getPointOfInstantiation().isInvalid()) 3923 MSI->setPointOfInstantiation(PointOfInstantiation); 3924 } 3925 3926 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 3927 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 3928 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 3929 EnumDecl *ED = getInstantiatedFromMemberEnum(); 3930 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 3931 ED = NewED; 3932 return getDefinitionOrSelf(ED); 3933 } 3934 } 3935 3936 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 3937 "couldn't find pattern for enum instantiation"); 3938 return nullptr; 3939 } 3940 3941 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 3942 if (SpecializationInfo) 3943 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 3944 3945 return nullptr; 3946 } 3947 3948 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 3949 TemplateSpecializationKind TSK) { 3950 assert(!SpecializationInfo && "Member enum is already a specialization"); 3951 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 3952 } 3953 3954 //===----------------------------------------------------------------------===// 3955 // RecordDecl Implementation 3956 //===----------------------------------------------------------------------===// 3957 3958 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 3959 DeclContext *DC, SourceLocation StartLoc, 3960 SourceLocation IdLoc, IdentifierInfo *Id, 3961 RecordDecl *PrevDecl) 3962 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc), 3963 HasFlexibleArrayMember(false), AnonymousStructOrUnion(false), 3964 HasObjectMember(false), HasVolatileMember(false), 3965 LoadedFieldsFromExternalStorage(false), 3966 NonTrivialToPrimitiveDefaultInitialize(false), 3967 NonTrivialToPrimitiveCopy(false), NonTrivialToPrimitiveDestroy(false), 3968 ParamDestroyedInCallee(false), ArgPassingRestrictions(APK_CanPassInRegs) { 3969 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); 3970 } 3971 3972 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 3973 SourceLocation StartLoc, SourceLocation IdLoc, 3974 IdentifierInfo *Id, RecordDecl* PrevDecl) { 3975 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 3976 StartLoc, IdLoc, Id, PrevDecl); 3977 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3978 3979 C.getTypeDeclType(R, PrevDecl); 3980 return R; 3981 } 3982 3983 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 3984 RecordDecl *R = 3985 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 3986 SourceLocation(), nullptr, nullptr); 3987 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3988 return R; 3989 } 3990 3991 bool RecordDecl::isInjectedClassName() const { 3992 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 3993 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 3994 } 3995 3996 bool RecordDecl::isLambda() const { 3997 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 3998 return RD->isLambda(); 3999 return false; 4000 } 4001 4002 bool RecordDecl::isCapturedRecord() const { 4003 return hasAttr<CapturedRecordAttr>(); 4004 } 4005 4006 void RecordDecl::setCapturedRecord() { 4007 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4008 } 4009 4010 RecordDecl::field_iterator RecordDecl::field_begin() const { 4011 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) 4012 LoadFieldsFromExternalStorage(); 4013 4014 return field_iterator(decl_iterator(FirstDecl)); 4015 } 4016 4017 /// completeDefinition - Notes that the definition of this type is now 4018 /// complete. 4019 void RecordDecl::completeDefinition() { 4020 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4021 TagDecl::completeDefinition(); 4022 } 4023 4024 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4025 /// This which can be turned on with an attribute, pragma, or the 4026 /// -mms-bitfields command-line option. 4027 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4028 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4029 } 4030 4031 void RecordDecl::LoadFieldsFromExternalStorage() const { 4032 ExternalASTSource *Source = getASTContext().getExternalSource(); 4033 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4034 4035 // Notify that we have a RecordDecl doing some initialization. 4036 ExternalASTSource::Deserializing TheFields(Source); 4037 4038 SmallVector<Decl*, 64> Decls; 4039 LoadedFieldsFromExternalStorage = true; 4040 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4041 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4042 }, Decls); 4043 4044 #ifndef NDEBUG 4045 // Check that all decls we got were FieldDecls. 4046 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4047 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4048 #endif 4049 4050 if (Decls.empty()) 4051 return; 4052 4053 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4054 /*FieldsAlreadyLoaded=*/false); 4055 } 4056 4057 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4058 ASTContext &Context = getASTContext(); 4059 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4060 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4061 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4062 return false; 4063 const auto &Blacklist = Context.getSanitizerBlacklist(); 4064 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4065 // We may be able to relax some of these requirements. 4066 int ReasonToReject = -1; 4067 if (!CXXRD || CXXRD->isExternCContext()) 4068 ReasonToReject = 0; // is not C++. 4069 else if (CXXRD->hasAttr<PackedAttr>()) 4070 ReasonToReject = 1; // is packed. 4071 else if (CXXRD->isUnion()) 4072 ReasonToReject = 2; // is a union. 4073 else if (CXXRD->isTriviallyCopyable()) 4074 ReasonToReject = 3; // is trivially copyable. 4075 else if (CXXRD->hasTrivialDestructor()) 4076 ReasonToReject = 4; // has trivial destructor. 4077 else if (CXXRD->isStandardLayout()) 4078 ReasonToReject = 5; // is standard layout. 4079 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(), 4080 "field-padding")) 4081 ReasonToReject = 6; // is in a blacklisted file. 4082 else if (Blacklist.isBlacklistedType(EnabledAsanMask, 4083 getQualifiedNameAsString(), 4084 "field-padding")) 4085 ReasonToReject = 7; // is blacklisted. 4086 4087 if (EmitRemark) { 4088 if (ReasonToReject >= 0) 4089 Context.getDiagnostics().Report( 4090 getLocation(), 4091 diag::remark_sanitize_address_insert_extra_padding_rejected) 4092 << getQualifiedNameAsString() << ReasonToReject; 4093 else 4094 Context.getDiagnostics().Report( 4095 getLocation(), 4096 diag::remark_sanitize_address_insert_extra_padding_accepted) 4097 << getQualifiedNameAsString(); 4098 } 4099 return ReasonToReject < 0; 4100 } 4101 4102 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4103 for (const auto *I : fields()) { 4104 if (I->getIdentifier()) 4105 return I; 4106 4107 if (const auto *RT = I->getType()->getAs<RecordType>()) 4108 if (const FieldDecl *NamedDataMember = 4109 RT->getDecl()->findFirstNamedDataMember()) 4110 return NamedDataMember; 4111 } 4112 4113 // We didn't find a named data member. 4114 return nullptr; 4115 } 4116 4117 //===----------------------------------------------------------------------===// 4118 // BlockDecl Implementation 4119 //===----------------------------------------------------------------------===// 4120 4121 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4122 assert(!ParamInfo && "Already has param info!"); 4123 4124 // Zero params -> null pointer. 4125 if (!NewParamInfo.empty()) { 4126 NumParams = NewParamInfo.size(); 4127 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4128 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4129 } 4130 } 4131 4132 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4133 bool CapturesCXXThis) { 4134 this->CapturesCXXThis = CapturesCXXThis; 4135 this->NumCaptures = Captures.size(); 4136 4137 if (Captures.empty()) { 4138 this->Captures = nullptr; 4139 return; 4140 } 4141 4142 this->Captures = Captures.copy(Context).data(); 4143 } 4144 4145 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4146 for (const auto &I : captures()) 4147 // Only auto vars can be captured, so no redeclaration worries. 4148 if (I.getVariable() == variable) 4149 return true; 4150 4151 return false; 4152 } 4153 4154 SourceRange BlockDecl::getSourceRange() const { 4155 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); 4156 } 4157 4158 //===----------------------------------------------------------------------===// 4159 // Other Decl Allocation/Deallocation Method Implementations 4160 //===----------------------------------------------------------------------===// 4161 4162 void TranslationUnitDecl::anchor() {} 4163 4164 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4165 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4166 } 4167 4168 void PragmaCommentDecl::anchor() {} 4169 4170 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4171 TranslationUnitDecl *DC, 4172 SourceLocation CommentLoc, 4173 PragmaMSCommentKind CommentKind, 4174 StringRef Arg) { 4175 PragmaCommentDecl *PCD = 4176 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4177 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4178 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4179 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4180 return PCD; 4181 } 4182 4183 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4184 unsigned ID, 4185 unsigned ArgSize) { 4186 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4187 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4188 } 4189 4190 void PragmaDetectMismatchDecl::anchor() {} 4191 4192 PragmaDetectMismatchDecl * 4193 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4194 SourceLocation Loc, StringRef Name, 4195 StringRef Value) { 4196 size_t ValueStart = Name.size() + 1; 4197 PragmaDetectMismatchDecl *PDMD = 4198 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4199 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4200 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4201 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4202 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4203 Value.size()); 4204 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4205 return PDMD; 4206 } 4207 4208 PragmaDetectMismatchDecl * 4209 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4210 unsigned NameValueSize) { 4211 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4212 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4213 } 4214 4215 void ExternCContextDecl::anchor() {} 4216 4217 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4218 TranslationUnitDecl *DC) { 4219 return new (C, DC) ExternCContextDecl(DC); 4220 } 4221 4222 void LabelDecl::anchor() {} 4223 4224 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4225 SourceLocation IdentL, IdentifierInfo *II) { 4226 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4227 } 4228 4229 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4230 SourceLocation IdentL, IdentifierInfo *II, 4231 SourceLocation GnuLabelL) { 4232 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4233 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4234 } 4235 4236 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4237 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4238 SourceLocation()); 4239 } 4240 4241 void LabelDecl::setMSAsmLabel(StringRef Name) { 4242 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4243 memcpy(Buffer, Name.data(), Name.size()); 4244 Buffer[Name.size()] = '\0'; 4245 MSAsmName = Buffer; 4246 } 4247 4248 void ValueDecl::anchor() {} 4249 4250 bool ValueDecl::isWeak() const { 4251 for (const auto *I : attrs()) 4252 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 4253 return true; 4254 4255 return isWeakImported(); 4256 } 4257 4258 void ImplicitParamDecl::anchor() {} 4259 4260 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4261 SourceLocation IdLoc, 4262 IdentifierInfo *Id, QualType Type, 4263 ImplicitParamKind ParamKind) { 4264 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4265 } 4266 4267 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4268 ImplicitParamKind ParamKind) { 4269 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4270 } 4271 4272 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4273 unsigned ID) { 4274 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4275 } 4276 4277 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 4278 SourceLocation StartLoc, 4279 const DeclarationNameInfo &NameInfo, 4280 QualType T, TypeSourceInfo *TInfo, 4281 StorageClass SC, 4282 bool isInlineSpecified, 4283 bool hasWrittenPrototype, 4284 bool isConstexprSpecified) { 4285 FunctionDecl *New = 4286 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 4287 SC, isInlineSpecified, isConstexprSpecified); 4288 New->HasWrittenPrototype = hasWrittenPrototype; 4289 return New; 4290 } 4291 4292 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4293 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 4294 DeclarationNameInfo(), QualType(), nullptr, 4295 SC_None, false, false); 4296 } 4297 4298 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4299 return new (C, DC) BlockDecl(DC, L); 4300 } 4301 4302 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4303 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4304 } 4305 4306 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4307 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4308 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4309 4310 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4311 unsigned NumParams) { 4312 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4313 CapturedDecl(DC, NumParams); 4314 } 4315 4316 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4317 unsigned NumParams) { 4318 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4319 CapturedDecl(nullptr, NumParams); 4320 } 4321 4322 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4323 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4324 4325 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4326 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4327 4328 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4329 SourceLocation L, 4330 IdentifierInfo *Id, QualType T, 4331 Expr *E, const llvm::APSInt &V) { 4332 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4333 } 4334 4335 EnumConstantDecl * 4336 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4337 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4338 QualType(), nullptr, llvm::APSInt()); 4339 } 4340 4341 void IndirectFieldDecl::anchor() {} 4342 4343 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4344 SourceLocation L, DeclarationName N, 4345 QualType T, 4346 MutableArrayRef<NamedDecl *> CH) 4347 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4348 ChainingSize(CH.size()) { 4349 // In C++, indirect field declarations conflict with tag declarations in the 4350 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4351 if (C.getLangOpts().CPlusPlus) 4352 IdentifierNamespace |= IDNS_Tag; 4353 } 4354 4355 IndirectFieldDecl * 4356 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4357 IdentifierInfo *Id, QualType T, 4358 llvm::MutableArrayRef<NamedDecl *> CH) { 4359 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4360 } 4361 4362 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4363 unsigned ID) { 4364 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4365 DeclarationName(), QualType(), None); 4366 } 4367 4368 SourceRange EnumConstantDecl::getSourceRange() const { 4369 SourceLocation End = getLocation(); 4370 if (Init) 4371 End = Init->getLocEnd(); 4372 return SourceRange(getLocation(), End); 4373 } 4374 4375 void TypeDecl::anchor() {} 4376 4377 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4378 SourceLocation StartLoc, SourceLocation IdLoc, 4379 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4380 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4381 } 4382 4383 void TypedefNameDecl::anchor() {} 4384 4385 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4386 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4387 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4388 auto *ThisTypedef = this; 4389 if (AnyRedecl && OwningTypedef) { 4390 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4391 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4392 } 4393 if (OwningTypedef == ThisTypedef) 4394 return TT->getDecl(); 4395 } 4396 4397 return nullptr; 4398 } 4399 4400 bool TypedefNameDecl::isTransparentTagSlow() const { 4401 auto determineIsTransparent = [&]() { 4402 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 4403 if (auto *TD = TT->getDecl()) { 4404 if (TD->getName() != getName()) 4405 return false; 4406 SourceLocation TTLoc = getLocation(); 4407 SourceLocation TDLoc = TD->getLocation(); 4408 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 4409 return false; 4410 SourceManager &SM = getASTContext().getSourceManager(); 4411 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 4412 } 4413 } 4414 return false; 4415 }; 4416 4417 bool isTransparent = determineIsTransparent(); 4418 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 4419 return isTransparent; 4420 } 4421 4422 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4423 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 4424 nullptr, nullptr); 4425 } 4426 4427 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 4428 SourceLocation StartLoc, 4429 SourceLocation IdLoc, IdentifierInfo *Id, 4430 TypeSourceInfo *TInfo) { 4431 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4432 } 4433 4434 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4435 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 4436 SourceLocation(), nullptr, nullptr); 4437 } 4438 4439 SourceRange TypedefDecl::getSourceRange() const { 4440 SourceLocation RangeEnd = getLocation(); 4441 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 4442 if (typeIsPostfix(TInfo->getType())) 4443 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4444 } 4445 return SourceRange(getLocStart(), RangeEnd); 4446 } 4447 4448 SourceRange TypeAliasDecl::getSourceRange() const { 4449 SourceLocation RangeEnd = getLocStart(); 4450 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 4451 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4452 return SourceRange(getLocStart(), RangeEnd); 4453 } 4454 4455 void FileScopeAsmDecl::anchor() {} 4456 4457 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 4458 StringLiteral *Str, 4459 SourceLocation AsmLoc, 4460 SourceLocation RParenLoc) { 4461 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 4462 } 4463 4464 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 4465 unsigned ID) { 4466 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 4467 SourceLocation()); 4468 } 4469 4470 void EmptyDecl::anchor() {} 4471 4472 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4473 return new (C, DC) EmptyDecl(DC, L); 4474 } 4475 4476 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4477 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 4478 } 4479 4480 //===----------------------------------------------------------------------===// 4481 // ImportDecl Implementation 4482 //===----------------------------------------------------------------------===// 4483 4484 /// Retrieve the number of module identifiers needed to name the given 4485 /// module. 4486 static unsigned getNumModuleIdentifiers(Module *Mod) { 4487 unsigned Result = 1; 4488 while (Mod->Parent) { 4489 Mod = Mod->Parent; 4490 ++Result; 4491 } 4492 return Result; 4493 } 4494 4495 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4496 Module *Imported, 4497 ArrayRef<SourceLocation> IdentifierLocs) 4498 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) { 4499 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 4500 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4501 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 4502 StoredLocs); 4503 } 4504 4505 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4506 Module *Imported, SourceLocation EndLoc) 4507 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) { 4508 *getTrailingObjects<SourceLocation>() = EndLoc; 4509 } 4510 4511 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 4512 SourceLocation StartLoc, Module *Imported, 4513 ArrayRef<SourceLocation> IdentifierLocs) { 4514 return new (C, DC, 4515 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 4516 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 4517 } 4518 4519 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 4520 SourceLocation StartLoc, 4521 Module *Imported, 4522 SourceLocation EndLoc) { 4523 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 4524 ImportDecl(DC, StartLoc, Imported, EndLoc); 4525 Import->setImplicit(); 4526 return Import; 4527 } 4528 4529 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4530 unsigned NumLocations) { 4531 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 4532 ImportDecl(EmptyShell()); 4533 } 4534 4535 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4536 if (!ImportedAndComplete.getInt()) 4537 return None; 4538 4539 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4540 return llvm::makeArrayRef(StoredLocs, 4541 getNumModuleIdentifiers(getImportedModule())); 4542 } 4543 4544 SourceRange ImportDecl::getSourceRange() const { 4545 if (!ImportedAndComplete.getInt()) 4546 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 4547 4548 return SourceRange(getLocation(), getIdentifierLocs().back()); 4549 } 4550 4551 //===----------------------------------------------------------------------===// 4552 // ExportDecl Implementation 4553 //===----------------------------------------------------------------------===// 4554 4555 void ExportDecl::anchor() {} 4556 4557 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 4558 SourceLocation ExportLoc) { 4559 return new (C, DC) ExportDecl(DC, ExportLoc); 4560 } 4561 4562 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4563 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 4564 } 4565