xref: /llvm-project-15.0.7/clang/lib/AST/Decl.cpp (revision f489e2bf)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "Linkage.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/DeclarationName.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExternalASTSource.h"
29 #include "clang/AST/ODRHash.h"
30 #include "clang/AST/PrettyDeclStackTrace.h"
31 #include "clang/AST/PrettyPrinter.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/IdentifierTable.h"
39 #include "clang/Basic/LLVM.h"
40 #include "clang/Basic/LangOptions.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/PartialDiagnostic.h"
44 #include "clang/Basic/SanitizerBlacklist.h"
45 #include "clang/Basic/Sanitizers.h"
46 #include "clang/Basic/SourceLocation.h"
47 #include "clang/Basic/SourceManager.h"
48 #include "clang/Basic/Specifiers.h"
49 #include "clang/Basic/TargetCXXABI.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "clang/Frontend/FrontendDiagnostic.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringSwitch.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 static bool isExportedFromModuleIntefaceUnit(const NamedDecl *D) {
572   // FIXME: Handle isModulePrivate.
573   switch (D->getModuleOwnershipKind()) {
574   case Decl::ModuleOwnershipKind::Unowned:
575   case Decl::ModuleOwnershipKind::ModulePrivate:
576     return false;
577   case Decl::ModuleOwnershipKind::Visible:
578   case Decl::ModuleOwnershipKind::VisibleWhenImported:
579     if (auto *M = D->getOwningModule())
580       return M->Kind == Module::ModuleInterfaceUnit;
581   }
582   llvm_unreachable("unexpected module ownership kind");
583 }
584 
585 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
586   // Internal linkage declarations within a module interface unit are modeled
587   // as "module-internal linkage", which means that they have internal linkage
588   // formally but can be indirectly accessed from outside the module via inline
589   // functions and templates defined within the module.
590   if (auto *M = D->getOwningModule())
591     if (M->Kind == Module::ModuleInterfaceUnit)
592       return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
593 
594   return LinkageInfo::internal();
595 }
596 
597 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
598   // C++ Modules TS [basic.link]/6.8:
599   //   - A name declared at namespace scope that does not have internal linkage
600   //     by the previous rules and that is introduced by a non-exported
601   //     declaration has module linkage.
602   if (auto *M = D->getOwningModule())
603     if (M->Kind == Module::ModuleInterfaceUnit)
604       if (!isExportedFromModuleIntefaceUnit(
605               cast<NamedDecl>(D->getCanonicalDecl())))
606         return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
607 
608   return LinkageInfo::external();
609 }
610 
611 LinkageInfo
612 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
613                                             LVComputationKind computation,
614                                             bool IgnoreVarTypeLinkage) {
615   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
616          "Not a name having namespace scope");
617   ASTContext &Context = D->getASTContext();
618 
619   // C++ [basic.link]p3:
620   //   A name having namespace scope (3.3.6) has internal linkage if it
621   //   is the name of
622   //     - an object, reference, function or function template that is
623   //       explicitly declared static; or,
624   // (This bullet corresponds to C99 6.2.2p3.)
625   if (const auto *Var = dyn_cast<VarDecl>(D)) {
626     // Explicitly declared static.
627     if (Var->getStorageClass() == SC_Static)
628       return getInternalLinkageFor(Var);
629 
630     // - a non-inline, non-volatile object or reference that is explicitly
631     //   declared const or constexpr and neither explicitly declared extern
632     //   nor previously declared to have external linkage; or (there is no
633     //   equivalent in C99)
634     // The C++ modules TS adds "non-exported" to this list.
635     if (Context.getLangOpts().CPlusPlus &&
636         Var->getType().isConstQualified() &&
637         !Var->getType().isVolatileQualified() &&
638         !Var->isInline() &&
639         !isExportedFromModuleIntefaceUnit(Var)) {
640       const VarDecl *PrevVar = Var->getPreviousDecl();
641       if (PrevVar)
642         return getLVForDecl(PrevVar, computation);
643 
644       if (Var->getStorageClass() != SC_Extern &&
645           Var->getStorageClass() != SC_PrivateExtern &&
646           !isSingleLineLanguageLinkage(*Var))
647         return getInternalLinkageFor(Var);
648     }
649 
650     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
651          PrevVar = PrevVar->getPreviousDecl()) {
652       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
653           Var->getStorageClass() == SC_None)
654         return getDeclLinkageAndVisibility(PrevVar);
655       // Explicitly declared static.
656       if (PrevVar->getStorageClass() == SC_Static)
657         return getInternalLinkageFor(Var);
658     }
659   } else if (const FunctionDecl *Function = D->getAsFunction()) {
660     // C++ [temp]p4:
661     //   A non-member function template can have internal linkage; any
662     //   other template name shall have external linkage.
663 
664     // Explicitly declared static.
665     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
666       return getInternalLinkageFor(Function);
667   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668     //   - a data member of an anonymous union.
669     const VarDecl *VD = IFD->getVarDecl();
670     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672   }
673   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674 
675   if (D->isInAnonymousNamespace()) {
676     const auto *Var = dyn_cast<VarDecl>(D);
677     const auto *Func = dyn_cast<FunctionDecl>(D);
678     // FIXME: The check for extern "C" here is not justified by the standard
679     // wording, but we retain it from the pre-DR1113 model to avoid breaking
680     // code.
681     //
682     // C++11 [basic.link]p4:
683     //   An unnamed namespace or a namespace declared directly or indirectly
684     //   within an unnamed namespace has internal linkage.
685     if ((!Var || !isFirstInExternCContext(Var)) &&
686         (!Func || !isFirstInExternCContext(Func)))
687       return getInternalLinkageFor(D);
688   }
689 
690   // Set up the defaults.
691 
692   // C99 6.2.2p5:
693   //   If the declaration of an identifier for an object has file
694   //   scope and no storage-class specifier, its linkage is
695   //   external.
696   LinkageInfo LV = getExternalLinkageFor(D);
697 
698   if (!hasExplicitVisibilityAlready(computation)) {
699     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
700       LV.mergeVisibility(*Vis, true);
701     } else {
702       // If we're declared in a namespace with a visibility attribute,
703       // use that namespace's visibility, and it still counts as explicit.
704       for (const DeclContext *DC = D->getDeclContext();
705            !isa<TranslationUnitDecl>(DC);
706            DC = DC->getParent()) {
707         const auto *ND = dyn_cast<NamespaceDecl>(DC);
708         if (!ND) continue;
709         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
710           LV.mergeVisibility(*Vis, true);
711           break;
712         }
713       }
714     }
715 
716     // Add in global settings if the above didn't give us direct visibility.
717     if (!LV.isVisibilityExplicit()) {
718       // Use global type/value visibility as appropriate.
719       Visibility globalVisibility =
720           computation.isValueVisibility()
721               ? Context.getLangOpts().getValueVisibilityMode()
722               : Context.getLangOpts().getTypeVisibilityMode();
723       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
724 
725       // If we're paying attention to global visibility, apply
726       // -finline-visibility-hidden if this is an inline method.
727       if (useInlineVisibilityHidden(D))
728         LV.mergeVisibility(HiddenVisibility, true);
729     }
730   }
731 
732   // C++ [basic.link]p4:
733 
734   //   A name having namespace scope has external linkage if it is the
735   //   name of
736   //
737   //     - an object or reference, unless it has internal linkage; or
738   if (const auto *Var = dyn_cast<VarDecl>(D)) {
739     // GCC applies the following optimization to variables and static
740     // data members, but not to functions:
741     //
742     // Modify the variable's LV by the LV of its type unless this is
743     // C or extern "C".  This follows from [basic.link]p9:
744     //   A type without linkage shall not be used as the type of a
745     //   variable or function with external linkage unless
746     //    - the entity has C language linkage, or
747     //    - the entity is declared within an unnamed namespace, or
748     //    - the entity is not used or is defined in the same
749     //      translation unit.
750     // and [basic.link]p10:
751     //   ...the types specified by all declarations referring to a
752     //   given variable or function shall be identical...
753     // C does not have an equivalent rule.
754     //
755     // Ignore this if we've got an explicit attribute;  the user
756     // probably knows what they're doing.
757     //
758     // Note that we don't want to make the variable non-external
759     // because of this, but unique-external linkage suits us.
760     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
761         !IgnoreVarTypeLinkage) {
762       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
763       if (!isExternallyVisible(TypeLV.getLinkage()))
764         return LinkageInfo::uniqueExternal();
765       if (!LV.isVisibilityExplicit())
766         LV.mergeVisibility(TypeLV);
767     }
768 
769     if (Var->getStorageClass() == SC_PrivateExtern)
770       LV.mergeVisibility(HiddenVisibility, true);
771 
772     // Note that Sema::MergeVarDecl already takes care of implementing
773     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
774     // to do it here.
775 
776     // As per function and class template specializations (below),
777     // consider LV for the template and template arguments.  We're at file
778     // scope, so we do not need to worry about nested specializations.
779     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
780       mergeTemplateLV(LV, spec, computation);
781     }
782 
783   //     - a function, unless it has internal linkage; or
784   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
785     // In theory, we can modify the function's LV by the LV of its
786     // type unless it has C linkage (see comment above about variables
787     // for justification).  In practice, GCC doesn't do this, so it's
788     // just too painful to make work.
789 
790     if (Function->getStorageClass() == SC_PrivateExtern)
791       LV.mergeVisibility(HiddenVisibility, true);
792 
793     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
794     // merging storage classes and visibility attributes, so we don't have to
795     // look at previous decls in here.
796 
797     // In C++, then if the type of the function uses a type with
798     // unique-external linkage, it's not legally usable from outside
799     // this translation unit.  However, we should use the C linkage
800     // rules instead for extern "C" declarations.
801     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
802       // Only look at the type-as-written. Otherwise, deducing the return type
803       // of a function could change its linkage.
804       QualType TypeAsWritten = Function->getType();
805       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
806         TypeAsWritten = TSI->getType();
807       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
808         return LinkageInfo::uniqueExternal();
809     }
810 
811     // Consider LV from the template and the template arguments.
812     // We're at file scope, so we do not need to worry about nested
813     // specializations.
814     if (FunctionTemplateSpecializationInfo *specInfo
815                                = Function->getTemplateSpecializationInfo()) {
816       mergeTemplateLV(LV, Function, specInfo, computation);
817     }
818 
819   //     - a named class (Clause 9), or an unnamed class defined in a
820   //       typedef declaration in which the class has the typedef name
821   //       for linkage purposes (7.1.3); or
822   //     - a named enumeration (7.2), or an unnamed enumeration
823   //       defined in a typedef declaration in which the enumeration
824   //       has the typedef name for linkage purposes (7.1.3); or
825   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
826     // Unnamed tags have no linkage.
827     if (!Tag->hasNameForLinkage())
828       return LinkageInfo::none();
829 
830     // If this is a class template specialization, consider the
831     // linkage of the template and template arguments.  We're at file
832     // scope, so we do not need to worry about nested specializations.
833     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
834       mergeTemplateLV(LV, spec, computation);
835     }
836 
837   //     - an enumerator belonging to an enumeration with external linkage;
838   } else if (isa<EnumConstantDecl>(D)) {
839     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
840                                       computation);
841     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
842       return LinkageInfo::none();
843     LV.merge(EnumLV);
844 
845   //     - a template, unless it is a function template that has
846   //       internal linkage (Clause 14);
847   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
848     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
849     LinkageInfo tempLV =
850       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
851     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
852 
853   //     - a namespace (7.3), unless it is declared within an unnamed
854   //       namespace.
855   //
856   // We handled names in anonymous namespaces above.
857   } else if (isa<NamespaceDecl>(D)) {
858     return LV;
859 
860   // By extension, we assign external linkage to Objective-C
861   // interfaces.
862   } else if (isa<ObjCInterfaceDecl>(D)) {
863     // fallout
864 
865   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
866     // A typedef declaration has linkage if it gives a type a name for
867     // linkage purposes.
868     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
869       return LinkageInfo::none();
870 
871   // Everything not covered here has no linkage.
872   } else {
873     return LinkageInfo::none();
874   }
875 
876   // If we ended up with non-externally-visible linkage, visibility should
877   // always be default.
878   if (!isExternallyVisible(LV.getLinkage()))
879     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
880 
881   return LV;
882 }
883 
884 LinkageInfo
885 LinkageComputer::getLVForClassMember(const NamedDecl *D,
886                                      LVComputationKind computation,
887                                      bool IgnoreVarTypeLinkage) {
888   // Only certain class members have linkage.  Note that fields don't
889   // really have linkage, but it's convenient to say they do for the
890   // purposes of calculating linkage of pointer-to-data-member
891   // template arguments.
892   //
893   // Templates also don't officially have linkage, but since we ignore
894   // the C++ standard and look at template arguments when determining
895   // linkage and visibility of a template specialization, we might hit
896   // a template template argument that way. If we do, we need to
897   // consider its linkage.
898   if (!(isa<CXXMethodDecl>(D) ||
899         isa<VarDecl>(D) ||
900         isa<FieldDecl>(D) ||
901         isa<IndirectFieldDecl>(D) ||
902         isa<TagDecl>(D) ||
903         isa<TemplateDecl>(D)))
904     return LinkageInfo::none();
905 
906   LinkageInfo LV;
907 
908   // If we have an explicit visibility attribute, merge that in.
909   if (!hasExplicitVisibilityAlready(computation)) {
910     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
911       LV.mergeVisibility(*Vis, true);
912     // If we're paying attention to global visibility, apply
913     // -finline-visibility-hidden if this is an inline method.
914     //
915     // Note that we do this before merging information about
916     // the class visibility.
917     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
918       LV.mergeVisibility(HiddenVisibility, true);
919   }
920 
921   // If this class member has an explicit visibility attribute, the only
922   // thing that can change its visibility is the template arguments, so
923   // only look for them when processing the class.
924   LVComputationKind classComputation = computation;
925   if (LV.isVisibilityExplicit())
926     classComputation = withExplicitVisibilityAlready(computation);
927 
928   LinkageInfo classLV =
929     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
930   // The member has the same linkage as the class. If that's not externally
931   // visible, we don't need to compute anything about the linkage.
932   // FIXME: If we're only computing linkage, can we bail out here?
933   if (!isExternallyVisible(classLV.getLinkage()))
934     return classLV;
935 
936 
937   // Otherwise, don't merge in classLV yet, because in certain cases
938   // we need to completely ignore the visibility from it.
939 
940   // Specifically, if this decl exists and has an explicit attribute.
941   const NamedDecl *explicitSpecSuppressor = nullptr;
942 
943   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
944     // Only look at the type-as-written. Otherwise, deducing the return type
945     // of a function could change its linkage.
946     QualType TypeAsWritten = MD->getType();
947     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
948       TypeAsWritten = TSI->getType();
949     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
950       return LinkageInfo::uniqueExternal();
951 
952     // If this is a method template specialization, use the linkage for
953     // the template parameters and arguments.
954     if (FunctionTemplateSpecializationInfo *spec
955            = MD->getTemplateSpecializationInfo()) {
956       mergeTemplateLV(LV, MD, spec, computation);
957       if (spec->isExplicitSpecialization()) {
958         explicitSpecSuppressor = MD;
959       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
960         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
961       }
962     } else if (isExplicitMemberSpecialization(MD)) {
963       explicitSpecSuppressor = MD;
964     }
965 
966   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
967     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
968       mergeTemplateLV(LV, spec, computation);
969       if (spec->isExplicitSpecialization()) {
970         explicitSpecSuppressor = spec;
971       } else {
972         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
973         if (isExplicitMemberSpecialization(temp)) {
974           explicitSpecSuppressor = temp->getTemplatedDecl();
975         }
976       }
977     } else if (isExplicitMemberSpecialization(RD)) {
978       explicitSpecSuppressor = RD;
979     }
980 
981   // Static data members.
982   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
983     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
984       mergeTemplateLV(LV, spec, computation);
985 
986     // Modify the variable's linkage by its type, but ignore the
987     // type's visibility unless it's a definition.
988     if (!IgnoreVarTypeLinkage) {
989       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
990       // FIXME: If the type's linkage is not externally visible, we can
991       // give this static data member UniqueExternalLinkage.
992       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
993         LV.mergeVisibility(typeLV);
994       LV.mergeExternalVisibility(typeLV);
995     }
996 
997     if (isExplicitMemberSpecialization(VD)) {
998       explicitSpecSuppressor = VD;
999     }
1000 
1001   // Template members.
1002   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1003     bool considerVisibility =
1004       (!LV.isVisibilityExplicit() &&
1005        !classLV.isVisibilityExplicit() &&
1006        !hasExplicitVisibilityAlready(computation));
1007     LinkageInfo tempLV =
1008       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1009     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1010 
1011     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1012       if (isExplicitMemberSpecialization(redeclTemp)) {
1013         explicitSpecSuppressor = temp->getTemplatedDecl();
1014       }
1015     }
1016   }
1017 
1018   // We should never be looking for an attribute directly on a template.
1019   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1020 
1021   // If this member is an explicit member specialization, and it has
1022   // an explicit attribute, ignore visibility from the parent.
1023   bool considerClassVisibility = true;
1024   if (explicitSpecSuppressor &&
1025       // optimization: hasDVA() is true only with explicit visibility.
1026       LV.isVisibilityExplicit() &&
1027       classLV.getVisibility() != DefaultVisibility &&
1028       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1029     considerClassVisibility = false;
1030   }
1031 
1032   // Finally, merge in information from the class.
1033   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1034   return LV;
1035 }
1036 
1037 void NamedDecl::anchor() {}
1038 
1039 bool NamedDecl::isLinkageValid() const {
1040   if (!hasCachedLinkage())
1041     return true;
1042 
1043   Linkage L = LinkageComputer{}
1044                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1045                   .getLinkage();
1046   return L == getCachedLinkage();
1047 }
1048 
1049 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1050   StringRef name = getName();
1051   if (name.empty()) return SFF_None;
1052 
1053   if (name.front() == 'C')
1054     if (name == "CFStringCreateWithFormat" ||
1055         name == "CFStringCreateWithFormatAndArguments" ||
1056         name == "CFStringAppendFormat" ||
1057         name == "CFStringAppendFormatAndArguments")
1058       return SFF_CFString;
1059   return SFF_None;
1060 }
1061 
1062 Linkage NamedDecl::getLinkageInternal() const {
1063   // We don't care about visibility here, so ask for the cheapest
1064   // possible visibility analysis.
1065   return LinkageComputer{}
1066       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1067       .getLinkage();
1068 }
1069 
1070 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1071   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1072 }
1073 
1074 static Optional<Visibility>
1075 getExplicitVisibilityAux(const NamedDecl *ND,
1076                          NamedDecl::ExplicitVisibilityKind kind,
1077                          bool IsMostRecent) {
1078   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1079 
1080   // Check the declaration itself first.
1081   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1082     return V;
1083 
1084   // If this is a member class of a specialization of a class template
1085   // and the corresponding decl has explicit visibility, use that.
1086   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1087     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1088     if (InstantiatedFrom)
1089       return getVisibilityOf(InstantiatedFrom, kind);
1090   }
1091 
1092   // If there wasn't explicit visibility there, and this is a
1093   // specialization of a class template, check for visibility
1094   // on the pattern.
1095   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1096     // Walk all the template decl till this point to see if there are
1097     // explicit visibility attributes.
1098     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1099     while (TD != nullptr) {
1100       auto Vis = getVisibilityOf(TD, kind);
1101       if (Vis != None)
1102         return Vis;
1103       TD = TD->getPreviousDecl();
1104     }
1105     return None;
1106   }
1107 
1108   // Use the most recent declaration.
1109   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1110     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1111     if (MostRecent != ND)
1112       return getExplicitVisibilityAux(MostRecent, kind, true);
1113   }
1114 
1115   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1116     if (Var->isStaticDataMember()) {
1117       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1118       if (InstantiatedFrom)
1119         return getVisibilityOf(InstantiatedFrom, kind);
1120     }
1121 
1122     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1123       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1124                              kind);
1125 
1126     return None;
1127   }
1128   // Also handle function template specializations.
1129   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1130     // If the function is a specialization of a template with an
1131     // explicit visibility attribute, use that.
1132     if (FunctionTemplateSpecializationInfo *templateInfo
1133           = fn->getTemplateSpecializationInfo())
1134       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1135                              kind);
1136 
1137     // If the function is a member of a specialization of a class template
1138     // and the corresponding decl has explicit visibility, use that.
1139     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1140     if (InstantiatedFrom)
1141       return getVisibilityOf(InstantiatedFrom, kind);
1142 
1143     return None;
1144   }
1145 
1146   // The visibility of a template is stored in the templated decl.
1147   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1148     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1149 
1150   return None;
1151 }
1152 
1153 Optional<Visibility>
1154 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1155   return getExplicitVisibilityAux(this, kind, false);
1156 }
1157 
1158 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1159                                              Decl *ContextDecl,
1160                                              LVComputationKind computation) {
1161   // This lambda has its linkage/visibility determined by its owner.
1162   const NamedDecl *Owner;
1163   if (!ContextDecl)
1164     Owner = dyn_cast<NamedDecl>(DC);
1165   else if (isa<ParmVarDecl>(ContextDecl))
1166     Owner =
1167         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1168   else
1169     Owner = cast<NamedDecl>(ContextDecl);
1170 
1171   if (!Owner)
1172     return LinkageInfo::none();
1173 
1174   // If the owner has a deduced type, we need to skip querying the linkage and
1175   // visibility of that type, because it might involve this closure type.  The
1176   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1177   // than NoLinkage when we don't strictly need to, which is benign.
1178   auto *VD = dyn_cast<VarDecl>(Owner);
1179   LinkageInfo OwnerLV =
1180       VD && VD->getType()->getContainedDeducedType()
1181           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1182           : getLVForDecl(Owner, computation);
1183 
1184   // A lambda never formally has linkage. But if the owner is externally
1185   // visible, then the lambda is too. We apply the same rules to blocks.
1186   if (!isExternallyVisible(OwnerLV.getLinkage()))
1187     return LinkageInfo::none();
1188   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1189                      OwnerLV.isVisibilityExplicit());
1190 }
1191 
1192 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1193                                                LVComputationKind computation) {
1194   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1195     if (Function->isInAnonymousNamespace() &&
1196         !isFirstInExternCContext(Function))
1197       return getInternalLinkageFor(Function);
1198 
1199     // This is a "void f();" which got merged with a file static.
1200     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1201       return getInternalLinkageFor(Function);
1202 
1203     LinkageInfo LV;
1204     if (!hasExplicitVisibilityAlready(computation)) {
1205       if (Optional<Visibility> Vis =
1206               getExplicitVisibility(Function, computation))
1207         LV.mergeVisibility(*Vis, true);
1208     }
1209 
1210     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1211     // merging storage classes and visibility attributes, so we don't have to
1212     // look at previous decls in here.
1213 
1214     return LV;
1215   }
1216 
1217   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1218     if (Var->hasExternalStorage()) {
1219       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1220         return getInternalLinkageFor(Var);
1221 
1222       LinkageInfo LV;
1223       if (Var->getStorageClass() == SC_PrivateExtern)
1224         LV.mergeVisibility(HiddenVisibility, true);
1225       else if (!hasExplicitVisibilityAlready(computation)) {
1226         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1227           LV.mergeVisibility(*Vis, true);
1228       }
1229 
1230       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1231         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1232         if (PrevLV.getLinkage())
1233           LV.setLinkage(PrevLV.getLinkage());
1234         LV.mergeVisibility(PrevLV);
1235       }
1236 
1237       return LV;
1238     }
1239 
1240     if (!Var->isStaticLocal())
1241       return LinkageInfo::none();
1242   }
1243 
1244   ASTContext &Context = D->getASTContext();
1245   if (!Context.getLangOpts().CPlusPlus)
1246     return LinkageInfo::none();
1247 
1248   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1249   if (!OuterD || OuterD->isInvalidDecl())
1250     return LinkageInfo::none();
1251 
1252   LinkageInfo LV;
1253   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1254     if (!BD->getBlockManglingNumber())
1255       return LinkageInfo::none();
1256 
1257     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1258                          BD->getBlockManglingContextDecl(), computation);
1259   } else {
1260     const auto *FD = cast<FunctionDecl>(OuterD);
1261     if (!FD->isInlined() &&
1262         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1263       return LinkageInfo::none();
1264 
1265     LV = getLVForDecl(FD, computation);
1266   }
1267   if (!isExternallyVisible(LV.getLinkage()))
1268     return LinkageInfo::none();
1269   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1270                      LV.isVisibilityExplicit());
1271 }
1272 
1273 static inline const CXXRecordDecl*
1274 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1275   const CXXRecordDecl *Ret = Record;
1276   while (Record && Record->isLambda()) {
1277     Ret = Record;
1278     if (!Record->getParent()) break;
1279     // Get the Containing Class of this Lambda Class
1280     Record = dyn_cast_or_null<CXXRecordDecl>(
1281       Record->getParent()->getParent());
1282   }
1283   return Ret;
1284 }
1285 
1286 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1287                                               LVComputationKind computation,
1288                                               bool IgnoreVarTypeLinkage) {
1289   // Internal_linkage attribute overrides other considerations.
1290   if (D->hasAttr<InternalLinkageAttr>())
1291     return getInternalLinkageFor(D);
1292 
1293   // Objective-C: treat all Objective-C declarations as having external
1294   // linkage.
1295   switch (D->getKind()) {
1296     default:
1297       break;
1298 
1299     // Per C++ [basic.link]p2, only the names of objects, references,
1300     // functions, types, templates, namespaces, and values ever have linkage.
1301     //
1302     // Note that the name of a typedef, namespace alias, using declaration,
1303     // and so on are not the name of the corresponding type, namespace, or
1304     // declaration, so they do *not* have linkage.
1305     case Decl::ImplicitParam:
1306     case Decl::Label:
1307     case Decl::NamespaceAlias:
1308     case Decl::ParmVar:
1309     case Decl::Using:
1310     case Decl::UsingShadow:
1311     case Decl::UsingDirective:
1312       return LinkageInfo::none();
1313 
1314     case Decl::EnumConstant:
1315       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1316       if (D->getASTContext().getLangOpts().CPlusPlus)
1317         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1318       return LinkageInfo::visible_none();
1319 
1320     case Decl::Typedef:
1321     case Decl::TypeAlias:
1322       // A typedef declaration has linkage if it gives a type a name for
1323       // linkage purposes.
1324       if (!cast<TypedefNameDecl>(D)
1325                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1326         return LinkageInfo::none();
1327       break;
1328 
1329     case Decl::TemplateTemplateParm: // count these as external
1330     case Decl::NonTypeTemplateParm:
1331     case Decl::ObjCAtDefsField:
1332     case Decl::ObjCCategory:
1333     case Decl::ObjCCategoryImpl:
1334     case Decl::ObjCCompatibleAlias:
1335     case Decl::ObjCImplementation:
1336     case Decl::ObjCMethod:
1337     case Decl::ObjCProperty:
1338     case Decl::ObjCPropertyImpl:
1339     case Decl::ObjCProtocol:
1340       return getExternalLinkageFor(D);
1341 
1342     case Decl::CXXRecord: {
1343       const auto *Record = cast<CXXRecordDecl>(D);
1344       if (Record->isLambda()) {
1345         if (!Record->getLambdaManglingNumber()) {
1346           // This lambda has no mangling number, so it's internal.
1347           return getInternalLinkageFor(D);
1348         }
1349 
1350         // This lambda has its linkage/visibility determined:
1351         //  - either by the outermost lambda if that lambda has no mangling
1352         //    number.
1353         //  - or by the parent of the outer most lambda
1354         // This prevents infinite recursion in settings such as nested lambdas
1355         // used in NSDMI's, for e.g.
1356         //  struct L {
1357         //    int t{};
1358         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1359         //  };
1360         const CXXRecordDecl *OuterMostLambda =
1361             getOutermostEnclosingLambda(Record);
1362         if (!OuterMostLambda->getLambdaManglingNumber())
1363           return getInternalLinkageFor(D);
1364 
1365         return getLVForClosure(
1366                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1367                   OuterMostLambda->getLambdaContextDecl(), computation);
1368       }
1369 
1370       break;
1371     }
1372   }
1373 
1374   // Handle linkage for namespace-scope names.
1375   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1376     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1377 
1378   // C++ [basic.link]p5:
1379   //   In addition, a member function, static data member, a named
1380   //   class or enumeration of class scope, or an unnamed class or
1381   //   enumeration defined in a class-scope typedef declaration such
1382   //   that the class or enumeration has the typedef name for linkage
1383   //   purposes (7.1.3), has external linkage if the name of the class
1384   //   has external linkage.
1385   if (D->getDeclContext()->isRecord())
1386     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1387 
1388   // C++ [basic.link]p6:
1389   //   The name of a function declared in block scope and the name of
1390   //   an object declared by a block scope extern declaration have
1391   //   linkage. If there is a visible declaration of an entity with
1392   //   linkage having the same name and type, ignoring entities
1393   //   declared outside the innermost enclosing namespace scope, the
1394   //   block scope declaration declares that same entity and receives
1395   //   the linkage of the previous declaration. If there is more than
1396   //   one such matching entity, the program is ill-formed. Otherwise,
1397   //   if no matching entity is found, the block scope entity receives
1398   //   external linkage.
1399   if (D->getDeclContext()->isFunctionOrMethod())
1400     return getLVForLocalDecl(D, computation);
1401 
1402   // C++ [basic.link]p6:
1403   //   Names not covered by these rules have no linkage.
1404   return LinkageInfo::none();
1405 }
1406 
1407 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1408 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1409                                           LVComputationKind computation) {
1410   // Internal_linkage attribute overrides other considerations.
1411   if (D->hasAttr<InternalLinkageAttr>())
1412     return getInternalLinkageFor(D);
1413 
1414   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1415     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1416 
1417   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1418     return *LI;
1419 
1420   LinkageInfo LV = computeLVForDecl(D, computation);
1421   if (D->hasCachedLinkage())
1422     assert(D->getCachedLinkage() == LV.getLinkage());
1423 
1424   D->setCachedLinkage(LV.getLinkage());
1425   cache(D, computation, LV);
1426 
1427 #ifndef NDEBUG
1428   // In C (because of gnu inline) and in c++ with microsoft extensions an
1429   // static can follow an extern, so we can have two decls with different
1430   // linkages.
1431   const LangOptions &Opts = D->getASTContext().getLangOpts();
1432   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1433     return LV;
1434 
1435   // We have just computed the linkage for this decl. By induction we know
1436   // that all other computed linkages match, check that the one we just
1437   // computed also does.
1438   NamedDecl *Old = nullptr;
1439   for (auto I : D->redecls()) {
1440     auto *T = cast<NamedDecl>(I);
1441     if (T == D)
1442       continue;
1443     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1444       Old = T;
1445       break;
1446     }
1447   }
1448   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1449 #endif
1450 
1451   return LV;
1452 }
1453 
1454 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1455   return getLVForDecl(D,
1456                       LVComputationKind(usesTypeVisibility(D)
1457                                             ? NamedDecl::VisibilityForType
1458                                             : NamedDecl::VisibilityForValue));
1459 }
1460 
1461 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1462   Module *M = getOwningModule();
1463   if (!M)
1464     return nullptr;
1465 
1466   switch (M->Kind) {
1467   case Module::ModuleMapModule:
1468     // Module map modules have no special linkage semantics.
1469     return nullptr;
1470 
1471   case Module::ModuleInterfaceUnit:
1472     return M;
1473 
1474   case Module::GlobalModuleFragment: {
1475     // External linkage declarations in the global module have no owning module
1476     // for linkage purposes. But internal linkage declarations in the global
1477     // module fragment of a particular module are owned by that module for
1478     // linkage purposes.
1479     if (IgnoreLinkage)
1480       return nullptr;
1481     bool InternalLinkage;
1482     if (auto *ND = dyn_cast<NamedDecl>(this))
1483       InternalLinkage = !ND->hasExternalFormalLinkage();
1484     else {
1485       auto *NSD = dyn_cast<NamespaceDecl>(this);
1486       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1487                         isInAnonymousNamespace();
1488     }
1489     return InternalLinkage ? M->Parent : nullptr;
1490   }
1491   }
1492 
1493   llvm_unreachable("unknown module kind");
1494 }
1495 
1496 void NamedDecl::printName(raw_ostream &os) const {
1497   os << Name;
1498 }
1499 
1500 std::string NamedDecl::getQualifiedNameAsString() const {
1501   std::string QualName;
1502   llvm::raw_string_ostream OS(QualName);
1503   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1504   return OS.str();
1505 }
1506 
1507 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1508   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1509 }
1510 
1511 void NamedDecl::printQualifiedName(raw_ostream &OS,
1512                                    const PrintingPolicy &P) const {
1513   const DeclContext *Ctx = getDeclContext();
1514 
1515   // For ObjC methods, look through categories and use the interface as context.
1516   if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1517     if (auto *ID = MD->getClassInterface())
1518       Ctx = ID;
1519 
1520   if (Ctx->isFunctionOrMethod()) {
1521     printName(OS);
1522     return;
1523   }
1524 
1525   using ContextsTy = SmallVector<const DeclContext *, 8>;
1526   ContextsTy Contexts;
1527 
1528   // Collect named contexts.
1529   while (Ctx) {
1530     if (isa<NamedDecl>(Ctx))
1531       Contexts.push_back(Ctx);
1532     Ctx = Ctx->getParent();
1533   }
1534 
1535   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1536     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1537       OS << Spec->getName();
1538       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1539       printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1540     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1541       if (P.SuppressUnwrittenScope &&
1542           (ND->isAnonymousNamespace() || ND->isInline()))
1543         continue;
1544       if (ND->isAnonymousNamespace()) {
1545         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1546                                 : "(anonymous namespace)");
1547       }
1548       else
1549         OS << *ND;
1550     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1551       if (!RD->getIdentifier())
1552         OS << "(anonymous " << RD->getKindName() << ')';
1553       else
1554         OS << *RD;
1555     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1556       const FunctionProtoType *FT = nullptr;
1557       if (FD->hasWrittenPrototype())
1558         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1559 
1560       OS << *FD << '(';
1561       if (FT) {
1562         unsigned NumParams = FD->getNumParams();
1563         for (unsigned i = 0; i < NumParams; ++i) {
1564           if (i)
1565             OS << ", ";
1566           OS << FD->getParamDecl(i)->getType().stream(P);
1567         }
1568 
1569         if (FT->isVariadic()) {
1570           if (NumParams > 0)
1571             OS << ", ";
1572           OS << "...";
1573         }
1574       }
1575       OS << ')';
1576     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1577       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1578       // enumerator is declared in the scope that immediately contains
1579       // the enum-specifier. Each scoped enumerator is declared in the
1580       // scope of the enumeration.
1581       // For the case of unscoped enumerator, do not include in the qualified
1582       // name any information about its enum enclosing scope, as its visibility
1583       // is global.
1584       if (ED->isScoped())
1585         OS << *ED;
1586       else
1587         continue;
1588     } else {
1589       OS << *cast<NamedDecl>(DC);
1590     }
1591     OS << "::";
1592   }
1593 
1594   if (getDeclName() || isa<DecompositionDecl>(this))
1595     OS << *this;
1596   else
1597     OS << "(anonymous)";
1598 }
1599 
1600 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1601                                      const PrintingPolicy &Policy,
1602                                      bool Qualified) const {
1603   if (Qualified)
1604     printQualifiedName(OS, Policy);
1605   else
1606     printName(OS);
1607 }
1608 
1609 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1610   return true;
1611 }
1612 static bool isRedeclarableImpl(...) { return false; }
1613 static bool isRedeclarable(Decl::Kind K) {
1614   switch (K) {
1615 #define DECL(Type, Base) \
1616   case Decl::Type: \
1617     return isRedeclarableImpl((Type##Decl *)nullptr);
1618 #define ABSTRACT_DECL(DECL)
1619 #include "clang/AST/DeclNodes.inc"
1620   }
1621   llvm_unreachable("unknown decl kind");
1622 }
1623 
1624 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1625   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1626 
1627   // Never replace one imported declaration with another; we need both results
1628   // when re-exporting.
1629   if (OldD->isFromASTFile() && isFromASTFile())
1630     return false;
1631 
1632   // A kind mismatch implies that the declaration is not replaced.
1633   if (OldD->getKind() != getKind())
1634     return false;
1635 
1636   // For method declarations, we never replace. (Why?)
1637   if (isa<ObjCMethodDecl>(this))
1638     return false;
1639 
1640   // For parameters, pick the newer one. This is either an error or (in
1641   // Objective-C) permitted as an extension.
1642   if (isa<ParmVarDecl>(this))
1643     return true;
1644 
1645   // Inline namespaces can give us two declarations with the same
1646   // name and kind in the same scope but different contexts; we should
1647   // keep both declarations in this case.
1648   if (!this->getDeclContext()->getRedeclContext()->Equals(
1649           OldD->getDeclContext()->getRedeclContext()))
1650     return false;
1651 
1652   // Using declarations can be replaced if they import the same name from the
1653   // same context.
1654   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1655     ASTContext &Context = getASTContext();
1656     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1657            Context.getCanonicalNestedNameSpecifier(
1658                cast<UsingDecl>(OldD)->getQualifier());
1659   }
1660   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1661     ASTContext &Context = getASTContext();
1662     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1663            Context.getCanonicalNestedNameSpecifier(
1664                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1665   }
1666 
1667   if (isRedeclarable(getKind())) {
1668     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1669       return false;
1670 
1671     if (IsKnownNewer)
1672       return true;
1673 
1674     // Check whether this is actually newer than OldD. We want to keep the
1675     // newer declaration. This loop will usually only iterate once, because
1676     // OldD is usually the previous declaration.
1677     for (auto D : redecls()) {
1678       if (D == OldD)
1679         break;
1680 
1681       // If we reach the canonical declaration, then OldD is not actually older
1682       // than this one.
1683       //
1684       // FIXME: In this case, we should not add this decl to the lookup table.
1685       if (D->isCanonicalDecl())
1686         return false;
1687     }
1688 
1689     // It's a newer declaration of the same kind of declaration in the same
1690     // scope: we want this decl instead of the existing one.
1691     return true;
1692   }
1693 
1694   // In all other cases, we need to keep both declarations in case they have
1695   // different visibility. Any attempt to use the name will result in an
1696   // ambiguity if more than one is visible.
1697   return false;
1698 }
1699 
1700 bool NamedDecl::hasLinkage() const {
1701   return getFormalLinkage() != NoLinkage;
1702 }
1703 
1704 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1705   NamedDecl *ND = this;
1706   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1707     ND = UD->getTargetDecl();
1708 
1709   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1710     return AD->getClassInterface();
1711 
1712   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1713     return AD->getNamespace();
1714 
1715   return ND;
1716 }
1717 
1718 bool NamedDecl::isCXXInstanceMember() const {
1719   if (!isCXXClassMember())
1720     return false;
1721 
1722   const NamedDecl *D = this;
1723   if (isa<UsingShadowDecl>(D))
1724     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1725 
1726   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1727     return true;
1728   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1729     return MD->isInstance();
1730   return false;
1731 }
1732 
1733 //===----------------------------------------------------------------------===//
1734 // DeclaratorDecl Implementation
1735 //===----------------------------------------------------------------------===//
1736 
1737 template <typename DeclT>
1738 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1739   if (decl->getNumTemplateParameterLists() > 0)
1740     return decl->getTemplateParameterList(0)->getTemplateLoc();
1741   else
1742     return decl->getInnerLocStart();
1743 }
1744 
1745 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1746   TypeSourceInfo *TSI = getTypeSourceInfo();
1747   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1748   return SourceLocation();
1749 }
1750 
1751 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1752   if (QualifierLoc) {
1753     // Make sure the extended decl info is allocated.
1754     if (!hasExtInfo()) {
1755       // Save (non-extended) type source info pointer.
1756       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1757       // Allocate external info struct.
1758       DeclInfo = new (getASTContext()) ExtInfo;
1759       // Restore savedTInfo into (extended) decl info.
1760       getExtInfo()->TInfo = savedTInfo;
1761     }
1762     // Set qualifier info.
1763     getExtInfo()->QualifierLoc = QualifierLoc;
1764   } else {
1765     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1766     if (hasExtInfo()) {
1767       if (getExtInfo()->NumTemplParamLists == 0) {
1768         // Save type source info pointer.
1769         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1770         // Deallocate the extended decl info.
1771         getASTContext().Deallocate(getExtInfo());
1772         // Restore savedTInfo into (non-extended) decl info.
1773         DeclInfo = savedTInfo;
1774       }
1775       else
1776         getExtInfo()->QualifierLoc = QualifierLoc;
1777     }
1778   }
1779 }
1780 
1781 void DeclaratorDecl::setTemplateParameterListsInfo(
1782     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1783   assert(!TPLists.empty());
1784   // Make sure the extended decl info is allocated.
1785   if (!hasExtInfo()) {
1786     // Save (non-extended) type source info pointer.
1787     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1788     // Allocate external info struct.
1789     DeclInfo = new (getASTContext()) ExtInfo;
1790     // Restore savedTInfo into (extended) decl info.
1791     getExtInfo()->TInfo = savedTInfo;
1792   }
1793   // Set the template parameter lists info.
1794   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1795 }
1796 
1797 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1798   return getTemplateOrInnerLocStart(this);
1799 }
1800 
1801 // Helper function: returns true if QT is or contains a type
1802 // having a postfix component.
1803 static bool typeIsPostfix(QualType QT) {
1804   while (true) {
1805     const Type* T = QT.getTypePtr();
1806     switch (T->getTypeClass()) {
1807     default:
1808       return false;
1809     case Type::Pointer:
1810       QT = cast<PointerType>(T)->getPointeeType();
1811       break;
1812     case Type::BlockPointer:
1813       QT = cast<BlockPointerType>(T)->getPointeeType();
1814       break;
1815     case Type::MemberPointer:
1816       QT = cast<MemberPointerType>(T)->getPointeeType();
1817       break;
1818     case Type::LValueReference:
1819     case Type::RValueReference:
1820       QT = cast<ReferenceType>(T)->getPointeeType();
1821       break;
1822     case Type::PackExpansion:
1823       QT = cast<PackExpansionType>(T)->getPattern();
1824       break;
1825     case Type::Paren:
1826     case Type::ConstantArray:
1827     case Type::DependentSizedArray:
1828     case Type::IncompleteArray:
1829     case Type::VariableArray:
1830     case Type::FunctionProto:
1831     case Type::FunctionNoProto:
1832       return true;
1833     }
1834   }
1835 }
1836 
1837 SourceRange DeclaratorDecl::getSourceRange() const {
1838   SourceLocation RangeEnd = getLocation();
1839   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1840     // If the declaration has no name or the type extends past the name take the
1841     // end location of the type.
1842     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1843       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1844   }
1845   return SourceRange(getOuterLocStart(), RangeEnd);
1846 }
1847 
1848 void QualifierInfo::setTemplateParameterListsInfo(
1849     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1850   // Free previous template parameters (if any).
1851   if (NumTemplParamLists > 0) {
1852     Context.Deallocate(TemplParamLists);
1853     TemplParamLists = nullptr;
1854     NumTemplParamLists = 0;
1855   }
1856   // Set info on matched template parameter lists (if any).
1857   if (!TPLists.empty()) {
1858     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1859     NumTemplParamLists = TPLists.size();
1860     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1861   }
1862 }
1863 
1864 //===----------------------------------------------------------------------===//
1865 // VarDecl Implementation
1866 //===----------------------------------------------------------------------===//
1867 
1868 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1869   switch (SC) {
1870   case SC_None:                 break;
1871   case SC_Auto:                 return "auto";
1872   case SC_Extern:               return "extern";
1873   case SC_PrivateExtern:        return "__private_extern__";
1874   case SC_Register:             return "register";
1875   case SC_Static:               return "static";
1876   }
1877 
1878   llvm_unreachable("Invalid storage class");
1879 }
1880 
1881 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1882                  SourceLocation StartLoc, SourceLocation IdLoc,
1883                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1884                  StorageClass SC)
1885     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1886       redeclarable_base(C) {
1887   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1888                 "VarDeclBitfields too large!");
1889   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1890                 "ParmVarDeclBitfields too large!");
1891   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1892                 "NonParmVarDeclBitfields too large!");
1893   AllBits = 0;
1894   VarDeclBits.SClass = SC;
1895   // Everything else is implicitly initialized to false.
1896 }
1897 
1898 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1899                          SourceLocation StartL, SourceLocation IdL,
1900                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1901                          StorageClass S) {
1902   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1903 }
1904 
1905 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1906   return new (C, ID)
1907       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1908               QualType(), nullptr, SC_None);
1909 }
1910 
1911 void VarDecl::setStorageClass(StorageClass SC) {
1912   assert(isLegalForVariable(SC));
1913   VarDeclBits.SClass = SC;
1914 }
1915 
1916 VarDecl::TLSKind VarDecl::getTLSKind() const {
1917   switch (VarDeclBits.TSCSpec) {
1918   case TSCS_unspecified:
1919     if (!hasAttr<ThreadAttr>() &&
1920         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1921           getASTContext().getTargetInfo().isTLSSupported() &&
1922           hasAttr<OMPThreadPrivateDeclAttr>()))
1923       return TLS_None;
1924     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1925                 LangOptions::MSVC2015)) ||
1926             hasAttr<OMPThreadPrivateDeclAttr>())
1927                ? TLS_Dynamic
1928                : TLS_Static;
1929   case TSCS___thread: // Fall through.
1930   case TSCS__Thread_local:
1931     return TLS_Static;
1932   case TSCS_thread_local:
1933     return TLS_Dynamic;
1934   }
1935   llvm_unreachable("Unknown thread storage class specifier!");
1936 }
1937 
1938 SourceRange VarDecl::getSourceRange() const {
1939   if (const Expr *Init = getInit()) {
1940     SourceLocation InitEnd = Init->getLocEnd();
1941     // If Init is implicit, ignore its source range and fallback on
1942     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1943     if (InitEnd.isValid() && InitEnd != getLocation())
1944       return SourceRange(getOuterLocStart(), InitEnd);
1945   }
1946   return DeclaratorDecl::getSourceRange();
1947 }
1948 
1949 template<typename T>
1950 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1951   // C++ [dcl.link]p1: All function types, function names with external linkage,
1952   // and variable names with external linkage have a language linkage.
1953   if (!D.hasExternalFormalLinkage())
1954     return NoLanguageLinkage;
1955 
1956   // Language linkage is a C++ concept, but saying that everything else in C has
1957   // C language linkage fits the implementation nicely.
1958   ASTContext &Context = D.getASTContext();
1959   if (!Context.getLangOpts().CPlusPlus)
1960     return CLanguageLinkage;
1961 
1962   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1963   // language linkage of the names of class members and the function type of
1964   // class member functions.
1965   const DeclContext *DC = D.getDeclContext();
1966   if (DC->isRecord())
1967     return CXXLanguageLinkage;
1968 
1969   // If the first decl is in an extern "C" context, any other redeclaration
1970   // will have C language linkage. If the first one is not in an extern "C"
1971   // context, we would have reported an error for any other decl being in one.
1972   if (isFirstInExternCContext(&D))
1973     return CLanguageLinkage;
1974   return CXXLanguageLinkage;
1975 }
1976 
1977 template<typename T>
1978 static bool isDeclExternC(const T &D) {
1979   // Since the context is ignored for class members, they can only have C++
1980   // language linkage or no language linkage.
1981   const DeclContext *DC = D.getDeclContext();
1982   if (DC->isRecord()) {
1983     assert(D.getASTContext().getLangOpts().CPlusPlus);
1984     return false;
1985   }
1986 
1987   return D.getLanguageLinkage() == CLanguageLinkage;
1988 }
1989 
1990 LanguageLinkage VarDecl::getLanguageLinkage() const {
1991   return getDeclLanguageLinkage(*this);
1992 }
1993 
1994 bool VarDecl::isExternC() const {
1995   return isDeclExternC(*this);
1996 }
1997 
1998 bool VarDecl::isInExternCContext() const {
1999   return getLexicalDeclContext()->isExternCContext();
2000 }
2001 
2002 bool VarDecl::isInExternCXXContext() const {
2003   return getLexicalDeclContext()->isExternCXXContext();
2004 }
2005 
2006 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2007 
2008 VarDecl::DefinitionKind
2009 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2010   if (isThisDeclarationADemotedDefinition())
2011     return DeclarationOnly;
2012 
2013   // C++ [basic.def]p2:
2014   //   A declaration is a definition unless [...] it contains the 'extern'
2015   //   specifier or a linkage-specification and neither an initializer [...],
2016   //   it declares a non-inline static data member in a class declaration [...],
2017   //   it declares a static data member outside a class definition and the variable
2018   //   was defined within the class with the constexpr specifier [...],
2019   // C++1y [temp.expl.spec]p15:
2020   //   An explicit specialization of a static data member or an explicit
2021   //   specialization of a static data member template is a definition if the
2022   //   declaration includes an initializer; otherwise, it is a declaration.
2023   //
2024   // FIXME: How do you declare (but not define) a partial specialization of
2025   // a static data member template outside the containing class?
2026   if (isStaticDataMember()) {
2027     if (isOutOfLine() &&
2028         !(getCanonicalDecl()->isInline() &&
2029           getCanonicalDecl()->isConstexpr()) &&
2030         (hasInit() ||
2031          // If the first declaration is out-of-line, this may be an
2032          // instantiation of an out-of-line partial specialization of a variable
2033          // template for which we have not yet instantiated the initializer.
2034          (getFirstDecl()->isOutOfLine()
2035               ? getTemplateSpecializationKind() == TSK_Undeclared
2036               : getTemplateSpecializationKind() !=
2037                     TSK_ExplicitSpecialization) ||
2038          isa<VarTemplatePartialSpecializationDecl>(this)))
2039       return Definition;
2040     else if (!isOutOfLine() && isInline())
2041       return Definition;
2042     else
2043       return DeclarationOnly;
2044   }
2045   // C99 6.7p5:
2046   //   A definition of an identifier is a declaration for that identifier that
2047   //   [...] causes storage to be reserved for that object.
2048   // Note: that applies for all non-file-scope objects.
2049   // C99 6.9.2p1:
2050   //   If the declaration of an identifier for an object has file scope and an
2051   //   initializer, the declaration is an external definition for the identifier
2052   if (hasInit())
2053     return Definition;
2054 
2055   if (hasDefiningAttr())
2056     return Definition;
2057 
2058   if (const auto *SAA = getAttr<SelectAnyAttr>())
2059     if (!SAA->isInherited())
2060       return Definition;
2061 
2062   // A variable template specialization (other than a static data member
2063   // template or an explicit specialization) is a declaration until we
2064   // instantiate its initializer.
2065   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2066     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2067         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2068         !VTSD->IsCompleteDefinition)
2069       return DeclarationOnly;
2070   }
2071 
2072   if (hasExternalStorage())
2073     return DeclarationOnly;
2074 
2075   // [dcl.link] p7:
2076   //   A declaration directly contained in a linkage-specification is treated
2077   //   as if it contains the extern specifier for the purpose of determining
2078   //   the linkage of the declared name and whether it is a definition.
2079   if (isSingleLineLanguageLinkage(*this))
2080     return DeclarationOnly;
2081 
2082   // C99 6.9.2p2:
2083   //   A declaration of an object that has file scope without an initializer,
2084   //   and without a storage class specifier or the scs 'static', constitutes
2085   //   a tentative definition.
2086   // No such thing in C++.
2087   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2088     return TentativeDefinition;
2089 
2090   // What's left is (in C, block-scope) declarations without initializers or
2091   // external storage. These are definitions.
2092   return Definition;
2093 }
2094 
2095 VarDecl *VarDecl::getActingDefinition() {
2096   DefinitionKind Kind = isThisDeclarationADefinition();
2097   if (Kind != TentativeDefinition)
2098     return nullptr;
2099 
2100   VarDecl *LastTentative = nullptr;
2101   VarDecl *First = getFirstDecl();
2102   for (auto I : First->redecls()) {
2103     Kind = I->isThisDeclarationADefinition();
2104     if (Kind == Definition)
2105       return nullptr;
2106     else if (Kind == TentativeDefinition)
2107       LastTentative = I;
2108   }
2109   return LastTentative;
2110 }
2111 
2112 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2113   VarDecl *First = getFirstDecl();
2114   for (auto I : First->redecls()) {
2115     if (I->isThisDeclarationADefinition(C) == Definition)
2116       return I;
2117   }
2118   return nullptr;
2119 }
2120 
2121 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2122   DefinitionKind Kind = DeclarationOnly;
2123 
2124   const VarDecl *First = getFirstDecl();
2125   for (auto I : First->redecls()) {
2126     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2127     if (Kind == Definition)
2128       break;
2129   }
2130 
2131   return Kind;
2132 }
2133 
2134 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2135   for (auto I : redecls()) {
2136     if (auto Expr = I->getInit()) {
2137       D = I;
2138       return Expr;
2139     }
2140   }
2141   return nullptr;
2142 }
2143 
2144 bool VarDecl::hasInit() const {
2145   if (auto *P = dyn_cast<ParmVarDecl>(this))
2146     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2147       return false;
2148 
2149   return !Init.isNull();
2150 }
2151 
2152 Expr *VarDecl::getInit() {
2153   if (!hasInit())
2154     return nullptr;
2155 
2156   if (auto *S = Init.dyn_cast<Stmt *>())
2157     return cast<Expr>(S);
2158 
2159   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2160 }
2161 
2162 Stmt **VarDecl::getInitAddress() {
2163   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2164     return &ES->Value;
2165 
2166   return Init.getAddrOfPtr1();
2167 }
2168 
2169 bool VarDecl::isOutOfLine() const {
2170   if (Decl::isOutOfLine())
2171     return true;
2172 
2173   if (!isStaticDataMember())
2174     return false;
2175 
2176   // If this static data member was instantiated from a static data member of
2177   // a class template, check whether that static data member was defined
2178   // out-of-line.
2179   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2180     return VD->isOutOfLine();
2181 
2182   return false;
2183 }
2184 
2185 void VarDecl::setInit(Expr *I) {
2186   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2187     Eval->~EvaluatedStmt();
2188     getASTContext().Deallocate(Eval);
2189   }
2190 
2191   Init = I;
2192 }
2193 
2194 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2195   const LangOptions &Lang = C.getLangOpts();
2196 
2197   if (!Lang.CPlusPlus)
2198     return false;
2199 
2200   // In C++11, any variable of reference type can be used in a constant
2201   // expression if it is initialized by a constant expression.
2202   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2203     return true;
2204 
2205   // Only const objects can be used in constant expressions in C++. C++98 does
2206   // not require the variable to be non-volatile, but we consider this to be a
2207   // defect.
2208   if (!getType().isConstQualified() || getType().isVolatileQualified())
2209     return false;
2210 
2211   // In C++, const, non-volatile variables of integral or enumeration types
2212   // can be used in constant expressions.
2213   if (getType()->isIntegralOrEnumerationType())
2214     return true;
2215 
2216   // Additionally, in C++11, non-volatile constexpr variables can be used in
2217   // constant expressions.
2218   return Lang.CPlusPlus11 && isConstexpr();
2219 }
2220 
2221 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2222 /// form, which contains extra information on the evaluated value of the
2223 /// initializer.
2224 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2225   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2226   if (!Eval) {
2227     // Note: EvaluatedStmt contains an APValue, which usually holds
2228     // resources not allocated from the ASTContext.  We need to do some
2229     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2230     // where we can detect whether there's anything to clean up or not.
2231     Eval = new (getASTContext()) EvaluatedStmt;
2232     Eval->Value = Init.get<Stmt *>();
2233     Init = Eval;
2234   }
2235   return Eval;
2236 }
2237 
2238 APValue *VarDecl::evaluateValue() const {
2239   SmallVector<PartialDiagnosticAt, 8> Notes;
2240   return evaluateValue(Notes);
2241 }
2242 
2243 APValue *VarDecl::evaluateValue(
2244     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2245   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2246 
2247   // We only produce notes indicating why an initializer is non-constant the
2248   // first time it is evaluated. FIXME: The notes won't always be emitted the
2249   // first time we try evaluation, so might not be produced at all.
2250   if (Eval->WasEvaluated)
2251     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2252 
2253   const auto *Init = cast<Expr>(Eval->Value);
2254   assert(!Init->isValueDependent());
2255 
2256   if (Eval->IsEvaluating) {
2257     // FIXME: Produce a diagnostic for self-initialization.
2258     Eval->CheckedICE = true;
2259     Eval->IsICE = false;
2260     return nullptr;
2261   }
2262 
2263   Eval->IsEvaluating = true;
2264 
2265   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2266                                             this, Notes);
2267 
2268   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2269   // or that it's empty (so that there's nothing to clean up) if evaluation
2270   // failed.
2271   if (!Result)
2272     Eval->Evaluated = APValue();
2273   else if (Eval->Evaluated.needsCleanup())
2274     getASTContext().addDestruction(&Eval->Evaluated);
2275 
2276   Eval->IsEvaluating = false;
2277   Eval->WasEvaluated = true;
2278 
2279   // In C++11, we have determined whether the initializer was a constant
2280   // expression as a side-effect.
2281   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2282     Eval->CheckedICE = true;
2283     Eval->IsICE = Result && Notes.empty();
2284   }
2285 
2286   return Result ? &Eval->Evaluated : nullptr;
2287 }
2288 
2289 APValue *VarDecl::getEvaluatedValue() const {
2290   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2291     if (Eval->WasEvaluated)
2292       return &Eval->Evaluated;
2293 
2294   return nullptr;
2295 }
2296 
2297 bool VarDecl::isInitKnownICE() const {
2298   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2299     return Eval->CheckedICE;
2300 
2301   return false;
2302 }
2303 
2304 bool VarDecl::isInitICE() const {
2305   assert(isInitKnownICE() &&
2306          "Check whether we already know that the initializer is an ICE");
2307   return Init.get<EvaluatedStmt *>()->IsICE;
2308 }
2309 
2310 bool VarDecl::checkInitIsICE() const {
2311   // Initializers of weak variables are never ICEs.
2312   if (isWeak())
2313     return false;
2314 
2315   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2316   if (Eval->CheckedICE)
2317     // We have already checked whether this subexpression is an
2318     // integral constant expression.
2319     return Eval->IsICE;
2320 
2321   const auto *Init = cast<Expr>(Eval->Value);
2322   assert(!Init->isValueDependent());
2323 
2324   // In C++11, evaluate the initializer to check whether it's a constant
2325   // expression.
2326   if (getASTContext().getLangOpts().CPlusPlus11) {
2327     SmallVector<PartialDiagnosticAt, 8> Notes;
2328     evaluateValue(Notes);
2329     return Eval->IsICE;
2330   }
2331 
2332   // It's an ICE whether or not the definition we found is
2333   // out-of-line.  See DR 721 and the discussion in Clang PR
2334   // 6206 for details.
2335 
2336   if (Eval->CheckingICE)
2337     return false;
2338   Eval->CheckingICE = true;
2339 
2340   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2341   Eval->CheckingICE = false;
2342   Eval->CheckedICE = true;
2343   return Eval->IsICE;
2344 }
2345 
2346 template<typename DeclT>
2347 static DeclT *getDefinitionOrSelf(DeclT *D) {
2348   assert(D);
2349   if (auto *Def = D->getDefinition())
2350     return Def;
2351   return D;
2352 }
2353 
2354 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2355   // If it's a variable template specialization, find the template or partial
2356   // specialization from which it was instantiated.
2357   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2358     auto From = VDTemplSpec->getInstantiatedFrom();
2359     if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2360       while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) {
2361         if (NewVTD->isMemberSpecialization())
2362           break;
2363         VTD = NewVTD;
2364       }
2365       return getDefinitionOrSelf(VTD->getTemplatedDecl());
2366     }
2367     if (auto *VTPSD =
2368             From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2369       while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) {
2370         if (NewVTPSD->isMemberSpecialization())
2371           break;
2372         VTPSD = NewVTPSD;
2373       }
2374       return getDefinitionOrSelf<VarDecl>(VTPSD);
2375     }
2376   }
2377 
2378   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
2379     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2380       VarDecl *VD = getInstantiatedFromStaticDataMember();
2381       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2382         VD = NewVD;
2383       return getDefinitionOrSelf(VD);
2384     }
2385   }
2386 
2387   if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) {
2388     while (VarTemplate->getInstantiatedFromMemberTemplate()) {
2389       if (VarTemplate->isMemberSpecialization())
2390         break;
2391       VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate();
2392     }
2393 
2394     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2395   }
2396   return nullptr;
2397 }
2398 
2399 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2400   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2401     return cast<VarDecl>(MSI->getInstantiatedFrom());
2402 
2403   return nullptr;
2404 }
2405 
2406 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2407   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2408     return Spec->getSpecializationKind();
2409 
2410   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2411     return MSI->getTemplateSpecializationKind();
2412 
2413   return TSK_Undeclared;
2414 }
2415 
2416 SourceLocation VarDecl::getPointOfInstantiation() const {
2417   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2418     return Spec->getPointOfInstantiation();
2419 
2420   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2421     return MSI->getPointOfInstantiation();
2422 
2423   return SourceLocation();
2424 }
2425 
2426 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2427   return getASTContext().getTemplateOrSpecializationInfo(this)
2428       .dyn_cast<VarTemplateDecl *>();
2429 }
2430 
2431 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2432   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2433 }
2434 
2435 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2436   if (isStaticDataMember())
2437     // FIXME: Remove ?
2438     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2439     return getASTContext().getTemplateOrSpecializationInfo(this)
2440         .dyn_cast<MemberSpecializationInfo *>();
2441   return nullptr;
2442 }
2443 
2444 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2445                                          SourceLocation PointOfInstantiation) {
2446   assert((isa<VarTemplateSpecializationDecl>(this) ||
2447           getMemberSpecializationInfo()) &&
2448          "not a variable or static data member template specialization");
2449 
2450   if (VarTemplateSpecializationDecl *Spec =
2451           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2452     Spec->setSpecializationKind(TSK);
2453     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2454         Spec->getPointOfInstantiation().isInvalid()) {
2455       Spec->setPointOfInstantiation(PointOfInstantiation);
2456       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2457         L->InstantiationRequested(this);
2458     }
2459   }
2460 
2461   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2462     MSI->setTemplateSpecializationKind(TSK);
2463     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2464         MSI->getPointOfInstantiation().isInvalid()) {
2465       MSI->setPointOfInstantiation(PointOfInstantiation);
2466       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2467         L->InstantiationRequested(this);
2468     }
2469   }
2470 }
2471 
2472 void
2473 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2474                                             TemplateSpecializationKind TSK) {
2475   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2476          "Previous template or instantiation?");
2477   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2478 }
2479 
2480 //===----------------------------------------------------------------------===//
2481 // ParmVarDecl Implementation
2482 //===----------------------------------------------------------------------===//
2483 
2484 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2485                                  SourceLocation StartLoc,
2486                                  SourceLocation IdLoc, IdentifierInfo *Id,
2487                                  QualType T, TypeSourceInfo *TInfo,
2488                                  StorageClass S, Expr *DefArg) {
2489   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2490                                  S, DefArg);
2491 }
2492 
2493 QualType ParmVarDecl::getOriginalType() const {
2494   TypeSourceInfo *TSI = getTypeSourceInfo();
2495   QualType T = TSI ? TSI->getType() : getType();
2496   if (const auto *DT = dyn_cast<DecayedType>(T))
2497     return DT->getOriginalType();
2498   return T;
2499 }
2500 
2501 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2502   return new (C, ID)
2503       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2504                   nullptr, QualType(), nullptr, SC_None, nullptr);
2505 }
2506 
2507 SourceRange ParmVarDecl::getSourceRange() const {
2508   if (!hasInheritedDefaultArg()) {
2509     SourceRange ArgRange = getDefaultArgRange();
2510     if (ArgRange.isValid())
2511       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2512   }
2513 
2514   // DeclaratorDecl considers the range of postfix types as overlapping with the
2515   // declaration name, but this is not the case with parameters in ObjC methods.
2516   if (isa<ObjCMethodDecl>(getDeclContext()))
2517     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2518 
2519   return DeclaratorDecl::getSourceRange();
2520 }
2521 
2522 Expr *ParmVarDecl::getDefaultArg() {
2523   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2524   assert(!hasUninstantiatedDefaultArg() &&
2525          "Default argument is not yet instantiated!");
2526 
2527   Expr *Arg = getInit();
2528   if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2529     return E->getSubExpr();
2530 
2531   return Arg;
2532 }
2533 
2534 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2535   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2536   Init = defarg;
2537 }
2538 
2539 SourceRange ParmVarDecl::getDefaultArgRange() const {
2540   switch (ParmVarDeclBits.DefaultArgKind) {
2541   case DAK_None:
2542   case DAK_Unparsed:
2543     // Nothing we can do here.
2544     return SourceRange();
2545 
2546   case DAK_Uninstantiated:
2547     return getUninstantiatedDefaultArg()->getSourceRange();
2548 
2549   case DAK_Normal:
2550     if (const Expr *E = getInit())
2551       return E->getSourceRange();
2552 
2553     // Missing an actual expression, may be invalid.
2554     return SourceRange();
2555   }
2556   llvm_unreachable("Invalid default argument kind.");
2557 }
2558 
2559 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2560   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2561   Init = arg;
2562 }
2563 
2564 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2565   assert(hasUninstantiatedDefaultArg() &&
2566          "Wrong kind of initialization expression!");
2567   return cast_or_null<Expr>(Init.get<Stmt *>());
2568 }
2569 
2570 bool ParmVarDecl::hasDefaultArg() const {
2571   // FIXME: We should just return false for DAK_None here once callers are
2572   // prepared for the case that we encountered an invalid default argument and
2573   // were unable to even build an invalid expression.
2574   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2575          !Init.isNull();
2576 }
2577 
2578 bool ParmVarDecl::isParameterPack() const {
2579   return isa<PackExpansionType>(getType());
2580 }
2581 
2582 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2583   getASTContext().setParameterIndex(this, parameterIndex);
2584   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2585 }
2586 
2587 unsigned ParmVarDecl::getParameterIndexLarge() const {
2588   return getASTContext().getParameterIndex(this);
2589 }
2590 
2591 //===----------------------------------------------------------------------===//
2592 // FunctionDecl Implementation
2593 //===----------------------------------------------------------------------===//
2594 
2595 void FunctionDecl::getNameForDiagnostic(
2596     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2597   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2598   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2599   if (TemplateArgs)
2600     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2601 }
2602 
2603 bool FunctionDecl::isVariadic() const {
2604   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2605     return FT->isVariadic();
2606   return false;
2607 }
2608 
2609 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2610   for (auto I : redecls()) {
2611     if (I->doesThisDeclarationHaveABody()) {
2612       Definition = I;
2613       return true;
2614     }
2615   }
2616 
2617   return false;
2618 }
2619 
2620 bool FunctionDecl::hasTrivialBody() const
2621 {
2622   Stmt *S = getBody();
2623   if (!S) {
2624     // Since we don't have a body for this function, we don't know if it's
2625     // trivial or not.
2626     return false;
2627   }
2628 
2629   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2630     return true;
2631   return false;
2632 }
2633 
2634 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2635   for (auto I : redecls()) {
2636     if (I->isThisDeclarationADefinition()) {
2637       Definition = I;
2638       return true;
2639     }
2640   }
2641 
2642   return false;
2643 }
2644 
2645 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2646   if (!hasBody(Definition))
2647     return nullptr;
2648 
2649   if (Definition->Body)
2650     return Definition->Body.get(getASTContext().getExternalSource());
2651 
2652   return nullptr;
2653 }
2654 
2655 void FunctionDecl::setBody(Stmt *B) {
2656   Body = B;
2657   if (B)
2658     EndRangeLoc = B->getLocEnd();
2659 }
2660 
2661 void FunctionDecl::setPure(bool P) {
2662   IsPure = P;
2663   if (P)
2664     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2665       Parent->markedVirtualFunctionPure();
2666 }
2667 
2668 template<std::size_t Len>
2669 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2670   IdentifierInfo *II = ND->getIdentifier();
2671   return II && II->isStr(Str);
2672 }
2673 
2674 bool FunctionDecl::isMain() const {
2675   const TranslationUnitDecl *tunit =
2676     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2677   return tunit &&
2678          !tunit->getASTContext().getLangOpts().Freestanding &&
2679          isNamed(this, "main");
2680 }
2681 
2682 bool FunctionDecl::isMSVCRTEntryPoint() const {
2683   const TranslationUnitDecl *TUnit =
2684       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2685   if (!TUnit)
2686     return false;
2687 
2688   // Even though we aren't really targeting MSVCRT if we are freestanding,
2689   // semantic analysis for these functions remains the same.
2690 
2691   // MSVCRT entry points only exist on MSVCRT targets.
2692   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2693     return false;
2694 
2695   // Nameless functions like constructors cannot be entry points.
2696   if (!getIdentifier())
2697     return false;
2698 
2699   return llvm::StringSwitch<bool>(getName())
2700       .Cases("main",     // an ANSI console app
2701              "wmain",    // a Unicode console App
2702              "WinMain",  // an ANSI GUI app
2703              "wWinMain", // a Unicode GUI app
2704              "DllMain",  // a DLL
2705              true)
2706       .Default(false);
2707 }
2708 
2709 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2710   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2711   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2712          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2713          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2714          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2715 
2716   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2717     return false;
2718 
2719   const auto *proto = getType()->castAs<FunctionProtoType>();
2720   if (proto->getNumParams() != 2 || proto->isVariadic())
2721     return false;
2722 
2723   ASTContext &Context =
2724     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2725       ->getASTContext();
2726 
2727   // The result type and first argument type are constant across all
2728   // these operators.  The second argument must be exactly void*.
2729   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2730 }
2731 
2732 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const {
2733   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2734     return false;
2735   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2736       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2737       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2738       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2739     return false;
2740 
2741   if (isa<CXXRecordDecl>(getDeclContext()))
2742     return false;
2743 
2744   // This can only fail for an invalid 'operator new' declaration.
2745   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2746     return false;
2747 
2748   const auto *FPT = getType()->castAs<FunctionProtoType>();
2749   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2750     return false;
2751 
2752   // If this is a single-parameter function, it must be a replaceable global
2753   // allocation or deallocation function.
2754   if (FPT->getNumParams() == 1)
2755     return true;
2756 
2757   unsigned Params = 1;
2758   QualType Ty = FPT->getParamType(Params);
2759   ASTContext &Ctx = getASTContext();
2760 
2761   auto Consume = [&] {
2762     ++Params;
2763     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2764   };
2765 
2766   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2767   bool IsSizedDelete = false;
2768   if (Ctx.getLangOpts().SizedDeallocation &&
2769       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2770        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2771       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2772     IsSizedDelete = true;
2773     Consume();
2774   }
2775 
2776   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2777   // new/delete.
2778   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2779     if (IsAligned)
2780       *IsAligned = true;
2781     Consume();
2782   }
2783 
2784   // Finally, if this is not a sized delete, the final parameter can
2785   // be a 'const std::nothrow_t&'.
2786   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2787     Ty = Ty->getPointeeType();
2788     if (Ty.getCVRQualifiers() != Qualifiers::Const)
2789       return false;
2790     const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2791     if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2792       Consume();
2793   }
2794 
2795   return Params == FPT->getNumParams();
2796 }
2797 
2798 bool FunctionDecl::isDestroyingOperatorDelete() const {
2799   // C++ P0722:
2800   //   Within a class C, a single object deallocation function with signature
2801   //     (T, std::destroying_delete_t, <more params>)
2802   //   is a destroying operator delete.
2803   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2804       getNumParams() < 2)
2805     return false;
2806 
2807   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2808   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2809          RD->getIdentifier()->isStr("destroying_delete_t");
2810 }
2811 
2812 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2813   return getDeclLanguageLinkage(*this);
2814 }
2815 
2816 bool FunctionDecl::isExternC() const {
2817   return isDeclExternC(*this);
2818 }
2819 
2820 bool FunctionDecl::isInExternCContext() const {
2821   return getLexicalDeclContext()->isExternCContext();
2822 }
2823 
2824 bool FunctionDecl::isInExternCXXContext() const {
2825   return getLexicalDeclContext()->isExternCXXContext();
2826 }
2827 
2828 bool FunctionDecl::isGlobal() const {
2829   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2830     return Method->isStatic();
2831 
2832   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2833     return false;
2834 
2835   for (const DeclContext *DC = getDeclContext();
2836        DC->isNamespace();
2837        DC = DC->getParent()) {
2838     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2839       if (!Namespace->getDeclName())
2840         return false;
2841       break;
2842     }
2843   }
2844 
2845   return true;
2846 }
2847 
2848 bool FunctionDecl::isNoReturn() const {
2849   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2850       hasAttr<C11NoReturnAttr>())
2851     return true;
2852 
2853   if (auto *FnTy = getType()->getAs<FunctionType>())
2854     return FnTy->getNoReturnAttr();
2855 
2856   return false;
2857 }
2858 
2859 void
2860 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2861   redeclarable_base::setPreviousDecl(PrevDecl);
2862 
2863   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2864     FunctionTemplateDecl *PrevFunTmpl
2865       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2866     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2867     FunTmpl->setPreviousDecl(PrevFunTmpl);
2868   }
2869 
2870   if (PrevDecl && PrevDecl->IsInline)
2871     IsInline = true;
2872 }
2873 
2874 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2875 
2876 /// Returns a value indicating whether this function
2877 /// corresponds to a builtin function.
2878 ///
2879 /// The function corresponds to a built-in function if it is
2880 /// declared at translation scope or within an extern "C" block and
2881 /// its name matches with the name of a builtin. The returned value
2882 /// will be 0 for functions that do not correspond to a builtin, a
2883 /// value of type \c Builtin::ID if in the target-independent range
2884 /// \c [1,Builtin::First), or a target-specific builtin value.
2885 unsigned FunctionDecl::getBuiltinID() const {
2886   if (!getIdentifier())
2887     return 0;
2888 
2889   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2890   if (!BuiltinID)
2891     return 0;
2892 
2893   ASTContext &Context = getASTContext();
2894   if (Context.getLangOpts().CPlusPlus) {
2895     const auto *LinkageDecl =
2896         dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
2897     // In C++, the first declaration of a builtin is always inside an implicit
2898     // extern "C".
2899     // FIXME: A recognised library function may not be directly in an extern "C"
2900     // declaration, for instance "extern "C" { namespace std { decl } }".
2901     if (!LinkageDecl) {
2902       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2903           Context.getTargetInfo().getCXXABI().isMicrosoft())
2904         return Builtin::BI__GetExceptionInfo;
2905       return 0;
2906     }
2907     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2908       return 0;
2909   }
2910 
2911   // If the function is marked "overloadable", it has a different mangled name
2912   // and is not the C library function.
2913   if (hasAttr<OverloadableAttr>())
2914     return 0;
2915 
2916   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2917     return BuiltinID;
2918 
2919   // This function has the name of a known C library
2920   // function. Determine whether it actually refers to the C library
2921   // function or whether it just has the same name.
2922 
2923   // If this is a static function, it's not a builtin.
2924   if (getStorageClass() == SC_Static)
2925     return 0;
2926 
2927   // OpenCL v1.2 s6.9.f - The library functions defined in
2928   // the C99 standard headers are not available.
2929   if (Context.getLangOpts().OpenCL &&
2930       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2931     return 0;
2932 
2933   // CUDA does not have device-side standard library. printf and malloc are the
2934   // only special cases that are supported by device-side runtime.
2935   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
2936       !hasAttr<CUDAHostAttr>() &&
2937       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
2938     return 0;
2939 
2940   return BuiltinID;
2941 }
2942 
2943 /// getNumParams - Return the number of parameters this function must have
2944 /// based on its FunctionType.  This is the length of the ParamInfo array
2945 /// after it has been created.
2946 unsigned FunctionDecl::getNumParams() const {
2947   const auto *FPT = getType()->getAs<FunctionProtoType>();
2948   return FPT ? FPT->getNumParams() : 0;
2949 }
2950 
2951 void FunctionDecl::setParams(ASTContext &C,
2952                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2953   assert(!ParamInfo && "Already has param info!");
2954   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2955 
2956   // Zero params -> null pointer.
2957   if (!NewParamInfo.empty()) {
2958     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2959     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2960   }
2961 }
2962 
2963 /// getMinRequiredArguments - Returns the minimum number of arguments
2964 /// needed to call this function. This may be fewer than the number of
2965 /// function parameters, if some of the parameters have default
2966 /// arguments (in C++) or are parameter packs (C++11).
2967 unsigned FunctionDecl::getMinRequiredArguments() const {
2968   if (!getASTContext().getLangOpts().CPlusPlus)
2969     return getNumParams();
2970 
2971   unsigned NumRequiredArgs = 0;
2972   for (auto *Param : parameters())
2973     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2974       ++NumRequiredArgs;
2975   return NumRequiredArgs;
2976 }
2977 
2978 /// The combination of the extern and inline keywords under MSVC forces
2979 /// the function to be required.
2980 ///
2981 /// Note: This function assumes that we will only get called when isInlined()
2982 /// would return true for this FunctionDecl.
2983 bool FunctionDecl::isMSExternInline() const {
2984   assert(isInlined() && "expected to get called on an inlined function!");
2985 
2986   const ASTContext &Context = getASTContext();
2987   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2988       !hasAttr<DLLExportAttr>())
2989     return false;
2990 
2991   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2992        FD = FD->getPreviousDecl())
2993     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2994       return true;
2995 
2996   return false;
2997 }
2998 
2999 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3000   if (Redecl->getStorageClass() != SC_Extern)
3001     return false;
3002 
3003   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3004        FD = FD->getPreviousDecl())
3005     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3006       return false;
3007 
3008   return true;
3009 }
3010 
3011 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3012   // Only consider file-scope declarations in this test.
3013   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3014     return false;
3015 
3016   // Only consider explicit declarations; the presence of a builtin for a
3017   // libcall shouldn't affect whether a definition is externally visible.
3018   if (Redecl->isImplicit())
3019     return false;
3020 
3021   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3022     return true; // Not an inline definition
3023 
3024   return false;
3025 }
3026 
3027 /// For a function declaration in C or C++, determine whether this
3028 /// declaration causes the definition to be externally visible.
3029 ///
3030 /// For instance, this determines if adding the current declaration to the set
3031 /// of redeclarations of the given functions causes
3032 /// isInlineDefinitionExternallyVisible to change from false to true.
3033 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3034   assert(!doesThisDeclarationHaveABody() &&
3035          "Must have a declaration without a body.");
3036 
3037   ASTContext &Context = getASTContext();
3038 
3039   if (Context.getLangOpts().MSVCCompat) {
3040     const FunctionDecl *Definition;
3041     if (hasBody(Definition) && Definition->isInlined() &&
3042         redeclForcesDefMSVC(this))
3043       return true;
3044   }
3045 
3046   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3047     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3048     // an externally visible definition.
3049     //
3050     // FIXME: What happens if gnu_inline gets added on after the first
3051     // declaration?
3052     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3053       return false;
3054 
3055     const FunctionDecl *Prev = this;
3056     bool FoundBody = false;
3057     while ((Prev = Prev->getPreviousDecl())) {
3058       FoundBody |= Prev->Body.isValid();
3059 
3060       if (Prev->Body) {
3061         // If it's not the case that both 'inline' and 'extern' are
3062         // specified on the definition, then it is always externally visible.
3063         if (!Prev->isInlineSpecified() ||
3064             Prev->getStorageClass() != SC_Extern)
3065           return false;
3066       } else if (Prev->isInlineSpecified() &&
3067                  Prev->getStorageClass() != SC_Extern) {
3068         return false;
3069       }
3070     }
3071     return FoundBody;
3072   }
3073 
3074   if (Context.getLangOpts().CPlusPlus)
3075     return false;
3076 
3077   // C99 6.7.4p6:
3078   //   [...] If all of the file scope declarations for a function in a
3079   //   translation unit include the inline function specifier without extern,
3080   //   then the definition in that translation unit is an inline definition.
3081   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3082     return false;
3083   const FunctionDecl *Prev = this;
3084   bool FoundBody = false;
3085   while ((Prev = Prev->getPreviousDecl())) {
3086     FoundBody |= Prev->Body.isValid();
3087     if (RedeclForcesDefC99(Prev))
3088       return false;
3089   }
3090   return FoundBody;
3091 }
3092 
3093 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3094   const TypeSourceInfo *TSI = getTypeSourceInfo();
3095   if (!TSI)
3096     return SourceRange();
3097   FunctionTypeLoc FTL =
3098       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
3099   if (!FTL)
3100     return SourceRange();
3101 
3102   // Skip self-referential return types.
3103   const SourceManager &SM = getASTContext().getSourceManager();
3104   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3105   SourceLocation Boundary = getNameInfo().getLocStart();
3106   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3107       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3108     return SourceRange();
3109 
3110   return RTRange;
3111 }
3112 
3113 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3114   const TypeSourceInfo *TSI = getTypeSourceInfo();
3115   if (!TSI)
3116     return SourceRange();
3117   FunctionTypeLoc FTL =
3118     TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
3119   if (!FTL)
3120     return SourceRange();
3121 
3122   return FTL.getExceptionSpecRange();
3123 }
3124 
3125 const Attr *FunctionDecl::getUnusedResultAttr() const {
3126   QualType RetType = getReturnType();
3127   if (RetType->isRecordType()) {
3128     if (const auto *Ret =
3129             dyn_cast_or_null<RecordDecl>(RetType->getAsTagDecl())) {
3130       if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
3131         return R;
3132     }
3133   } else if (const auto *ET = RetType->getAs<EnumType>()) {
3134     if (const EnumDecl *ED = ET->getDecl()) {
3135       if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
3136         return R;
3137     }
3138   }
3139   return getAttr<WarnUnusedResultAttr>();
3140 }
3141 
3142 /// For an inline function definition in C, or for a gnu_inline function
3143 /// in C++, determine whether the definition will be externally visible.
3144 ///
3145 /// Inline function definitions are always available for inlining optimizations.
3146 /// However, depending on the language dialect, declaration specifiers, and
3147 /// attributes, the definition of an inline function may or may not be
3148 /// "externally" visible to other translation units in the program.
3149 ///
3150 /// In C99, inline definitions are not externally visible by default. However,
3151 /// if even one of the global-scope declarations is marked "extern inline", the
3152 /// inline definition becomes externally visible (C99 6.7.4p6).
3153 ///
3154 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3155 /// definition, we use the GNU semantics for inline, which are nearly the
3156 /// opposite of C99 semantics. In particular, "inline" by itself will create
3157 /// an externally visible symbol, but "extern inline" will not create an
3158 /// externally visible symbol.
3159 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3160   assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3161          "Must be a function definition");
3162   assert(isInlined() && "Function must be inline");
3163   ASTContext &Context = getASTContext();
3164 
3165   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3166     // Note: If you change the logic here, please change
3167     // doesDeclarationForceExternallyVisibleDefinition as well.
3168     //
3169     // If it's not the case that both 'inline' and 'extern' are
3170     // specified on the definition, then this inline definition is
3171     // externally visible.
3172     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3173       return true;
3174 
3175     // If any declaration is 'inline' but not 'extern', then this definition
3176     // is externally visible.
3177     for (auto Redecl : redecls()) {
3178       if (Redecl->isInlineSpecified() &&
3179           Redecl->getStorageClass() != SC_Extern)
3180         return true;
3181     }
3182 
3183     return false;
3184   }
3185 
3186   // The rest of this function is C-only.
3187   assert(!Context.getLangOpts().CPlusPlus &&
3188          "should not use C inline rules in C++");
3189 
3190   // C99 6.7.4p6:
3191   //   [...] If all of the file scope declarations for a function in a
3192   //   translation unit include the inline function specifier without extern,
3193   //   then the definition in that translation unit is an inline definition.
3194   for (auto Redecl : redecls()) {
3195     if (RedeclForcesDefC99(Redecl))
3196       return true;
3197   }
3198 
3199   // C99 6.7.4p6:
3200   //   An inline definition does not provide an external definition for the
3201   //   function, and does not forbid an external definition in another
3202   //   translation unit.
3203   return false;
3204 }
3205 
3206 /// getOverloadedOperator - Which C++ overloaded operator this
3207 /// function represents, if any.
3208 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3209   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3210     return getDeclName().getCXXOverloadedOperator();
3211   else
3212     return OO_None;
3213 }
3214 
3215 /// getLiteralIdentifier - The literal suffix identifier this function
3216 /// represents, if any.
3217 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3218   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3219     return getDeclName().getCXXLiteralIdentifier();
3220   else
3221     return nullptr;
3222 }
3223 
3224 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3225   if (TemplateOrSpecialization.isNull())
3226     return TK_NonTemplate;
3227   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3228     return TK_FunctionTemplate;
3229   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3230     return TK_MemberSpecialization;
3231   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3232     return TK_FunctionTemplateSpecialization;
3233   if (TemplateOrSpecialization.is
3234                                <DependentFunctionTemplateSpecializationInfo*>())
3235     return TK_DependentFunctionTemplateSpecialization;
3236 
3237   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3238 }
3239 
3240 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3241   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3242     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3243 
3244   return nullptr;
3245 }
3246 
3247 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3248   return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3249 }
3250 
3251 void
3252 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3253                                                FunctionDecl *FD,
3254                                                TemplateSpecializationKind TSK) {
3255   assert(TemplateOrSpecialization.isNull() &&
3256          "Member function is already a specialization");
3257   MemberSpecializationInfo *Info
3258     = new (C) MemberSpecializationInfo(FD, TSK);
3259   TemplateOrSpecialization = Info;
3260 }
3261 
3262 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3263   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3264 }
3265 
3266 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3267   TemplateOrSpecialization = Template;
3268 }
3269 
3270 bool FunctionDecl::isImplicitlyInstantiable() const {
3271   // If the function is invalid, it can't be implicitly instantiated.
3272   if (isInvalidDecl())
3273     return false;
3274 
3275   switch (getTemplateSpecializationKind()) {
3276   case TSK_Undeclared:
3277   case TSK_ExplicitInstantiationDefinition:
3278     return false;
3279 
3280   case TSK_ImplicitInstantiation:
3281     return true;
3282 
3283   // It is possible to instantiate TSK_ExplicitSpecialization kind
3284   // if the FunctionDecl has a class scope specialization pattern.
3285   case TSK_ExplicitSpecialization:
3286     return getClassScopeSpecializationPattern() != nullptr;
3287 
3288   case TSK_ExplicitInstantiationDeclaration:
3289     // Handled below.
3290     break;
3291   }
3292 
3293   // Find the actual template from which we will instantiate.
3294   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3295   bool HasPattern = false;
3296   if (PatternDecl)
3297     HasPattern = PatternDecl->hasBody(PatternDecl);
3298 
3299   // C++0x [temp.explicit]p9:
3300   //   Except for inline functions, other explicit instantiation declarations
3301   //   have the effect of suppressing the implicit instantiation of the entity
3302   //   to which they refer.
3303   if (!HasPattern || !PatternDecl)
3304     return true;
3305 
3306   return PatternDecl->isInlined();
3307 }
3308 
3309 bool FunctionDecl::isTemplateInstantiation() const {
3310   switch (getTemplateSpecializationKind()) {
3311     case TSK_Undeclared:
3312     case TSK_ExplicitSpecialization:
3313       return false;
3314     case TSK_ImplicitInstantiation:
3315     case TSK_ExplicitInstantiationDeclaration:
3316     case TSK_ExplicitInstantiationDefinition:
3317       return true;
3318   }
3319   llvm_unreachable("All TSK values handled.");
3320 }
3321 
3322 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3323   // Handle class scope explicit specialization special case.
3324   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
3325     if (auto *Spec = getClassScopeSpecializationPattern())
3326       return getDefinitionOrSelf(Spec);
3327     return nullptr;
3328   }
3329 
3330   // If this is a generic lambda call operator specialization, its
3331   // instantiation pattern is always its primary template's pattern
3332   // even if its primary template was instantiated from another
3333   // member template (which happens with nested generic lambdas).
3334   // Since a lambda's call operator's body is transformed eagerly,
3335   // we don't have to go hunting for a prototype definition template
3336   // (i.e. instantiated-from-member-template) to use as an instantiation
3337   // pattern.
3338 
3339   if (isGenericLambdaCallOperatorSpecialization(
3340           dyn_cast<CXXMethodDecl>(this))) {
3341     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3342     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3343   }
3344 
3345   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3346     while (Primary->getInstantiatedFromMemberTemplate()) {
3347       // If we have hit a point where the user provided a specialization of
3348       // this template, we're done looking.
3349       if (Primary->isMemberSpecialization())
3350         break;
3351       Primary = Primary->getInstantiatedFromMemberTemplate();
3352     }
3353 
3354     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3355   }
3356 
3357   if (auto *MFD = getInstantiatedFromMemberFunction())
3358     return getDefinitionOrSelf(MFD);
3359 
3360   return nullptr;
3361 }
3362 
3363 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3364   if (FunctionTemplateSpecializationInfo *Info
3365         = TemplateOrSpecialization
3366             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3367     return Info->Template.getPointer();
3368   }
3369   return nullptr;
3370 }
3371 
3372 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3373     return getASTContext().getClassScopeSpecializationPattern(this);
3374 }
3375 
3376 FunctionTemplateSpecializationInfo *
3377 FunctionDecl::getTemplateSpecializationInfo() const {
3378   return TemplateOrSpecialization
3379       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3380 }
3381 
3382 const TemplateArgumentList *
3383 FunctionDecl::getTemplateSpecializationArgs() const {
3384   if (FunctionTemplateSpecializationInfo *Info
3385         = TemplateOrSpecialization
3386             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3387     return Info->TemplateArguments;
3388   }
3389   return nullptr;
3390 }
3391 
3392 const ASTTemplateArgumentListInfo *
3393 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3394   if (FunctionTemplateSpecializationInfo *Info
3395         = TemplateOrSpecialization
3396             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3397     return Info->TemplateArgumentsAsWritten;
3398   }
3399   return nullptr;
3400 }
3401 
3402 void
3403 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3404                                                 FunctionTemplateDecl *Template,
3405                                      const TemplateArgumentList *TemplateArgs,
3406                                                 void *InsertPos,
3407                                                 TemplateSpecializationKind TSK,
3408                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3409                                           SourceLocation PointOfInstantiation) {
3410   assert(TSK != TSK_Undeclared &&
3411          "Must specify the type of function template specialization");
3412   FunctionTemplateSpecializationInfo *Info
3413     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3414   if (!Info)
3415     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3416                                                       TemplateArgs,
3417                                                       TemplateArgsAsWritten,
3418                                                       PointOfInstantiation);
3419   TemplateOrSpecialization = Info;
3420   Template->addSpecialization(Info, InsertPos);
3421 }
3422 
3423 void
3424 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3425                                     const UnresolvedSetImpl &Templates,
3426                              const TemplateArgumentListInfo &TemplateArgs) {
3427   assert(TemplateOrSpecialization.isNull());
3428   DependentFunctionTemplateSpecializationInfo *Info =
3429       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3430                                                           TemplateArgs);
3431   TemplateOrSpecialization = Info;
3432 }
3433 
3434 DependentFunctionTemplateSpecializationInfo *
3435 FunctionDecl::getDependentSpecializationInfo() const {
3436   return TemplateOrSpecialization
3437       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3438 }
3439 
3440 DependentFunctionTemplateSpecializationInfo *
3441 DependentFunctionTemplateSpecializationInfo::Create(
3442     ASTContext &Context, const UnresolvedSetImpl &Ts,
3443     const TemplateArgumentListInfo &TArgs) {
3444   void *Buffer = Context.Allocate(
3445       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3446           TArgs.size(), Ts.size()));
3447   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3448 }
3449 
3450 DependentFunctionTemplateSpecializationInfo::
3451 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3452                                       const TemplateArgumentListInfo &TArgs)
3453   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3454   NumTemplates = Ts.size();
3455   NumArgs = TArgs.size();
3456 
3457   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3458   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3459     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3460 
3461   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3462   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3463     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3464 }
3465 
3466 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3467   // For a function template specialization, query the specialization
3468   // information object.
3469   FunctionTemplateSpecializationInfo *FTSInfo
3470     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3471   if (FTSInfo)
3472     return FTSInfo->getTemplateSpecializationKind();
3473 
3474   MemberSpecializationInfo *MSInfo
3475     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3476   if (MSInfo)
3477     return MSInfo->getTemplateSpecializationKind();
3478 
3479   return TSK_Undeclared;
3480 }
3481 
3482 void
3483 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3484                                           SourceLocation PointOfInstantiation) {
3485   if (FunctionTemplateSpecializationInfo *FTSInfo
3486         = TemplateOrSpecialization.dyn_cast<
3487                                     FunctionTemplateSpecializationInfo*>()) {
3488     FTSInfo->setTemplateSpecializationKind(TSK);
3489     if (TSK != TSK_ExplicitSpecialization &&
3490         PointOfInstantiation.isValid() &&
3491         FTSInfo->getPointOfInstantiation().isInvalid()) {
3492       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3493       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3494         L->InstantiationRequested(this);
3495     }
3496   } else if (MemberSpecializationInfo *MSInfo
3497              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3498     MSInfo->setTemplateSpecializationKind(TSK);
3499     if (TSK != TSK_ExplicitSpecialization &&
3500         PointOfInstantiation.isValid() &&
3501         MSInfo->getPointOfInstantiation().isInvalid()) {
3502       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3503       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3504         L->InstantiationRequested(this);
3505     }
3506   } else
3507     llvm_unreachable("Function cannot have a template specialization kind");
3508 }
3509 
3510 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3511   if (FunctionTemplateSpecializationInfo *FTSInfo
3512         = TemplateOrSpecialization.dyn_cast<
3513                                         FunctionTemplateSpecializationInfo*>())
3514     return FTSInfo->getPointOfInstantiation();
3515   else if (MemberSpecializationInfo *MSInfo
3516              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3517     return MSInfo->getPointOfInstantiation();
3518 
3519   return SourceLocation();
3520 }
3521 
3522 bool FunctionDecl::isOutOfLine() const {
3523   if (Decl::isOutOfLine())
3524     return true;
3525 
3526   // If this function was instantiated from a member function of a
3527   // class template, check whether that member function was defined out-of-line.
3528   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3529     const FunctionDecl *Definition;
3530     if (FD->hasBody(Definition))
3531       return Definition->isOutOfLine();
3532   }
3533 
3534   // If this function was instantiated from a function template,
3535   // check whether that function template was defined out-of-line.
3536   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3537     const FunctionDecl *Definition;
3538     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3539       return Definition->isOutOfLine();
3540   }
3541 
3542   return false;
3543 }
3544 
3545 SourceRange FunctionDecl::getSourceRange() const {
3546   return SourceRange(getOuterLocStart(), EndRangeLoc);
3547 }
3548 
3549 unsigned FunctionDecl::getMemoryFunctionKind() const {
3550   IdentifierInfo *FnInfo = getIdentifier();
3551 
3552   if (!FnInfo)
3553     return 0;
3554 
3555   // Builtin handling.
3556   switch (getBuiltinID()) {
3557   case Builtin::BI__builtin_memset:
3558   case Builtin::BI__builtin___memset_chk:
3559   case Builtin::BImemset:
3560     return Builtin::BImemset;
3561 
3562   case Builtin::BI__builtin_memcpy:
3563   case Builtin::BI__builtin___memcpy_chk:
3564   case Builtin::BImemcpy:
3565     return Builtin::BImemcpy;
3566 
3567   case Builtin::BI__builtin_memmove:
3568   case Builtin::BI__builtin___memmove_chk:
3569   case Builtin::BImemmove:
3570     return Builtin::BImemmove;
3571 
3572   case Builtin::BIstrlcpy:
3573   case Builtin::BI__builtin___strlcpy_chk:
3574     return Builtin::BIstrlcpy;
3575 
3576   case Builtin::BIstrlcat:
3577   case Builtin::BI__builtin___strlcat_chk:
3578     return Builtin::BIstrlcat;
3579 
3580   case Builtin::BI__builtin_memcmp:
3581   case Builtin::BImemcmp:
3582     return Builtin::BImemcmp;
3583 
3584   case Builtin::BI__builtin_strncpy:
3585   case Builtin::BI__builtin___strncpy_chk:
3586   case Builtin::BIstrncpy:
3587     return Builtin::BIstrncpy;
3588 
3589   case Builtin::BI__builtin_strncmp:
3590   case Builtin::BIstrncmp:
3591     return Builtin::BIstrncmp;
3592 
3593   case Builtin::BI__builtin_strncasecmp:
3594   case Builtin::BIstrncasecmp:
3595     return Builtin::BIstrncasecmp;
3596 
3597   case Builtin::BI__builtin_strncat:
3598   case Builtin::BI__builtin___strncat_chk:
3599   case Builtin::BIstrncat:
3600     return Builtin::BIstrncat;
3601 
3602   case Builtin::BI__builtin_strndup:
3603   case Builtin::BIstrndup:
3604     return Builtin::BIstrndup;
3605 
3606   case Builtin::BI__builtin_strlen:
3607   case Builtin::BIstrlen:
3608     return Builtin::BIstrlen;
3609 
3610   case Builtin::BI__builtin_bzero:
3611   case Builtin::BIbzero:
3612     return Builtin::BIbzero;
3613 
3614   default:
3615     if (isExternC()) {
3616       if (FnInfo->isStr("memset"))
3617         return Builtin::BImemset;
3618       else if (FnInfo->isStr("memcpy"))
3619         return Builtin::BImemcpy;
3620       else if (FnInfo->isStr("memmove"))
3621         return Builtin::BImemmove;
3622       else if (FnInfo->isStr("memcmp"))
3623         return Builtin::BImemcmp;
3624       else if (FnInfo->isStr("strncpy"))
3625         return Builtin::BIstrncpy;
3626       else if (FnInfo->isStr("strncmp"))
3627         return Builtin::BIstrncmp;
3628       else if (FnInfo->isStr("strncasecmp"))
3629         return Builtin::BIstrncasecmp;
3630       else if (FnInfo->isStr("strncat"))
3631         return Builtin::BIstrncat;
3632       else if (FnInfo->isStr("strndup"))
3633         return Builtin::BIstrndup;
3634       else if (FnInfo->isStr("strlen"))
3635         return Builtin::BIstrlen;
3636       else if (FnInfo->isStr("bzero"))
3637         return Builtin::BIbzero;
3638     }
3639     break;
3640   }
3641   return 0;
3642 }
3643 
3644 unsigned FunctionDecl::getODRHash() {
3645   if (HasODRHash)
3646     return ODRHash;
3647 
3648   if (FunctionDecl *Definition = getDefinition()) {
3649     if (Definition != this) {
3650       HasODRHash = true;
3651       ODRHash = Definition->getODRHash();
3652       return ODRHash;
3653     }
3654   }
3655 
3656   if (auto *FT = getInstantiatedFromMemberFunction()) {
3657     HasODRHash = true;
3658     ODRHash = FT->getODRHash();
3659     return ODRHash;
3660   }
3661 
3662   class ODRHash Hash;
3663   Hash.AddFunctionDecl(this);
3664   HasODRHash = true;
3665   ODRHash = Hash.CalculateHash();
3666   return ODRHash;
3667 }
3668 
3669 //===----------------------------------------------------------------------===//
3670 // FieldDecl Implementation
3671 //===----------------------------------------------------------------------===//
3672 
3673 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3674                              SourceLocation StartLoc, SourceLocation IdLoc,
3675                              IdentifierInfo *Id, QualType T,
3676                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3677                              InClassInitStyle InitStyle) {
3678   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3679                                BW, Mutable, InitStyle);
3680 }
3681 
3682 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3683   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3684                                SourceLocation(), nullptr, QualType(), nullptr,
3685                                nullptr, false, ICIS_NoInit);
3686 }
3687 
3688 bool FieldDecl::isAnonymousStructOrUnion() const {
3689   if (!isImplicit() || getDeclName())
3690     return false;
3691 
3692   if (const auto *Record = getType()->getAs<RecordType>())
3693     return Record->getDecl()->isAnonymousStructOrUnion();
3694 
3695   return false;
3696 }
3697 
3698 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3699   assert(isBitField() && "not a bitfield");
3700   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3701 }
3702 
3703 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
3704   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3705          getBitWidthValue(Ctx) == 0;
3706 }
3707 
3708 unsigned FieldDecl::getFieldIndex() const {
3709   const FieldDecl *Canonical = getCanonicalDecl();
3710   if (Canonical != this)
3711     return Canonical->getFieldIndex();
3712 
3713   if (CachedFieldIndex) return CachedFieldIndex - 1;
3714 
3715   unsigned Index = 0;
3716   const RecordDecl *RD = getParent()->getDefinition();
3717   assert(RD && "requested index for field of struct with no definition");
3718 
3719   for (auto *Field : RD->fields()) {
3720     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3721     ++Index;
3722   }
3723 
3724   assert(CachedFieldIndex && "failed to find field in parent");
3725   return CachedFieldIndex - 1;
3726 }
3727 
3728 SourceRange FieldDecl::getSourceRange() const {
3729   const Expr *FinalExpr = getInClassInitializer();
3730   if (!FinalExpr)
3731     FinalExpr = getBitWidth();
3732   if (FinalExpr)
3733     return SourceRange(getInnerLocStart(), FinalExpr->getLocEnd());
3734   return DeclaratorDecl::getSourceRange();
3735 }
3736 
3737 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3738   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3739          "capturing type in non-lambda or captured record.");
3740   assert(InitStorage.getInt() == ISK_NoInit &&
3741          InitStorage.getPointer() == nullptr &&
3742          "bit width, initializer or captured type already set");
3743   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3744                                ISK_CapturedVLAType);
3745 }
3746 
3747 //===----------------------------------------------------------------------===//
3748 // TagDecl Implementation
3749 //===----------------------------------------------------------------------===//
3750 
3751 SourceLocation TagDecl::getOuterLocStart() const {
3752   return getTemplateOrInnerLocStart(this);
3753 }
3754 
3755 SourceRange TagDecl::getSourceRange() const {
3756   SourceLocation RBraceLoc = BraceRange.getEnd();
3757   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3758   return SourceRange(getOuterLocStart(), E);
3759 }
3760 
3761 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3762 
3763 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3764   TypedefNameDeclOrQualifier = TDD;
3765   if (const Type *T = getTypeForDecl()) {
3766     (void)T;
3767     assert(T->isLinkageValid());
3768   }
3769   assert(isLinkageValid());
3770 }
3771 
3772 void TagDecl::startDefinition() {
3773   IsBeingDefined = true;
3774 
3775   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3776     struct CXXRecordDecl::DefinitionData *Data =
3777       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3778     for (auto I : redecls())
3779       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3780   }
3781 }
3782 
3783 void TagDecl::completeDefinition() {
3784   assert((!isa<CXXRecordDecl>(this) ||
3785           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3786          "definition completed but not started");
3787 
3788   IsCompleteDefinition = true;
3789   IsBeingDefined = false;
3790 
3791   if (ASTMutationListener *L = getASTMutationListener())
3792     L->CompletedTagDefinition(this);
3793 }
3794 
3795 TagDecl *TagDecl::getDefinition() const {
3796   if (isCompleteDefinition())
3797     return const_cast<TagDecl *>(this);
3798 
3799   // If it's possible for us to have an out-of-date definition, check now.
3800   if (MayHaveOutOfDateDef) {
3801     if (IdentifierInfo *II = getIdentifier()) {
3802       if (II->isOutOfDate()) {
3803         updateOutOfDate(*II);
3804       }
3805     }
3806   }
3807 
3808   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3809     return CXXRD->getDefinition();
3810 
3811   for (auto R : redecls())
3812     if (R->isCompleteDefinition())
3813       return R;
3814 
3815   return nullptr;
3816 }
3817 
3818 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3819   if (QualifierLoc) {
3820     // Make sure the extended qualifier info is allocated.
3821     if (!hasExtInfo())
3822       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3823     // Set qualifier info.
3824     getExtInfo()->QualifierLoc = QualifierLoc;
3825   } else {
3826     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3827     if (hasExtInfo()) {
3828       if (getExtInfo()->NumTemplParamLists == 0) {
3829         getASTContext().Deallocate(getExtInfo());
3830         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3831       }
3832       else
3833         getExtInfo()->QualifierLoc = QualifierLoc;
3834     }
3835   }
3836 }
3837 
3838 void TagDecl::setTemplateParameterListsInfo(
3839     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3840   assert(!TPLists.empty());
3841   // Make sure the extended decl info is allocated.
3842   if (!hasExtInfo())
3843     // Allocate external info struct.
3844     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3845   // Set the template parameter lists info.
3846   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3847 }
3848 
3849 //===----------------------------------------------------------------------===//
3850 // EnumDecl Implementation
3851 //===----------------------------------------------------------------------===//
3852 
3853 void EnumDecl::anchor() {}
3854 
3855 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3856                            SourceLocation StartLoc, SourceLocation IdLoc,
3857                            IdentifierInfo *Id,
3858                            EnumDecl *PrevDecl, bool IsScoped,
3859                            bool IsScopedUsingClassTag, bool IsFixed) {
3860   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3861                                     IsScoped, IsScopedUsingClassTag, IsFixed);
3862   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3863   C.getTypeDeclType(Enum, PrevDecl);
3864   return Enum;
3865 }
3866 
3867 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3868   EnumDecl *Enum =
3869       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3870                            nullptr, nullptr, false, false, false);
3871   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3872   return Enum;
3873 }
3874 
3875 SourceRange EnumDecl::getIntegerTypeRange() const {
3876   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3877     return TI->getTypeLoc().getSourceRange();
3878   return SourceRange();
3879 }
3880 
3881 void EnumDecl::completeDefinition(QualType NewType,
3882                                   QualType NewPromotionType,
3883                                   unsigned NumPositiveBits,
3884                                   unsigned NumNegativeBits) {
3885   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3886   if (!IntegerType)
3887     IntegerType = NewType.getTypePtr();
3888   PromotionType = NewPromotionType;
3889   setNumPositiveBits(NumPositiveBits);
3890   setNumNegativeBits(NumNegativeBits);
3891   TagDecl::completeDefinition();
3892 }
3893 
3894 bool EnumDecl::isClosed() const {
3895   if (const auto *A = getAttr<EnumExtensibilityAttr>())
3896     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
3897   return true;
3898 }
3899 
3900 bool EnumDecl::isClosedFlag() const {
3901   return isClosed() && hasAttr<FlagEnumAttr>();
3902 }
3903 
3904 bool EnumDecl::isClosedNonFlag() const {
3905   return isClosed() && !hasAttr<FlagEnumAttr>();
3906 }
3907 
3908 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3909   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3910     return MSI->getTemplateSpecializationKind();
3911 
3912   return TSK_Undeclared;
3913 }
3914 
3915 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3916                                          SourceLocation PointOfInstantiation) {
3917   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3918   assert(MSI && "Not an instantiated member enumeration?");
3919   MSI->setTemplateSpecializationKind(TSK);
3920   if (TSK != TSK_ExplicitSpecialization &&
3921       PointOfInstantiation.isValid() &&
3922       MSI->getPointOfInstantiation().isInvalid())
3923     MSI->setPointOfInstantiation(PointOfInstantiation);
3924 }
3925 
3926 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
3927   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
3928     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
3929       EnumDecl *ED = getInstantiatedFromMemberEnum();
3930       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
3931         ED = NewED;
3932       return getDefinitionOrSelf(ED);
3933     }
3934   }
3935 
3936   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
3937          "couldn't find pattern for enum instantiation");
3938   return nullptr;
3939 }
3940 
3941 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3942   if (SpecializationInfo)
3943     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3944 
3945   return nullptr;
3946 }
3947 
3948 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3949                                             TemplateSpecializationKind TSK) {
3950   assert(!SpecializationInfo && "Member enum is already a specialization");
3951   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3952 }
3953 
3954 //===----------------------------------------------------------------------===//
3955 // RecordDecl Implementation
3956 //===----------------------------------------------------------------------===//
3957 
3958 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3959                        DeclContext *DC, SourceLocation StartLoc,
3960                        SourceLocation IdLoc, IdentifierInfo *Id,
3961                        RecordDecl *PrevDecl)
3962     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc),
3963       HasFlexibleArrayMember(false), AnonymousStructOrUnion(false),
3964       HasObjectMember(false), HasVolatileMember(false),
3965       LoadedFieldsFromExternalStorage(false),
3966       NonTrivialToPrimitiveDefaultInitialize(false),
3967       NonTrivialToPrimitiveCopy(false), NonTrivialToPrimitiveDestroy(false),
3968       ParamDestroyedInCallee(false), ArgPassingRestrictions(APK_CanPassInRegs) {
3969   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3970 }
3971 
3972 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3973                                SourceLocation StartLoc, SourceLocation IdLoc,
3974                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3975   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3976                                          StartLoc, IdLoc, Id, PrevDecl);
3977   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3978 
3979   C.getTypeDeclType(R, PrevDecl);
3980   return R;
3981 }
3982 
3983 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3984   RecordDecl *R =
3985       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3986                              SourceLocation(), nullptr, nullptr);
3987   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3988   return R;
3989 }
3990 
3991 bool RecordDecl::isInjectedClassName() const {
3992   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3993     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3994 }
3995 
3996 bool RecordDecl::isLambda() const {
3997   if (auto RD = dyn_cast<CXXRecordDecl>(this))
3998     return RD->isLambda();
3999   return false;
4000 }
4001 
4002 bool RecordDecl::isCapturedRecord() const {
4003   return hasAttr<CapturedRecordAttr>();
4004 }
4005 
4006 void RecordDecl::setCapturedRecord() {
4007   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4008 }
4009 
4010 RecordDecl::field_iterator RecordDecl::field_begin() const {
4011   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
4012     LoadFieldsFromExternalStorage();
4013 
4014   return field_iterator(decl_iterator(FirstDecl));
4015 }
4016 
4017 /// completeDefinition - Notes that the definition of this type is now
4018 /// complete.
4019 void RecordDecl::completeDefinition() {
4020   assert(!isCompleteDefinition() && "Cannot redefine record!");
4021   TagDecl::completeDefinition();
4022 }
4023 
4024 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4025 /// This which can be turned on with an attribute, pragma, or the
4026 /// -mms-bitfields command-line option.
4027 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4028   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4029 }
4030 
4031 void RecordDecl::LoadFieldsFromExternalStorage() const {
4032   ExternalASTSource *Source = getASTContext().getExternalSource();
4033   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4034 
4035   // Notify that we have a RecordDecl doing some initialization.
4036   ExternalASTSource::Deserializing TheFields(Source);
4037 
4038   SmallVector<Decl*, 64> Decls;
4039   LoadedFieldsFromExternalStorage = true;
4040   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4041     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4042   }, Decls);
4043 
4044 #ifndef NDEBUG
4045   // Check that all decls we got were FieldDecls.
4046   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4047     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4048 #endif
4049 
4050   if (Decls.empty())
4051     return;
4052 
4053   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4054                                                  /*FieldsAlreadyLoaded=*/false);
4055 }
4056 
4057 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4058   ASTContext &Context = getASTContext();
4059   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4060       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4061   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4062     return false;
4063   const auto &Blacklist = Context.getSanitizerBlacklist();
4064   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4065   // We may be able to relax some of these requirements.
4066   int ReasonToReject = -1;
4067   if (!CXXRD || CXXRD->isExternCContext())
4068     ReasonToReject = 0;  // is not C++.
4069   else if (CXXRD->hasAttr<PackedAttr>())
4070     ReasonToReject = 1;  // is packed.
4071   else if (CXXRD->isUnion())
4072     ReasonToReject = 2;  // is a union.
4073   else if (CXXRD->isTriviallyCopyable())
4074     ReasonToReject = 3;  // is trivially copyable.
4075   else if (CXXRD->hasTrivialDestructor())
4076     ReasonToReject = 4;  // has trivial destructor.
4077   else if (CXXRD->isStandardLayout())
4078     ReasonToReject = 5;  // is standard layout.
4079   else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4080                                            "field-padding"))
4081     ReasonToReject = 6;  // is in a blacklisted file.
4082   else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4083                                        getQualifiedNameAsString(),
4084                                        "field-padding"))
4085     ReasonToReject = 7;  // is blacklisted.
4086 
4087   if (EmitRemark) {
4088     if (ReasonToReject >= 0)
4089       Context.getDiagnostics().Report(
4090           getLocation(),
4091           diag::remark_sanitize_address_insert_extra_padding_rejected)
4092           << getQualifiedNameAsString() << ReasonToReject;
4093     else
4094       Context.getDiagnostics().Report(
4095           getLocation(),
4096           diag::remark_sanitize_address_insert_extra_padding_accepted)
4097           << getQualifiedNameAsString();
4098   }
4099   return ReasonToReject < 0;
4100 }
4101 
4102 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4103   for (const auto *I : fields()) {
4104     if (I->getIdentifier())
4105       return I;
4106 
4107     if (const auto *RT = I->getType()->getAs<RecordType>())
4108       if (const FieldDecl *NamedDataMember =
4109               RT->getDecl()->findFirstNamedDataMember())
4110         return NamedDataMember;
4111   }
4112 
4113   // We didn't find a named data member.
4114   return nullptr;
4115 }
4116 
4117 //===----------------------------------------------------------------------===//
4118 // BlockDecl Implementation
4119 //===----------------------------------------------------------------------===//
4120 
4121 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4122   assert(!ParamInfo && "Already has param info!");
4123 
4124   // Zero params -> null pointer.
4125   if (!NewParamInfo.empty()) {
4126     NumParams = NewParamInfo.size();
4127     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4128     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4129   }
4130 }
4131 
4132 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4133                             bool CapturesCXXThis) {
4134   this->CapturesCXXThis = CapturesCXXThis;
4135   this->NumCaptures = Captures.size();
4136 
4137   if (Captures.empty()) {
4138     this->Captures = nullptr;
4139     return;
4140   }
4141 
4142   this->Captures = Captures.copy(Context).data();
4143 }
4144 
4145 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4146   for (const auto &I : captures())
4147     // Only auto vars can be captured, so no redeclaration worries.
4148     if (I.getVariable() == variable)
4149       return true;
4150 
4151   return false;
4152 }
4153 
4154 SourceRange BlockDecl::getSourceRange() const {
4155   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
4156 }
4157 
4158 //===----------------------------------------------------------------------===//
4159 // Other Decl Allocation/Deallocation Method Implementations
4160 //===----------------------------------------------------------------------===//
4161 
4162 void TranslationUnitDecl::anchor() {}
4163 
4164 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4165   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4166 }
4167 
4168 void PragmaCommentDecl::anchor() {}
4169 
4170 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4171                                              TranslationUnitDecl *DC,
4172                                              SourceLocation CommentLoc,
4173                                              PragmaMSCommentKind CommentKind,
4174                                              StringRef Arg) {
4175   PragmaCommentDecl *PCD =
4176       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4177           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4178   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4179   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4180   return PCD;
4181 }
4182 
4183 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4184                                                          unsigned ID,
4185                                                          unsigned ArgSize) {
4186   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4187       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4188 }
4189 
4190 void PragmaDetectMismatchDecl::anchor() {}
4191 
4192 PragmaDetectMismatchDecl *
4193 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4194                                  SourceLocation Loc, StringRef Name,
4195                                  StringRef Value) {
4196   size_t ValueStart = Name.size() + 1;
4197   PragmaDetectMismatchDecl *PDMD =
4198       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4199           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4200   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4201   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4202   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4203          Value.size());
4204   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4205   return PDMD;
4206 }
4207 
4208 PragmaDetectMismatchDecl *
4209 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4210                                              unsigned NameValueSize) {
4211   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4212       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4213 }
4214 
4215 void ExternCContextDecl::anchor() {}
4216 
4217 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4218                                                TranslationUnitDecl *DC) {
4219   return new (C, DC) ExternCContextDecl(DC);
4220 }
4221 
4222 void LabelDecl::anchor() {}
4223 
4224 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4225                              SourceLocation IdentL, IdentifierInfo *II) {
4226   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4227 }
4228 
4229 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4230                              SourceLocation IdentL, IdentifierInfo *II,
4231                              SourceLocation GnuLabelL) {
4232   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4233   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4234 }
4235 
4236 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4237   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4238                                SourceLocation());
4239 }
4240 
4241 void LabelDecl::setMSAsmLabel(StringRef Name) {
4242   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4243   memcpy(Buffer, Name.data(), Name.size());
4244   Buffer[Name.size()] = '\0';
4245   MSAsmName = Buffer;
4246 }
4247 
4248 void ValueDecl::anchor() {}
4249 
4250 bool ValueDecl::isWeak() const {
4251   for (const auto *I : attrs())
4252     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4253       return true;
4254 
4255   return isWeakImported();
4256 }
4257 
4258 void ImplicitParamDecl::anchor() {}
4259 
4260 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4261                                              SourceLocation IdLoc,
4262                                              IdentifierInfo *Id, QualType Type,
4263                                              ImplicitParamKind ParamKind) {
4264   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4265 }
4266 
4267 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4268                                              ImplicitParamKind ParamKind) {
4269   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4270 }
4271 
4272 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4273                                                          unsigned ID) {
4274   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4275 }
4276 
4277 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4278                                    SourceLocation StartLoc,
4279                                    const DeclarationNameInfo &NameInfo,
4280                                    QualType T, TypeSourceInfo *TInfo,
4281                                    StorageClass SC,
4282                                    bool isInlineSpecified,
4283                                    bool hasWrittenPrototype,
4284                                    bool isConstexprSpecified) {
4285   FunctionDecl *New =
4286       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4287                                SC, isInlineSpecified, isConstexprSpecified);
4288   New->HasWrittenPrototype = hasWrittenPrototype;
4289   return New;
4290 }
4291 
4292 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4293   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4294                                   DeclarationNameInfo(), QualType(), nullptr,
4295                                   SC_None, false, false);
4296 }
4297 
4298 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4299   return new (C, DC) BlockDecl(DC, L);
4300 }
4301 
4302 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4303   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4304 }
4305 
4306 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4307     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4308       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4309 
4310 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4311                                    unsigned NumParams) {
4312   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4313       CapturedDecl(DC, NumParams);
4314 }
4315 
4316 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4317                                                unsigned NumParams) {
4318   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4319       CapturedDecl(nullptr, NumParams);
4320 }
4321 
4322 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4323 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4324 
4325 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4326 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4327 
4328 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4329                                            SourceLocation L,
4330                                            IdentifierInfo *Id, QualType T,
4331                                            Expr *E, const llvm::APSInt &V) {
4332   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4333 }
4334 
4335 EnumConstantDecl *
4336 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4337   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4338                                       QualType(), nullptr, llvm::APSInt());
4339 }
4340 
4341 void IndirectFieldDecl::anchor() {}
4342 
4343 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4344                                      SourceLocation L, DeclarationName N,
4345                                      QualType T,
4346                                      MutableArrayRef<NamedDecl *> CH)
4347     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4348       ChainingSize(CH.size()) {
4349   // In C++, indirect field declarations conflict with tag declarations in the
4350   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4351   if (C.getLangOpts().CPlusPlus)
4352     IdentifierNamespace |= IDNS_Tag;
4353 }
4354 
4355 IndirectFieldDecl *
4356 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4357                           IdentifierInfo *Id, QualType T,
4358                           llvm::MutableArrayRef<NamedDecl *> CH) {
4359   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4360 }
4361 
4362 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4363                                                          unsigned ID) {
4364   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4365                                        DeclarationName(), QualType(), None);
4366 }
4367 
4368 SourceRange EnumConstantDecl::getSourceRange() const {
4369   SourceLocation End = getLocation();
4370   if (Init)
4371     End = Init->getLocEnd();
4372   return SourceRange(getLocation(), End);
4373 }
4374 
4375 void TypeDecl::anchor() {}
4376 
4377 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4378                                  SourceLocation StartLoc, SourceLocation IdLoc,
4379                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4380   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4381 }
4382 
4383 void TypedefNameDecl::anchor() {}
4384 
4385 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4386   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4387     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4388     auto *ThisTypedef = this;
4389     if (AnyRedecl && OwningTypedef) {
4390       OwningTypedef = OwningTypedef->getCanonicalDecl();
4391       ThisTypedef = ThisTypedef->getCanonicalDecl();
4392     }
4393     if (OwningTypedef == ThisTypedef)
4394       return TT->getDecl();
4395   }
4396 
4397   return nullptr;
4398 }
4399 
4400 bool TypedefNameDecl::isTransparentTagSlow() const {
4401   auto determineIsTransparent = [&]() {
4402     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4403       if (auto *TD = TT->getDecl()) {
4404         if (TD->getName() != getName())
4405           return false;
4406         SourceLocation TTLoc = getLocation();
4407         SourceLocation TDLoc = TD->getLocation();
4408         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4409           return false;
4410         SourceManager &SM = getASTContext().getSourceManager();
4411         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4412       }
4413     }
4414     return false;
4415   };
4416 
4417   bool isTransparent = determineIsTransparent();
4418   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4419   return isTransparent;
4420 }
4421 
4422 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4423   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4424                                  nullptr, nullptr);
4425 }
4426 
4427 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4428                                      SourceLocation StartLoc,
4429                                      SourceLocation IdLoc, IdentifierInfo *Id,
4430                                      TypeSourceInfo *TInfo) {
4431   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4432 }
4433 
4434 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4435   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4436                                    SourceLocation(), nullptr, nullptr);
4437 }
4438 
4439 SourceRange TypedefDecl::getSourceRange() const {
4440   SourceLocation RangeEnd = getLocation();
4441   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4442     if (typeIsPostfix(TInfo->getType()))
4443       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4444   }
4445   return SourceRange(getLocStart(), RangeEnd);
4446 }
4447 
4448 SourceRange TypeAliasDecl::getSourceRange() const {
4449   SourceLocation RangeEnd = getLocStart();
4450   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4451     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4452   return SourceRange(getLocStart(), RangeEnd);
4453 }
4454 
4455 void FileScopeAsmDecl::anchor() {}
4456 
4457 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4458                                            StringLiteral *Str,
4459                                            SourceLocation AsmLoc,
4460                                            SourceLocation RParenLoc) {
4461   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4462 }
4463 
4464 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4465                                                        unsigned ID) {
4466   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4467                                       SourceLocation());
4468 }
4469 
4470 void EmptyDecl::anchor() {}
4471 
4472 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4473   return new (C, DC) EmptyDecl(DC, L);
4474 }
4475 
4476 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4477   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4478 }
4479 
4480 //===----------------------------------------------------------------------===//
4481 // ImportDecl Implementation
4482 //===----------------------------------------------------------------------===//
4483 
4484 /// Retrieve the number of module identifiers needed to name the given
4485 /// module.
4486 static unsigned getNumModuleIdentifiers(Module *Mod) {
4487   unsigned Result = 1;
4488   while (Mod->Parent) {
4489     Mod = Mod->Parent;
4490     ++Result;
4491   }
4492   return Result;
4493 }
4494 
4495 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4496                        Module *Imported,
4497                        ArrayRef<SourceLocation> IdentifierLocs)
4498   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4499   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4500   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4501   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4502                           StoredLocs);
4503 }
4504 
4505 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4506                        Module *Imported, SourceLocation EndLoc)
4507   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4508   *getTrailingObjects<SourceLocation>() = EndLoc;
4509 }
4510 
4511 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4512                                SourceLocation StartLoc, Module *Imported,
4513                                ArrayRef<SourceLocation> IdentifierLocs) {
4514   return new (C, DC,
4515               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4516       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4517 }
4518 
4519 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4520                                        SourceLocation StartLoc,
4521                                        Module *Imported,
4522                                        SourceLocation EndLoc) {
4523   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4524       ImportDecl(DC, StartLoc, Imported, EndLoc);
4525   Import->setImplicit();
4526   return Import;
4527 }
4528 
4529 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4530                                            unsigned NumLocations) {
4531   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4532       ImportDecl(EmptyShell());
4533 }
4534 
4535 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4536   if (!ImportedAndComplete.getInt())
4537     return None;
4538 
4539   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4540   return llvm::makeArrayRef(StoredLocs,
4541                             getNumModuleIdentifiers(getImportedModule()));
4542 }
4543 
4544 SourceRange ImportDecl::getSourceRange() const {
4545   if (!ImportedAndComplete.getInt())
4546     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4547 
4548   return SourceRange(getLocation(), getIdentifierLocs().back());
4549 }
4550 
4551 //===----------------------------------------------------------------------===//
4552 // ExportDecl Implementation
4553 //===----------------------------------------------------------------------===//
4554 
4555 void ExportDecl::anchor() {}
4556 
4557 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4558                                SourceLocation ExportLoc) {
4559   return new (C, DC) ExportDecl(DC, ExportLoc);
4560 }
4561 
4562 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4563   return new (C, ID) ExportDecl(nullptr, SourceLocation());
4564 }
4565