xref: /llvm-project-15.0.7/clang/lib/AST/Decl.cpp (revision cf6a7c19)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/None.h"
58 #include "llvm/ADT/Optional.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringRef.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/ADT/Triple.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstring>
71 #include <memory>
72 #include <string>
73 #include <tuple>
74 #include <type_traits>
75 
76 using namespace clang;
77 
78 Decl *clang::getPrimaryMergedDecl(Decl *D) {
79   return D->getASTContext().getPrimaryMergedDecl(D);
80 }
81 
82 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
83   SourceLocation Loc = this->Loc;
84   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
85   if (Loc.isValid()) {
86     Loc.print(OS, Context.getSourceManager());
87     OS << ": ";
88   }
89   OS << Message;
90 
91   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
92     OS << " '";
93     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
94     OS << "'";
95   }
96 
97   OS << '\n';
98 }
99 
100 // Defined here so that it can be inlined into its direct callers.
101 bool Decl::isOutOfLine() const {
102   return !getLexicalDeclContext()->Equals(getDeclContext());
103 }
104 
105 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
106     : Decl(TranslationUnit, nullptr, SourceLocation()),
107       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
108 
109 //===----------------------------------------------------------------------===//
110 // NamedDecl Implementation
111 //===----------------------------------------------------------------------===//
112 
113 // Visibility rules aren't rigorously externally specified, but here
114 // are the basic principles behind what we implement:
115 //
116 // 1. An explicit visibility attribute is generally a direct expression
117 // of the user's intent and should be honored.  Only the innermost
118 // visibility attribute applies.  If no visibility attribute applies,
119 // global visibility settings are considered.
120 //
121 // 2. There is one caveat to the above: on or in a template pattern,
122 // an explicit visibility attribute is just a default rule, and
123 // visibility can be decreased by the visibility of template
124 // arguments.  But this, too, has an exception: an attribute on an
125 // explicit specialization or instantiation causes all the visibility
126 // restrictions of the template arguments to be ignored.
127 //
128 // 3. A variable that does not otherwise have explicit visibility can
129 // be restricted by the visibility of its type.
130 //
131 // 4. A visibility restriction is explicit if it comes from an
132 // attribute (or something like it), not a global visibility setting.
133 // When emitting a reference to an external symbol, visibility
134 // restrictions are ignored unless they are explicit.
135 //
136 // 5. When computing the visibility of a non-type, including a
137 // non-type member of a class, only non-type visibility restrictions
138 // are considered: the 'visibility' attribute, global value-visibility
139 // settings, and a few special cases like __private_extern.
140 //
141 // 6. When computing the visibility of a type, including a type member
142 // of a class, only type visibility restrictions are considered:
143 // the 'type_visibility' attribute and global type-visibility settings.
144 // However, a 'visibility' attribute counts as a 'type_visibility'
145 // attribute on any declaration that only has the former.
146 //
147 // The visibility of a "secondary" entity, like a template argument,
148 // is computed using the kind of that entity, not the kind of the
149 // primary entity for which we are computing visibility.  For example,
150 // the visibility of a specialization of either of these templates:
151 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
152 //   template <class T, bool (&compare)(T, X)> class matcher;
153 // is restricted according to the type visibility of the argument 'T',
154 // the type visibility of 'bool(&)(T,X)', and the value visibility of
155 // the argument function 'compare'.  That 'has_match' is a value
156 // and 'matcher' is a type only matters when looking for attributes
157 // and settings from the immediate context.
158 
159 /// Does this computation kind permit us to consider additional
160 /// visibility settings from attributes and the like?
161 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
162   return computation.IgnoreExplicitVisibility;
163 }
164 
165 /// Given an LVComputationKind, return one of the same type/value sort
166 /// that records that it already has explicit visibility.
167 static LVComputationKind
168 withExplicitVisibilityAlready(LVComputationKind Kind) {
169   Kind.IgnoreExplicitVisibility = true;
170   return Kind;
171 }
172 
173 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
174                                                   LVComputationKind kind) {
175   assert(!kind.IgnoreExplicitVisibility &&
176          "asking for explicit visibility when we shouldn't be");
177   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
178 }
179 
180 /// Is the given declaration a "type" or a "value" for the purposes of
181 /// visibility computation?
182 static bool usesTypeVisibility(const NamedDecl *D) {
183   return isa<TypeDecl>(D) ||
184          isa<ClassTemplateDecl>(D) ||
185          isa<ObjCInterfaceDecl>(D);
186 }
187 
188 /// Does the given declaration have member specialization information,
189 /// and if so, is it an explicit specialization?
190 template <class T> static typename
191 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
192 isExplicitMemberSpecialization(const T *D) {
193   if (const MemberSpecializationInfo *member =
194         D->getMemberSpecializationInfo()) {
195     return member->isExplicitSpecialization();
196   }
197   return false;
198 }
199 
200 /// For templates, this question is easier: a member template can't be
201 /// explicitly instantiated, so there's a single bit indicating whether
202 /// or not this is an explicit member specialization.
203 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
204   return D->isMemberSpecialization();
205 }
206 
207 /// Given a visibility attribute, return the explicit visibility
208 /// associated with it.
209 template <class T>
210 static Visibility getVisibilityFromAttr(const T *attr) {
211   switch (attr->getVisibility()) {
212   case T::Default:
213     return DefaultVisibility;
214   case T::Hidden:
215     return HiddenVisibility;
216   case T::Protected:
217     return ProtectedVisibility;
218   }
219   llvm_unreachable("bad visibility kind");
220 }
221 
222 /// Return the explicit visibility of the given declaration.
223 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
224                                     NamedDecl::ExplicitVisibilityKind kind) {
225   // If we're ultimately computing the visibility of a type, look for
226   // a 'type_visibility' attribute before looking for 'visibility'.
227   if (kind == NamedDecl::VisibilityForType) {
228     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
229       return getVisibilityFromAttr(A);
230     }
231   }
232 
233   // If this declaration has an explicit visibility attribute, use it.
234   if (const auto *A = D->getAttr<VisibilityAttr>()) {
235     return getVisibilityFromAttr(A);
236   }
237 
238   return None;
239 }
240 
241 LinkageInfo LinkageComputer::getLVForType(const Type &T,
242                                           LVComputationKind computation) {
243   if (computation.IgnoreAllVisibility)
244     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
245   return getTypeLinkageAndVisibility(&T);
246 }
247 
248 /// Get the most restrictive linkage for the types in the given
249 /// template parameter list.  For visibility purposes, template
250 /// parameters are part of the signature of a template.
251 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
252     const TemplateParameterList *Params, LVComputationKind computation) {
253   LinkageInfo LV;
254   for (const NamedDecl *P : *Params) {
255     // Template type parameters are the most common and never
256     // contribute to visibility, pack or not.
257     if (isa<TemplateTypeParmDecl>(P))
258       continue;
259 
260     // Non-type template parameters can be restricted by the value type, e.g.
261     //   template <enum X> class A { ... };
262     // We have to be careful here, though, because we can be dealing with
263     // dependent types.
264     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
265       // Handle the non-pack case first.
266       if (!NTTP->isExpandedParameterPack()) {
267         if (!NTTP->getType()->isDependentType()) {
268           LV.merge(getLVForType(*NTTP->getType(), computation));
269         }
270         continue;
271       }
272 
273       // Look at all the types in an expanded pack.
274       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
275         QualType type = NTTP->getExpansionType(i);
276         if (!type->isDependentType())
277           LV.merge(getTypeLinkageAndVisibility(type));
278       }
279       continue;
280     }
281 
282     // Template template parameters can be restricted by their
283     // template parameters, recursively.
284     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
285 
286     // Handle the non-pack case first.
287     if (!TTP->isExpandedParameterPack()) {
288       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
289                                              computation));
290       continue;
291     }
292 
293     // Look at all expansions in an expanded pack.
294     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
295            i != n; ++i) {
296       LV.merge(getLVForTemplateParameterList(
297           TTP->getExpansionTemplateParameters(i), computation));
298     }
299   }
300 
301   return LV;
302 }
303 
304 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
305   const Decl *Ret = nullptr;
306   const DeclContext *DC = D->getDeclContext();
307   while (DC->getDeclKind() != Decl::TranslationUnit) {
308     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
309       Ret = cast<Decl>(DC);
310     DC = DC->getParent();
311   }
312   return Ret;
313 }
314 
315 /// Get the most restrictive linkage for the types and
316 /// declarations in the given template argument list.
317 ///
318 /// Note that we don't take an LVComputationKind because we always
319 /// want to honor the visibility of template arguments in the same way.
320 LinkageInfo
321 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
322                                               LVComputationKind computation) {
323   LinkageInfo LV;
324 
325   for (const TemplateArgument &Arg : Args) {
326     switch (Arg.getKind()) {
327     case TemplateArgument::Null:
328     case TemplateArgument::Integral:
329     case TemplateArgument::Expression:
330       continue;
331 
332     case TemplateArgument::Type:
333       LV.merge(getLVForType(*Arg.getAsType(), computation));
334       continue;
335 
336     case TemplateArgument::Declaration: {
337       const NamedDecl *ND = Arg.getAsDecl();
338       assert(!usesTypeVisibility(ND));
339       LV.merge(getLVForDecl(ND, computation));
340       continue;
341     }
342 
343     case TemplateArgument::NullPtr:
344       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
345       continue;
346 
347     case TemplateArgument::Template:
348     case TemplateArgument::TemplateExpansion:
349       if (TemplateDecl *Template =
350               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
351         LV.merge(getLVForDecl(Template, computation));
352       continue;
353 
354     case TemplateArgument::Pack:
355       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
356       continue;
357     }
358     llvm_unreachable("bad template argument kind");
359   }
360 
361   return LV;
362 }
363 
364 LinkageInfo
365 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
366                                               LVComputationKind computation) {
367   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
368 }
369 
370 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
371                         const FunctionTemplateSpecializationInfo *specInfo) {
372   // Include visibility from the template parameters and arguments
373   // only if this is not an explicit instantiation or specialization
374   // with direct explicit visibility.  (Implicit instantiations won't
375   // have a direct attribute.)
376   if (!specInfo->isExplicitInstantiationOrSpecialization())
377     return true;
378 
379   return !fn->hasAttr<VisibilityAttr>();
380 }
381 
382 /// Merge in template-related linkage and visibility for the given
383 /// function template specialization.
384 ///
385 /// We don't need a computation kind here because we can assume
386 /// LVForValue.
387 ///
388 /// \param[out] LV the computation to use for the parent
389 void LinkageComputer::mergeTemplateLV(
390     LinkageInfo &LV, const FunctionDecl *fn,
391     const FunctionTemplateSpecializationInfo *specInfo,
392     LVComputationKind computation) {
393   bool considerVisibility =
394     shouldConsiderTemplateVisibility(fn, specInfo);
395 
396   FunctionTemplateDecl *temp = specInfo->getTemplate();
397 
398   // Merge information from the template declaration.
399   LinkageInfo tempLV = getLVForDecl(temp, computation);
400   // The linkage of the specialization should be consistent with the
401   // template declaration.
402   LV.setLinkage(tempLV.getLinkage());
403 
404   // Merge information from the template parameters.
405   LinkageInfo paramsLV =
406       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
407   LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
408 
409   // Merge information from the template arguments.
410   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
411   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
412   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
413 }
414 
415 /// Does the given declaration have a direct visibility attribute
416 /// that would match the given rules?
417 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
418                                          LVComputationKind computation) {
419   if (computation.IgnoreAllVisibility)
420     return false;
421 
422   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
423          D->hasAttr<VisibilityAttr>();
424 }
425 
426 /// Should we consider visibility associated with the template
427 /// arguments and parameters of the given class template specialization?
428 static bool shouldConsiderTemplateVisibility(
429                                  const ClassTemplateSpecializationDecl *spec,
430                                  LVComputationKind computation) {
431   // Include visibility from the template parameters and arguments
432   // only if this is not an explicit instantiation or specialization
433   // with direct explicit visibility (and note that implicit
434   // instantiations won't have a direct attribute).
435   //
436   // Furthermore, we want to ignore template parameters and arguments
437   // for an explicit specialization when computing the visibility of a
438   // member thereof with explicit visibility.
439   //
440   // This is a bit complex; let's unpack it.
441   //
442   // An explicit class specialization is an independent, top-level
443   // declaration.  As such, if it or any of its members has an
444   // explicit visibility attribute, that must directly express the
445   // user's intent, and we should honor it.  The same logic applies to
446   // an explicit instantiation of a member of such a thing.
447 
448   // Fast path: if this is not an explicit instantiation or
449   // specialization, we always want to consider template-related
450   // visibility restrictions.
451   if (!spec->isExplicitInstantiationOrSpecialization())
452     return true;
453 
454   // This is the 'member thereof' check.
455   if (spec->isExplicitSpecialization() &&
456       hasExplicitVisibilityAlready(computation))
457     return false;
458 
459   return !hasDirectVisibilityAttribute(spec, computation);
460 }
461 
462 /// Merge in template-related linkage and visibility for the given
463 /// class template specialization.
464 void LinkageComputer::mergeTemplateLV(
465     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
466     LVComputationKind computation) {
467   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
468 
469   // Merge information from the template parameters, but ignore
470   // visibility if we're only considering template arguments.
471 
472   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
473   LinkageInfo tempLV =
474     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
475   LV.mergeMaybeWithVisibility(tempLV,
476            considerVisibility && !hasExplicitVisibilityAlready(computation));
477 
478   // Merge information from the template arguments.  We ignore
479   // template-argument visibility if we've got an explicit
480   // instantiation with a visibility attribute.
481   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
482   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
483   if (considerVisibility)
484     LV.mergeVisibility(argsLV);
485   LV.mergeExternalVisibility(argsLV);
486 }
487 
488 /// Should we consider visibility associated with the template
489 /// arguments and parameters of the given variable template
490 /// specialization? As usual, follow class template specialization
491 /// logic up to initialization.
492 static bool shouldConsiderTemplateVisibility(
493                                  const VarTemplateSpecializationDecl *spec,
494                                  LVComputationKind computation) {
495   // Include visibility from the template parameters and arguments
496   // only if this is not an explicit instantiation or specialization
497   // with direct explicit visibility (and note that implicit
498   // instantiations won't have a direct attribute).
499   if (!spec->isExplicitInstantiationOrSpecialization())
500     return true;
501 
502   // An explicit variable specialization is an independent, top-level
503   // declaration.  As such, if it has an explicit visibility attribute,
504   // that must directly express the user's intent, and we should honor
505   // it.
506   if (spec->isExplicitSpecialization() &&
507       hasExplicitVisibilityAlready(computation))
508     return false;
509 
510   return !hasDirectVisibilityAttribute(spec, computation);
511 }
512 
513 /// Merge in template-related linkage and visibility for the given
514 /// variable template specialization. As usual, follow class template
515 /// specialization logic up to initialization.
516 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
517                                       const VarTemplateSpecializationDecl *spec,
518                                       LVComputationKind computation) {
519   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
520 
521   // Merge information from the template parameters, but ignore
522   // visibility if we're only considering template arguments.
523 
524   VarTemplateDecl *temp = spec->getSpecializedTemplate();
525   LinkageInfo tempLV =
526     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
527   LV.mergeMaybeWithVisibility(tempLV,
528            considerVisibility && !hasExplicitVisibilityAlready(computation));
529 
530   // Merge information from the template arguments.  We ignore
531   // template-argument visibility if we've got an explicit
532   // instantiation with a visibility attribute.
533   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
534   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
535   if (considerVisibility)
536     LV.mergeVisibility(argsLV);
537   LV.mergeExternalVisibility(argsLV);
538 }
539 
540 static bool useInlineVisibilityHidden(const NamedDecl *D) {
541   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
542   const LangOptions &Opts = D->getASTContext().getLangOpts();
543   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
544     return false;
545 
546   const auto *FD = dyn_cast<FunctionDecl>(D);
547   if (!FD)
548     return false;
549 
550   TemplateSpecializationKind TSK = TSK_Undeclared;
551   if (FunctionTemplateSpecializationInfo *spec
552       = FD->getTemplateSpecializationInfo()) {
553     TSK = spec->getTemplateSpecializationKind();
554   } else if (MemberSpecializationInfo *MSI =
555              FD->getMemberSpecializationInfo()) {
556     TSK = MSI->getTemplateSpecializationKind();
557   }
558 
559   const FunctionDecl *Def = nullptr;
560   // InlineVisibilityHidden only applies to definitions, and
561   // isInlined() only gives meaningful answers on definitions
562   // anyway.
563   return TSK != TSK_ExplicitInstantiationDeclaration &&
564     TSK != TSK_ExplicitInstantiationDefinition &&
565     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
566 }
567 
568 template <typename T> static bool isFirstInExternCContext(T *D) {
569   const T *First = D->getFirstDecl();
570   return First->isInExternCContext();
571 }
572 
573 static bool isSingleLineLanguageLinkage(const Decl &D) {
574   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
575     if (!SD->hasBraces())
576       return true;
577   return false;
578 }
579 
580 /// Determine whether D is declared in the purview of a named module.
581 static bool isInModulePurview(const NamedDecl *D) {
582   if (auto *M = D->getOwningModule())
583     return M->isModulePurview();
584   return false;
585 }
586 
587 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
588   // FIXME: Handle isModulePrivate.
589   switch (D->getModuleOwnershipKind()) {
590   case Decl::ModuleOwnershipKind::Unowned:
591   case Decl::ModuleOwnershipKind::ModulePrivate:
592     return false;
593   case Decl::ModuleOwnershipKind::Visible:
594   case Decl::ModuleOwnershipKind::VisibleWhenImported:
595     return isInModulePurview(D);
596   }
597   llvm_unreachable("unexpected module ownership kind");
598 }
599 
600 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
601   // (for the modules ts) Internal linkage declarations within a module
602   // interface unit are modeled as "module-internal linkage", which means that
603   // they have internal linkage formally but can be indirectly accessed from
604   // outside the module via inline functions and templates defined within the
605   // module.
606   if (isInModulePurview(D) && D->getASTContext().getLangOpts().ModulesTS)
607     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
608 
609   return LinkageInfo::internal();
610 }
611 
612 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
613   // C++ Modules TS [basic.link]/6.8:
614   //   - A name declared at namespace scope that does not have internal linkage
615   //     by the previous rules and that is introduced by a non-exported
616   //     declaration has module linkage.
617   //
618   // [basic.namespace.general]/p2
619   //   A namespace is never attached to a named module and never has a name with
620   //   module linkage.
621   if (isInModulePurview(D) &&
622       !isExportedFromModuleInterfaceUnit(
623           cast<NamedDecl>(D->getCanonicalDecl())) &&
624       !isa<NamespaceDecl>(D))
625     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
626 
627   return LinkageInfo::external();
628 }
629 
630 static StorageClass getStorageClass(const Decl *D) {
631   if (auto *TD = dyn_cast<TemplateDecl>(D))
632     D = TD->getTemplatedDecl();
633   if (D) {
634     if (auto *VD = dyn_cast<VarDecl>(D))
635       return VD->getStorageClass();
636     if (auto *FD = dyn_cast<FunctionDecl>(D))
637       return FD->getStorageClass();
638   }
639   return SC_None;
640 }
641 
642 LinkageInfo
643 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
644                                             LVComputationKind computation,
645                                             bool IgnoreVarTypeLinkage) {
646   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
647          "Not a name having namespace scope");
648   ASTContext &Context = D->getASTContext();
649 
650   // C++ [basic.link]p3:
651   //   A name having namespace scope (3.3.6) has internal linkage if it
652   //   is the name of
653 
654   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
655     // - a variable, variable template, function, or function template
656     //   that is explicitly declared static; or
657     // (This bullet corresponds to C99 6.2.2p3.)
658     return getInternalLinkageFor(D);
659   }
660 
661   if (const auto *Var = dyn_cast<VarDecl>(D)) {
662     // - a non-template variable of non-volatile const-qualified type, unless
663     //   - it is explicitly declared extern, or
664     //   - it is inline or exported, or
665     //   - it was previously declared and the prior declaration did not have
666     //     internal linkage
667     // (There is no equivalent in C99.)
668     if (Context.getLangOpts().CPlusPlus &&
669         Var->getType().isConstQualified() &&
670         !Var->getType().isVolatileQualified() &&
671         !Var->isInline() &&
672         !isExportedFromModuleInterfaceUnit(Var) &&
673         !isa<VarTemplateSpecializationDecl>(Var) &&
674         !Var->getDescribedVarTemplate()) {
675       const VarDecl *PrevVar = Var->getPreviousDecl();
676       if (PrevVar)
677         return getLVForDecl(PrevVar, computation);
678 
679       if (Var->getStorageClass() != SC_Extern &&
680           Var->getStorageClass() != SC_PrivateExtern &&
681           !isSingleLineLanguageLinkage(*Var))
682         return getInternalLinkageFor(Var);
683     }
684 
685     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
686          PrevVar = PrevVar->getPreviousDecl()) {
687       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
688           Var->getStorageClass() == SC_None)
689         return getDeclLinkageAndVisibility(PrevVar);
690       // Explicitly declared static.
691       if (PrevVar->getStorageClass() == SC_Static)
692         return getInternalLinkageFor(Var);
693     }
694   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
695     //   - a data member of an anonymous union.
696     const VarDecl *VD = IFD->getVarDecl();
697     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
698     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
699   }
700   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
701 
702   // FIXME: This gives internal linkage to names that should have no linkage
703   // (those not covered by [basic.link]p6).
704   if (D->isInAnonymousNamespace()) {
705     const auto *Var = dyn_cast<VarDecl>(D);
706     const auto *Func = dyn_cast<FunctionDecl>(D);
707     // FIXME: The check for extern "C" here is not justified by the standard
708     // wording, but we retain it from the pre-DR1113 model to avoid breaking
709     // code.
710     //
711     // C++11 [basic.link]p4:
712     //   An unnamed namespace or a namespace declared directly or indirectly
713     //   within an unnamed namespace has internal linkage.
714     if ((!Var || !isFirstInExternCContext(Var)) &&
715         (!Func || !isFirstInExternCContext(Func)))
716       return getInternalLinkageFor(D);
717   }
718 
719   // Set up the defaults.
720 
721   // C99 6.2.2p5:
722   //   If the declaration of an identifier for an object has file
723   //   scope and no storage-class specifier, its linkage is
724   //   external.
725   LinkageInfo LV = getExternalLinkageFor(D);
726 
727   if (!hasExplicitVisibilityAlready(computation)) {
728     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
729       LV.mergeVisibility(*Vis, true);
730     } else {
731       // If we're declared in a namespace with a visibility attribute,
732       // use that namespace's visibility, and it still counts as explicit.
733       for (const DeclContext *DC = D->getDeclContext();
734            !isa<TranslationUnitDecl>(DC);
735            DC = DC->getParent()) {
736         const auto *ND = dyn_cast<NamespaceDecl>(DC);
737         if (!ND) continue;
738         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
739           LV.mergeVisibility(*Vis, true);
740           break;
741         }
742       }
743     }
744 
745     // Add in global settings if the above didn't give us direct visibility.
746     if (!LV.isVisibilityExplicit()) {
747       // Use global type/value visibility as appropriate.
748       Visibility globalVisibility =
749           computation.isValueVisibility()
750               ? Context.getLangOpts().getValueVisibilityMode()
751               : Context.getLangOpts().getTypeVisibilityMode();
752       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
753 
754       // If we're paying attention to global visibility, apply
755       // -finline-visibility-hidden if this is an inline method.
756       if (useInlineVisibilityHidden(D))
757         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
758     }
759   }
760 
761   // C++ [basic.link]p4:
762 
763   //   A name having namespace scope that has not been given internal linkage
764   //   above and that is the name of
765   //   [...bullets...]
766   //   has its linkage determined as follows:
767   //     - if the enclosing namespace has internal linkage, the name has
768   //       internal linkage; [handled above]
769   //     - otherwise, if the declaration of the name is attached to a named
770   //       module and is not exported, the name has module linkage;
771   //     - otherwise, the name has external linkage.
772   // LV is currently set up to handle the last two bullets.
773   //
774   //   The bullets are:
775 
776   //     - a variable; or
777   if (const auto *Var = dyn_cast<VarDecl>(D)) {
778     // GCC applies the following optimization to variables and static
779     // data members, but not to functions:
780     //
781     // Modify the variable's LV by the LV of its type unless this is
782     // C or extern "C".  This follows from [basic.link]p9:
783     //   A type without linkage shall not be used as the type of a
784     //   variable or function with external linkage unless
785     //    - the entity has C language linkage, or
786     //    - the entity is declared within an unnamed namespace, or
787     //    - the entity is not used or is defined in the same
788     //      translation unit.
789     // and [basic.link]p10:
790     //   ...the types specified by all declarations referring to a
791     //   given variable or function shall be identical...
792     // C does not have an equivalent rule.
793     //
794     // Ignore this if we've got an explicit attribute;  the user
795     // probably knows what they're doing.
796     //
797     // Note that we don't want to make the variable non-external
798     // because of this, but unique-external linkage suits us.
799 
800     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
801         !IgnoreVarTypeLinkage) {
802       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
803       if (!isExternallyVisible(TypeLV.getLinkage()))
804         return LinkageInfo::uniqueExternal();
805       if (!LV.isVisibilityExplicit())
806         LV.mergeVisibility(TypeLV);
807     }
808 
809     if (Var->getStorageClass() == SC_PrivateExtern)
810       LV.mergeVisibility(HiddenVisibility, true);
811 
812     // Note that Sema::MergeVarDecl already takes care of implementing
813     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
814     // to do it here.
815 
816     // As per function and class template specializations (below),
817     // consider LV for the template and template arguments.  We're at file
818     // scope, so we do not need to worry about nested specializations.
819     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
820       mergeTemplateLV(LV, spec, computation);
821     }
822 
823   //     - a function; or
824   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
825     // In theory, we can modify the function's LV by the LV of its
826     // type unless it has C linkage (see comment above about variables
827     // for justification).  In practice, GCC doesn't do this, so it's
828     // just too painful to make work.
829 
830     if (Function->getStorageClass() == SC_PrivateExtern)
831       LV.mergeVisibility(HiddenVisibility, true);
832 
833     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
834     // merging storage classes and visibility attributes, so we don't have to
835     // look at previous decls in here.
836 
837     // In C++, then if the type of the function uses a type with
838     // unique-external linkage, it's not legally usable from outside
839     // this translation unit.  However, we should use the C linkage
840     // rules instead for extern "C" declarations.
841     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
842       // Only look at the type-as-written. Otherwise, deducing the return type
843       // of a function could change its linkage.
844       QualType TypeAsWritten = Function->getType();
845       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
846         TypeAsWritten = TSI->getType();
847       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
848         return LinkageInfo::uniqueExternal();
849     }
850 
851     // Consider LV from the template and the template arguments.
852     // We're at file scope, so we do not need to worry about nested
853     // specializations.
854     if (FunctionTemplateSpecializationInfo *specInfo
855                                = Function->getTemplateSpecializationInfo()) {
856       mergeTemplateLV(LV, Function, specInfo, computation);
857     }
858 
859   //     - a named class (Clause 9), or an unnamed class defined in a
860   //       typedef declaration in which the class has the typedef name
861   //       for linkage purposes (7.1.3); or
862   //     - a named enumeration (7.2), or an unnamed enumeration
863   //       defined in a typedef declaration in which the enumeration
864   //       has the typedef name for linkage purposes (7.1.3); or
865   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
866     // Unnamed tags have no linkage.
867     if (!Tag->hasNameForLinkage())
868       return LinkageInfo::none();
869 
870     // If this is a class template specialization, consider the
871     // linkage of the template and template arguments.  We're at file
872     // scope, so we do not need to worry about nested specializations.
873     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
874       mergeTemplateLV(LV, spec, computation);
875     }
876 
877   // FIXME: This is not part of the C++ standard any more.
878   //     - an enumerator belonging to an enumeration with external linkage; or
879   } else if (isa<EnumConstantDecl>(D)) {
880     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
881                                       computation);
882     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
883       return LinkageInfo::none();
884     LV.merge(EnumLV);
885 
886   //     - a template
887   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
888     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
889     LinkageInfo tempLV =
890       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
891     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
892 
893   //     An unnamed namespace or a namespace declared directly or indirectly
894   //     within an unnamed namespace has internal linkage. All other namespaces
895   //     have external linkage.
896   //
897   // We handled names in anonymous namespaces above.
898   } else if (isa<NamespaceDecl>(D)) {
899     return LV;
900 
901   // By extension, we assign external linkage to Objective-C
902   // interfaces.
903   } else if (isa<ObjCInterfaceDecl>(D)) {
904     // fallout
905 
906   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
907     // A typedef declaration has linkage if it gives a type a name for
908     // linkage purposes.
909     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
910       return LinkageInfo::none();
911 
912   } else if (isa<MSGuidDecl>(D)) {
913     // A GUID behaves like an inline variable with external linkage. Fall
914     // through.
915 
916   // Everything not covered here has no linkage.
917   } else {
918     return LinkageInfo::none();
919   }
920 
921   // If we ended up with non-externally-visible linkage, visibility should
922   // always be default.
923   if (!isExternallyVisible(LV.getLinkage()))
924     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
925 
926   return LV;
927 }
928 
929 LinkageInfo
930 LinkageComputer::getLVForClassMember(const NamedDecl *D,
931                                      LVComputationKind computation,
932                                      bool IgnoreVarTypeLinkage) {
933   // Only certain class members have linkage.  Note that fields don't
934   // really have linkage, but it's convenient to say they do for the
935   // purposes of calculating linkage of pointer-to-data-member
936   // template arguments.
937   //
938   // Templates also don't officially have linkage, but since we ignore
939   // the C++ standard and look at template arguments when determining
940   // linkage and visibility of a template specialization, we might hit
941   // a template template argument that way. If we do, we need to
942   // consider its linkage.
943   if (!(isa<CXXMethodDecl>(D) ||
944         isa<VarDecl>(D) ||
945         isa<FieldDecl>(D) ||
946         isa<IndirectFieldDecl>(D) ||
947         isa<TagDecl>(D) ||
948         isa<TemplateDecl>(D)))
949     return LinkageInfo::none();
950 
951   LinkageInfo LV;
952 
953   // If we have an explicit visibility attribute, merge that in.
954   if (!hasExplicitVisibilityAlready(computation)) {
955     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
956       LV.mergeVisibility(*Vis, true);
957     // If we're paying attention to global visibility, apply
958     // -finline-visibility-hidden if this is an inline method.
959     //
960     // Note that we do this before merging information about
961     // the class visibility.
962     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
963       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
964   }
965 
966   // If this class member has an explicit visibility attribute, the only
967   // thing that can change its visibility is the template arguments, so
968   // only look for them when processing the class.
969   LVComputationKind classComputation = computation;
970   if (LV.isVisibilityExplicit())
971     classComputation = withExplicitVisibilityAlready(computation);
972 
973   LinkageInfo classLV =
974     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
975   // The member has the same linkage as the class. If that's not externally
976   // visible, we don't need to compute anything about the linkage.
977   // FIXME: If we're only computing linkage, can we bail out here?
978   if (!isExternallyVisible(classLV.getLinkage()))
979     return classLV;
980 
981 
982   // Otherwise, don't merge in classLV yet, because in certain cases
983   // we need to completely ignore the visibility from it.
984 
985   // Specifically, if this decl exists and has an explicit attribute.
986   const NamedDecl *explicitSpecSuppressor = nullptr;
987 
988   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
989     // Only look at the type-as-written. Otherwise, deducing the return type
990     // of a function could change its linkage.
991     QualType TypeAsWritten = MD->getType();
992     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
993       TypeAsWritten = TSI->getType();
994     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
995       return LinkageInfo::uniqueExternal();
996 
997     // If this is a method template specialization, use the linkage for
998     // the template parameters and arguments.
999     if (FunctionTemplateSpecializationInfo *spec
1000            = MD->getTemplateSpecializationInfo()) {
1001       mergeTemplateLV(LV, MD, spec, computation);
1002       if (spec->isExplicitSpecialization()) {
1003         explicitSpecSuppressor = MD;
1004       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
1005         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
1006       }
1007     } else if (isExplicitMemberSpecialization(MD)) {
1008       explicitSpecSuppressor = MD;
1009     }
1010 
1011   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1012     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1013       mergeTemplateLV(LV, spec, computation);
1014       if (spec->isExplicitSpecialization()) {
1015         explicitSpecSuppressor = spec;
1016       } else {
1017         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1018         if (isExplicitMemberSpecialization(temp)) {
1019           explicitSpecSuppressor = temp->getTemplatedDecl();
1020         }
1021       }
1022     } else if (isExplicitMemberSpecialization(RD)) {
1023       explicitSpecSuppressor = RD;
1024     }
1025 
1026   // Static data members.
1027   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1028     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1029       mergeTemplateLV(LV, spec, computation);
1030 
1031     // Modify the variable's linkage by its type, but ignore the
1032     // type's visibility unless it's a definition.
1033     if (!IgnoreVarTypeLinkage) {
1034       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1035       // FIXME: If the type's linkage is not externally visible, we can
1036       // give this static data member UniqueExternalLinkage.
1037       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1038         LV.mergeVisibility(typeLV);
1039       LV.mergeExternalVisibility(typeLV);
1040     }
1041 
1042     if (isExplicitMemberSpecialization(VD)) {
1043       explicitSpecSuppressor = VD;
1044     }
1045 
1046   // Template members.
1047   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1048     bool considerVisibility =
1049       (!LV.isVisibilityExplicit() &&
1050        !classLV.isVisibilityExplicit() &&
1051        !hasExplicitVisibilityAlready(computation));
1052     LinkageInfo tempLV =
1053       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1054     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1055 
1056     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1057       if (isExplicitMemberSpecialization(redeclTemp)) {
1058         explicitSpecSuppressor = temp->getTemplatedDecl();
1059       }
1060     }
1061   }
1062 
1063   // We should never be looking for an attribute directly on a template.
1064   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1065 
1066   // If this member is an explicit member specialization, and it has
1067   // an explicit attribute, ignore visibility from the parent.
1068   bool considerClassVisibility = true;
1069   if (explicitSpecSuppressor &&
1070       // optimization: hasDVA() is true only with explicit visibility.
1071       LV.isVisibilityExplicit() &&
1072       classLV.getVisibility() != DefaultVisibility &&
1073       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1074     considerClassVisibility = false;
1075   }
1076 
1077   // Finally, merge in information from the class.
1078   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1079 
1080   return LV;
1081 }
1082 
1083 void NamedDecl::anchor() {}
1084 
1085 bool NamedDecl::isLinkageValid() const {
1086   if (!hasCachedLinkage())
1087     return true;
1088 
1089   Linkage L = LinkageComputer{}
1090                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1091                   .getLinkage();
1092   return L == getCachedLinkage();
1093 }
1094 
1095 ReservedIdentifierStatus
1096 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1097   const IdentifierInfo *II = getIdentifier();
1098 
1099   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1100   // at lexing time.
1101   if (!II)
1102     return ReservedIdentifierStatus::NotReserved;
1103 
1104   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1105   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1106     // This name is only reserved at global scope. Check if this declaration
1107     // conflicts with a global scope declaration.
1108     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1109       return ReservedIdentifierStatus::NotReserved;
1110 
1111     // C++ [dcl.link]/7:
1112     //   Two declarations [conflict] if [...] one declares a function or
1113     //   variable with C language linkage, and the other declares [...] a
1114     //   variable that belongs to the global scope.
1115     //
1116     // Therefore names that are reserved at global scope are also reserved as
1117     // names of variables and functions with C language linkage.
1118     const DeclContext *DC = getDeclContext()->getRedeclContext();
1119     if (DC->isTranslationUnit())
1120       return Status;
1121     if (auto *VD = dyn_cast<VarDecl>(this))
1122       if (VD->isExternC())
1123         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1124     if (auto *FD = dyn_cast<FunctionDecl>(this))
1125       if (FD->isExternC())
1126         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1127     return ReservedIdentifierStatus::NotReserved;
1128   }
1129 
1130   return Status;
1131 }
1132 
1133 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1134   StringRef name = getName();
1135   if (name.empty()) return SFF_None;
1136 
1137   if (name.front() == 'C')
1138     if (name == "CFStringCreateWithFormat" ||
1139         name == "CFStringCreateWithFormatAndArguments" ||
1140         name == "CFStringAppendFormat" ||
1141         name == "CFStringAppendFormatAndArguments")
1142       return SFF_CFString;
1143   return SFF_None;
1144 }
1145 
1146 Linkage NamedDecl::getLinkageInternal() const {
1147   // We don't care about visibility here, so ask for the cheapest
1148   // possible visibility analysis.
1149   return LinkageComputer{}
1150       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1151       .getLinkage();
1152 }
1153 
1154 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1155   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1156 }
1157 
1158 static Optional<Visibility>
1159 getExplicitVisibilityAux(const NamedDecl *ND,
1160                          NamedDecl::ExplicitVisibilityKind kind,
1161                          bool IsMostRecent) {
1162   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1163 
1164   // Check the declaration itself first.
1165   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1166     return V;
1167 
1168   // If this is a member class of a specialization of a class template
1169   // and the corresponding decl has explicit visibility, use that.
1170   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1171     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1172     if (InstantiatedFrom)
1173       return getVisibilityOf(InstantiatedFrom, kind);
1174   }
1175 
1176   // If there wasn't explicit visibility there, and this is a
1177   // specialization of a class template, check for visibility
1178   // on the pattern.
1179   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1180     // Walk all the template decl till this point to see if there are
1181     // explicit visibility attributes.
1182     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1183     while (TD != nullptr) {
1184       auto Vis = getVisibilityOf(TD, kind);
1185       if (Vis != None)
1186         return Vis;
1187       TD = TD->getPreviousDecl();
1188     }
1189     return None;
1190   }
1191 
1192   // Use the most recent declaration.
1193   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1194     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1195     if (MostRecent != ND)
1196       return getExplicitVisibilityAux(MostRecent, kind, true);
1197   }
1198 
1199   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1200     if (Var->isStaticDataMember()) {
1201       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1202       if (InstantiatedFrom)
1203         return getVisibilityOf(InstantiatedFrom, kind);
1204     }
1205 
1206     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1207       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1208                              kind);
1209 
1210     return None;
1211   }
1212   // Also handle function template specializations.
1213   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1214     // If the function is a specialization of a template with an
1215     // explicit visibility attribute, use that.
1216     if (FunctionTemplateSpecializationInfo *templateInfo
1217           = fn->getTemplateSpecializationInfo())
1218       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1219                              kind);
1220 
1221     // If the function is a member of a specialization of a class template
1222     // and the corresponding decl has explicit visibility, use that.
1223     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1224     if (InstantiatedFrom)
1225       return getVisibilityOf(InstantiatedFrom, kind);
1226 
1227     return None;
1228   }
1229 
1230   // The visibility of a template is stored in the templated decl.
1231   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1232     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1233 
1234   return None;
1235 }
1236 
1237 Optional<Visibility>
1238 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1239   return getExplicitVisibilityAux(this, kind, false);
1240 }
1241 
1242 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1243                                              Decl *ContextDecl,
1244                                              LVComputationKind computation) {
1245   // This lambda has its linkage/visibility determined by its owner.
1246   const NamedDecl *Owner;
1247   if (!ContextDecl)
1248     Owner = dyn_cast<NamedDecl>(DC);
1249   else if (isa<ParmVarDecl>(ContextDecl))
1250     Owner =
1251         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1252   else
1253     Owner = cast<NamedDecl>(ContextDecl);
1254 
1255   if (!Owner)
1256     return LinkageInfo::none();
1257 
1258   // If the owner has a deduced type, we need to skip querying the linkage and
1259   // visibility of that type, because it might involve this closure type.  The
1260   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1261   // than NoLinkage when we don't strictly need to, which is benign.
1262   auto *VD = dyn_cast<VarDecl>(Owner);
1263   LinkageInfo OwnerLV =
1264       VD && VD->getType()->getContainedDeducedType()
1265           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1266           : getLVForDecl(Owner, computation);
1267 
1268   // A lambda never formally has linkage. But if the owner is externally
1269   // visible, then the lambda is too. We apply the same rules to blocks.
1270   if (!isExternallyVisible(OwnerLV.getLinkage()))
1271     return LinkageInfo::none();
1272   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1273                      OwnerLV.isVisibilityExplicit());
1274 }
1275 
1276 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1277                                                LVComputationKind computation) {
1278   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1279     if (Function->isInAnonymousNamespace() &&
1280         !isFirstInExternCContext(Function))
1281       return getInternalLinkageFor(Function);
1282 
1283     // This is a "void f();" which got merged with a file static.
1284     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1285       return getInternalLinkageFor(Function);
1286 
1287     LinkageInfo LV;
1288     if (!hasExplicitVisibilityAlready(computation)) {
1289       if (Optional<Visibility> Vis =
1290               getExplicitVisibility(Function, computation))
1291         LV.mergeVisibility(*Vis, true);
1292     }
1293 
1294     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1295     // merging storage classes and visibility attributes, so we don't have to
1296     // look at previous decls in here.
1297 
1298     return LV;
1299   }
1300 
1301   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1302     if (Var->hasExternalStorage()) {
1303       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1304         return getInternalLinkageFor(Var);
1305 
1306       LinkageInfo LV;
1307       if (Var->getStorageClass() == SC_PrivateExtern)
1308         LV.mergeVisibility(HiddenVisibility, true);
1309       else if (!hasExplicitVisibilityAlready(computation)) {
1310         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1311           LV.mergeVisibility(*Vis, true);
1312       }
1313 
1314       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1315         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1316         if (PrevLV.getLinkage())
1317           LV.setLinkage(PrevLV.getLinkage());
1318         LV.mergeVisibility(PrevLV);
1319       }
1320 
1321       return LV;
1322     }
1323 
1324     if (!Var->isStaticLocal())
1325       return LinkageInfo::none();
1326   }
1327 
1328   ASTContext &Context = D->getASTContext();
1329   if (!Context.getLangOpts().CPlusPlus)
1330     return LinkageInfo::none();
1331 
1332   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1333   if (!OuterD || OuterD->isInvalidDecl())
1334     return LinkageInfo::none();
1335 
1336   LinkageInfo LV;
1337   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1338     if (!BD->getBlockManglingNumber())
1339       return LinkageInfo::none();
1340 
1341     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1342                          BD->getBlockManglingContextDecl(), computation);
1343   } else {
1344     const auto *FD = cast<FunctionDecl>(OuterD);
1345     if (!FD->isInlined() &&
1346         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1347       return LinkageInfo::none();
1348 
1349     // If a function is hidden by -fvisibility-inlines-hidden option and
1350     // is not explicitly attributed as a hidden function,
1351     // we should not make static local variables in the function hidden.
1352     LV = getLVForDecl(FD, computation);
1353     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1354         !LV.isVisibilityExplicit() &&
1355         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1356       assert(cast<VarDecl>(D)->isStaticLocal());
1357       // If this was an implicitly hidden inline method, check again for
1358       // explicit visibility on the parent class, and use that for static locals
1359       // if present.
1360       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1361         LV = getLVForDecl(MD->getParent(), computation);
1362       if (!LV.isVisibilityExplicit()) {
1363         Visibility globalVisibility =
1364             computation.isValueVisibility()
1365                 ? Context.getLangOpts().getValueVisibilityMode()
1366                 : Context.getLangOpts().getTypeVisibilityMode();
1367         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1368                            /*visibilityExplicit=*/false);
1369       }
1370     }
1371   }
1372   if (!isExternallyVisible(LV.getLinkage()))
1373     return LinkageInfo::none();
1374   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1375                      LV.isVisibilityExplicit());
1376 }
1377 
1378 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1379                                               LVComputationKind computation,
1380                                               bool IgnoreVarTypeLinkage) {
1381   // Internal_linkage attribute overrides other considerations.
1382   if (D->hasAttr<InternalLinkageAttr>())
1383     return getInternalLinkageFor(D);
1384 
1385   // Objective-C: treat all Objective-C declarations as having external
1386   // linkage.
1387   switch (D->getKind()) {
1388     default:
1389       break;
1390 
1391     // Per C++ [basic.link]p2, only the names of objects, references,
1392     // functions, types, templates, namespaces, and values ever have linkage.
1393     //
1394     // Note that the name of a typedef, namespace alias, using declaration,
1395     // and so on are not the name of the corresponding type, namespace, or
1396     // declaration, so they do *not* have linkage.
1397     case Decl::ImplicitParam:
1398     case Decl::Label:
1399     case Decl::NamespaceAlias:
1400     case Decl::ParmVar:
1401     case Decl::Using:
1402     case Decl::UsingEnum:
1403     case Decl::UsingShadow:
1404     case Decl::UsingDirective:
1405       return LinkageInfo::none();
1406 
1407     case Decl::EnumConstant:
1408       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1409       if (D->getASTContext().getLangOpts().CPlusPlus)
1410         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1411       return LinkageInfo::visible_none();
1412 
1413     case Decl::Typedef:
1414     case Decl::TypeAlias:
1415       // A typedef declaration has linkage if it gives a type a name for
1416       // linkage purposes.
1417       if (!cast<TypedefNameDecl>(D)
1418                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1419         return LinkageInfo::none();
1420       break;
1421 
1422     case Decl::TemplateTemplateParm: // count these as external
1423     case Decl::NonTypeTemplateParm:
1424     case Decl::ObjCAtDefsField:
1425     case Decl::ObjCCategory:
1426     case Decl::ObjCCategoryImpl:
1427     case Decl::ObjCCompatibleAlias:
1428     case Decl::ObjCImplementation:
1429     case Decl::ObjCMethod:
1430     case Decl::ObjCProperty:
1431     case Decl::ObjCPropertyImpl:
1432     case Decl::ObjCProtocol:
1433       return getExternalLinkageFor(D);
1434 
1435     case Decl::CXXRecord: {
1436       const auto *Record = cast<CXXRecordDecl>(D);
1437       if (Record->isLambda()) {
1438         if (Record->hasKnownLambdaInternalLinkage() ||
1439             !Record->getLambdaManglingNumber()) {
1440           // This lambda has no mangling number, so it's internal.
1441           return getInternalLinkageFor(D);
1442         }
1443 
1444         return getLVForClosure(
1445                   Record->getDeclContext()->getRedeclContext(),
1446                   Record->getLambdaContextDecl(), computation);
1447       }
1448 
1449       break;
1450     }
1451 
1452     case Decl::TemplateParamObject: {
1453       // The template parameter object can be referenced from anywhere its type
1454       // and value can be referenced.
1455       auto *TPO = cast<TemplateParamObjectDecl>(D);
1456       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1457       LV.merge(getLVForValue(TPO->getValue(), computation));
1458       return LV;
1459     }
1460   }
1461 
1462   // Handle linkage for namespace-scope names.
1463   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1464     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1465 
1466   // C++ [basic.link]p5:
1467   //   In addition, a member function, static data member, a named
1468   //   class or enumeration of class scope, or an unnamed class or
1469   //   enumeration defined in a class-scope typedef declaration such
1470   //   that the class or enumeration has the typedef name for linkage
1471   //   purposes (7.1.3), has external linkage if the name of the class
1472   //   has external linkage.
1473   if (D->getDeclContext()->isRecord())
1474     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1475 
1476   // C++ [basic.link]p6:
1477   //   The name of a function declared in block scope and the name of
1478   //   an object declared by a block scope extern declaration have
1479   //   linkage. If there is a visible declaration of an entity with
1480   //   linkage having the same name and type, ignoring entities
1481   //   declared outside the innermost enclosing namespace scope, the
1482   //   block scope declaration declares that same entity and receives
1483   //   the linkage of the previous declaration. If there is more than
1484   //   one such matching entity, the program is ill-formed. Otherwise,
1485   //   if no matching entity is found, the block scope entity receives
1486   //   external linkage.
1487   if (D->getDeclContext()->isFunctionOrMethod())
1488     return getLVForLocalDecl(D, computation);
1489 
1490   // C++ [basic.link]p6:
1491   //   Names not covered by these rules have no linkage.
1492   return LinkageInfo::none();
1493 }
1494 
1495 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1496 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1497                                           LVComputationKind computation) {
1498   // Internal_linkage attribute overrides other considerations.
1499   if (D->hasAttr<InternalLinkageAttr>())
1500     return getInternalLinkageFor(D);
1501 
1502   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1503     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1504 
1505   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1506     return *LI;
1507 
1508   LinkageInfo LV = computeLVForDecl(D, computation);
1509   if (D->hasCachedLinkage())
1510     assert(D->getCachedLinkage() == LV.getLinkage());
1511 
1512   D->setCachedLinkage(LV.getLinkage());
1513   cache(D, computation, LV);
1514 
1515 #ifndef NDEBUG
1516   // In C (because of gnu inline) and in c++ with microsoft extensions an
1517   // static can follow an extern, so we can have two decls with different
1518   // linkages.
1519   const LangOptions &Opts = D->getASTContext().getLangOpts();
1520   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1521     return LV;
1522 
1523   // We have just computed the linkage for this decl. By induction we know
1524   // that all other computed linkages match, check that the one we just
1525   // computed also does.
1526   NamedDecl *Old = nullptr;
1527   for (auto I : D->redecls()) {
1528     auto *T = cast<NamedDecl>(I);
1529     if (T == D)
1530       continue;
1531     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1532       Old = T;
1533       break;
1534     }
1535   }
1536   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1537 #endif
1538 
1539   return LV;
1540 }
1541 
1542 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1543   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1544                                              ? NamedDecl::VisibilityForType
1545                                              : NamedDecl::VisibilityForValue;
1546   LVComputationKind CK(EK);
1547   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1548                              ? CK.forLinkageOnly()
1549                              : CK);
1550 }
1551 
1552 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1553   if (isa<NamespaceDecl>(this))
1554     // Namespaces never have module linkage.  It is the entities within them
1555     // that [may] do.
1556     return nullptr;
1557 
1558   Module *M = getOwningModule();
1559   if (!M)
1560     return nullptr;
1561 
1562   switch (M->Kind) {
1563   case Module::ModuleMapModule:
1564     // Module map modules have no special linkage semantics.
1565     return nullptr;
1566 
1567   case Module::ModuleInterfaceUnit:
1568   case Module::ModulePartitionInterface:
1569   case Module::ModulePartitionImplementation:
1570     return M;
1571 
1572   case Module::ModuleHeaderUnit:
1573   case Module::GlobalModuleFragment: {
1574     // External linkage declarations in the global module have no owning module
1575     // for linkage purposes. But internal linkage declarations in the global
1576     // module fragment of a particular module are owned by that module for
1577     // linkage purposes.
1578     // FIXME: p1815 removes the need for this distinction -- there are no
1579     // internal linkage declarations that need to be referred to from outside
1580     // this TU.
1581     if (IgnoreLinkage)
1582       return nullptr;
1583     bool InternalLinkage;
1584     if (auto *ND = dyn_cast<NamedDecl>(this))
1585       InternalLinkage = !ND->hasExternalFormalLinkage();
1586     else
1587       InternalLinkage = isInAnonymousNamespace();
1588     return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent
1589                            : nullptr;
1590   }
1591 
1592   case Module::PrivateModuleFragment:
1593     // The private module fragment is part of its containing module for linkage
1594     // purposes.
1595     return M->Parent;
1596   }
1597 
1598   llvm_unreachable("unknown module kind");
1599 }
1600 
1601 void NamedDecl::printName(raw_ostream &os) const {
1602   os << Name;
1603 }
1604 
1605 std::string NamedDecl::getQualifiedNameAsString() const {
1606   std::string QualName;
1607   llvm::raw_string_ostream OS(QualName);
1608   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1609   return QualName;
1610 }
1611 
1612 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1613   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1614 }
1615 
1616 void NamedDecl::printQualifiedName(raw_ostream &OS,
1617                                    const PrintingPolicy &P) const {
1618   if (getDeclContext()->isFunctionOrMethod()) {
1619     // We do not print '(anonymous)' for function parameters without name.
1620     printName(OS);
1621     return;
1622   }
1623   printNestedNameSpecifier(OS, P);
1624   if (getDeclName())
1625     OS << *this;
1626   else {
1627     // Give the printName override a chance to pick a different name before we
1628     // fall back to "(anonymous)".
1629     SmallString<64> NameBuffer;
1630     llvm::raw_svector_ostream NameOS(NameBuffer);
1631     printName(NameOS);
1632     if (NameBuffer.empty())
1633       OS << "(anonymous)";
1634     else
1635       OS << NameBuffer;
1636   }
1637 }
1638 
1639 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1640   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1641 }
1642 
1643 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1644                                          const PrintingPolicy &P) const {
1645   const DeclContext *Ctx = getDeclContext();
1646 
1647   // For ObjC methods and properties, look through categories and use the
1648   // interface as context.
1649   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1650     if (auto *ID = MD->getClassInterface())
1651       Ctx = ID;
1652   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1653     if (auto *MD = PD->getGetterMethodDecl())
1654       if (auto *ID = MD->getClassInterface())
1655         Ctx = ID;
1656   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1657     if (auto *CI = ID->getContainingInterface())
1658       Ctx = CI;
1659   }
1660 
1661   if (Ctx->isFunctionOrMethod())
1662     return;
1663 
1664   using ContextsTy = SmallVector<const DeclContext *, 8>;
1665   ContextsTy Contexts;
1666 
1667   // Collect named contexts.
1668   DeclarationName NameInScope = getDeclName();
1669   for (; Ctx; Ctx = Ctx->getParent()) {
1670     // Suppress anonymous namespace if requested.
1671     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1672         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1673       continue;
1674 
1675     // Suppress inline namespace if it doesn't make the result ambiguous.
1676     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1677         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1678       continue;
1679 
1680     // Skip non-named contexts such as linkage specifications and ExportDecls.
1681     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1682     if (!ND)
1683       continue;
1684 
1685     Contexts.push_back(Ctx);
1686     NameInScope = ND->getDeclName();
1687   }
1688 
1689   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1690     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1691       OS << Spec->getName();
1692       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1693       printTemplateArgumentList(
1694           OS, TemplateArgs.asArray(), P,
1695           Spec->getSpecializedTemplate()->getTemplateParameters());
1696     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1697       if (ND->isAnonymousNamespace()) {
1698         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1699                                 : "(anonymous namespace)");
1700       }
1701       else
1702         OS << *ND;
1703     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1704       if (!RD->getIdentifier())
1705         OS << "(anonymous " << RD->getKindName() << ')';
1706       else
1707         OS << *RD;
1708     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1709       const FunctionProtoType *FT = nullptr;
1710       if (FD->hasWrittenPrototype())
1711         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1712 
1713       OS << *FD << '(';
1714       if (FT) {
1715         unsigned NumParams = FD->getNumParams();
1716         for (unsigned i = 0; i < NumParams; ++i) {
1717           if (i)
1718             OS << ", ";
1719           OS << FD->getParamDecl(i)->getType().stream(P);
1720         }
1721 
1722         if (FT->isVariadic()) {
1723           if (NumParams > 0)
1724             OS << ", ";
1725           OS << "...";
1726         }
1727       }
1728       OS << ')';
1729     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1730       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1731       // enumerator is declared in the scope that immediately contains
1732       // the enum-specifier. Each scoped enumerator is declared in the
1733       // scope of the enumeration.
1734       // For the case of unscoped enumerator, do not include in the qualified
1735       // name any information about its enum enclosing scope, as its visibility
1736       // is global.
1737       if (ED->isScoped())
1738         OS << *ED;
1739       else
1740         continue;
1741     } else {
1742       OS << *cast<NamedDecl>(DC);
1743     }
1744     OS << "::";
1745   }
1746 }
1747 
1748 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1749                                      const PrintingPolicy &Policy,
1750                                      bool Qualified) const {
1751   if (Qualified)
1752     printQualifiedName(OS, Policy);
1753   else
1754     printName(OS);
1755 }
1756 
1757 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1758   return true;
1759 }
1760 static bool isRedeclarableImpl(...) { return false; }
1761 static bool isRedeclarable(Decl::Kind K) {
1762   switch (K) {
1763 #define DECL(Type, Base) \
1764   case Decl::Type: \
1765     return isRedeclarableImpl((Type##Decl *)nullptr);
1766 #define ABSTRACT_DECL(DECL)
1767 #include "clang/AST/DeclNodes.inc"
1768   }
1769   llvm_unreachable("unknown decl kind");
1770 }
1771 
1772 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1773   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1774 
1775   // Never replace one imported declaration with another; we need both results
1776   // when re-exporting.
1777   if (OldD->isFromASTFile() && isFromASTFile())
1778     return false;
1779 
1780   // A kind mismatch implies that the declaration is not replaced.
1781   if (OldD->getKind() != getKind())
1782     return false;
1783 
1784   // For method declarations, we never replace. (Why?)
1785   if (isa<ObjCMethodDecl>(this))
1786     return false;
1787 
1788   // For parameters, pick the newer one. This is either an error or (in
1789   // Objective-C) permitted as an extension.
1790   if (isa<ParmVarDecl>(this))
1791     return true;
1792 
1793   // Inline namespaces can give us two declarations with the same
1794   // name and kind in the same scope but different contexts; we should
1795   // keep both declarations in this case.
1796   if (!this->getDeclContext()->getRedeclContext()->Equals(
1797           OldD->getDeclContext()->getRedeclContext()))
1798     return false;
1799 
1800   // Using declarations can be replaced if they import the same name from the
1801   // same context.
1802   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1803     ASTContext &Context = getASTContext();
1804     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1805            Context.getCanonicalNestedNameSpecifier(
1806                cast<UsingDecl>(OldD)->getQualifier());
1807   }
1808   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1809     ASTContext &Context = getASTContext();
1810     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1811            Context.getCanonicalNestedNameSpecifier(
1812                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1813   }
1814 
1815   if (isRedeclarable(getKind())) {
1816     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1817       return false;
1818 
1819     if (IsKnownNewer)
1820       return true;
1821 
1822     // Check whether this is actually newer than OldD. We want to keep the
1823     // newer declaration. This loop will usually only iterate once, because
1824     // OldD is usually the previous declaration.
1825     for (auto D : redecls()) {
1826       if (D == OldD)
1827         break;
1828 
1829       // If we reach the canonical declaration, then OldD is not actually older
1830       // than this one.
1831       //
1832       // FIXME: In this case, we should not add this decl to the lookup table.
1833       if (D->isCanonicalDecl())
1834         return false;
1835     }
1836 
1837     // It's a newer declaration of the same kind of declaration in the same
1838     // scope: we want this decl instead of the existing one.
1839     return true;
1840   }
1841 
1842   // In all other cases, we need to keep both declarations in case they have
1843   // different visibility. Any attempt to use the name will result in an
1844   // ambiguity if more than one is visible.
1845   return false;
1846 }
1847 
1848 bool NamedDecl::hasLinkage() const {
1849   return getFormalLinkage() != NoLinkage;
1850 }
1851 
1852 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1853   NamedDecl *ND = this;
1854   if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1855     ND = UD->getTargetDecl();
1856 
1857   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1858     return AD->getClassInterface();
1859 
1860   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1861     return AD->getNamespace();
1862 
1863   return ND;
1864 }
1865 
1866 bool NamedDecl::isCXXInstanceMember() const {
1867   if (!isCXXClassMember())
1868     return false;
1869 
1870   const NamedDecl *D = this;
1871   if (isa<UsingShadowDecl>(D))
1872     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1873 
1874   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1875     return true;
1876   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1877     return MD->isInstance();
1878   return false;
1879 }
1880 
1881 //===----------------------------------------------------------------------===//
1882 // DeclaratorDecl Implementation
1883 //===----------------------------------------------------------------------===//
1884 
1885 template <typename DeclT>
1886 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1887   if (decl->getNumTemplateParameterLists() > 0)
1888     return decl->getTemplateParameterList(0)->getTemplateLoc();
1889   return decl->getInnerLocStart();
1890 }
1891 
1892 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1893   TypeSourceInfo *TSI = getTypeSourceInfo();
1894   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1895   return SourceLocation();
1896 }
1897 
1898 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1899   TypeSourceInfo *TSI = getTypeSourceInfo();
1900   if (TSI) return TSI->getTypeLoc().getEndLoc();
1901   return SourceLocation();
1902 }
1903 
1904 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1905   if (QualifierLoc) {
1906     // Make sure the extended decl info is allocated.
1907     if (!hasExtInfo()) {
1908       // Save (non-extended) type source info pointer.
1909       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1910       // Allocate external info struct.
1911       DeclInfo = new (getASTContext()) ExtInfo;
1912       // Restore savedTInfo into (extended) decl info.
1913       getExtInfo()->TInfo = savedTInfo;
1914     }
1915     // Set qualifier info.
1916     getExtInfo()->QualifierLoc = QualifierLoc;
1917   } else if (hasExtInfo()) {
1918     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1919     getExtInfo()->QualifierLoc = QualifierLoc;
1920   }
1921 }
1922 
1923 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1924   assert(TrailingRequiresClause);
1925   // Make sure the extended decl info is allocated.
1926   if (!hasExtInfo()) {
1927     // Save (non-extended) type source info pointer.
1928     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1929     // Allocate external info struct.
1930     DeclInfo = new (getASTContext()) ExtInfo;
1931     // Restore savedTInfo into (extended) decl info.
1932     getExtInfo()->TInfo = savedTInfo;
1933   }
1934   // Set requires clause info.
1935   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1936 }
1937 
1938 void DeclaratorDecl::setTemplateParameterListsInfo(
1939     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1940   assert(!TPLists.empty());
1941   // Make sure the extended decl info is allocated.
1942   if (!hasExtInfo()) {
1943     // Save (non-extended) type source info pointer.
1944     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1945     // Allocate external info struct.
1946     DeclInfo = new (getASTContext()) ExtInfo;
1947     // Restore savedTInfo into (extended) decl info.
1948     getExtInfo()->TInfo = savedTInfo;
1949   }
1950   // Set the template parameter lists info.
1951   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1952 }
1953 
1954 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1955   return getTemplateOrInnerLocStart(this);
1956 }
1957 
1958 // Helper function: returns true if QT is or contains a type
1959 // having a postfix component.
1960 static bool typeIsPostfix(QualType QT) {
1961   while (true) {
1962     const Type* T = QT.getTypePtr();
1963     switch (T->getTypeClass()) {
1964     default:
1965       return false;
1966     case Type::Pointer:
1967       QT = cast<PointerType>(T)->getPointeeType();
1968       break;
1969     case Type::BlockPointer:
1970       QT = cast<BlockPointerType>(T)->getPointeeType();
1971       break;
1972     case Type::MemberPointer:
1973       QT = cast<MemberPointerType>(T)->getPointeeType();
1974       break;
1975     case Type::LValueReference:
1976     case Type::RValueReference:
1977       QT = cast<ReferenceType>(T)->getPointeeType();
1978       break;
1979     case Type::PackExpansion:
1980       QT = cast<PackExpansionType>(T)->getPattern();
1981       break;
1982     case Type::Paren:
1983     case Type::ConstantArray:
1984     case Type::DependentSizedArray:
1985     case Type::IncompleteArray:
1986     case Type::VariableArray:
1987     case Type::FunctionProto:
1988     case Type::FunctionNoProto:
1989       return true;
1990     }
1991   }
1992 }
1993 
1994 SourceRange DeclaratorDecl::getSourceRange() const {
1995   SourceLocation RangeEnd = getLocation();
1996   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1997     // If the declaration has no name or the type extends past the name take the
1998     // end location of the type.
1999     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2000       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2001   }
2002   return SourceRange(getOuterLocStart(), RangeEnd);
2003 }
2004 
2005 void QualifierInfo::setTemplateParameterListsInfo(
2006     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2007   // Free previous template parameters (if any).
2008   if (NumTemplParamLists > 0) {
2009     Context.Deallocate(TemplParamLists);
2010     TemplParamLists = nullptr;
2011     NumTemplParamLists = 0;
2012   }
2013   // Set info on matched template parameter lists (if any).
2014   if (!TPLists.empty()) {
2015     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2016     NumTemplParamLists = TPLists.size();
2017     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2018   }
2019 }
2020 
2021 //===----------------------------------------------------------------------===//
2022 // VarDecl Implementation
2023 //===----------------------------------------------------------------------===//
2024 
2025 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2026   switch (SC) {
2027   case SC_None:                 break;
2028   case SC_Auto:                 return "auto";
2029   case SC_Extern:               return "extern";
2030   case SC_PrivateExtern:        return "__private_extern__";
2031   case SC_Register:             return "register";
2032   case SC_Static:               return "static";
2033   }
2034 
2035   llvm_unreachable("Invalid storage class");
2036 }
2037 
2038 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2039                  SourceLocation StartLoc, SourceLocation IdLoc,
2040                  const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2041                  StorageClass SC)
2042     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2043       redeclarable_base(C) {
2044   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2045                 "VarDeclBitfields too large!");
2046   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2047                 "ParmVarDeclBitfields too large!");
2048   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2049                 "NonParmVarDeclBitfields too large!");
2050   AllBits = 0;
2051   VarDeclBits.SClass = SC;
2052   // Everything else is implicitly initialized to false.
2053 }
2054 
2055 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2056                          SourceLocation IdL, const IdentifierInfo *Id,
2057                          QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2058   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2059 }
2060 
2061 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2062   return new (C, ID)
2063       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2064               QualType(), nullptr, SC_None);
2065 }
2066 
2067 void VarDecl::setStorageClass(StorageClass SC) {
2068   assert(isLegalForVariable(SC));
2069   VarDeclBits.SClass = SC;
2070 }
2071 
2072 VarDecl::TLSKind VarDecl::getTLSKind() const {
2073   switch (VarDeclBits.TSCSpec) {
2074   case TSCS_unspecified:
2075     if (!hasAttr<ThreadAttr>() &&
2076         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2077           getASTContext().getTargetInfo().isTLSSupported() &&
2078           hasAttr<OMPThreadPrivateDeclAttr>()))
2079       return TLS_None;
2080     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2081                 LangOptions::MSVC2015)) ||
2082             hasAttr<OMPThreadPrivateDeclAttr>())
2083                ? TLS_Dynamic
2084                : TLS_Static;
2085   case TSCS___thread: // Fall through.
2086   case TSCS__Thread_local:
2087     return TLS_Static;
2088   case TSCS_thread_local:
2089     return TLS_Dynamic;
2090   }
2091   llvm_unreachable("Unknown thread storage class specifier!");
2092 }
2093 
2094 SourceRange VarDecl::getSourceRange() const {
2095   if (const Expr *Init = getInit()) {
2096     SourceLocation InitEnd = Init->getEndLoc();
2097     // If Init is implicit, ignore its source range and fallback on
2098     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2099     if (InitEnd.isValid() && InitEnd != getLocation())
2100       return SourceRange(getOuterLocStart(), InitEnd);
2101   }
2102   return DeclaratorDecl::getSourceRange();
2103 }
2104 
2105 template<typename T>
2106 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2107   // C++ [dcl.link]p1: All function types, function names with external linkage,
2108   // and variable names with external linkage have a language linkage.
2109   if (!D.hasExternalFormalLinkage())
2110     return NoLanguageLinkage;
2111 
2112   // Language linkage is a C++ concept, but saying that everything else in C has
2113   // C language linkage fits the implementation nicely.
2114   ASTContext &Context = D.getASTContext();
2115   if (!Context.getLangOpts().CPlusPlus)
2116     return CLanguageLinkage;
2117 
2118   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2119   // language linkage of the names of class members and the function type of
2120   // class member functions.
2121   const DeclContext *DC = D.getDeclContext();
2122   if (DC->isRecord())
2123     return CXXLanguageLinkage;
2124 
2125   // If the first decl is in an extern "C" context, any other redeclaration
2126   // will have C language linkage. If the first one is not in an extern "C"
2127   // context, we would have reported an error for any other decl being in one.
2128   if (isFirstInExternCContext(&D))
2129     return CLanguageLinkage;
2130   return CXXLanguageLinkage;
2131 }
2132 
2133 template<typename T>
2134 static bool isDeclExternC(const T &D) {
2135   // Since the context is ignored for class members, they can only have C++
2136   // language linkage or no language linkage.
2137   const DeclContext *DC = D.getDeclContext();
2138   if (DC->isRecord()) {
2139     assert(D.getASTContext().getLangOpts().CPlusPlus);
2140     return false;
2141   }
2142 
2143   return D.getLanguageLinkage() == CLanguageLinkage;
2144 }
2145 
2146 LanguageLinkage VarDecl::getLanguageLinkage() const {
2147   return getDeclLanguageLinkage(*this);
2148 }
2149 
2150 bool VarDecl::isExternC() const {
2151   return isDeclExternC(*this);
2152 }
2153 
2154 bool VarDecl::isInExternCContext() const {
2155   return getLexicalDeclContext()->isExternCContext();
2156 }
2157 
2158 bool VarDecl::isInExternCXXContext() const {
2159   return getLexicalDeclContext()->isExternCXXContext();
2160 }
2161 
2162 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2163 
2164 VarDecl::DefinitionKind
2165 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2166   if (isThisDeclarationADemotedDefinition())
2167     return DeclarationOnly;
2168 
2169   // C++ [basic.def]p2:
2170   //   A declaration is a definition unless [...] it contains the 'extern'
2171   //   specifier or a linkage-specification and neither an initializer [...],
2172   //   it declares a non-inline static data member in a class declaration [...],
2173   //   it declares a static data member outside a class definition and the variable
2174   //   was defined within the class with the constexpr specifier [...],
2175   // C++1y [temp.expl.spec]p15:
2176   //   An explicit specialization of a static data member or an explicit
2177   //   specialization of a static data member template is a definition if the
2178   //   declaration includes an initializer; otherwise, it is a declaration.
2179   //
2180   // FIXME: How do you declare (but not define) a partial specialization of
2181   // a static data member template outside the containing class?
2182   if (isStaticDataMember()) {
2183     if (isOutOfLine() &&
2184         !(getCanonicalDecl()->isInline() &&
2185           getCanonicalDecl()->isConstexpr()) &&
2186         (hasInit() ||
2187          // If the first declaration is out-of-line, this may be an
2188          // instantiation of an out-of-line partial specialization of a variable
2189          // template for which we have not yet instantiated the initializer.
2190          (getFirstDecl()->isOutOfLine()
2191               ? getTemplateSpecializationKind() == TSK_Undeclared
2192               : getTemplateSpecializationKind() !=
2193                     TSK_ExplicitSpecialization) ||
2194          isa<VarTemplatePartialSpecializationDecl>(this)))
2195       return Definition;
2196     if (!isOutOfLine() && isInline())
2197       return Definition;
2198     return DeclarationOnly;
2199   }
2200   // C99 6.7p5:
2201   //   A definition of an identifier is a declaration for that identifier that
2202   //   [...] causes storage to be reserved for that object.
2203   // Note: that applies for all non-file-scope objects.
2204   // C99 6.9.2p1:
2205   //   If the declaration of an identifier for an object has file scope and an
2206   //   initializer, the declaration is an external definition for the identifier
2207   if (hasInit())
2208     return Definition;
2209 
2210   if (hasDefiningAttr())
2211     return Definition;
2212 
2213   if (const auto *SAA = getAttr<SelectAnyAttr>())
2214     if (!SAA->isInherited())
2215       return Definition;
2216 
2217   // A variable template specialization (other than a static data member
2218   // template or an explicit specialization) is a declaration until we
2219   // instantiate its initializer.
2220   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2221     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2222         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2223         !VTSD->IsCompleteDefinition)
2224       return DeclarationOnly;
2225   }
2226 
2227   if (hasExternalStorage())
2228     return DeclarationOnly;
2229 
2230   // [dcl.link] p7:
2231   //   A declaration directly contained in a linkage-specification is treated
2232   //   as if it contains the extern specifier for the purpose of determining
2233   //   the linkage of the declared name and whether it is a definition.
2234   if (isSingleLineLanguageLinkage(*this))
2235     return DeclarationOnly;
2236 
2237   // C99 6.9.2p2:
2238   //   A declaration of an object that has file scope without an initializer,
2239   //   and without a storage class specifier or the scs 'static', constitutes
2240   //   a tentative definition.
2241   // No such thing in C++.
2242   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2243     return TentativeDefinition;
2244 
2245   // What's left is (in C, block-scope) declarations without initializers or
2246   // external storage. These are definitions.
2247   return Definition;
2248 }
2249 
2250 VarDecl *VarDecl::getActingDefinition() {
2251   DefinitionKind Kind = isThisDeclarationADefinition();
2252   if (Kind != TentativeDefinition)
2253     return nullptr;
2254 
2255   VarDecl *LastTentative = nullptr;
2256 
2257   // Loop through the declaration chain, starting with the most recent.
2258   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2259        Decl = Decl->getPreviousDecl()) {
2260     Kind = Decl->isThisDeclarationADefinition();
2261     if (Kind == Definition)
2262       return nullptr;
2263     // Record the first (most recent) TentativeDefinition that is encountered.
2264     if (Kind == TentativeDefinition && !LastTentative)
2265       LastTentative = Decl;
2266   }
2267 
2268   return LastTentative;
2269 }
2270 
2271 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2272   VarDecl *First = getFirstDecl();
2273   for (auto I : First->redecls()) {
2274     if (I->isThisDeclarationADefinition(C) == Definition)
2275       return I;
2276   }
2277   return nullptr;
2278 }
2279 
2280 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2281   DefinitionKind Kind = DeclarationOnly;
2282 
2283   const VarDecl *First = getFirstDecl();
2284   for (auto I : First->redecls()) {
2285     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2286     if (Kind == Definition)
2287       break;
2288   }
2289 
2290   return Kind;
2291 }
2292 
2293 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2294   for (auto I : redecls()) {
2295     if (auto Expr = I->getInit()) {
2296       D = I;
2297       return Expr;
2298     }
2299   }
2300   return nullptr;
2301 }
2302 
2303 bool VarDecl::hasInit() const {
2304   if (auto *P = dyn_cast<ParmVarDecl>(this))
2305     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2306       return false;
2307 
2308   return !Init.isNull();
2309 }
2310 
2311 Expr *VarDecl::getInit() {
2312   if (!hasInit())
2313     return nullptr;
2314 
2315   if (auto *S = Init.dyn_cast<Stmt *>())
2316     return cast<Expr>(S);
2317 
2318   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2319 }
2320 
2321 Stmt **VarDecl::getInitAddress() {
2322   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2323     return &ES->Value;
2324 
2325   return Init.getAddrOfPtr1();
2326 }
2327 
2328 VarDecl *VarDecl::getInitializingDeclaration() {
2329   VarDecl *Def = nullptr;
2330   for (auto I : redecls()) {
2331     if (I->hasInit())
2332       return I;
2333 
2334     if (I->isThisDeclarationADefinition()) {
2335       if (isStaticDataMember())
2336         return I;
2337       Def = I;
2338     }
2339   }
2340   return Def;
2341 }
2342 
2343 bool VarDecl::isOutOfLine() const {
2344   if (Decl::isOutOfLine())
2345     return true;
2346 
2347   if (!isStaticDataMember())
2348     return false;
2349 
2350   // If this static data member was instantiated from a static data member of
2351   // a class template, check whether that static data member was defined
2352   // out-of-line.
2353   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2354     return VD->isOutOfLine();
2355 
2356   return false;
2357 }
2358 
2359 void VarDecl::setInit(Expr *I) {
2360   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2361     Eval->~EvaluatedStmt();
2362     getASTContext().Deallocate(Eval);
2363   }
2364 
2365   Init = I;
2366 }
2367 
2368 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2369   const LangOptions &Lang = C.getLangOpts();
2370 
2371   // OpenCL permits const integral variables to be used in constant
2372   // expressions, like in C++98.
2373   if (!Lang.CPlusPlus && !Lang.OpenCL)
2374     return false;
2375 
2376   // Function parameters are never usable in constant expressions.
2377   if (isa<ParmVarDecl>(this))
2378     return false;
2379 
2380   // The values of weak variables are never usable in constant expressions.
2381   if (isWeak())
2382     return false;
2383 
2384   // In C++11, any variable of reference type can be used in a constant
2385   // expression if it is initialized by a constant expression.
2386   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2387     return true;
2388 
2389   // Only const objects can be used in constant expressions in C++. C++98 does
2390   // not require the variable to be non-volatile, but we consider this to be a
2391   // defect.
2392   if (!getType().isConstant(C) || getType().isVolatileQualified())
2393     return false;
2394 
2395   // In C++, const, non-volatile variables of integral or enumeration types
2396   // can be used in constant expressions.
2397   if (getType()->isIntegralOrEnumerationType())
2398     return true;
2399 
2400   // Additionally, in C++11, non-volatile constexpr variables can be used in
2401   // constant expressions.
2402   return Lang.CPlusPlus11 && isConstexpr();
2403 }
2404 
2405 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2406   // C++2a [expr.const]p3:
2407   //   A variable is usable in constant expressions after its initializing
2408   //   declaration is encountered...
2409   const VarDecl *DefVD = nullptr;
2410   const Expr *Init = getAnyInitializer(DefVD);
2411   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2412     return false;
2413   //   ... if it is a constexpr variable, or it is of reference type or of
2414   //   const-qualified integral or enumeration type, ...
2415   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2416     return false;
2417   //   ... and its initializer is a constant initializer.
2418   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2419     return false;
2420   // C++98 [expr.const]p1:
2421   //   An integral constant-expression can involve only [...] const variables
2422   //   or static data members of integral or enumeration types initialized with
2423   //   [integer] constant expressions (dcl.init)
2424   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2425       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2426     return false;
2427   return true;
2428 }
2429 
2430 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2431 /// form, which contains extra information on the evaluated value of the
2432 /// initializer.
2433 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2434   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2435   if (!Eval) {
2436     // Note: EvaluatedStmt contains an APValue, which usually holds
2437     // resources not allocated from the ASTContext.  We need to do some
2438     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2439     // where we can detect whether there's anything to clean up or not.
2440     Eval = new (getASTContext()) EvaluatedStmt;
2441     Eval->Value = Init.get<Stmt *>();
2442     Init = Eval;
2443   }
2444   return Eval;
2445 }
2446 
2447 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2448   return Init.dyn_cast<EvaluatedStmt *>();
2449 }
2450 
2451 APValue *VarDecl::evaluateValue() const {
2452   SmallVector<PartialDiagnosticAt, 8> Notes;
2453   return evaluateValueImpl(Notes, hasConstantInitialization());
2454 }
2455 
2456 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2457                                     bool IsConstantInitialization) const {
2458   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2459 
2460   const auto *Init = cast<Expr>(Eval->Value);
2461   assert(!Init->isValueDependent());
2462 
2463   // We only produce notes indicating why an initializer is non-constant the
2464   // first time it is evaluated. FIXME: The notes won't always be emitted the
2465   // first time we try evaluation, so might not be produced at all.
2466   if (Eval->WasEvaluated)
2467     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2468 
2469   if (Eval->IsEvaluating) {
2470     // FIXME: Produce a diagnostic for self-initialization.
2471     return nullptr;
2472   }
2473 
2474   Eval->IsEvaluating = true;
2475 
2476   ASTContext &Ctx = getASTContext();
2477   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2478                                             IsConstantInitialization);
2479 
2480   // In C++11, this isn't a constant initializer if we produced notes. In that
2481   // case, we can't keep the result, because it may only be correct under the
2482   // assumption that the initializer is a constant context.
2483   if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2484       !Notes.empty())
2485     Result = false;
2486 
2487   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2488   // or that it's empty (so that there's nothing to clean up) if evaluation
2489   // failed.
2490   if (!Result)
2491     Eval->Evaluated = APValue();
2492   else if (Eval->Evaluated.needsCleanup())
2493     Ctx.addDestruction(&Eval->Evaluated);
2494 
2495   Eval->IsEvaluating = false;
2496   Eval->WasEvaluated = true;
2497 
2498   return Result ? &Eval->Evaluated : nullptr;
2499 }
2500 
2501 APValue *VarDecl::getEvaluatedValue() const {
2502   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2503     if (Eval->WasEvaluated)
2504       return &Eval->Evaluated;
2505 
2506   return nullptr;
2507 }
2508 
2509 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2510   const Expr *Init = getInit();
2511   assert(Init && "no initializer");
2512 
2513   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2514   if (!Eval->CheckedForICEInit) {
2515     Eval->CheckedForICEInit = true;
2516     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2517   }
2518   return Eval->HasICEInit;
2519 }
2520 
2521 bool VarDecl::hasConstantInitialization() const {
2522   // In C, all globals (and only globals) have constant initialization.
2523   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2524     return true;
2525 
2526   // In C++, it depends on whether the evaluation at the point of definition
2527   // was evaluatable as a constant initializer.
2528   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2529     return Eval->HasConstantInitialization;
2530 
2531   return false;
2532 }
2533 
2534 bool VarDecl::checkForConstantInitialization(
2535     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2536   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2537   // If we ask for the value before we know whether we have a constant
2538   // initializer, we can compute the wrong value (for example, due to
2539   // std::is_constant_evaluated()).
2540   assert(!Eval->WasEvaluated &&
2541          "already evaluated var value before checking for constant init");
2542   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2543 
2544   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2545 
2546   // Evaluate the initializer to check whether it's a constant expression.
2547   Eval->HasConstantInitialization =
2548       evaluateValueImpl(Notes, true) && Notes.empty();
2549 
2550   // If evaluation as a constant initializer failed, allow re-evaluation as a
2551   // non-constant initializer if we later find we want the value.
2552   if (!Eval->HasConstantInitialization)
2553     Eval->WasEvaluated = false;
2554 
2555   return Eval->HasConstantInitialization;
2556 }
2557 
2558 bool VarDecl::isParameterPack() const {
2559   return isa<PackExpansionType>(getType());
2560 }
2561 
2562 template<typename DeclT>
2563 static DeclT *getDefinitionOrSelf(DeclT *D) {
2564   assert(D);
2565   if (auto *Def = D->getDefinition())
2566     return Def;
2567   return D;
2568 }
2569 
2570 bool VarDecl::isEscapingByref() const {
2571   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2572 }
2573 
2574 bool VarDecl::isNonEscapingByref() const {
2575   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2576 }
2577 
2578 bool VarDecl::hasDependentAlignment() const {
2579   QualType T = getType();
2580   return T->isDependentType() || T->isUndeducedAutoType() ||
2581          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2582            return AA->isAlignmentDependent();
2583          });
2584 }
2585 
2586 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2587   const VarDecl *VD = this;
2588 
2589   // If this is an instantiated member, walk back to the template from which
2590   // it was instantiated.
2591   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2592     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2593       VD = VD->getInstantiatedFromStaticDataMember();
2594       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2595         VD = NewVD;
2596     }
2597   }
2598 
2599   // If it's an instantiated variable template specialization, find the
2600   // template or partial specialization from which it was instantiated.
2601   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2602     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2603       auto From = VDTemplSpec->getInstantiatedFrom();
2604       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2605         while (!VTD->isMemberSpecialization()) {
2606           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2607           if (!NewVTD)
2608             break;
2609           VTD = NewVTD;
2610         }
2611         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2612       }
2613       if (auto *VTPSD =
2614               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2615         while (!VTPSD->isMemberSpecialization()) {
2616           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2617           if (!NewVTPSD)
2618             break;
2619           VTPSD = NewVTPSD;
2620         }
2621         return getDefinitionOrSelf<VarDecl>(VTPSD);
2622       }
2623     }
2624   }
2625 
2626   // If this is the pattern of a variable template, find where it was
2627   // instantiated from. FIXME: Is this necessary?
2628   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2629     while (!VarTemplate->isMemberSpecialization()) {
2630       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2631       if (!NewVT)
2632         break;
2633       VarTemplate = NewVT;
2634     }
2635 
2636     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2637   }
2638 
2639   if (VD == this)
2640     return nullptr;
2641   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2642 }
2643 
2644 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2645   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2646     return cast<VarDecl>(MSI->getInstantiatedFrom());
2647 
2648   return nullptr;
2649 }
2650 
2651 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2652   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2653     return Spec->getSpecializationKind();
2654 
2655   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2656     return MSI->getTemplateSpecializationKind();
2657 
2658   return TSK_Undeclared;
2659 }
2660 
2661 TemplateSpecializationKind
2662 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2663   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2664     return MSI->getTemplateSpecializationKind();
2665 
2666   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2667     return Spec->getSpecializationKind();
2668 
2669   return TSK_Undeclared;
2670 }
2671 
2672 SourceLocation VarDecl::getPointOfInstantiation() const {
2673   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2674     return Spec->getPointOfInstantiation();
2675 
2676   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2677     return MSI->getPointOfInstantiation();
2678 
2679   return SourceLocation();
2680 }
2681 
2682 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2683   return getASTContext().getTemplateOrSpecializationInfo(this)
2684       .dyn_cast<VarTemplateDecl *>();
2685 }
2686 
2687 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2688   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2689 }
2690 
2691 bool VarDecl::isKnownToBeDefined() const {
2692   const auto &LangOpts = getASTContext().getLangOpts();
2693   // In CUDA mode without relocatable device code, variables of form 'extern
2694   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2695   // memory pool.  These are never undefined variables, even if they appear
2696   // inside of an anon namespace or static function.
2697   //
2698   // With CUDA relocatable device code enabled, these variables don't get
2699   // special handling; they're treated like regular extern variables.
2700   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2701       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2702       isa<IncompleteArrayType>(getType()))
2703     return true;
2704 
2705   return hasDefinition();
2706 }
2707 
2708 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2709   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2710                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2711                                  !hasAttr<AlwaysDestroyAttr>()));
2712 }
2713 
2714 QualType::DestructionKind
2715 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2716   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2717     if (Eval->HasConstantDestruction)
2718       return QualType::DK_none;
2719 
2720   if (isNoDestroy(Ctx))
2721     return QualType::DK_none;
2722 
2723   return getType().isDestructedType();
2724 }
2725 
2726 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2727   assert(hasInit() && "Expect initializer to check for flexible array init");
2728   auto *Ty = getType()->getAs<RecordType>();
2729   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2730     return false;
2731   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2732   if (!List)
2733     return false;
2734   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2735   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2736   if (!InitTy)
2737     return false;
2738   return InitTy->getSize() != 0;
2739 }
2740 
2741 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2742   assert(hasInit() && "Expect initializer to check for flexible array init");
2743   auto *Ty = getType()->getAs<RecordType>();
2744   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2745     return CharUnits::Zero();
2746   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2747   if (!List)
2748     return CharUnits::Zero();
2749   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2750   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2751   if (!InitTy)
2752     return CharUnits::Zero();
2753   CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2754   const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2755   CharUnits FlexibleArrayOffset =
2756       Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2757   if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2758     return CharUnits::Zero();
2759   return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2760 }
2761 
2762 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2763   if (isStaticDataMember())
2764     // FIXME: Remove ?
2765     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2766     return getASTContext().getTemplateOrSpecializationInfo(this)
2767         .dyn_cast<MemberSpecializationInfo *>();
2768   return nullptr;
2769 }
2770 
2771 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2772                                          SourceLocation PointOfInstantiation) {
2773   assert((isa<VarTemplateSpecializationDecl>(this) ||
2774           getMemberSpecializationInfo()) &&
2775          "not a variable or static data member template specialization");
2776 
2777   if (VarTemplateSpecializationDecl *Spec =
2778           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2779     Spec->setSpecializationKind(TSK);
2780     if (TSK != TSK_ExplicitSpecialization &&
2781         PointOfInstantiation.isValid() &&
2782         Spec->getPointOfInstantiation().isInvalid()) {
2783       Spec->setPointOfInstantiation(PointOfInstantiation);
2784       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2785         L->InstantiationRequested(this);
2786     }
2787   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2788     MSI->setTemplateSpecializationKind(TSK);
2789     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2790         MSI->getPointOfInstantiation().isInvalid()) {
2791       MSI->setPointOfInstantiation(PointOfInstantiation);
2792       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2793         L->InstantiationRequested(this);
2794     }
2795   }
2796 }
2797 
2798 void
2799 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2800                                             TemplateSpecializationKind TSK) {
2801   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2802          "Previous template or instantiation?");
2803   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2804 }
2805 
2806 //===----------------------------------------------------------------------===//
2807 // ParmVarDecl Implementation
2808 //===----------------------------------------------------------------------===//
2809 
2810 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2811                                  SourceLocation StartLoc,
2812                                  SourceLocation IdLoc, IdentifierInfo *Id,
2813                                  QualType T, TypeSourceInfo *TInfo,
2814                                  StorageClass S, Expr *DefArg) {
2815   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2816                                  S, DefArg);
2817 }
2818 
2819 QualType ParmVarDecl::getOriginalType() const {
2820   TypeSourceInfo *TSI = getTypeSourceInfo();
2821   QualType T = TSI ? TSI->getType() : getType();
2822   if (const auto *DT = dyn_cast<DecayedType>(T))
2823     return DT->getOriginalType();
2824   return T;
2825 }
2826 
2827 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2828   return new (C, ID)
2829       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2830                   nullptr, QualType(), nullptr, SC_None, nullptr);
2831 }
2832 
2833 SourceRange ParmVarDecl::getSourceRange() const {
2834   if (!hasInheritedDefaultArg()) {
2835     SourceRange ArgRange = getDefaultArgRange();
2836     if (ArgRange.isValid())
2837       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2838   }
2839 
2840   // DeclaratorDecl considers the range of postfix types as overlapping with the
2841   // declaration name, but this is not the case with parameters in ObjC methods.
2842   if (isa<ObjCMethodDecl>(getDeclContext()))
2843     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2844 
2845   return DeclaratorDecl::getSourceRange();
2846 }
2847 
2848 bool ParmVarDecl::isDestroyedInCallee() const {
2849   // ns_consumed only affects code generation in ARC
2850   if (hasAttr<NSConsumedAttr>())
2851     return getASTContext().getLangOpts().ObjCAutoRefCount;
2852 
2853   // FIXME: isParamDestroyedInCallee() should probably imply
2854   // isDestructedType()
2855   auto *RT = getType()->getAs<RecordType>();
2856   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2857       getType().isDestructedType())
2858     return true;
2859 
2860   return false;
2861 }
2862 
2863 Expr *ParmVarDecl::getDefaultArg() {
2864   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2865   assert(!hasUninstantiatedDefaultArg() &&
2866          "Default argument is not yet instantiated!");
2867 
2868   Expr *Arg = getInit();
2869   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2870     if (!isa<ConstantExpr>(E))
2871       return E->getSubExpr();
2872 
2873   return Arg;
2874 }
2875 
2876 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2877   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2878   Init = defarg;
2879 }
2880 
2881 SourceRange ParmVarDecl::getDefaultArgRange() const {
2882   switch (ParmVarDeclBits.DefaultArgKind) {
2883   case DAK_None:
2884   case DAK_Unparsed:
2885     // Nothing we can do here.
2886     return SourceRange();
2887 
2888   case DAK_Uninstantiated:
2889     return getUninstantiatedDefaultArg()->getSourceRange();
2890 
2891   case DAK_Normal:
2892     if (const Expr *E = getInit())
2893       return E->getSourceRange();
2894 
2895     // Missing an actual expression, may be invalid.
2896     return SourceRange();
2897   }
2898   llvm_unreachable("Invalid default argument kind.");
2899 }
2900 
2901 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2902   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2903   Init = arg;
2904 }
2905 
2906 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2907   assert(hasUninstantiatedDefaultArg() &&
2908          "Wrong kind of initialization expression!");
2909   return cast_or_null<Expr>(Init.get<Stmt *>());
2910 }
2911 
2912 bool ParmVarDecl::hasDefaultArg() const {
2913   // FIXME: We should just return false for DAK_None here once callers are
2914   // prepared for the case that we encountered an invalid default argument and
2915   // were unable to even build an invalid expression.
2916   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2917          !Init.isNull();
2918 }
2919 
2920 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2921   getASTContext().setParameterIndex(this, parameterIndex);
2922   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2923 }
2924 
2925 unsigned ParmVarDecl::getParameterIndexLarge() const {
2926   return getASTContext().getParameterIndex(this);
2927 }
2928 
2929 //===----------------------------------------------------------------------===//
2930 // FunctionDecl Implementation
2931 //===----------------------------------------------------------------------===//
2932 
2933 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2934                            SourceLocation StartLoc,
2935                            const DeclarationNameInfo &NameInfo, QualType T,
2936                            TypeSourceInfo *TInfo, StorageClass S,
2937                            bool UsesFPIntrin, bool isInlineSpecified,
2938                            ConstexprSpecKind ConstexprKind,
2939                            Expr *TrailingRequiresClause)
2940     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2941                      StartLoc),
2942       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2943       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2944   assert(T.isNull() || T->isFunctionType());
2945   FunctionDeclBits.SClass = S;
2946   FunctionDeclBits.IsInline = isInlineSpecified;
2947   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2948   FunctionDeclBits.IsVirtualAsWritten = false;
2949   FunctionDeclBits.IsPure = false;
2950   FunctionDeclBits.HasInheritedPrototype = false;
2951   FunctionDeclBits.HasWrittenPrototype = true;
2952   FunctionDeclBits.IsDeleted = false;
2953   FunctionDeclBits.IsTrivial = false;
2954   FunctionDeclBits.IsTrivialForCall = false;
2955   FunctionDeclBits.IsDefaulted = false;
2956   FunctionDeclBits.IsExplicitlyDefaulted = false;
2957   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2958   FunctionDeclBits.HasImplicitReturnZero = false;
2959   FunctionDeclBits.IsLateTemplateParsed = false;
2960   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2961   FunctionDeclBits.InstantiationIsPending = false;
2962   FunctionDeclBits.UsesSEHTry = false;
2963   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2964   FunctionDeclBits.HasSkippedBody = false;
2965   FunctionDeclBits.WillHaveBody = false;
2966   FunctionDeclBits.IsMultiVersion = false;
2967   FunctionDeclBits.IsCopyDeductionCandidate = false;
2968   FunctionDeclBits.HasODRHash = false;
2969   if (TrailingRequiresClause)
2970     setTrailingRequiresClause(TrailingRequiresClause);
2971 }
2972 
2973 void FunctionDecl::getNameForDiagnostic(
2974     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2975   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2976   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2977   if (TemplateArgs)
2978     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2979 }
2980 
2981 bool FunctionDecl::isVariadic() const {
2982   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2983     return FT->isVariadic();
2984   return false;
2985 }
2986 
2987 FunctionDecl::DefaultedFunctionInfo *
2988 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2989                                             ArrayRef<DeclAccessPair> Lookups) {
2990   DefaultedFunctionInfo *Info = new (Context.Allocate(
2991       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2992       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2993       DefaultedFunctionInfo;
2994   Info->NumLookups = Lookups.size();
2995   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2996                           Info->getTrailingObjects<DeclAccessPair>());
2997   return Info;
2998 }
2999 
3000 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
3001   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
3002   assert(!Body && "can't replace function body with defaulted function info");
3003 
3004   FunctionDeclBits.HasDefaultedFunctionInfo = true;
3005   DefaultedInfo = Info;
3006 }
3007 
3008 FunctionDecl::DefaultedFunctionInfo *
3009 FunctionDecl::getDefaultedFunctionInfo() const {
3010   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
3011 }
3012 
3013 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3014   for (auto I : redecls()) {
3015     if (I->doesThisDeclarationHaveABody()) {
3016       Definition = I;
3017       return true;
3018     }
3019   }
3020 
3021   return false;
3022 }
3023 
3024 bool FunctionDecl::hasTrivialBody() const {
3025   Stmt *S = getBody();
3026   if (!S) {
3027     // Since we don't have a body for this function, we don't know if it's
3028     // trivial or not.
3029     return false;
3030   }
3031 
3032   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3033     return true;
3034   return false;
3035 }
3036 
3037 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3038   if (!getFriendObjectKind())
3039     return false;
3040 
3041   // Check for a friend function instantiated from a friend function
3042   // definition in a templated class.
3043   if (const FunctionDecl *InstantiatedFrom =
3044           getInstantiatedFromMemberFunction())
3045     return InstantiatedFrom->getFriendObjectKind() &&
3046            InstantiatedFrom->isThisDeclarationADefinition();
3047 
3048   // Check for a friend function template instantiated from a friend
3049   // function template definition in a templated class.
3050   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3051     if (const FunctionTemplateDecl *InstantiatedFrom =
3052             Template->getInstantiatedFromMemberTemplate())
3053       return InstantiatedFrom->getFriendObjectKind() &&
3054              InstantiatedFrom->isThisDeclarationADefinition();
3055   }
3056 
3057   return false;
3058 }
3059 
3060 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3061                              bool CheckForPendingFriendDefinition) const {
3062   for (const FunctionDecl *FD : redecls()) {
3063     if (FD->isThisDeclarationADefinition()) {
3064       Definition = FD;
3065       return true;
3066     }
3067 
3068     // If this is a friend function defined in a class template, it does not
3069     // have a body until it is used, nevertheless it is a definition, see
3070     // [temp.inst]p2:
3071     //
3072     // ... for the purpose of determining whether an instantiated redeclaration
3073     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3074     // corresponds to a definition in the template is considered to be a
3075     // definition.
3076     //
3077     // The following code must produce redefinition error:
3078     //
3079     //     template<typename T> struct C20 { friend void func_20() {} };
3080     //     C20<int> c20i;
3081     //     void func_20() {}
3082     //
3083     if (CheckForPendingFriendDefinition &&
3084         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3085       Definition = FD;
3086       return true;
3087     }
3088   }
3089 
3090   return false;
3091 }
3092 
3093 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3094   if (!hasBody(Definition))
3095     return nullptr;
3096 
3097   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3098          "definition should not have a body");
3099   if (Definition->Body)
3100     return Definition->Body.get(getASTContext().getExternalSource());
3101 
3102   return nullptr;
3103 }
3104 
3105 void FunctionDecl::setBody(Stmt *B) {
3106   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3107   Body = LazyDeclStmtPtr(B);
3108   if (B)
3109     EndRangeLoc = B->getEndLoc();
3110 }
3111 
3112 void FunctionDecl::setPure(bool P) {
3113   FunctionDeclBits.IsPure = P;
3114   if (P)
3115     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3116       Parent->markedVirtualFunctionPure();
3117 }
3118 
3119 template<std::size_t Len>
3120 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3121   IdentifierInfo *II = ND->getIdentifier();
3122   return II && II->isStr(Str);
3123 }
3124 
3125 bool FunctionDecl::isMain() const {
3126   const TranslationUnitDecl *tunit =
3127     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3128   return tunit &&
3129          !tunit->getASTContext().getLangOpts().Freestanding &&
3130          isNamed(this, "main");
3131 }
3132 
3133 bool FunctionDecl::isMSVCRTEntryPoint() const {
3134   const TranslationUnitDecl *TUnit =
3135       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3136   if (!TUnit)
3137     return false;
3138 
3139   // Even though we aren't really targeting MSVCRT if we are freestanding,
3140   // semantic analysis for these functions remains the same.
3141 
3142   // MSVCRT entry points only exist on MSVCRT targets.
3143   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3144     return false;
3145 
3146   // Nameless functions like constructors cannot be entry points.
3147   if (!getIdentifier())
3148     return false;
3149 
3150   return llvm::StringSwitch<bool>(getName())
3151       .Cases("main",     // an ANSI console app
3152              "wmain",    // a Unicode console App
3153              "WinMain",  // an ANSI GUI app
3154              "wWinMain", // a Unicode GUI app
3155              "DllMain",  // a DLL
3156              true)
3157       .Default(false);
3158 }
3159 
3160 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3161   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3162   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3163          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3164          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3165          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3166 
3167   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3168     return false;
3169 
3170   const auto *proto = getType()->castAs<FunctionProtoType>();
3171   if (proto->getNumParams() != 2 || proto->isVariadic())
3172     return false;
3173 
3174   ASTContext &Context =
3175     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3176       ->getASTContext();
3177 
3178   // The result type and first argument type are constant across all
3179   // these operators.  The second argument must be exactly void*.
3180   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3181 }
3182 
3183 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3184     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3185   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3186     return false;
3187   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3188       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3189       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3190       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3191     return false;
3192 
3193   if (isa<CXXRecordDecl>(getDeclContext()))
3194     return false;
3195 
3196   // This can only fail for an invalid 'operator new' declaration.
3197   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3198     return false;
3199 
3200   const auto *FPT = getType()->castAs<FunctionProtoType>();
3201   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3202     return false;
3203 
3204   // If this is a single-parameter function, it must be a replaceable global
3205   // allocation or deallocation function.
3206   if (FPT->getNumParams() == 1)
3207     return true;
3208 
3209   unsigned Params = 1;
3210   QualType Ty = FPT->getParamType(Params);
3211   ASTContext &Ctx = getASTContext();
3212 
3213   auto Consume = [&] {
3214     ++Params;
3215     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3216   };
3217 
3218   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3219   bool IsSizedDelete = false;
3220   if (Ctx.getLangOpts().SizedDeallocation &&
3221       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3222        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3223       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3224     IsSizedDelete = true;
3225     Consume();
3226   }
3227 
3228   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3229   // new/delete.
3230   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3231     Consume();
3232     if (AlignmentParam)
3233       *AlignmentParam = Params;
3234   }
3235 
3236   // Finally, if this is not a sized delete, the final parameter can
3237   // be a 'const std::nothrow_t&'.
3238   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3239     Ty = Ty->getPointeeType();
3240     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3241       return false;
3242     if (Ty->isNothrowT()) {
3243       if (IsNothrow)
3244         *IsNothrow = true;
3245       Consume();
3246     }
3247   }
3248 
3249   return Params == FPT->getNumParams();
3250 }
3251 
3252 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3253   if (!getBuiltinID())
3254     return false;
3255 
3256   const FunctionDecl *Definition;
3257   return hasBody(Definition) && Definition->isInlineSpecified() &&
3258          Definition->hasAttr<AlwaysInlineAttr>() &&
3259          Definition->hasAttr<GNUInlineAttr>();
3260 }
3261 
3262 bool FunctionDecl::isDestroyingOperatorDelete() const {
3263   // C++ P0722:
3264   //   Within a class C, a single object deallocation function with signature
3265   //     (T, std::destroying_delete_t, <more params>)
3266   //   is a destroying operator delete.
3267   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3268       getNumParams() < 2)
3269     return false;
3270 
3271   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3272   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3273          RD->getIdentifier()->isStr("destroying_delete_t");
3274 }
3275 
3276 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3277   return getDeclLanguageLinkage(*this);
3278 }
3279 
3280 bool FunctionDecl::isExternC() const {
3281   return isDeclExternC(*this);
3282 }
3283 
3284 bool FunctionDecl::isInExternCContext() const {
3285   if (hasAttr<OpenCLKernelAttr>())
3286     return true;
3287   return getLexicalDeclContext()->isExternCContext();
3288 }
3289 
3290 bool FunctionDecl::isInExternCXXContext() const {
3291   return getLexicalDeclContext()->isExternCXXContext();
3292 }
3293 
3294 bool FunctionDecl::isGlobal() const {
3295   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3296     return Method->isStatic();
3297 
3298   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3299     return false;
3300 
3301   for (const DeclContext *DC = getDeclContext();
3302        DC->isNamespace();
3303        DC = DC->getParent()) {
3304     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3305       if (!Namespace->getDeclName())
3306         return false;
3307     }
3308   }
3309 
3310   return true;
3311 }
3312 
3313 bool FunctionDecl::isNoReturn() const {
3314   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3315       hasAttr<C11NoReturnAttr>())
3316     return true;
3317 
3318   if (auto *FnTy = getType()->getAs<FunctionType>())
3319     return FnTy->getNoReturnAttr();
3320 
3321   return false;
3322 }
3323 
3324 
3325 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3326   if (hasAttr<TargetAttr>())
3327     return MultiVersionKind::Target;
3328   if (hasAttr<CPUDispatchAttr>())
3329     return MultiVersionKind::CPUDispatch;
3330   if (hasAttr<CPUSpecificAttr>())
3331     return MultiVersionKind::CPUSpecific;
3332   if (hasAttr<TargetClonesAttr>())
3333     return MultiVersionKind::TargetClones;
3334   return MultiVersionKind::None;
3335 }
3336 
3337 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3338   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3339 }
3340 
3341 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3342   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3343 }
3344 
3345 bool FunctionDecl::isTargetMultiVersion() const {
3346   return isMultiVersion() && hasAttr<TargetAttr>();
3347 }
3348 
3349 bool FunctionDecl::isTargetClonesMultiVersion() const {
3350   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3351 }
3352 
3353 void
3354 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3355   redeclarable_base::setPreviousDecl(PrevDecl);
3356 
3357   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3358     FunctionTemplateDecl *PrevFunTmpl
3359       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3360     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3361     FunTmpl->setPreviousDecl(PrevFunTmpl);
3362   }
3363 
3364   if (PrevDecl && PrevDecl->isInlined())
3365     setImplicitlyInline(true);
3366 }
3367 
3368 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3369 
3370 /// Returns a value indicating whether this function corresponds to a builtin
3371 /// function.
3372 ///
3373 /// The function corresponds to a built-in function if it is declared at
3374 /// translation scope or within an extern "C" block and its name matches with
3375 /// the name of a builtin. The returned value will be 0 for functions that do
3376 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3377 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3378 /// value.
3379 ///
3380 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3381 /// functions as their wrapped builtins. This shouldn't be done in general, but
3382 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3383 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3384   unsigned BuiltinID = 0;
3385 
3386   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3387     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3388   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3389     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3390   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3391     BuiltinID = A->getID();
3392   }
3393 
3394   if (!BuiltinID)
3395     return 0;
3396 
3397   // If the function is marked "overloadable", it has a different mangled name
3398   // and is not the C library function.
3399   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3400       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3401     return 0;
3402 
3403   ASTContext &Context = getASTContext();
3404   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3405     return BuiltinID;
3406 
3407   // This function has the name of a known C library
3408   // function. Determine whether it actually refers to the C library
3409   // function or whether it just has the same name.
3410 
3411   // If this is a static function, it's not a builtin.
3412   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3413     return 0;
3414 
3415   // OpenCL v1.2 s6.9.f - The library functions defined in
3416   // the C99 standard headers are not available.
3417   if (Context.getLangOpts().OpenCL &&
3418       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3419     return 0;
3420 
3421   // CUDA does not have device-side standard library. printf and malloc are the
3422   // only special cases that are supported by device-side runtime.
3423   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3424       !hasAttr<CUDAHostAttr>() &&
3425       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3426     return 0;
3427 
3428   // As AMDGCN implementation of OpenMP does not have a device-side standard
3429   // library, none of the predefined library functions except printf and malloc
3430   // should be treated as a builtin i.e. 0 should be returned for them.
3431   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3432       Context.getLangOpts().OpenMPIsDevice &&
3433       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3434       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3435     return 0;
3436 
3437   return BuiltinID;
3438 }
3439 
3440 /// getNumParams - Return the number of parameters this function must have
3441 /// based on its FunctionType.  This is the length of the ParamInfo array
3442 /// after it has been created.
3443 unsigned FunctionDecl::getNumParams() const {
3444   const auto *FPT = getType()->getAs<FunctionProtoType>();
3445   return FPT ? FPT->getNumParams() : 0;
3446 }
3447 
3448 void FunctionDecl::setParams(ASTContext &C,
3449                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3450   assert(!ParamInfo && "Already has param info!");
3451   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3452 
3453   // Zero params -> null pointer.
3454   if (!NewParamInfo.empty()) {
3455     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3456     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3457   }
3458 }
3459 
3460 /// getMinRequiredArguments - Returns the minimum number of arguments
3461 /// needed to call this function. This may be fewer than the number of
3462 /// function parameters, if some of the parameters have default
3463 /// arguments (in C++) or are parameter packs (C++11).
3464 unsigned FunctionDecl::getMinRequiredArguments() const {
3465   if (!getASTContext().getLangOpts().CPlusPlus)
3466     return getNumParams();
3467 
3468   // Note that it is possible for a parameter with no default argument to
3469   // follow a parameter with a default argument.
3470   unsigned NumRequiredArgs = 0;
3471   unsigned MinParamsSoFar = 0;
3472   for (auto *Param : parameters()) {
3473     if (!Param->isParameterPack()) {
3474       ++MinParamsSoFar;
3475       if (!Param->hasDefaultArg())
3476         NumRequiredArgs = MinParamsSoFar;
3477     }
3478   }
3479   return NumRequiredArgs;
3480 }
3481 
3482 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3483   return getNumParams() == 1 ||
3484          (getNumParams() > 1 &&
3485           std::all_of(param_begin() + 1, param_end(),
3486                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3487 }
3488 
3489 /// The combination of the extern and inline keywords under MSVC forces
3490 /// the function to be required.
3491 ///
3492 /// Note: This function assumes that we will only get called when isInlined()
3493 /// would return true for this FunctionDecl.
3494 bool FunctionDecl::isMSExternInline() const {
3495   assert(isInlined() && "expected to get called on an inlined function!");
3496 
3497   const ASTContext &Context = getASTContext();
3498   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3499       !hasAttr<DLLExportAttr>())
3500     return false;
3501 
3502   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3503        FD = FD->getPreviousDecl())
3504     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3505       return true;
3506 
3507   return false;
3508 }
3509 
3510 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3511   if (Redecl->getStorageClass() != SC_Extern)
3512     return false;
3513 
3514   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3515        FD = FD->getPreviousDecl())
3516     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3517       return false;
3518 
3519   return true;
3520 }
3521 
3522 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3523   // Only consider file-scope declarations in this test.
3524   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3525     return false;
3526 
3527   // Only consider explicit declarations; the presence of a builtin for a
3528   // libcall shouldn't affect whether a definition is externally visible.
3529   if (Redecl->isImplicit())
3530     return false;
3531 
3532   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3533     return true; // Not an inline definition
3534 
3535   return false;
3536 }
3537 
3538 /// For a function declaration in C or C++, determine whether this
3539 /// declaration causes the definition to be externally visible.
3540 ///
3541 /// For instance, this determines if adding the current declaration to the set
3542 /// of redeclarations of the given functions causes
3543 /// isInlineDefinitionExternallyVisible to change from false to true.
3544 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3545   assert(!doesThisDeclarationHaveABody() &&
3546          "Must have a declaration without a body.");
3547 
3548   ASTContext &Context = getASTContext();
3549 
3550   if (Context.getLangOpts().MSVCCompat) {
3551     const FunctionDecl *Definition;
3552     if (hasBody(Definition) && Definition->isInlined() &&
3553         redeclForcesDefMSVC(this))
3554       return true;
3555   }
3556 
3557   if (Context.getLangOpts().CPlusPlus)
3558     return false;
3559 
3560   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3561     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3562     // an externally visible definition.
3563     //
3564     // FIXME: What happens if gnu_inline gets added on after the first
3565     // declaration?
3566     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3567       return false;
3568 
3569     const FunctionDecl *Prev = this;
3570     bool FoundBody = false;
3571     while ((Prev = Prev->getPreviousDecl())) {
3572       FoundBody |= Prev->doesThisDeclarationHaveABody();
3573 
3574       if (Prev->doesThisDeclarationHaveABody()) {
3575         // If it's not the case that both 'inline' and 'extern' are
3576         // specified on the definition, then it is always externally visible.
3577         if (!Prev->isInlineSpecified() ||
3578             Prev->getStorageClass() != SC_Extern)
3579           return false;
3580       } else if (Prev->isInlineSpecified() &&
3581                  Prev->getStorageClass() != SC_Extern) {
3582         return false;
3583       }
3584     }
3585     return FoundBody;
3586   }
3587 
3588   // C99 6.7.4p6:
3589   //   [...] If all of the file scope declarations for a function in a
3590   //   translation unit include the inline function specifier without extern,
3591   //   then the definition in that translation unit is an inline definition.
3592   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3593     return false;
3594   const FunctionDecl *Prev = this;
3595   bool FoundBody = false;
3596   while ((Prev = Prev->getPreviousDecl())) {
3597     FoundBody |= Prev->doesThisDeclarationHaveABody();
3598     if (RedeclForcesDefC99(Prev))
3599       return false;
3600   }
3601   return FoundBody;
3602 }
3603 
3604 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3605   const TypeSourceInfo *TSI = getTypeSourceInfo();
3606   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3607              : FunctionTypeLoc();
3608 }
3609 
3610 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3611   FunctionTypeLoc FTL = getFunctionTypeLoc();
3612   if (!FTL)
3613     return SourceRange();
3614 
3615   // Skip self-referential return types.
3616   const SourceManager &SM = getASTContext().getSourceManager();
3617   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3618   SourceLocation Boundary = getNameInfo().getBeginLoc();
3619   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3620       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3621     return SourceRange();
3622 
3623   return RTRange;
3624 }
3625 
3626 SourceRange FunctionDecl::getParametersSourceRange() const {
3627   unsigned NP = getNumParams();
3628   SourceLocation EllipsisLoc = getEllipsisLoc();
3629 
3630   if (NP == 0 && EllipsisLoc.isInvalid())
3631     return SourceRange();
3632 
3633   SourceLocation Begin =
3634       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3635   SourceLocation End = EllipsisLoc.isValid()
3636                            ? EllipsisLoc
3637                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3638 
3639   return SourceRange(Begin, End);
3640 }
3641 
3642 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3643   FunctionTypeLoc FTL = getFunctionTypeLoc();
3644   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3645 }
3646 
3647 /// For an inline function definition in C, or for a gnu_inline function
3648 /// in C++, determine whether the definition will be externally visible.
3649 ///
3650 /// Inline function definitions are always available for inlining optimizations.
3651 /// However, depending on the language dialect, declaration specifiers, and
3652 /// attributes, the definition of an inline function may or may not be
3653 /// "externally" visible to other translation units in the program.
3654 ///
3655 /// In C99, inline definitions are not externally visible by default. However,
3656 /// if even one of the global-scope declarations is marked "extern inline", the
3657 /// inline definition becomes externally visible (C99 6.7.4p6).
3658 ///
3659 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3660 /// definition, we use the GNU semantics for inline, which are nearly the
3661 /// opposite of C99 semantics. In particular, "inline" by itself will create
3662 /// an externally visible symbol, but "extern inline" will not create an
3663 /// externally visible symbol.
3664 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3665   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3666           hasAttr<AliasAttr>()) &&
3667          "Must be a function definition");
3668   assert(isInlined() && "Function must be inline");
3669   ASTContext &Context = getASTContext();
3670 
3671   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3672     // Note: If you change the logic here, please change
3673     // doesDeclarationForceExternallyVisibleDefinition as well.
3674     //
3675     // If it's not the case that both 'inline' and 'extern' are
3676     // specified on the definition, then this inline definition is
3677     // externally visible.
3678     if (Context.getLangOpts().CPlusPlus)
3679       return false;
3680     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3681       return true;
3682 
3683     // If any declaration is 'inline' but not 'extern', then this definition
3684     // is externally visible.
3685     for (auto Redecl : redecls()) {
3686       if (Redecl->isInlineSpecified() &&
3687           Redecl->getStorageClass() != SC_Extern)
3688         return true;
3689     }
3690 
3691     return false;
3692   }
3693 
3694   // The rest of this function is C-only.
3695   assert(!Context.getLangOpts().CPlusPlus &&
3696          "should not use C inline rules in C++");
3697 
3698   // C99 6.7.4p6:
3699   //   [...] If all of the file scope declarations for a function in a
3700   //   translation unit include the inline function specifier without extern,
3701   //   then the definition in that translation unit is an inline definition.
3702   for (auto Redecl : redecls()) {
3703     if (RedeclForcesDefC99(Redecl))
3704       return true;
3705   }
3706 
3707   // C99 6.7.4p6:
3708   //   An inline definition does not provide an external definition for the
3709   //   function, and does not forbid an external definition in another
3710   //   translation unit.
3711   return false;
3712 }
3713 
3714 /// getOverloadedOperator - Which C++ overloaded operator this
3715 /// function represents, if any.
3716 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3717   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3718     return getDeclName().getCXXOverloadedOperator();
3719   return OO_None;
3720 }
3721 
3722 /// getLiteralIdentifier - The literal suffix identifier this function
3723 /// represents, if any.
3724 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3725   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3726     return getDeclName().getCXXLiteralIdentifier();
3727   return nullptr;
3728 }
3729 
3730 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3731   if (TemplateOrSpecialization.isNull())
3732     return TK_NonTemplate;
3733   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3734     return TK_FunctionTemplate;
3735   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3736     return TK_MemberSpecialization;
3737   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3738     return TK_FunctionTemplateSpecialization;
3739   if (TemplateOrSpecialization.is
3740                                <DependentFunctionTemplateSpecializationInfo*>())
3741     return TK_DependentFunctionTemplateSpecialization;
3742 
3743   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3744 }
3745 
3746 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3747   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3748     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3749 
3750   return nullptr;
3751 }
3752 
3753 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3754   if (auto *MSI =
3755           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3756     return MSI;
3757   if (auto *FTSI = TemplateOrSpecialization
3758                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3759     return FTSI->getMemberSpecializationInfo();
3760   return nullptr;
3761 }
3762 
3763 void
3764 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3765                                                FunctionDecl *FD,
3766                                                TemplateSpecializationKind TSK) {
3767   assert(TemplateOrSpecialization.isNull() &&
3768          "Member function is already a specialization");
3769   MemberSpecializationInfo *Info
3770     = new (C) MemberSpecializationInfo(FD, TSK);
3771   TemplateOrSpecialization = Info;
3772 }
3773 
3774 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3775   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3776 }
3777 
3778 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3779   assert(TemplateOrSpecialization.isNull() &&
3780          "Member function is already a specialization");
3781   TemplateOrSpecialization = Template;
3782 }
3783 
3784 bool FunctionDecl::isImplicitlyInstantiable() const {
3785   // If the function is invalid, it can't be implicitly instantiated.
3786   if (isInvalidDecl())
3787     return false;
3788 
3789   switch (getTemplateSpecializationKindForInstantiation()) {
3790   case TSK_Undeclared:
3791   case TSK_ExplicitInstantiationDefinition:
3792   case TSK_ExplicitSpecialization:
3793     return false;
3794 
3795   case TSK_ImplicitInstantiation:
3796     return true;
3797 
3798   case TSK_ExplicitInstantiationDeclaration:
3799     // Handled below.
3800     break;
3801   }
3802 
3803   // Find the actual template from which we will instantiate.
3804   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3805   bool HasPattern = false;
3806   if (PatternDecl)
3807     HasPattern = PatternDecl->hasBody(PatternDecl);
3808 
3809   // C++0x [temp.explicit]p9:
3810   //   Except for inline functions, other explicit instantiation declarations
3811   //   have the effect of suppressing the implicit instantiation of the entity
3812   //   to which they refer.
3813   if (!HasPattern || !PatternDecl)
3814     return true;
3815 
3816   return PatternDecl->isInlined();
3817 }
3818 
3819 bool FunctionDecl::isTemplateInstantiation() const {
3820   // FIXME: Remove this, it's not clear what it means. (Which template
3821   // specialization kind?)
3822   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3823 }
3824 
3825 FunctionDecl *
3826 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3827   // If this is a generic lambda call operator specialization, its
3828   // instantiation pattern is always its primary template's pattern
3829   // even if its primary template was instantiated from another
3830   // member template (which happens with nested generic lambdas).
3831   // Since a lambda's call operator's body is transformed eagerly,
3832   // we don't have to go hunting for a prototype definition template
3833   // (i.e. instantiated-from-member-template) to use as an instantiation
3834   // pattern.
3835 
3836   if (isGenericLambdaCallOperatorSpecialization(
3837           dyn_cast<CXXMethodDecl>(this))) {
3838     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3839     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3840   }
3841 
3842   // Check for a declaration of this function that was instantiated from a
3843   // friend definition.
3844   const FunctionDecl *FD = nullptr;
3845   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3846     FD = this;
3847 
3848   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3849     if (ForDefinition &&
3850         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3851       return nullptr;
3852     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3853   }
3854 
3855   if (ForDefinition &&
3856       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3857     return nullptr;
3858 
3859   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3860     // If we hit a point where the user provided a specialization of this
3861     // template, we're done looking.
3862     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3863       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3864       if (!NewPrimary)
3865         break;
3866       Primary = NewPrimary;
3867     }
3868 
3869     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3870   }
3871 
3872   return nullptr;
3873 }
3874 
3875 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3876   if (FunctionTemplateSpecializationInfo *Info
3877         = TemplateOrSpecialization
3878             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3879     return Info->getTemplate();
3880   }
3881   return nullptr;
3882 }
3883 
3884 FunctionTemplateSpecializationInfo *
3885 FunctionDecl::getTemplateSpecializationInfo() const {
3886   return TemplateOrSpecialization
3887       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3888 }
3889 
3890 const TemplateArgumentList *
3891 FunctionDecl::getTemplateSpecializationArgs() const {
3892   if (FunctionTemplateSpecializationInfo *Info
3893         = TemplateOrSpecialization
3894             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3895     return Info->TemplateArguments;
3896   }
3897   return nullptr;
3898 }
3899 
3900 const ASTTemplateArgumentListInfo *
3901 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3902   if (FunctionTemplateSpecializationInfo *Info
3903         = TemplateOrSpecialization
3904             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3905     return Info->TemplateArgumentsAsWritten;
3906   }
3907   return nullptr;
3908 }
3909 
3910 void
3911 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3912                                                 FunctionTemplateDecl *Template,
3913                                      const TemplateArgumentList *TemplateArgs,
3914                                                 void *InsertPos,
3915                                                 TemplateSpecializationKind TSK,
3916                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3917                                           SourceLocation PointOfInstantiation) {
3918   assert((TemplateOrSpecialization.isNull() ||
3919           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3920          "Member function is already a specialization");
3921   assert(TSK != TSK_Undeclared &&
3922          "Must specify the type of function template specialization");
3923   assert((TemplateOrSpecialization.isNull() ||
3924           TSK == TSK_ExplicitSpecialization) &&
3925          "Member specialization must be an explicit specialization");
3926   FunctionTemplateSpecializationInfo *Info =
3927       FunctionTemplateSpecializationInfo::Create(
3928           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3929           PointOfInstantiation,
3930           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3931   TemplateOrSpecialization = Info;
3932   Template->addSpecialization(Info, InsertPos);
3933 }
3934 
3935 void
3936 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3937                                     const UnresolvedSetImpl &Templates,
3938                              const TemplateArgumentListInfo &TemplateArgs) {
3939   assert(TemplateOrSpecialization.isNull());
3940   DependentFunctionTemplateSpecializationInfo *Info =
3941       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3942                                                           TemplateArgs);
3943   TemplateOrSpecialization = Info;
3944 }
3945 
3946 DependentFunctionTemplateSpecializationInfo *
3947 FunctionDecl::getDependentSpecializationInfo() const {
3948   return TemplateOrSpecialization
3949       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3950 }
3951 
3952 DependentFunctionTemplateSpecializationInfo *
3953 DependentFunctionTemplateSpecializationInfo::Create(
3954     ASTContext &Context, const UnresolvedSetImpl &Ts,
3955     const TemplateArgumentListInfo &TArgs) {
3956   void *Buffer = Context.Allocate(
3957       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3958           TArgs.size(), Ts.size()));
3959   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3960 }
3961 
3962 DependentFunctionTemplateSpecializationInfo::
3963 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3964                                       const TemplateArgumentListInfo &TArgs)
3965   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3966   NumTemplates = Ts.size();
3967   NumArgs = TArgs.size();
3968 
3969   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3970   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3971     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3972 
3973   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3974   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3975     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3976 }
3977 
3978 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3979   // For a function template specialization, query the specialization
3980   // information object.
3981   if (FunctionTemplateSpecializationInfo *FTSInfo =
3982           TemplateOrSpecialization
3983               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3984     return FTSInfo->getTemplateSpecializationKind();
3985 
3986   if (MemberSpecializationInfo *MSInfo =
3987           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3988     return MSInfo->getTemplateSpecializationKind();
3989 
3990   return TSK_Undeclared;
3991 }
3992 
3993 TemplateSpecializationKind
3994 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3995   // This is the same as getTemplateSpecializationKind(), except that for a
3996   // function that is both a function template specialization and a member
3997   // specialization, we prefer the member specialization information. Eg:
3998   //
3999   // template<typename T> struct A {
4000   //   template<typename U> void f() {}
4001   //   template<> void f<int>() {}
4002   // };
4003   //
4004   // For A<int>::f<int>():
4005   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4006   // * getTemplateSpecializationKindForInstantiation() will return
4007   //       TSK_ImplicitInstantiation
4008   //
4009   // This reflects the facts that A<int>::f<int> is an explicit specialization
4010   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4011   // from A::f<int> if a definition is needed.
4012   if (FunctionTemplateSpecializationInfo *FTSInfo =
4013           TemplateOrSpecialization
4014               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4015     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4016       return MSInfo->getTemplateSpecializationKind();
4017     return FTSInfo->getTemplateSpecializationKind();
4018   }
4019 
4020   if (MemberSpecializationInfo *MSInfo =
4021           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4022     return MSInfo->getTemplateSpecializationKind();
4023 
4024   return TSK_Undeclared;
4025 }
4026 
4027 void
4028 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4029                                           SourceLocation PointOfInstantiation) {
4030   if (FunctionTemplateSpecializationInfo *FTSInfo
4031         = TemplateOrSpecialization.dyn_cast<
4032                                     FunctionTemplateSpecializationInfo*>()) {
4033     FTSInfo->setTemplateSpecializationKind(TSK);
4034     if (TSK != TSK_ExplicitSpecialization &&
4035         PointOfInstantiation.isValid() &&
4036         FTSInfo->getPointOfInstantiation().isInvalid()) {
4037       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4038       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4039         L->InstantiationRequested(this);
4040     }
4041   } else if (MemberSpecializationInfo *MSInfo
4042              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4043     MSInfo->setTemplateSpecializationKind(TSK);
4044     if (TSK != TSK_ExplicitSpecialization &&
4045         PointOfInstantiation.isValid() &&
4046         MSInfo->getPointOfInstantiation().isInvalid()) {
4047       MSInfo->setPointOfInstantiation(PointOfInstantiation);
4048       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4049         L->InstantiationRequested(this);
4050     }
4051   } else
4052     llvm_unreachable("Function cannot have a template specialization kind");
4053 }
4054 
4055 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4056   if (FunctionTemplateSpecializationInfo *FTSInfo
4057         = TemplateOrSpecialization.dyn_cast<
4058                                         FunctionTemplateSpecializationInfo*>())
4059     return FTSInfo->getPointOfInstantiation();
4060   if (MemberSpecializationInfo *MSInfo =
4061           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4062     return MSInfo->getPointOfInstantiation();
4063 
4064   return SourceLocation();
4065 }
4066 
4067 bool FunctionDecl::isOutOfLine() const {
4068   if (Decl::isOutOfLine())
4069     return true;
4070 
4071   // If this function was instantiated from a member function of a
4072   // class template, check whether that member function was defined out-of-line.
4073   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4074     const FunctionDecl *Definition;
4075     if (FD->hasBody(Definition))
4076       return Definition->isOutOfLine();
4077   }
4078 
4079   // If this function was instantiated from a function template,
4080   // check whether that function template was defined out-of-line.
4081   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4082     const FunctionDecl *Definition;
4083     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4084       return Definition->isOutOfLine();
4085   }
4086 
4087   return false;
4088 }
4089 
4090 SourceRange FunctionDecl::getSourceRange() const {
4091   return SourceRange(getOuterLocStart(), EndRangeLoc);
4092 }
4093 
4094 unsigned FunctionDecl::getMemoryFunctionKind() const {
4095   IdentifierInfo *FnInfo = getIdentifier();
4096 
4097   if (!FnInfo)
4098     return 0;
4099 
4100   // Builtin handling.
4101   switch (getBuiltinID()) {
4102   case Builtin::BI__builtin_memset:
4103   case Builtin::BI__builtin___memset_chk:
4104   case Builtin::BImemset:
4105     return Builtin::BImemset;
4106 
4107   case Builtin::BI__builtin_memcpy:
4108   case Builtin::BI__builtin___memcpy_chk:
4109   case Builtin::BImemcpy:
4110     return Builtin::BImemcpy;
4111 
4112   case Builtin::BI__builtin_mempcpy:
4113   case Builtin::BI__builtin___mempcpy_chk:
4114   case Builtin::BImempcpy:
4115     return Builtin::BImempcpy;
4116 
4117   case Builtin::BI__builtin_memmove:
4118   case Builtin::BI__builtin___memmove_chk:
4119   case Builtin::BImemmove:
4120     return Builtin::BImemmove;
4121 
4122   case Builtin::BIstrlcpy:
4123   case Builtin::BI__builtin___strlcpy_chk:
4124     return Builtin::BIstrlcpy;
4125 
4126   case Builtin::BIstrlcat:
4127   case Builtin::BI__builtin___strlcat_chk:
4128     return Builtin::BIstrlcat;
4129 
4130   case Builtin::BI__builtin_memcmp:
4131   case Builtin::BImemcmp:
4132     return Builtin::BImemcmp;
4133 
4134   case Builtin::BI__builtin_bcmp:
4135   case Builtin::BIbcmp:
4136     return Builtin::BIbcmp;
4137 
4138   case Builtin::BI__builtin_strncpy:
4139   case Builtin::BI__builtin___strncpy_chk:
4140   case Builtin::BIstrncpy:
4141     return Builtin::BIstrncpy;
4142 
4143   case Builtin::BI__builtin_strncmp:
4144   case Builtin::BIstrncmp:
4145     return Builtin::BIstrncmp;
4146 
4147   case Builtin::BI__builtin_strncasecmp:
4148   case Builtin::BIstrncasecmp:
4149     return Builtin::BIstrncasecmp;
4150 
4151   case Builtin::BI__builtin_strncat:
4152   case Builtin::BI__builtin___strncat_chk:
4153   case Builtin::BIstrncat:
4154     return Builtin::BIstrncat;
4155 
4156   case Builtin::BI__builtin_strndup:
4157   case Builtin::BIstrndup:
4158     return Builtin::BIstrndup;
4159 
4160   case Builtin::BI__builtin_strlen:
4161   case Builtin::BIstrlen:
4162     return Builtin::BIstrlen;
4163 
4164   case Builtin::BI__builtin_bzero:
4165   case Builtin::BIbzero:
4166     return Builtin::BIbzero;
4167 
4168   case Builtin::BIfree:
4169     return Builtin::BIfree;
4170 
4171   default:
4172     if (isExternC()) {
4173       if (FnInfo->isStr("memset"))
4174         return Builtin::BImemset;
4175       if (FnInfo->isStr("memcpy"))
4176         return Builtin::BImemcpy;
4177       if (FnInfo->isStr("mempcpy"))
4178         return Builtin::BImempcpy;
4179       if (FnInfo->isStr("memmove"))
4180         return Builtin::BImemmove;
4181       if (FnInfo->isStr("memcmp"))
4182         return Builtin::BImemcmp;
4183       if (FnInfo->isStr("bcmp"))
4184         return Builtin::BIbcmp;
4185       if (FnInfo->isStr("strncpy"))
4186         return Builtin::BIstrncpy;
4187       if (FnInfo->isStr("strncmp"))
4188         return Builtin::BIstrncmp;
4189       if (FnInfo->isStr("strncasecmp"))
4190         return Builtin::BIstrncasecmp;
4191       if (FnInfo->isStr("strncat"))
4192         return Builtin::BIstrncat;
4193       if (FnInfo->isStr("strndup"))
4194         return Builtin::BIstrndup;
4195       if (FnInfo->isStr("strlen"))
4196         return Builtin::BIstrlen;
4197       if (FnInfo->isStr("bzero"))
4198         return Builtin::BIbzero;
4199     } else if (isInStdNamespace()) {
4200       if (FnInfo->isStr("free"))
4201         return Builtin::BIfree;
4202     }
4203     break;
4204   }
4205   return 0;
4206 }
4207 
4208 unsigned FunctionDecl::getODRHash() const {
4209   assert(hasODRHash());
4210   return ODRHash;
4211 }
4212 
4213 unsigned FunctionDecl::getODRHash() {
4214   if (hasODRHash())
4215     return ODRHash;
4216 
4217   if (auto *FT = getInstantiatedFromMemberFunction()) {
4218     setHasODRHash(true);
4219     ODRHash = FT->getODRHash();
4220     return ODRHash;
4221   }
4222 
4223   class ODRHash Hash;
4224   Hash.AddFunctionDecl(this);
4225   setHasODRHash(true);
4226   ODRHash = Hash.CalculateHash();
4227   return ODRHash;
4228 }
4229 
4230 //===----------------------------------------------------------------------===//
4231 // FieldDecl Implementation
4232 //===----------------------------------------------------------------------===//
4233 
4234 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4235                              SourceLocation StartLoc, SourceLocation IdLoc,
4236                              IdentifierInfo *Id, QualType T,
4237                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4238                              InClassInitStyle InitStyle) {
4239   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4240                                BW, Mutable, InitStyle);
4241 }
4242 
4243 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4244   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4245                                SourceLocation(), nullptr, QualType(), nullptr,
4246                                nullptr, false, ICIS_NoInit);
4247 }
4248 
4249 bool FieldDecl::isAnonymousStructOrUnion() const {
4250   if (!isImplicit() || getDeclName())
4251     return false;
4252 
4253   if (const auto *Record = getType()->getAs<RecordType>())
4254     return Record->getDecl()->isAnonymousStructOrUnion();
4255 
4256   return false;
4257 }
4258 
4259 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4260   assert(isBitField() && "not a bitfield");
4261   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4262 }
4263 
4264 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4265   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4266          getBitWidthValue(Ctx) == 0;
4267 }
4268 
4269 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4270   if (isZeroLengthBitField(Ctx))
4271     return true;
4272 
4273   // C++2a [intro.object]p7:
4274   //   An object has nonzero size if it
4275   //     -- is not a potentially-overlapping subobject, or
4276   if (!hasAttr<NoUniqueAddressAttr>())
4277     return false;
4278 
4279   //     -- is not of class type, or
4280   const auto *RT = getType()->getAs<RecordType>();
4281   if (!RT)
4282     return false;
4283   const RecordDecl *RD = RT->getDecl()->getDefinition();
4284   if (!RD) {
4285     assert(isInvalidDecl() && "valid field has incomplete type");
4286     return false;
4287   }
4288 
4289   //     -- [has] virtual member functions or virtual base classes, or
4290   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4291   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4292   if (!CXXRD->isEmpty())
4293     return false;
4294 
4295   // Otherwise, [...] the circumstances under which the object has zero size
4296   // are implementation-defined.
4297   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4298   // ABI will do.
4299   return true;
4300 }
4301 
4302 unsigned FieldDecl::getFieldIndex() const {
4303   const FieldDecl *Canonical = getCanonicalDecl();
4304   if (Canonical != this)
4305     return Canonical->getFieldIndex();
4306 
4307   if (CachedFieldIndex) return CachedFieldIndex - 1;
4308 
4309   unsigned Index = 0;
4310   const RecordDecl *RD = getParent()->getDefinition();
4311   assert(RD && "requested index for field of struct with no definition");
4312 
4313   for (auto *Field : RD->fields()) {
4314     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4315     ++Index;
4316   }
4317 
4318   assert(CachedFieldIndex && "failed to find field in parent");
4319   return CachedFieldIndex - 1;
4320 }
4321 
4322 SourceRange FieldDecl::getSourceRange() const {
4323   const Expr *FinalExpr = getInClassInitializer();
4324   if (!FinalExpr)
4325     FinalExpr = getBitWidth();
4326   if (FinalExpr)
4327     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4328   return DeclaratorDecl::getSourceRange();
4329 }
4330 
4331 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4332   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4333          "capturing type in non-lambda or captured record.");
4334   assert(InitStorage.getInt() == ISK_NoInit &&
4335          InitStorage.getPointer() == nullptr &&
4336          "bit width, initializer or captured type already set");
4337   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4338                                ISK_CapturedVLAType);
4339 }
4340 
4341 //===----------------------------------------------------------------------===//
4342 // TagDecl Implementation
4343 //===----------------------------------------------------------------------===//
4344 
4345 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4346                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4347                  SourceLocation StartL)
4348     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4349       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4350   assert((DK != Enum || TK == TTK_Enum) &&
4351          "EnumDecl not matched with TTK_Enum");
4352   setPreviousDecl(PrevDecl);
4353   setTagKind(TK);
4354   setCompleteDefinition(false);
4355   setBeingDefined(false);
4356   setEmbeddedInDeclarator(false);
4357   setFreeStanding(false);
4358   setCompleteDefinitionRequired(false);
4359   TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4360 }
4361 
4362 SourceLocation TagDecl::getOuterLocStart() const {
4363   return getTemplateOrInnerLocStart(this);
4364 }
4365 
4366 SourceRange TagDecl::getSourceRange() const {
4367   SourceLocation RBraceLoc = BraceRange.getEnd();
4368   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4369   return SourceRange(getOuterLocStart(), E);
4370 }
4371 
4372 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4373 
4374 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4375   TypedefNameDeclOrQualifier = TDD;
4376   if (const Type *T = getTypeForDecl()) {
4377     (void)T;
4378     assert(T->isLinkageValid());
4379   }
4380   assert(isLinkageValid());
4381 }
4382 
4383 void TagDecl::startDefinition() {
4384   setBeingDefined(true);
4385 
4386   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4387     struct CXXRecordDecl::DefinitionData *Data =
4388       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4389     for (auto I : redecls())
4390       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4391   }
4392 }
4393 
4394 void TagDecl::completeDefinition() {
4395   assert((!isa<CXXRecordDecl>(this) ||
4396           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4397          "definition completed but not started");
4398 
4399   setCompleteDefinition(true);
4400   setBeingDefined(false);
4401 
4402   if (ASTMutationListener *L = getASTMutationListener())
4403     L->CompletedTagDefinition(this);
4404 }
4405 
4406 TagDecl *TagDecl::getDefinition() const {
4407   if (isCompleteDefinition())
4408     return const_cast<TagDecl *>(this);
4409 
4410   // If it's possible for us to have an out-of-date definition, check now.
4411   if (mayHaveOutOfDateDef()) {
4412     if (IdentifierInfo *II = getIdentifier()) {
4413       if (II->isOutOfDate()) {
4414         updateOutOfDate(*II);
4415       }
4416     }
4417   }
4418 
4419   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4420     return CXXRD->getDefinition();
4421 
4422   for (auto R : redecls())
4423     if (R->isCompleteDefinition())
4424       return R;
4425 
4426   return nullptr;
4427 }
4428 
4429 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4430   if (QualifierLoc) {
4431     // Make sure the extended qualifier info is allocated.
4432     if (!hasExtInfo())
4433       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4434     // Set qualifier info.
4435     getExtInfo()->QualifierLoc = QualifierLoc;
4436   } else {
4437     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4438     if (hasExtInfo()) {
4439       if (getExtInfo()->NumTemplParamLists == 0) {
4440         getASTContext().Deallocate(getExtInfo());
4441         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4442       }
4443       else
4444         getExtInfo()->QualifierLoc = QualifierLoc;
4445     }
4446   }
4447 }
4448 
4449 void TagDecl::setTemplateParameterListsInfo(
4450     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4451   assert(!TPLists.empty());
4452   // Make sure the extended decl info is allocated.
4453   if (!hasExtInfo())
4454     // Allocate external info struct.
4455     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4456   // Set the template parameter lists info.
4457   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4458 }
4459 
4460 //===----------------------------------------------------------------------===//
4461 // EnumDecl Implementation
4462 //===----------------------------------------------------------------------===//
4463 
4464 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4465                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4466                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4467     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4468   assert(Scoped || !ScopedUsingClassTag);
4469   IntegerType = nullptr;
4470   setNumPositiveBits(0);
4471   setNumNegativeBits(0);
4472   setScoped(Scoped);
4473   setScopedUsingClassTag(ScopedUsingClassTag);
4474   setFixed(Fixed);
4475   setHasODRHash(false);
4476   ODRHash = 0;
4477 }
4478 
4479 void EnumDecl::anchor() {}
4480 
4481 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4482                            SourceLocation StartLoc, SourceLocation IdLoc,
4483                            IdentifierInfo *Id,
4484                            EnumDecl *PrevDecl, bool IsScoped,
4485                            bool IsScopedUsingClassTag, bool IsFixed) {
4486   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4487                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4488   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4489   C.getTypeDeclType(Enum, PrevDecl);
4490   return Enum;
4491 }
4492 
4493 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4494   EnumDecl *Enum =
4495       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4496                            nullptr, nullptr, false, false, false);
4497   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4498   return Enum;
4499 }
4500 
4501 SourceRange EnumDecl::getIntegerTypeRange() const {
4502   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4503     return TI->getTypeLoc().getSourceRange();
4504   return SourceRange();
4505 }
4506 
4507 void EnumDecl::completeDefinition(QualType NewType,
4508                                   QualType NewPromotionType,
4509                                   unsigned NumPositiveBits,
4510                                   unsigned NumNegativeBits) {
4511   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4512   if (!IntegerType)
4513     IntegerType = NewType.getTypePtr();
4514   PromotionType = NewPromotionType;
4515   setNumPositiveBits(NumPositiveBits);
4516   setNumNegativeBits(NumNegativeBits);
4517   TagDecl::completeDefinition();
4518 }
4519 
4520 bool EnumDecl::isClosed() const {
4521   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4522     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4523   return true;
4524 }
4525 
4526 bool EnumDecl::isClosedFlag() const {
4527   return isClosed() && hasAttr<FlagEnumAttr>();
4528 }
4529 
4530 bool EnumDecl::isClosedNonFlag() const {
4531   return isClosed() && !hasAttr<FlagEnumAttr>();
4532 }
4533 
4534 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4535   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4536     return MSI->getTemplateSpecializationKind();
4537 
4538   return TSK_Undeclared;
4539 }
4540 
4541 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4542                                          SourceLocation PointOfInstantiation) {
4543   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4544   assert(MSI && "Not an instantiated member enumeration?");
4545   MSI->setTemplateSpecializationKind(TSK);
4546   if (TSK != TSK_ExplicitSpecialization &&
4547       PointOfInstantiation.isValid() &&
4548       MSI->getPointOfInstantiation().isInvalid())
4549     MSI->setPointOfInstantiation(PointOfInstantiation);
4550 }
4551 
4552 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4553   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4554     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4555       EnumDecl *ED = getInstantiatedFromMemberEnum();
4556       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4557         ED = NewED;
4558       return getDefinitionOrSelf(ED);
4559     }
4560   }
4561 
4562   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4563          "couldn't find pattern for enum instantiation");
4564   return nullptr;
4565 }
4566 
4567 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4568   if (SpecializationInfo)
4569     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4570 
4571   return nullptr;
4572 }
4573 
4574 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4575                                             TemplateSpecializationKind TSK) {
4576   assert(!SpecializationInfo && "Member enum is already a specialization");
4577   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4578 }
4579 
4580 unsigned EnumDecl::getODRHash() {
4581   if (hasODRHash())
4582     return ODRHash;
4583 
4584   class ODRHash Hash;
4585   Hash.AddEnumDecl(this);
4586   setHasODRHash(true);
4587   ODRHash = Hash.CalculateHash();
4588   return ODRHash;
4589 }
4590 
4591 SourceRange EnumDecl::getSourceRange() const {
4592   auto Res = TagDecl::getSourceRange();
4593   // Set end-point to enum-base, e.g. enum foo : ^bar
4594   if (auto *TSI = getIntegerTypeSourceInfo()) {
4595     // TagDecl doesn't know about the enum base.
4596     if (!getBraceRange().getEnd().isValid())
4597       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4598   }
4599   return Res;
4600 }
4601 
4602 //===----------------------------------------------------------------------===//
4603 // RecordDecl Implementation
4604 //===----------------------------------------------------------------------===//
4605 
4606 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4607                        DeclContext *DC, SourceLocation StartLoc,
4608                        SourceLocation IdLoc, IdentifierInfo *Id,
4609                        RecordDecl *PrevDecl)
4610     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4611   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4612   setHasFlexibleArrayMember(false);
4613   setAnonymousStructOrUnion(false);
4614   setHasObjectMember(false);
4615   setHasVolatileMember(false);
4616   setHasLoadedFieldsFromExternalStorage(false);
4617   setNonTrivialToPrimitiveDefaultInitialize(false);
4618   setNonTrivialToPrimitiveCopy(false);
4619   setNonTrivialToPrimitiveDestroy(false);
4620   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4621   setHasNonTrivialToPrimitiveDestructCUnion(false);
4622   setHasNonTrivialToPrimitiveCopyCUnion(false);
4623   setParamDestroyedInCallee(false);
4624   setArgPassingRestrictions(APK_CanPassInRegs);
4625   setIsRandomized(false);
4626 }
4627 
4628 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4629                                SourceLocation StartLoc, SourceLocation IdLoc,
4630                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4631   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4632                                          StartLoc, IdLoc, Id, PrevDecl);
4633   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4634 
4635   C.getTypeDeclType(R, PrevDecl);
4636   return R;
4637 }
4638 
4639 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4640   RecordDecl *R =
4641       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4642                              SourceLocation(), nullptr, nullptr);
4643   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4644   return R;
4645 }
4646 
4647 bool RecordDecl::isInjectedClassName() const {
4648   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4649     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4650 }
4651 
4652 bool RecordDecl::isLambda() const {
4653   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4654     return RD->isLambda();
4655   return false;
4656 }
4657 
4658 bool RecordDecl::isCapturedRecord() const {
4659   return hasAttr<CapturedRecordAttr>();
4660 }
4661 
4662 void RecordDecl::setCapturedRecord() {
4663   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4664 }
4665 
4666 bool RecordDecl::isOrContainsUnion() const {
4667   if (isUnion())
4668     return true;
4669 
4670   if (const RecordDecl *Def = getDefinition()) {
4671     for (const FieldDecl *FD : Def->fields()) {
4672       const RecordType *RT = FD->getType()->getAs<RecordType>();
4673       if (RT && RT->getDecl()->isOrContainsUnion())
4674         return true;
4675     }
4676   }
4677 
4678   return false;
4679 }
4680 
4681 RecordDecl::field_iterator RecordDecl::field_begin() const {
4682   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4683     LoadFieldsFromExternalStorage();
4684 
4685   return field_iterator(decl_iterator(FirstDecl));
4686 }
4687 
4688 /// completeDefinition - Notes that the definition of this type is now
4689 /// complete.
4690 void RecordDecl::completeDefinition() {
4691   assert(!isCompleteDefinition() && "Cannot redefine record!");
4692   TagDecl::completeDefinition();
4693 
4694   ASTContext &Ctx = getASTContext();
4695 
4696   // Layouts are dumped when computed, so if we are dumping for all complete
4697   // types, we need to force usage to get types that wouldn't be used elsewhere.
4698   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4699     (void)Ctx.getASTRecordLayout(this);
4700 }
4701 
4702 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4703 /// This which can be turned on with an attribute, pragma, or the
4704 /// -mms-bitfields command-line option.
4705 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4706   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4707 }
4708 
4709 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
4710   std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
4711   LastDecl->NextInContextAndBits.setPointer(nullptr);
4712   setIsRandomized(true);
4713 }
4714 
4715 void RecordDecl::LoadFieldsFromExternalStorage() const {
4716   ExternalASTSource *Source = getASTContext().getExternalSource();
4717   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4718 
4719   // Notify that we have a RecordDecl doing some initialization.
4720   ExternalASTSource::Deserializing TheFields(Source);
4721 
4722   SmallVector<Decl*, 64> Decls;
4723   setHasLoadedFieldsFromExternalStorage(true);
4724   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4725     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4726   }, Decls);
4727 
4728 #ifndef NDEBUG
4729   // Check that all decls we got were FieldDecls.
4730   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4731     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4732 #endif
4733 
4734   if (Decls.empty())
4735     return;
4736 
4737   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4738                                                  /*FieldsAlreadyLoaded=*/false);
4739 }
4740 
4741 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4742   ASTContext &Context = getASTContext();
4743   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4744       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4745   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4746     return false;
4747   const auto &NoSanitizeList = Context.getNoSanitizeList();
4748   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4749   // We may be able to relax some of these requirements.
4750   int ReasonToReject = -1;
4751   if (!CXXRD || CXXRD->isExternCContext())
4752     ReasonToReject = 0;  // is not C++.
4753   else if (CXXRD->hasAttr<PackedAttr>())
4754     ReasonToReject = 1;  // is packed.
4755   else if (CXXRD->isUnion())
4756     ReasonToReject = 2;  // is a union.
4757   else if (CXXRD->isTriviallyCopyable())
4758     ReasonToReject = 3;  // is trivially copyable.
4759   else if (CXXRD->hasTrivialDestructor())
4760     ReasonToReject = 4;  // has trivial destructor.
4761   else if (CXXRD->isStandardLayout())
4762     ReasonToReject = 5;  // is standard layout.
4763   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4764                                            "field-padding"))
4765     ReasonToReject = 6;  // is in an excluded file.
4766   else if (NoSanitizeList.containsType(
4767                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4768     ReasonToReject = 7;  // The type is excluded.
4769 
4770   if (EmitRemark) {
4771     if (ReasonToReject >= 0)
4772       Context.getDiagnostics().Report(
4773           getLocation(),
4774           diag::remark_sanitize_address_insert_extra_padding_rejected)
4775           << getQualifiedNameAsString() << ReasonToReject;
4776     else
4777       Context.getDiagnostics().Report(
4778           getLocation(),
4779           diag::remark_sanitize_address_insert_extra_padding_accepted)
4780           << getQualifiedNameAsString();
4781   }
4782   return ReasonToReject < 0;
4783 }
4784 
4785 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4786   for (const auto *I : fields()) {
4787     if (I->getIdentifier())
4788       return I;
4789 
4790     if (const auto *RT = I->getType()->getAs<RecordType>())
4791       if (const FieldDecl *NamedDataMember =
4792               RT->getDecl()->findFirstNamedDataMember())
4793         return NamedDataMember;
4794   }
4795 
4796   // We didn't find a named data member.
4797   return nullptr;
4798 }
4799 
4800 //===----------------------------------------------------------------------===//
4801 // BlockDecl Implementation
4802 //===----------------------------------------------------------------------===//
4803 
4804 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4805     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4806   setIsVariadic(false);
4807   setCapturesCXXThis(false);
4808   setBlockMissingReturnType(true);
4809   setIsConversionFromLambda(false);
4810   setDoesNotEscape(false);
4811   setCanAvoidCopyToHeap(false);
4812 }
4813 
4814 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4815   assert(!ParamInfo && "Already has param info!");
4816 
4817   // Zero params -> null pointer.
4818   if (!NewParamInfo.empty()) {
4819     NumParams = NewParamInfo.size();
4820     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4821     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4822   }
4823 }
4824 
4825 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4826                             bool CapturesCXXThis) {
4827   this->setCapturesCXXThis(CapturesCXXThis);
4828   this->NumCaptures = Captures.size();
4829 
4830   if (Captures.empty()) {
4831     this->Captures = nullptr;
4832     return;
4833   }
4834 
4835   this->Captures = Captures.copy(Context).data();
4836 }
4837 
4838 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4839   for (const auto &I : captures())
4840     // Only auto vars can be captured, so no redeclaration worries.
4841     if (I.getVariable() == variable)
4842       return true;
4843 
4844   return false;
4845 }
4846 
4847 SourceRange BlockDecl::getSourceRange() const {
4848   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4849 }
4850 
4851 //===----------------------------------------------------------------------===//
4852 // Other Decl Allocation/Deallocation Method Implementations
4853 //===----------------------------------------------------------------------===//
4854 
4855 void TranslationUnitDecl::anchor() {}
4856 
4857 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4858   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4859 }
4860 
4861 void PragmaCommentDecl::anchor() {}
4862 
4863 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4864                                              TranslationUnitDecl *DC,
4865                                              SourceLocation CommentLoc,
4866                                              PragmaMSCommentKind CommentKind,
4867                                              StringRef Arg) {
4868   PragmaCommentDecl *PCD =
4869       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4870           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4871   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4872   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4873   return PCD;
4874 }
4875 
4876 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4877                                                          unsigned ID,
4878                                                          unsigned ArgSize) {
4879   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4880       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4881 }
4882 
4883 void PragmaDetectMismatchDecl::anchor() {}
4884 
4885 PragmaDetectMismatchDecl *
4886 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4887                                  SourceLocation Loc, StringRef Name,
4888                                  StringRef Value) {
4889   size_t ValueStart = Name.size() + 1;
4890   PragmaDetectMismatchDecl *PDMD =
4891       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4892           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4893   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4894   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4895   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4896          Value.size());
4897   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4898   return PDMD;
4899 }
4900 
4901 PragmaDetectMismatchDecl *
4902 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4903                                              unsigned NameValueSize) {
4904   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4905       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4906 }
4907 
4908 void ExternCContextDecl::anchor() {}
4909 
4910 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4911                                                TranslationUnitDecl *DC) {
4912   return new (C, DC) ExternCContextDecl(DC);
4913 }
4914 
4915 void LabelDecl::anchor() {}
4916 
4917 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4918                              SourceLocation IdentL, IdentifierInfo *II) {
4919   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4920 }
4921 
4922 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4923                              SourceLocation IdentL, IdentifierInfo *II,
4924                              SourceLocation GnuLabelL) {
4925   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4926   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4927 }
4928 
4929 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4930   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4931                                SourceLocation());
4932 }
4933 
4934 void LabelDecl::setMSAsmLabel(StringRef Name) {
4935 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4936   memcpy(Buffer, Name.data(), Name.size());
4937   Buffer[Name.size()] = '\0';
4938   MSAsmName = Buffer;
4939 }
4940 
4941 void ValueDecl::anchor() {}
4942 
4943 bool ValueDecl::isWeak() const {
4944   auto *MostRecent = getMostRecentDecl();
4945   return MostRecent->hasAttr<WeakAttr>() ||
4946          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4947 }
4948 
4949 void ImplicitParamDecl::anchor() {}
4950 
4951 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4952                                              SourceLocation IdLoc,
4953                                              IdentifierInfo *Id, QualType Type,
4954                                              ImplicitParamKind ParamKind) {
4955   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4956 }
4957 
4958 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4959                                              ImplicitParamKind ParamKind) {
4960   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4961 }
4962 
4963 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4964                                                          unsigned ID) {
4965   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4966 }
4967 
4968 FunctionDecl *
4969 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4970                      const DeclarationNameInfo &NameInfo, QualType T,
4971                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
4972                      bool isInlineSpecified, bool hasWrittenPrototype,
4973                      ConstexprSpecKind ConstexprKind,
4974                      Expr *TrailingRequiresClause) {
4975   FunctionDecl *New = new (C, DC) FunctionDecl(
4976       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
4977       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
4978   New->setHasWrittenPrototype(hasWrittenPrototype);
4979   return New;
4980 }
4981 
4982 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4983   return new (C, ID) FunctionDecl(
4984       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4985       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
4986 }
4987 
4988 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4989   return new (C, DC) BlockDecl(DC, L);
4990 }
4991 
4992 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4993   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4994 }
4995 
4996 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4997     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4998       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4999 
5000 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5001                                    unsigned NumParams) {
5002   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5003       CapturedDecl(DC, NumParams);
5004 }
5005 
5006 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5007                                                unsigned NumParams) {
5008   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5009       CapturedDecl(nullptr, NumParams);
5010 }
5011 
5012 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5013 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5014 
5015 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5016 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5017 
5018 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5019                                            SourceLocation L,
5020                                            IdentifierInfo *Id, QualType T,
5021                                            Expr *E, const llvm::APSInt &V) {
5022   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
5023 }
5024 
5025 EnumConstantDecl *
5026 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5027   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
5028                                       QualType(), nullptr, llvm::APSInt());
5029 }
5030 
5031 void IndirectFieldDecl::anchor() {}
5032 
5033 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5034                                      SourceLocation L, DeclarationName N,
5035                                      QualType T,
5036                                      MutableArrayRef<NamedDecl *> CH)
5037     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5038       ChainingSize(CH.size()) {
5039   // In C++, indirect field declarations conflict with tag declarations in the
5040   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5041   if (C.getLangOpts().CPlusPlus)
5042     IdentifierNamespace |= IDNS_Tag;
5043 }
5044 
5045 IndirectFieldDecl *
5046 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5047                           IdentifierInfo *Id, QualType T,
5048                           llvm::MutableArrayRef<NamedDecl *> CH) {
5049   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5050 }
5051 
5052 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5053                                                          unsigned ID) {
5054   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
5055                                        DeclarationName(), QualType(), None);
5056 }
5057 
5058 SourceRange EnumConstantDecl::getSourceRange() const {
5059   SourceLocation End = getLocation();
5060   if (Init)
5061     End = Init->getEndLoc();
5062   return SourceRange(getLocation(), End);
5063 }
5064 
5065 void TypeDecl::anchor() {}
5066 
5067 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5068                                  SourceLocation StartLoc, SourceLocation IdLoc,
5069                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
5070   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5071 }
5072 
5073 void TypedefNameDecl::anchor() {}
5074 
5075 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5076   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5077     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5078     auto *ThisTypedef = this;
5079     if (AnyRedecl && OwningTypedef) {
5080       OwningTypedef = OwningTypedef->getCanonicalDecl();
5081       ThisTypedef = ThisTypedef->getCanonicalDecl();
5082     }
5083     if (OwningTypedef == ThisTypedef)
5084       return TT->getDecl();
5085   }
5086 
5087   return nullptr;
5088 }
5089 
5090 bool TypedefNameDecl::isTransparentTagSlow() const {
5091   auto determineIsTransparent = [&]() {
5092     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5093       if (auto *TD = TT->getDecl()) {
5094         if (TD->getName() != getName())
5095           return false;
5096         SourceLocation TTLoc = getLocation();
5097         SourceLocation TDLoc = TD->getLocation();
5098         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5099           return false;
5100         SourceManager &SM = getASTContext().getSourceManager();
5101         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5102       }
5103     }
5104     return false;
5105   };
5106 
5107   bool isTransparent = determineIsTransparent();
5108   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5109   return isTransparent;
5110 }
5111 
5112 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5113   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5114                                  nullptr, nullptr);
5115 }
5116 
5117 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5118                                      SourceLocation StartLoc,
5119                                      SourceLocation IdLoc, IdentifierInfo *Id,
5120                                      TypeSourceInfo *TInfo) {
5121   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5122 }
5123 
5124 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5125   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5126                                    SourceLocation(), nullptr, nullptr);
5127 }
5128 
5129 SourceRange TypedefDecl::getSourceRange() const {
5130   SourceLocation RangeEnd = getLocation();
5131   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5132     if (typeIsPostfix(TInfo->getType()))
5133       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5134   }
5135   return SourceRange(getBeginLoc(), RangeEnd);
5136 }
5137 
5138 SourceRange TypeAliasDecl::getSourceRange() const {
5139   SourceLocation RangeEnd = getBeginLoc();
5140   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5141     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5142   return SourceRange(getBeginLoc(), RangeEnd);
5143 }
5144 
5145 void FileScopeAsmDecl::anchor() {}
5146 
5147 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5148                                            StringLiteral *Str,
5149                                            SourceLocation AsmLoc,
5150                                            SourceLocation RParenLoc) {
5151   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5152 }
5153 
5154 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5155                                                        unsigned ID) {
5156   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5157                                       SourceLocation());
5158 }
5159 
5160 void EmptyDecl::anchor() {}
5161 
5162 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5163   return new (C, DC) EmptyDecl(DC, L);
5164 }
5165 
5166 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5167   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5168 }
5169 
5170 //===----------------------------------------------------------------------===//
5171 // ImportDecl Implementation
5172 //===----------------------------------------------------------------------===//
5173 
5174 /// Retrieve the number of module identifiers needed to name the given
5175 /// module.
5176 static unsigned getNumModuleIdentifiers(Module *Mod) {
5177   unsigned Result = 1;
5178   while (Mod->Parent) {
5179     Mod = Mod->Parent;
5180     ++Result;
5181   }
5182   return Result;
5183 }
5184 
5185 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5186                        Module *Imported,
5187                        ArrayRef<SourceLocation> IdentifierLocs)
5188     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5189       NextLocalImportAndComplete(nullptr, true) {
5190   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5191   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5192   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5193                           StoredLocs);
5194 }
5195 
5196 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5197                        Module *Imported, SourceLocation EndLoc)
5198     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5199       NextLocalImportAndComplete(nullptr, false) {
5200   *getTrailingObjects<SourceLocation>() = EndLoc;
5201 }
5202 
5203 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5204                                SourceLocation StartLoc, Module *Imported,
5205                                ArrayRef<SourceLocation> IdentifierLocs) {
5206   return new (C, DC,
5207               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5208       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5209 }
5210 
5211 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5212                                        SourceLocation StartLoc,
5213                                        Module *Imported,
5214                                        SourceLocation EndLoc) {
5215   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5216       ImportDecl(DC, StartLoc, Imported, EndLoc);
5217   Import->setImplicit();
5218   return Import;
5219 }
5220 
5221 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5222                                            unsigned NumLocations) {
5223   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5224       ImportDecl(EmptyShell());
5225 }
5226 
5227 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5228   if (!isImportComplete())
5229     return None;
5230 
5231   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5232   return llvm::makeArrayRef(StoredLocs,
5233                             getNumModuleIdentifiers(getImportedModule()));
5234 }
5235 
5236 SourceRange ImportDecl::getSourceRange() const {
5237   if (!isImportComplete())
5238     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5239 
5240   return SourceRange(getLocation(), getIdentifierLocs().back());
5241 }
5242 
5243 //===----------------------------------------------------------------------===//
5244 // ExportDecl Implementation
5245 //===----------------------------------------------------------------------===//
5246 
5247 void ExportDecl::anchor() {}
5248 
5249 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5250                                SourceLocation ExportLoc) {
5251   return new (C, DC) ExportDecl(DC, ExportLoc);
5252 }
5253 
5254 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5255   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5256 }
5257