1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/NoSanitizeList.h" 45 #include "clang/Basic/PartialDiagnostic.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 // 608 // [basic.namespace.general]/p2 609 // A namespace is never attached to a named module and never has a name with 610 // module linkage. 611 if (isInModulePurview(D) && 612 !isExportedFromModuleInterfaceUnit( 613 cast<NamedDecl>(D->getCanonicalDecl())) && 614 !isa<NamespaceDecl>(D)) 615 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 616 617 return LinkageInfo::external(); 618 } 619 620 static StorageClass getStorageClass(const Decl *D) { 621 if (auto *TD = dyn_cast<TemplateDecl>(D)) 622 D = TD->getTemplatedDecl(); 623 if (D) { 624 if (auto *VD = dyn_cast<VarDecl>(D)) 625 return VD->getStorageClass(); 626 if (auto *FD = dyn_cast<FunctionDecl>(D)) 627 return FD->getStorageClass(); 628 } 629 return SC_None; 630 } 631 632 LinkageInfo 633 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 634 LVComputationKind computation, 635 bool IgnoreVarTypeLinkage) { 636 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 637 "Not a name having namespace scope"); 638 ASTContext &Context = D->getASTContext(); 639 640 // C++ [basic.link]p3: 641 // A name having namespace scope (3.3.6) has internal linkage if it 642 // is the name of 643 644 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 645 // - a variable, variable template, function, or function template 646 // that is explicitly declared static; or 647 // (This bullet corresponds to C99 6.2.2p3.) 648 return getInternalLinkageFor(D); 649 } 650 651 if (const auto *Var = dyn_cast<VarDecl>(D)) { 652 // - a non-template variable of non-volatile const-qualified type, unless 653 // - it is explicitly declared extern, or 654 // - it is inline or exported, or 655 // - it was previously declared and the prior declaration did not have 656 // internal linkage 657 // (There is no equivalent in C99.) 658 if (Context.getLangOpts().CPlusPlus && 659 Var->getType().isConstQualified() && 660 !Var->getType().isVolatileQualified() && 661 !Var->isInline() && 662 !isExportedFromModuleInterfaceUnit(Var) && 663 !isa<VarTemplateSpecializationDecl>(Var) && 664 !Var->getDescribedVarTemplate()) { 665 const VarDecl *PrevVar = Var->getPreviousDecl(); 666 if (PrevVar) 667 return getLVForDecl(PrevVar, computation); 668 669 if (Var->getStorageClass() != SC_Extern && 670 Var->getStorageClass() != SC_PrivateExtern && 671 !isSingleLineLanguageLinkage(*Var)) 672 return getInternalLinkageFor(Var); 673 } 674 675 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 676 PrevVar = PrevVar->getPreviousDecl()) { 677 if (PrevVar->getStorageClass() == SC_PrivateExtern && 678 Var->getStorageClass() == SC_None) 679 return getDeclLinkageAndVisibility(PrevVar); 680 // Explicitly declared static. 681 if (PrevVar->getStorageClass() == SC_Static) 682 return getInternalLinkageFor(Var); 683 } 684 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 685 // - a data member of an anonymous union. 686 const VarDecl *VD = IFD->getVarDecl(); 687 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 688 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 689 } 690 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 691 692 // FIXME: This gives internal linkage to names that should have no linkage 693 // (those not covered by [basic.link]p6). 694 if (D->isInAnonymousNamespace()) { 695 const auto *Var = dyn_cast<VarDecl>(D); 696 const auto *Func = dyn_cast<FunctionDecl>(D); 697 // FIXME: The check for extern "C" here is not justified by the standard 698 // wording, but we retain it from the pre-DR1113 model to avoid breaking 699 // code. 700 // 701 // C++11 [basic.link]p4: 702 // An unnamed namespace or a namespace declared directly or indirectly 703 // within an unnamed namespace has internal linkage. 704 if ((!Var || !isFirstInExternCContext(Var)) && 705 (!Func || !isFirstInExternCContext(Func))) 706 return getInternalLinkageFor(D); 707 } 708 709 // Set up the defaults. 710 711 // C99 6.2.2p5: 712 // If the declaration of an identifier for an object has file 713 // scope and no storage-class specifier, its linkage is 714 // external. 715 LinkageInfo LV = getExternalLinkageFor(D); 716 717 if (!hasExplicitVisibilityAlready(computation)) { 718 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 719 LV.mergeVisibility(*Vis, true); 720 } else { 721 // If we're declared in a namespace with a visibility attribute, 722 // use that namespace's visibility, and it still counts as explicit. 723 for (const DeclContext *DC = D->getDeclContext(); 724 !isa<TranslationUnitDecl>(DC); 725 DC = DC->getParent()) { 726 const auto *ND = dyn_cast<NamespaceDecl>(DC); 727 if (!ND) continue; 728 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 729 LV.mergeVisibility(*Vis, true); 730 break; 731 } 732 } 733 } 734 735 // Add in global settings if the above didn't give us direct visibility. 736 if (!LV.isVisibilityExplicit()) { 737 // Use global type/value visibility as appropriate. 738 Visibility globalVisibility = 739 computation.isValueVisibility() 740 ? Context.getLangOpts().getValueVisibilityMode() 741 : Context.getLangOpts().getTypeVisibilityMode(); 742 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 743 744 // If we're paying attention to global visibility, apply 745 // -finline-visibility-hidden if this is an inline method. 746 if (useInlineVisibilityHidden(D)) 747 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 748 } 749 } 750 751 // C++ [basic.link]p4: 752 753 // A name having namespace scope that has not been given internal linkage 754 // above and that is the name of 755 // [...bullets...] 756 // has its linkage determined as follows: 757 // - if the enclosing namespace has internal linkage, the name has 758 // internal linkage; [handled above] 759 // - otherwise, if the declaration of the name is attached to a named 760 // module and is not exported, the name has module linkage; 761 // - otherwise, the name has external linkage. 762 // LV is currently set up to handle the last two bullets. 763 // 764 // The bullets are: 765 766 // - a variable; or 767 if (const auto *Var = dyn_cast<VarDecl>(D)) { 768 // GCC applies the following optimization to variables and static 769 // data members, but not to functions: 770 // 771 // Modify the variable's LV by the LV of its type unless this is 772 // C or extern "C". This follows from [basic.link]p9: 773 // A type without linkage shall not be used as the type of a 774 // variable or function with external linkage unless 775 // - the entity has C language linkage, or 776 // - the entity is declared within an unnamed namespace, or 777 // - the entity is not used or is defined in the same 778 // translation unit. 779 // and [basic.link]p10: 780 // ...the types specified by all declarations referring to a 781 // given variable or function shall be identical... 782 // C does not have an equivalent rule. 783 // 784 // Ignore this if we've got an explicit attribute; the user 785 // probably knows what they're doing. 786 // 787 // Note that we don't want to make the variable non-external 788 // because of this, but unique-external linkage suits us. 789 790 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 791 !IgnoreVarTypeLinkage) { 792 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 793 if (!isExternallyVisible(TypeLV.getLinkage())) 794 return LinkageInfo::uniqueExternal(); 795 if (!LV.isVisibilityExplicit()) 796 LV.mergeVisibility(TypeLV); 797 } 798 799 if (Var->getStorageClass() == SC_PrivateExtern) 800 LV.mergeVisibility(HiddenVisibility, true); 801 802 // Note that Sema::MergeVarDecl already takes care of implementing 803 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 804 // to do it here. 805 806 // As per function and class template specializations (below), 807 // consider LV for the template and template arguments. We're at file 808 // scope, so we do not need to worry about nested specializations. 809 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 810 mergeTemplateLV(LV, spec, computation); 811 } 812 813 // - a function; or 814 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 815 // In theory, we can modify the function's LV by the LV of its 816 // type unless it has C linkage (see comment above about variables 817 // for justification). In practice, GCC doesn't do this, so it's 818 // just too painful to make work. 819 820 if (Function->getStorageClass() == SC_PrivateExtern) 821 LV.mergeVisibility(HiddenVisibility, true); 822 823 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 824 // merging storage classes and visibility attributes, so we don't have to 825 // look at previous decls in here. 826 827 // In C++, then if the type of the function uses a type with 828 // unique-external linkage, it's not legally usable from outside 829 // this translation unit. However, we should use the C linkage 830 // rules instead for extern "C" declarations. 831 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 832 // Only look at the type-as-written. Otherwise, deducing the return type 833 // of a function could change its linkage. 834 QualType TypeAsWritten = Function->getType(); 835 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 836 TypeAsWritten = TSI->getType(); 837 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 838 return LinkageInfo::uniqueExternal(); 839 } 840 841 // Consider LV from the template and the template arguments. 842 // We're at file scope, so we do not need to worry about nested 843 // specializations. 844 if (FunctionTemplateSpecializationInfo *specInfo 845 = Function->getTemplateSpecializationInfo()) { 846 mergeTemplateLV(LV, Function, specInfo, computation); 847 } 848 849 // - a named class (Clause 9), or an unnamed class defined in a 850 // typedef declaration in which the class has the typedef name 851 // for linkage purposes (7.1.3); or 852 // - a named enumeration (7.2), or an unnamed enumeration 853 // defined in a typedef declaration in which the enumeration 854 // has the typedef name for linkage purposes (7.1.3); or 855 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 856 // Unnamed tags have no linkage. 857 if (!Tag->hasNameForLinkage()) 858 return LinkageInfo::none(); 859 860 // If this is a class template specialization, consider the 861 // linkage of the template and template arguments. We're at file 862 // scope, so we do not need to worry about nested specializations. 863 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 864 mergeTemplateLV(LV, spec, computation); 865 } 866 867 // FIXME: This is not part of the C++ standard any more. 868 // - an enumerator belonging to an enumeration with external linkage; or 869 } else if (isa<EnumConstantDecl>(D)) { 870 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 871 computation); 872 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 873 return LinkageInfo::none(); 874 LV.merge(EnumLV); 875 876 // - a template 877 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 878 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 879 LinkageInfo tempLV = 880 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 881 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 882 883 // An unnamed namespace or a namespace declared directly or indirectly 884 // within an unnamed namespace has internal linkage. All other namespaces 885 // have external linkage. 886 // 887 // We handled names in anonymous namespaces above. 888 } else if (isa<NamespaceDecl>(D)) { 889 return LV; 890 891 // By extension, we assign external linkage to Objective-C 892 // interfaces. 893 } else if (isa<ObjCInterfaceDecl>(D)) { 894 // fallout 895 896 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 897 // A typedef declaration has linkage if it gives a type a name for 898 // linkage purposes. 899 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 900 return LinkageInfo::none(); 901 902 } else if (isa<MSGuidDecl>(D)) { 903 // A GUID behaves like an inline variable with external linkage. Fall 904 // through. 905 906 // Everything not covered here has no linkage. 907 } else { 908 return LinkageInfo::none(); 909 } 910 911 // If we ended up with non-externally-visible linkage, visibility should 912 // always be default. 913 if (!isExternallyVisible(LV.getLinkage())) 914 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 915 916 return LV; 917 } 918 919 LinkageInfo 920 LinkageComputer::getLVForClassMember(const NamedDecl *D, 921 LVComputationKind computation, 922 bool IgnoreVarTypeLinkage) { 923 // Only certain class members have linkage. Note that fields don't 924 // really have linkage, but it's convenient to say they do for the 925 // purposes of calculating linkage of pointer-to-data-member 926 // template arguments. 927 // 928 // Templates also don't officially have linkage, but since we ignore 929 // the C++ standard and look at template arguments when determining 930 // linkage and visibility of a template specialization, we might hit 931 // a template template argument that way. If we do, we need to 932 // consider its linkage. 933 if (!(isa<CXXMethodDecl>(D) || 934 isa<VarDecl>(D) || 935 isa<FieldDecl>(D) || 936 isa<IndirectFieldDecl>(D) || 937 isa<TagDecl>(D) || 938 isa<TemplateDecl>(D))) 939 return LinkageInfo::none(); 940 941 LinkageInfo LV; 942 943 // If we have an explicit visibility attribute, merge that in. 944 if (!hasExplicitVisibilityAlready(computation)) { 945 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 946 LV.mergeVisibility(*Vis, true); 947 // If we're paying attention to global visibility, apply 948 // -finline-visibility-hidden if this is an inline method. 949 // 950 // Note that we do this before merging information about 951 // the class visibility. 952 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 953 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 954 } 955 956 // If this class member has an explicit visibility attribute, the only 957 // thing that can change its visibility is the template arguments, so 958 // only look for them when processing the class. 959 LVComputationKind classComputation = computation; 960 if (LV.isVisibilityExplicit()) 961 classComputation = withExplicitVisibilityAlready(computation); 962 963 LinkageInfo classLV = 964 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 965 // The member has the same linkage as the class. If that's not externally 966 // visible, we don't need to compute anything about the linkage. 967 // FIXME: If we're only computing linkage, can we bail out here? 968 if (!isExternallyVisible(classLV.getLinkage())) 969 return classLV; 970 971 972 // Otherwise, don't merge in classLV yet, because in certain cases 973 // we need to completely ignore the visibility from it. 974 975 // Specifically, if this decl exists and has an explicit attribute. 976 const NamedDecl *explicitSpecSuppressor = nullptr; 977 978 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 979 // Only look at the type-as-written. Otherwise, deducing the return type 980 // of a function could change its linkage. 981 QualType TypeAsWritten = MD->getType(); 982 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 983 TypeAsWritten = TSI->getType(); 984 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 985 return LinkageInfo::uniqueExternal(); 986 987 // If this is a method template specialization, use the linkage for 988 // the template parameters and arguments. 989 if (FunctionTemplateSpecializationInfo *spec 990 = MD->getTemplateSpecializationInfo()) { 991 mergeTemplateLV(LV, MD, spec, computation); 992 if (spec->isExplicitSpecialization()) { 993 explicitSpecSuppressor = MD; 994 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 995 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 996 } 997 } else if (isExplicitMemberSpecialization(MD)) { 998 explicitSpecSuppressor = MD; 999 } 1000 1001 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 1002 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1003 mergeTemplateLV(LV, spec, computation); 1004 if (spec->isExplicitSpecialization()) { 1005 explicitSpecSuppressor = spec; 1006 } else { 1007 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1008 if (isExplicitMemberSpecialization(temp)) { 1009 explicitSpecSuppressor = temp->getTemplatedDecl(); 1010 } 1011 } 1012 } else if (isExplicitMemberSpecialization(RD)) { 1013 explicitSpecSuppressor = RD; 1014 } 1015 1016 // Static data members. 1017 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1018 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1019 mergeTemplateLV(LV, spec, computation); 1020 1021 // Modify the variable's linkage by its type, but ignore the 1022 // type's visibility unless it's a definition. 1023 if (!IgnoreVarTypeLinkage) { 1024 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1025 // FIXME: If the type's linkage is not externally visible, we can 1026 // give this static data member UniqueExternalLinkage. 1027 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1028 LV.mergeVisibility(typeLV); 1029 LV.mergeExternalVisibility(typeLV); 1030 } 1031 1032 if (isExplicitMemberSpecialization(VD)) { 1033 explicitSpecSuppressor = VD; 1034 } 1035 1036 // Template members. 1037 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1038 bool considerVisibility = 1039 (!LV.isVisibilityExplicit() && 1040 !classLV.isVisibilityExplicit() && 1041 !hasExplicitVisibilityAlready(computation)); 1042 LinkageInfo tempLV = 1043 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1044 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1045 1046 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1047 if (isExplicitMemberSpecialization(redeclTemp)) { 1048 explicitSpecSuppressor = temp->getTemplatedDecl(); 1049 } 1050 } 1051 } 1052 1053 // We should never be looking for an attribute directly on a template. 1054 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1055 1056 // If this member is an explicit member specialization, and it has 1057 // an explicit attribute, ignore visibility from the parent. 1058 bool considerClassVisibility = true; 1059 if (explicitSpecSuppressor && 1060 // optimization: hasDVA() is true only with explicit visibility. 1061 LV.isVisibilityExplicit() && 1062 classLV.getVisibility() != DefaultVisibility && 1063 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1064 considerClassVisibility = false; 1065 } 1066 1067 // Finally, merge in information from the class. 1068 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1069 1070 return LV; 1071 } 1072 1073 void NamedDecl::anchor() {} 1074 1075 bool NamedDecl::isLinkageValid() const { 1076 if (!hasCachedLinkage()) 1077 return true; 1078 1079 Linkage L = LinkageComputer{} 1080 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1081 .getLinkage(); 1082 return L == getCachedLinkage(); 1083 } 1084 1085 ReservedIdentifierStatus 1086 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1087 const IdentifierInfo *II = getIdentifier(); 1088 1089 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1090 // at lexing time. 1091 if (!II) 1092 return ReservedIdentifierStatus::NotReserved; 1093 1094 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1095 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1096 // This name is only reserved at global scope. Check if this declaration 1097 // conflicts with a global scope declaration. 1098 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1099 return ReservedIdentifierStatus::NotReserved; 1100 1101 // C++ [dcl.link]/7: 1102 // Two declarations [conflict] if [...] one declares a function or 1103 // variable with C language linkage, and the other declares [...] a 1104 // variable that belongs to the global scope. 1105 // 1106 // Therefore names that are reserved at global scope are also reserved as 1107 // names of variables and functions with C language linkage. 1108 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1109 if (DC->isTranslationUnit()) 1110 return Status; 1111 if (auto *VD = dyn_cast<VarDecl>(this)) 1112 if (VD->isExternC()) 1113 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1114 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1115 if (FD->isExternC()) 1116 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1117 return ReservedIdentifierStatus::NotReserved; 1118 } 1119 1120 return Status; 1121 } 1122 1123 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1124 StringRef name = getName(); 1125 if (name.empty()) return SFF_None; 1126 1127 if (name.front() == 'C') 1128 if (name == "CFStringCreateWithFormat" || 1129 name == "CFStringCreateWithFormatAndArguments" || 1130 name == "CFStringAppendFormat" || 1131 name == "CFStringAppendFormatAndArguments") 1132 return SFF_CFString; 1133 return SFF_None; 1134 } 1135 1136 Linkage NamedDecl::getLinkageInternal() const { 1137 // We don't care about visibility here, so ask for the cheapest 1138 // possible visibility analysis. 1139 return LinkageComputer{} 1140 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1141 .getLinkage(); 1142 } 1143 1144 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1145 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1146 } 1147 1148 static Optional<Visibility> 1149 getExplicitVisibilityAux(const NamedDecl *ND, 1150 NamedDecl::ExplicitVisibilityKind kind, 1151 bool IsMostRecent) { 1152 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1153 1154 // Check the declaration itself first. 1155 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1156 return V; 1157 1158 // If this is a member class of a specialization of a class template 1159 // and the corresponding decl has explicit visibility, use that. 1160 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1161 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1162 if (InstantiatedFrom) 1163 return getVisibilityOf(InstantiatedFrom, kind); 1164 } 1165 1166 // If there wasn't explicit visibility there, and this is a 1167 // specialization of a class template, check for visibility 1168 // on the pattern. 1169 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1170 // Walk all the template decl till this point to see if there are 1171 // explicit visibility attributes. 1172 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1173 while (TD != nullptr) { 1174 auto Vis = getVisibilityOf(TD, kind); 1175 if (Vis != None) 1176 return Vis; 1177 TD = TD->getPreviousDecl(); 1178 } 1179 return None; 1180 } 1181 1182 // Use the most recent declaration. 1183 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1184 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1185 if (MostRecent != ND) 1186 return getExplicitVisibilityAux(MostRecent, kind, true); 1187 } 1188 1189 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1190 if (Var->isStaticDataMember()) { 1191 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1192 if (InstantiatedFrom) 1193 return getVisibilityOf(InstantiatedFrom, kind); 1194 } 1195 1196 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1197 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1198 kind); 1199 1200 return None; 1201 } 1202 // Also handle function template specializations. 1203 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1204 // If the function is a specialization of a template with an 1205 // explicit visibility attribute, use that. 1206 if (FunctionTemplateSpecializationInfo *templateInfo 1207 = fn->getTemplateSpecializationInfo()) 1208 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1209 kind); 1210 1211 // If the function is a member of a specialization of a class template 1212 // and the corresponding decl has explicit visibility, use that. 1213 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1214 if (InstantiatedFrom) 1215 return getVisibilityOf(InstantiatedFrom, kind); 1216 1217 return None; 1218 } 1219 1220 // The visibility of a template is stored in the templated decl. 1221 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1222 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1223 1224 return None; 1225 } 1226 1227 Optional<Visibility> 1228 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1229 return getExplicitVisibilityAux(this, kind, false); 1230 } 1231 1232 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1233 Decl *ContextDecl, 1234 LVComputationKind computation) { 1235 // This lambda has its linkage/visibility determined by its owner. 1236 const NamedDecl *Owner; 1237 if (!ContextDecl) 1238 Owner = dyn_cast<NamedDecl>(DC); 1239 else if (isa<ParmVarDecl>(ContextDecl)) 1240 Owner = 1241 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1242 else 1243 Owner = cast<NamedDecl>(ContextDecl); 1244 1245 if (!Owner) 1246 return LinkageInfo::none(); 1247 1248 // If the owner has a deduced type, we need to skip querying the linkage and 1249 // visibility of that type, because it might involve this closure type. The 1250 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1251 // than NoLinkage when we don't strictly need to, which is benign. 1252 auto *VD = dyn_cast<VarDecl>(Owner); 1253 LinkageInfo OwnerLV = 1254 VD && VD->getType()->getContainedDeducedType() 1255 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1256 : getLVForDecl(Owner, computation); 1257 1258 // A lambda never formally has linkage. But if the owner is externally 1259 // visible, then the lambda is too. We apply the same rules to blocks. 1260 if (!isExternallyVisible(OwnerLV.getLinkage())) 1261 return LinkageInfo::none(); 1262 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1263 OwnerLV.isVisibilityExplicit()); 1264 } 1265 1266 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1267 LVComputationKind computation) { 1268 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1269 if (Function->isInAnonymousNamespace() && 1270 !isFirstInExternCContext(Function)) 1271 return getInternalLinkageFor(Function); 1272 1273 // This is a "void f();" which got merged with a file static. 1274 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1275 return getInternalLinkageFor(Function); 1276 1277 LinkageInfo LV; 1278 if (!hasExplicitVisibilityAlready(computation)) { 1279 if (Optional<Visibility> Vis = 1280 getExplicitVisibility(Function, computation)) 1281 LV.mergeVisibility(*Vis, true); 1282 } 1283 1284 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1285 // merging storage classes and visibility attributes, so we don't have to 1286 // look at previous decls in here. 1287 1288 return LV; 1289 } 1290 1291 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1292 if (Var->hasExternalStorage()) { 1293 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1294 return getInternalLinkageFor(Var); 1295 1296 LinkageInfo LV; 1297 if (Var->getStorageClass() == SC_PrivateExtern) 1298 LV.mergeVisibility(HiddenVisibility, true); 1299 else if (!hasExplicitVisibilityAlready(computation)) { 1300 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1301 LV.mergeVisibility(*Vis, true); 1302 } 1303 1304 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1305 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1306 if (PrevLV.getLinkage()) 1307 LV.setLinkage(PrevLV.getLinkage()); 1308 LV.mergeVisibility(PrevLV); 1309 } 1310 1311 return LV; 1312 } 1313 1314 if (!Var->isStaticLocal()) 1315 return LinkageInfo::none(); 1316 } 1317 1318 ASTContext &Context = D->getASTContext(); 1319 if (!Context.getLangOpts().CPlusPlus) 1320 return LinkageInfo::none(); 1321 1322 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1323 if (!OuterD || OuterD->isInvalidDecl()) 1324 return LinkageInfo::none(); 1325 1326 LinkageInfo LV; 1327 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1328 if (!BD->getBlockManglingNumber()) 1329 return LinkageInfo::none(); 1330 1331 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1332 BD->getBlockManglingContextDecl(), computation); 1333 } else { 1334 const auto *FD = cast<FunctionDecl>(OuterD); 1335 if (!FD->isInlined() && 1336 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1337 return LinkageInfo::none(); 1338 1339 // If a function is hidden by -fvisibility-inlines-hidden option and 1340 // is not explicitly attributed as a hidden function, 1341 // we should not make static local variables in the function hidden. 1342 LV = getLVForDecl(FD, computation); 1343 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1344 !LV.isVisibilityExplicit() && 1345 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1346 assert(cast<VarDecl>(D)->isStaticLocal()); 1347 // If this was an implicitly hidden inline method, check again for 1348 // explicit visibility on the parent class, and use that for static locals 1349 // if present. 1350 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1351 LV = getLVForDecl(MD->getParent(), computation); 1352 if (!LV.isVisibilityExplicit()) { 1353 Visibility globalVisibility = 1354 computation.isValueVisibility() 1355 ? Context.getLangOpts().getValueVisibilityMode() 1356 : Context.getLangOpts().getTypeVisibilityMode(); 1357 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1358 /*visibilityExplicit=*/false); 1359 } 1360 } 1361 } 1362 if (!isExternallyVisible(LV.getLinkage())) 1363 return LinkageInfo::none(); 1364 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1365 LV.isVisibilityExplicit()); 1366 } 1367 1368 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1369 LVComputationKind computation, 1370 bool IgnoreVarTypeLinkage) { 1371 // Internal_linkage attribute overrides other considerations. 1372 if (D->hasAttr<InternalLinkageAttr>()) 1373 return getInternalLinkageFor(D); 1374 1375 // Objective-C: treat all Objective-C declarations as having external 1376 // linkage. 1377 switch (D->getKind()) { 1378 default: 1379 break; 1380 1381 // Per C++ [basic.link]p2, only the names of objects, references, 1382 // functions, types, templates, namespaces, and values ever have linkage. 1383 // 1384 // Note that the name of a typedef, namespace alias, using declaration, 1385 // and so on are not the name of the corresponding type, namespace, or 1386 // declaration, so they do *not* have linkage. 1387 case Decl::ImplicitParam: 1388 case Decl::Label: 1389 case Decl::NamespaceAlias: 1390 case Decl::ParmVar: 1391 case Decl::Using: 1392 case Decl::UsingEnum: 1393 case Decl::UsingShadow: 1394 case Decl::UsingDirective: 1395 return LinkageInfo::none(); 1396 1397 case Decl::EnumConstant: 1398 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1399 if (D->getASTContext().getLangOpts().CPlusPlus) 1400 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1401 return LinkageInfo::visible_none(); 1402 1403 case Decl::Typedef: 1404 case Decl::TypeAlias: 1405 // A typedef declaration has linkage if it gives a type a name for 1406 // linkage purposes. 1407 if (!cast<TypedefNameDecl>(D) 1408 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1409 return LinkageInfo::none(); 1410 break; 1411 1412 case Decl::TemplateTemplateParm: // count these as external 1413 case Decl::NonTypeTemplateParm: 1414 case Decl::ObjCAtDefsField: 1415 case Decl::ObjCCategory: 1416 case Decl::ObjCCategoryImpl: 1417 case Decl::ObjCCompatibleAlias: 1418 case Decl::ObjCImplementation: 1419 case Decl::ObjCMethod: 1420 case Decl::ObjCProperty: 1421 case Decl::ObjCPropertyImpl: 1422 case Decl::ObjCProtocol: 1423 return getExternalLinkageFor(D); 1424 1425 case Decl::CXXRecord: { 1426 const auto *Record = cast<CXXRecordDecl>(D); 1427 if (Record->isLambda()) { 1428 if (Record->hasKnownLambdaInternalLinkage() || 1429 !Record->getLambdaManglingNumber()) { 1430 // This lambda has no mangling number, so it's internal. 1431 return getInternalLinkageFor(D); 1432 } 1433 1434 return getLVForClosure( 1435 Record->getDeclContext()->getRedeclContext(), 1436 Record->getLambdaContextDecl(), computation); 1437 } 1438 1439 break; 1440 } 1441 1442 case Decl::TemplateParamObject: { 1443 // The template parameter object can be referenced from anywhere its type 1444 // and value can be referenced. 1445 auto *TPO = cast<TemplateParamObjectDecl>(D); 1446 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1447 LV.merge(getLVForValue(TPO->getValue(), computation)); 1448 return LV; 1449 } 1450 } 1451 1452 // Handle linkage for namespace-scope names. 1453 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1454 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1455 1456 // C++ [basic.link]p5: 1457 // In addition, a member function, static data member, a named 1458 // class or enumeration of class scope, or an unnamed class or 1459 // enumeration defined in a class-scope typedef declaration such 1460 // that the class or enumeration has the typedef name for linkage 1461 // purposes (7.1.3), has external linkage if the name of the class 1462 // has external linkage. 1463 if (D->getDeclContext()->isRecord()) 1464 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1465 1466 // C++ [basic.link]p6: 1467 // The name of a function declared in block scope and the name of 1468 // an object declared by a block scope extern declaration have 1469 // linkage. If there is a visible declaration of an entity with 1470 // linkage having the same name and type, ignoring entities 1471 // declared outside the innermost enclosing namespace scope, the 1472 // block scope declaration declares that same entity and receives 1473 // the linkage of the previous declaration. If there is more than 1474 // one such matching entity, the program is ill-formed. Otherwise, 1475 // if no matching entity is found, the block scope entity receives 1476 // external linkage. 1477 if (D->getDeclContext()->isFunctionOrMethod()) 1478 return getLVForLocalDecl(D, computation); 1479 1480 // C++ [basic.link]p6: 1481 // Names not covered by these rules have no linkage. 1482 return LinkageInfo::none(); 1483 } 1484 1485 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1486 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1487 LVComputationKind computation) { 1488 // Internal_linkage attribute overrides other considerations. 1489 if (D->hasAttr<InternalLinkageAttr>()) 1490 return getInternalLinkageFor(D); 1491 1492 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1493 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1494 1495 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1496 return *LI; 1497 1498 LinkageInfo LV = computeLVForDecl(D, computation); 1499 if (D->hasCachedLinkage()) 1500 assert(D->getCachedLinkage() == LV.getLinkage()); 1501 1502 D->setCachedLinkage(LV.getLinkage()); 1503 cache(D, computation, LV); 1504 1505 #ifndef NDEBUG 1506 // In C (because of gnu inline) and in c++ with microsoft extensions an 1507 // static can follow an extern, so we can have two decls with different 1508 // linkages. 1509 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1510 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1511 return LV; 1512 1513 // We have just computed the linkage for this decl. By induction we know 1514 // that all other computed linkages match, check that the one we just 1515 // computed also does. 1516 NamedDecl *Old = nullptr; 1517 for (auto I : D->redecls()) { 1518 auto *T = cast<NamedDecl>(I); 1519 if (T == D) 1520 continue; 1521 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1522 Old = T; 1523 break; 1524 } 1525 } 1526 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1527 #endif 1528 1529 return LV; 1530 } 1531 1532 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1533 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1534 ? NamedDecl::VisibilityForType 1535 : NamedDecl::VisibilityForValue; 1536 LVComputationKind CK(EK); 1537 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1538 ? CK.forLinkageOnly() 1539 : CK); 1540 } 1541 1542 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1543 Module *M = getOwningModule(); 1544 if (!M) 1545 return nullptr; 1546 1547 switch (M->Kind) { 1548 case Module::ModuleMapModule: 1549 // Module map modules have no special linkage semantics. 1550 return nullptr; 1551 1552 case Module::ModuleInterfaceUnit: 1553 return M; 1554 1555 case Module::GlobalModuleFragment: { 1556 // External linkage declarations in the global module have no owning module 1557 // for linkage purposes. But internal linkage declarations in the global 1558 // module fragment of a particular module are owned by that module for 1559 // linkage purposes. 1560 // FIXME: p1815 removes the need for this distinction -- there are no 1561 // internal linkage declarations that need to be referred to from outside 1562 // this TU. 1563 if (IgnoreLinkage) 1564 return nullptr; 1565 bool InternalLinkage; 1566 if (auto *ND = dyn_cast<NamedDecl>(this)) 1567 InternalLinkage = !ND->hasExternalFormalLinkage(); 1568 else 1569 InternalLinkage = isInAnonymousNamespace(); 1570 return InternalLinkage ? M->Parent : nullptr; 1571 } 1572 1573 case Module::PrivateModuleFragment: 1574 // The private module fragment is part of its containing module for linkage 1575 // purposes. 1576 return M->Parent; 1577 } 1578 1579 llvm_unreachable("unknown module kind"); 1580 } 1581 1582 void NamedDecl::printName(raw_ostream &os) const { 1583 os << Name; 1584 } 1585 1586 std::string NamedDecl::getQualifiedNameAsString() const { 1587 std::string QualName; 1588 llvm::raw_string_ostream OS(QualName); 1589 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1590 return QualName; 1591 } 1592 1593 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1594 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1595 } 1596 1597 void NamedDecl::printQualifiedName(raw_ostream &OS, 1598 const PrintingPolicy &P) const { 1599 if (getDeclContext()->isFunctionOrMethod()) { 1600 // We do not print '(anonymous)' for function parameters without name. 1601 printName(OS); 1602 return; 1603 } 1604 printNestedNameSpecifier(OS, P); 1605 if (getDeclName()) 1606 OS << *this; 1607 else { 1608 // Give the printName override a chance to pick a different name before we 1609 // fall back to "(anonymous)". 1610 SmallString<64> NameBuffer; 1611 llvm::raw_svector_ostream NameOS(NameBuffer); 1612 printName(NameOS); 1613 if (NameBuffer.empty()) 1614 OS << "(anonymous)"; 1615 else 1616 OS << NameBuffer; 1617 } 1618 } 1619 1620 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1621 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1622 } 1623 1624 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1625 const PrintingPolicy &P) const { 1626 const DeclContext *Ctx = getDeclContext(); 1627 1628 // For ObjC methods and properties, look through categories and use the 1629 // interface as context. 1630 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1631 if (auto *ID = MD->getClassInterface()) 1632 Ctx = ID; 1633 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1634 if (auto *MD = PD->getGetterMethodDecl()) 1635 if (auto *ID = MD->getClassInterface()) 1636 Ctx = ID; 1637 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1638 if (auto *CI = ID->getContainingInterface()) 1639 Ctx = CI; 1640 } 1641 1642 if (Ctx->isFunctionOrMethod()) 1643 return; 1644 1645 using ContextsTy = SmallVector<const DeclContext *, 8>; 1646 ContextsTy Contexts; 1647 1648 // Collect named contexts. 1649 DeclarationName NameInScope = getDeclName(); 1650 for (; Ctx; Ctx = Ctx->getParent()) { 1651 // Suppress anonymous namespace if requested. 1652 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1653 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1654 continue; 1655 1656 // Suppress inline namespace if it doesn't make the result ambiguous. 1657 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1658 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1659 continue; 1660 1661 // Skip non-named contexts such as linkage specifications and ExportDecls. 1662 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1663 if (!ND) 1664 continue; 1665 1666 Contexts.push_back(Ctx); 1667 NameInScope = ND->getDeclName(); 1668 } 1669 1670 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1671 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1672 OS << Spec->getName(); 1673 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1674 printTemplateArgumentList( 1675 OS, TemplateArgs.asArray(), P, 1676 Spec->getSpecializedTemplate()->getTemplateParameters()); 1677 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1678 if (ND->isAnonymousNamespace()) { 1679 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1680 : "(anonymous namespace)"); 1681 } 1682 else 1683 OS << *ND; 1684 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1685 if (!RD->getIdentifier()) 1686 OS << "(anonymous " << RD->getKindName() << ')'; 1687 else 1688 OS << *RD; 1689 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1690 const FunctionProtoType *FT = nullptr; 1691 if (FD->hasWrittenPrototype()) 1692 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1693 1694 OS << *FD << '('; 1695 if (FT) { 1696 unsigned NumParams = FD->getNumParams(); 1697 for (unsigned i = 0; i < NumParams; ++i) { 1698 if (i) 1699 OS << ", "; 1700 OS << FD->getParamDecl(i)->getType().stream(P); 1701 } 1702 1703 if (FT->isVariadic()) { 1704 if (NumParams > 0) 1705 OS << ", "; 1706 OS << "..."; 1707 } 1708 } 1709 OS << ')'; 1710 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1711 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1712 // enumerator is declared in the scope that immediately contains 1713 // the enum-specifier. Each scoped enumerator is declared in the 1714 // scope of the enumeration. 1715 // For the case of unscoped enumerator, do not include in the qualified 1716 // name any information about its enum enclosing scope, as its visibility 1717 // is global. 1718 if (ED->isScoped()) 1719 OS << *ED; 1720 else 1721 continue; 1722 } else { 1723 OS << *cast<NamedDecl>(DC); 1724 } 1725 OS << "::"; 1726 } 1727 } 1728 1729 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1730 const PrintingPolicy &Policy, 1731 bool Qualified) const { 1732 if (Qualified) 1733 printQualifiedName(OS, Policy); 1734 else 1735 printName(OS); 1736 } 1737 1738 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1739 return true; 1740 } 1741 static bool isRedeclarableImpl(...) { return false; } 1742 static bool isRedeclarable(Decl::Kind K) { 1743 switch (K) { 1744 #define DECL(Type, Base) \ 1745 case Decl::Type: \ 1746 return isRedeclarableImpl((Type##Decl *)nullptr); 1747 #define ABSTRACT_DECL(DECL) 1748 #include "clang/AST/DeclNodes.inc" 1749 } 1750 llvm_unreachable("unknown decl kind"); 1751 } 1752 1753 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1754 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1755 1756 // Never replace one imported declaration with another; we need both results 1757 // when re-exporting. 1758 if (OldD->isFromASTFile() && isFromASTFile()) 1759 return false; 1760 1761 // A kind mismatch implies that the declaration is not replaced. 1762 if (OldD->getKind() != getKind()) 1763 return false; 1764 1765 // For method declarations, we never replace. (Why?) 1766 if (isa<ObjCMethodDecl>(this)) 1767 return false; 1768 1769 // For parameters, pick the newer one. This is either an error or (in 1770 // Objective-C) permitted as an extension. 1771 if (isa<ParmVarDecl>(this)) 1772 return true; 1773 1774 // Inline namespaces can give us two declarations with the same 1775 // name and kind in the same scope but different contexts; we should 1776 // keep both declarations in this case. 1777 if (!this->getDeclContext()->getRedeclContext()->Equals( 1778 OldD->getDeclContext()->getRedeclContext())) 1779 return false; 1780 1781 // Using declarations can be replaced if they import the same name from the 1782 // same context. 1783 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1784 ASTContext &Context = getASTContext(); 1785 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1786 Context.getCanonicalNestedNameSpecifier( 1787 cast<UsingDecl>(OldD)->getQualifier()); 1788 } 1789 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1790 ASTContext &Context = getASTContext(); 1791 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1792 Context.getCanonicalNestedNameSpecifier( 1793 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1794 } 1795 1796 if (isRedeclarable(getKind())) { 1797 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1798 return false; 1799 1800 if (IsKnownNewer) 1801 return true; 1802 1803 // Check whether this is actually newer than OldD. We want to keep the 1804 // newer declaration. This loop will usually only iterate once, because 1805 // OldD is usually the previous declaration. 1806 for (auto D : redecls()) { 1807 if (D == OldD) 1808 break; 1809 1810 // If we reach the canonical declaration, then OldD is not actually older 1811 // than this one. 1812 // 1813 // FIXME: In this case, we should not add this decl to the lookup table. 1814 if (D->isCanonicalDecl()) 1815 return false; 1816 } 1817 1818 // It's a newer declaration of the same kind of declaration in the same 1819 // scope: we want this decl instead of the existing one. 1820 return true; 1821 } 1822 1823 // In all other cases, we need to keep both declarations in case they have 1824 // different visibility. Any attempt to use the name will result in an 1825 // ambiguity if more than one is visible. 1826 return false; 1827 } 1828 1829 bool NamedDecl::hasLinkage() const { 1830 return getFormalLinkage() != NoLinkage; 1831 } 1832 1833 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1834 NamedDecl *ND = this; 1835 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1836 ND = UD->getTargetDecl(); 1837 1838 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1839 return AD->getClassInterface(); 1840 1841 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1842 return AD->getNamespace(); 1843 1844 return ND; 1845 } 1846 1847 bool NamedDecl::isCXXInstanceMember() const { 1848 if (!isCXXClassMember()) 1849 return false; 1850 1851 const NamedDecl *D = this; 1852 if (isa<UsingShadowDecl>(D)) 1853 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1854 1855 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1856 return true; 1857 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1858 return MD->isInstance(); 1859 return false; 1860 } 1861 1862 //===----------------------------------------------------------------------===// 1863 // DeclaratorDecl Implementation 1864 //===----------------------------------------------------------------------===// 1865 1866 template <typename DeclT> 1867 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1868 if (decl->getNumTemplateParameterLists() > 0) 1869 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1870 return decl->getInnerLocStart(); 1871 } 1872 1873 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1874 TypeSourceInfo *TSI = getTypeSourceInfo(); 1875 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1876 return SourceLocation(); 1877 } 1878 1879 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1880 TypeSourceInfo *TSI = getTypeSourceInfo(); 1881 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1882 return SourceLocation(); 1883 } 1884 1885 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1886 if (QualifierLoc) { 1887 // Make sure the extended decl info is allocated. 1888 if (!hasExtInfo()) { 1889 // Save (non-extended) type source info pointer. 1890 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1891 // Allocate external info struct. 1892 DeclInfo = new (getASTContext()) ExtInfo; 1893 // Restore savedTInfo into (extended) decl info. 1894 getExtInfo()->TInfo = savedTInfo; 1895 } 1896 // Set qualifier info. 1897 getExtInfo()->QualifierLoc = QualifierLoc; 1898 } else if (hasExtInfo()) { 1899 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1900 getExtInfo()->QualifierLoc = QualifierLoc; 1901 } 1902 } 1903 1904 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1905 assert(TrailingRequiresClause); 1906 // Make sure the extended decl info is allocated. 1907 if (!hasExtInfo()) { 1908 // Save (non-extended) type source info pointer. 1909 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1910 // Allocate external info struct. 1911 DeclInfo = new (getASTContext()) ExtInfo; 1912 // Restore savedTInfo into (extended) decl info. 1913 getExtInfo()->TInfo = savedTInfo; 1914 } 1915 // Set requires clause info. 1916 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1917 } 1918 1919 void DeclaratorDecl::setTemplateParameterListsInfo( 1920 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1921 assert(!TPLists.empty()); 1922 // Make sure the extended decl info is allocated. 1923 if (!hasExtInfo()) { 1924 // Save (non-extended) type source info pointer. 1925 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1926 // Allocate external info struct. 1927 DeclInfo = new (getASTContext()) ExtInfo; 1928 // Restore savedTInfo into (extended) decl info. 1929 getExtInfo()->TInfo = savedTInfo; 1930 } 1931 // Set the template parameter lists info. 1932 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1933 } 1934 1935 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1936 return getTemplateOrInnerLocStart(this); 1937 } 1938 1939 // Helper function: returns true if QT is or contains a type 1940 // having a postfix component. 1941 static bool typeIsPostfix(QualType QT) { 1942 while (true) { 1943 const Type* T = QT.getTypePtr(); 1944 switch (T->getTypeClass()) { 1945 default: 1946 return false; 1947 case Type::Pointer: 1948 QT = cast<PointerType>(T)->getPointeeType(); 1949 break; 1950 case Type::BlockPointer: 1951 QT = cast<BlockPointerType>(T)->getPointeeType(); 1952 break; 1953 case Type::MemberPointer: 1954 QT = cast<MemberPointerType>(T)->getPointeeType(); 1955 break; 1956 case Type::LValueReference: 1957 case Type::RValueReference: 1958 QT = cast<ReferenceType>(T)->getPointeeType(); 1959 break; 1960 case Type::PackExpansion: 1961 QT = cast<PackExpansionType>(T)->getPattern(); 1962 break; 1963 case Type::Paren: 1964 case Type::ConstantArray: 1965 case Type::DependentSizedArray: 1966 case Type::IncompleteArray: 1967 case Type::VariableArray: 1968 case Type::FunctionProto: 1969 case Type::FunctionNoProto: 1970 return true; 1971 } 1972 } 1973 } 1974 1975 SourceRange DeclaratorDecl::getSourceRange() const { 1976 SourceLocation RangeEnd = getLocation(); 1977 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1978 // If the declaration has no name or the type extends past the name take the 1979 // end location of the type. 1980 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1981 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1982 } 1983 return SourceRange(getOuterLocStart(), RangeEnd); 1984 } 1985 1986 void QualifierInfo::setTemplateParameterListsInfo( 1987 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1988 // Free previous template parameters (if any). 1989 if (NumTemplParamLists > 0) { 1990 Context.Deallocate(TemplParamLists); 1991 TemplParamLists = nullptr; 1992 NumTemplParamLists = 0; 1993 } 1994 // Set info on matched template parameter lists (if any). 1995 if (!TPLists.empty()) { 1996 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1997 NumTemplParamLists = TPLists.size(); 1998 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1999 } 2000 } 2001 2002 //===----------------------------------------------------------------------===// 2003 // VarDecl Implementation 2004 //===----------------------------------------------------------------------===// 2005 2006 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2007 switch (SC) { 2008 case SC_None: break; 2009 case SC_Auto: return "auto"; 2010 case SC_Extern: return "extern"; 2011 case SC_PrivateExtern: return "__private_extern__"; 2012 case SC_Register: return "register"; 2013 case SC_Static: return "static"; 2014 } 2015 2016 llvm_unreachable("Invalid storage class"); 2017 } 2018 2019 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2020 SourceLocation StartLoc, SourceLocation IdLoc, 2021 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2022 StorageClass SC) 2023 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2024 redeclarable_base(C) { 2025 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2026 "VarDeclBitfields too large!"); 2027 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2028 "ParmVarDeclBitfields too large!"); 2029 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2030 "NonParmVarDeclBitfields too large!"); 2031 AllBits = 0; 2032 VarDeclBits.SClass = SC; 2033 // Everything else is implicitly initialized to false. 2034 } 2035 2036 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 2037 SourceLocation StartL, SourceLocation IdL, 2038 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2039 StorageClass S) { 2040 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2041 } 2042 2043 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2044 return new (C, ID) 2045 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2046 QualType(), nullptr, SC_None); 2047 } 2048 2049 void VarDecl::setStorageClass(StorageClass SC) { 2050 assert(isLegalForVariable(SC)); 2051 VarDeclBits.SClass = SC; 2052 } 2053 2054 VarDecl::TLSKind VarDecl::getTLSKind() const { 2055 switch (VarDeclBits.TSCSpec) { 2056 case TSCS_unspecified: 2057 if (!hasAttr<ThreadAttr>() && 2058 !(getASTContext().getLangOpts().OpenMPUseTLS && 2059 getASTContext().getTargetInfo().isTLSSupported() && 2060 hasAttr<OMPThreadPrivateDeclAttr>())) 2061 return TLS_None; 2062 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2063 LangOptions::MSVC2015)) || 2064 hasAttr<OMPThreadPrivateDeclAttr>()) 2065 ? TLS_Dynamic 2066 : TLS_Static; 2067 case TSCS___thread: // Fall through. 2068 case TSCS__Thread_local: 2069 return TLS_Static; 2070 case TSCS_thread_local: 2071 return TLS_Dynamic; 2072 } 2073 llvm_unreachable("Unknown thread storage class specifier!"); 2074 } 2075 2076 SourceRange VarDecl::getSourceRange() const { 2077 if (const Expr *Init = getInit()) { 2078 SourceLocation InitEnd = Init->getEndLoc(); 2079 // If Init is implicit, ignore its source range and fallback on 2080 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2081 if (InitEnd.isValid() && InitEnd != getLocation()) 2082 return SourceRange(getOuterLocStart(), InitEnd); 2083 } 2084 return DeclaratorDecl::getSourceRange(); 2085 } 2086 2087 template<typename T> 2088 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2089 // C++ [dcl.link]p1: All function types, function names with external linkage, 2090 // and variable names with external linkage have a language linkage. 2091 if (!D.hasExternalFormalLinkage()) 2092 return NoLanguageLinkage; 2093 2094 // Language linkage is a C++ concept, but saying that everything else in C has 2095 // C language linkage fits the implementation nicely. 2096 ASTContext &Context = D.getASTContext(); 2097 if (!Context.getLangOpts().CPlusPlus) 2098 return CLanguageLinkage; 2099 2100 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2101 // language linkage of the names of class members and the function type of 2102 // class member functions. 2103 const DeclContext *DC = D.getDeclContext(); 2104 if (DC->isRecord()) 2105 return CXXLanguageLinkage; 2106 2107 // If the first decl is in an extern "C" context, any other redeclaration 2108 // will have C language linkage. If the first one is not in an extern "C" 2109 // context, we would have reported an error for any other decl being in one. 2110 if (isFirstInExternCContext(&D)) 2111 return CLanguageLinkage; 2112 return CXXLanguageLinkage; 2113 } 2114 2115 template<typename T> 2116 static bool isDeclExternC(const T &D) { 2117 // Since the context is ignored for class members, they can only have C++ 2118 // language linkage or no language linkage. 2119 const DeclContext *DC = D.getDeclContext(); 2120 if (DC->isRecord()) { 2121 assert(D.getASTContext().getLangOpts().CPlusPlus); 2122 return false; 2123 } 2124 2125 return D.getLanguageLinkage() == CLanguageLinkage; 2126 } 2127 2128 LanguageLinkage VarDecl::getLanguageLinkage() const { 2129 return getDeclLanguageLinkage(*this); 2130 } 2131 2132 bool VarDecl::isExternC() const { 2133 return isDeclExternC(*this); 2134 } 2135 2136 bool VarDecl::isInExternCContext() const { 2137 return getLexicalDeclContext()->isExternCContext(); 2138 } 2139 2140 bool VarDecl::isInExternCXXContext() const { 2141 return getLexicalDeclContext()->isExternCXXContext(); 2142 } 2143 2144 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2145 2146 VarDecl::DefinitionKind 2147 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2148 if (isThisDeclarationADemotedDefinition()) 2149 return DeclarationOnly; 2150 2151 // C++ [basic.def]p2: 2152 // A declaration is a definition unless [...] it contains the 'extern' 2153 // specifier or a linkage-specification and neither an initializer [...], 2154 // it declares a non-inline static data member in a class declaration [...], 2155 // it declares a static data member outside a class definition and the variable 2156 // was defined within the class with the constexpr specifier [...], 2157 // C++1y [temp.expl.spec]p15: 2158 // An explicit specialization of a static data member or an explicit 2159 // specialization of a static data member template is a definition if the 2160 // declaration includes an initializer; otherwise, it is a declaration. 2161 // 2162 // FIXME: How do you declare (but not define) a partial specialization of 2163 // a static data member template outside the containing class? 2164 if (isStaticDataMember()) { 2165 if (isOutOfLine() && 2166 !(getCanonicalDecl()->isInline() && 2167 getCanonicalDecl()->isConstexpr()) && 2168 (hasInit() || 2169 // If the first declaration is out-of-line, this may be an 2170 // instantiation of an out-of-line partial specialization of a variable 2171 // template for which we have not yet instantiated the initializer. 2172 (getFirstDecl()->isOutOfLine() 2173 ? getTemplateSpecializationKind() == TSK_Undeclared 2174 : getTemplateSpecializationKind() != 2175 TSK_ExplicitSpecialization) || 2176 isa<VarTemplatePartialSpecializationDecl>(this))) 2177 return Definition; 2178 if (!isOutOfLine() && isInline()) 2179 return Definition; 2180 return DeclarationOnly; 2181 } 2182 // C99 6.7p5: 2183 // A definition of an identifier is a declaration for that identifier that 2184 // [...] causes storage to be reserved for that object. 2185 // Note: that applies for all non-file-scope objects. 2186 // C99 6.9.2p1: 2187 // If the declaration of an identifier for an object has file scope and an 2188 // initializer, the declaration is an external definition for the identifier 2189 if (hasInit()) 2190 return Definition; 2191 2192 if (hasDefiningAttr()) 2193 return Definition; 2194 2195 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2196 if (!SAA->isInherited()) 2197 return Definition; 2198 2199 // A variable template specialization (other than a static data member 2200 // template or an explicit specialization) is a declaration until we 2201 // instantiate its initializer. 2202 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2203 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2204 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2205 !VTSD->IsCompleteDefinition) 2206 return DeclarationOnly; 2207 } 2208 2209 if (hasExternalStorage()) 2210 return DeclarationOnly; 2211 2212 // [dcl.link] p7: 2213 // A declaration directly contained in a linkage-specification is treated 2214 // as if it contains the extern specifier for the purpose of determining 2215 // the linkage of the declared name and whether it is a definition. 2216 if (isSingleLineLanguageLinkage(*this)) 2217 return DeclarationOnly; 2218 2219 // C99 6.9.2p2: 2220 // A declaration of an object that has file scope without an initializer, 2221 // and without a storage class specifier or the scs 'static', constitutes 2222 // a tentative definition. 2223 // No such thing in C++. 2224 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2225 return TentativeDefinition; 2226 2227 // What's left is (in C, block-scope) declarations without initializers or 2228 // external storage. These are definitions. 2229 return Definition; 2230 } 2231 2232 VarDecl *VarDecl::getActingDefinition() { 2233 DefinitionKind Kind = isThisDeclarationADefinition(); 2234 if (Kind != TentativeDefinition) 2235 return nullptr; 2236 2237 VarDecl *LastTentative = nullptr; 2238 2239 // Loop through the declaration chain, starting with the most recent. 2240 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2241 Decl = Decl->getPreviousDecl()) { 2242 Kind = Decl->isThisDeclarationADefinition(); 2243 if (Kind == Definition) 2244 return nullptr; 2245 // Record the first (most recent) TentativeDefinition that is encountered. 2246 if (Kind == TentativeDefinition && !LastTentative) 2247 LastTentative = Decl; 2248 } 2249 2250 return LastTentative; 2251 } 2252 2253 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2254 VarDecl *First = getFirstDecl(); 2255 for (auto I : First->redecls()) { 2256 if (I->isThisDeclarationADefinition(C) == Definition) 2257 return I; 2258 } 2259 return nullptr; 2260 } 2261 2262 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2263 DefinitionKind Kind = DeclarationOnly; 2264 2265 const VarDecl *First = getFirstDecl(); 2266 for (auto I : First->redecls()) { 2267 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2268 if (Kind == Definition) 2269 break; 2270 } 2271 2272 return Kind; 2273 } 2274 2275 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2276 for (auto I : redecls()) { 2277 if (auto Expr = I->getInit()) { 2278 D = I; 2279 return Expr; 2280 } 2281 } 2282 return nullptr; 2283 } 2284 2285 bool VarDecl::hasInit() const { 2286 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2287 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2288 return false; 2289 2290 return !Init.isNull(); 2291 } 2292 2293 Expr *VarDecl::getInit() { 2294 if (!hasInit()) 2295 return nullptr; 2296 2297 if (auto *S = Init.dyn_cast<Stmt *>()) 2298 return cast<Expr>(S); 2299 2300 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2301 } 2302 2303 Stmt **VarDecl::getInitAddress() { 2304 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2305 return &ES->Value; 2306 2307 return Init.getAddrOfPtr1(); 2308 } 2309 2310 VarDecl *VarDecl::getInitializingDeclaration() { 2311 VarDecl *Def = nullptr; 2312 for (auto I : redecls()) { 2313 if (I->hasInit()) 2314 return I; 2315 2316 if (I->isThisDeclarationADefinition()) { 2317 if (isStaticDataMember()) 2318 return I; 2319 Def = I; 2320 } 2321 } 2322 return Def; 2323 } 2324 2325 bool VarDecl::isOutOfLine() const { 2326 if (Decl::isOutOfLine()) 2327 return true; 2328 2329 if (!isStaticDataMember()) 2330 return false; 2331 2332 // If this static data member was instantiated from a static data member of 2333 // a class template, check whether that static data member was defined 2334 // out-of-line. 2335 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2336 return VD->isOutOfLine(); 2337 2338 return false; 2339 } 2340 2341 void VarDecl::setInit(Expr *I) { 2342 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2343 Eval->~EvaluatedStmt(); 2344 getASTContext().Deallocate(Eval); 2345 } 2346 2347 Init = I; 2348 } 2349 2350 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2351 const LangOptions &Lang = C.getLangOpts(); 2352 2353 // OpenCL permits const integral variables to be used in constant 2354 // expressions, like in C++98. 2355 if (!Lang.CPlusPlus && !Lang.OpenCL) 2356 return false; 2357 2358 // Function parameters are never usable in constant expressions. 2359 if (isa<ParmVarDecl>(this)) 2360 return false; 2361 2362 // The values of weak variables are never usable in constant expressions. 2363 if (isWeak()) 2364 return false; 2365 2366 // In C++11, any variable of reference type can be used in a constant 2367 // expression if it is initialized by a constant expression. 2368 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2369 return true; 2370 2371 // Only const objects can be used in constant expressions in C++. C++98 does 2372 // not require the variable to be non-volatile, but we consider this to be a 2373 // defect. 2374 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2375 return false; 2376 2377 // In C++, const, non-volatile variables of integral or enumeration types 2378 // can be used in constant expressions. 2379 if (getType()->isIntegralOrEnumerationType()) 2380 return true; 2381 2382 // Additionally, in C++11, non-volatile constexpr variables can be used in 2383 // constant expressions. 2384 return Lang.CPlusPlus11 && isConstexpr(); 2385 } 2386 2387 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2388 // C++2a [expr.const]p3: 2389 // A variable is usable in constant expressions after its initializing 2390 // declaration is encountered... 2391 const VarDecl *DefVD = nullptr; 2392 const Expr *Init = getAnyInitializer(DefVD); 2393 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2394 return false; 2395 // ... if it is a constexpr variable, or it is of reference type or of 2396 // const-qualified integral or enumeration type, ... 2397 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2398 return false; 2399 // ... and its initializer is a constant initializer. 2400 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2401 return false; 2402 // C++98 [expr.const]p1: 2403 // An integral constant-expression can involve only [...] const variables 2404 // or static data members of integral or enumeration types initialized with 2405 // [integer] constant expressions (dcl.init) 2406 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2407 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2408 return false; 2409 return true; 2410 } 2411 2412 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2413 /// form, which contains extra information on the evaluated value of the 2414 /// initializer. 2415 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2416 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2417 if (!Eval) { 2418 // Note: EvaluatedStmt contains an APValue, which usually holds 2419 // resources not allocated from the ASTContext. We need to do some 2420 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2421 // where we can detect whether there's anything to clean up or not. 2422 Eval = new (getASTContext()) EvaluatedStmt; 2423 Eval->Value = Init.get<Stmt *>(); 2424 Init = Eval; 2425 } 2426 return Eval; 2427 } 2428 2429 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2430 return Init.dyn_cast<EvaluatedStmt *>(); 2431 } 2432 2433 APValue *VarDecl::evaluateValue() const { 2434 SmallVector<PartialDiagnosticAt, 8> Notes; 2435 return evaluateValueImpl(Notes, hasConstantInitialization()); 2436 } 2437 2438 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes, 2439 bool IsConstantInitialization) const { 2440 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2441 2442 const auto *Init = cast<Expr>(Eval->Value); 2443 assert(!Init->isValueDependent()); 2444 2445 // We only produce notes indicating why an initializer is non-constant the 2446 // first time it is evaluated. FIXME: The notes won't always be emitted the 2447 // first time we try evaluation, so might not be produced at all. 2448 if (Eval->WasEvaluated) 2449 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2450 2451 if (Eval->IsEvaluating) { 2452 // FIXME: Produce a diagnostic for self-initialization. 2453 return nullptr; 2454 } 2455 2456 Eval->IsEvaluating = true; 2457 2458 ASTContext &Ctx = getASTContext(); 2459 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes, 2460 IsConstantInitialization); 2461 2462 // In C++11, this isn't a constant initializer if we produced notes. In that 2463 // case, we can't keep the result, because it may only be correct under the 2464 // assumption that the initializer is a constant context. 2465 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 && 2466 !Notes.empty()) 2467 Result = false; 2468 2469 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2470 // or that it's empty (so that there's nothing to clean up) if evaluation 2471 // failed. 2472 if (!Result) 2473 Eval->Evaluated = APValue(); 2474 else if (Eval->Evaluated.needsCleanup()) 2475 Ctx.addDestruction(&Eval->Evaluated); 2476 2477 Eval->IsEvaluating = false; 2478 Eval->WasEvaluated = true; 2479 2480 return Result ? &Eval->Evaluated : nullptr; 2481 } 2482 2483 APValue *VarDecl::getEvaluatedValue() const { 2484 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2485 if (Eval->WasEvaluated) 2486 return &Eval->Evaluated; 2487 2488 return nullptr; 2489 } 2490 2491 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2492 const Expr *Init = getInit(); 2493 assert(Init && "no initializer"); 2494 2495 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2496 if (!Eval->CheckedForICEInit) { 2497 Eval->CheckedForICEInit = true; 2498 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2499 } 2500 return Eval->HasICEInit; 2501 } 2502 2503 bool VarDecl::hasConstantInitialization() const { 2504 // In C, all globals (and only globals) have constant initialization. 2505 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2506 return true; 2507 2508 // In C++, it depends on whether the evaluation at the point of definition 2509 // was evaluatable as a constant initializer. 2510 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2511 return Eval->HasConstantInitialization; 2512 2513 return false; 2514 } 2515 2516 bool VarDecl::checkForConstantInitialization( 2517 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2518 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2519 // If we ask for the value before we know whether we have a constant 2520 // initializer, we can compute the wrong value (for example, due to 2521 // std::is_constant_evaluated()). 2522 assert(!Eval->WasEvaluated && 2523 "already evaluated var value before checking for constant init"); 2524 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2525 2526 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2527 2528 // Evaluate the initializer to check whether it's a constant expression. 2529 Eval->HasConstantInitialization = 2530 evaluateValueImpl(Notes, true) && Notes.empty(); 2531 2532 // If evaluation as a constant initializer failed, allow re-evaluation as a 2533 // non-constant initializer if we later find we want the value. 2534 if (!Eval->HasConstantInitialization) 2535 Eval->WasEvaluated = false; 2536 2537 return Eval->HasConstantInitialization; 2538 } 2539 2540 bool VarDecl::isParameterPack() const { 2541 return isa<PackExpansionType>(getType()); 2542 } 2543 2544 template<typename DeclT> 2545 static DeclT *getDefinitionOrSelf(DeclT *D) { 2546 assert(D); 2547 if (auto *Def = D->getDefinition()) 2548 return Def; 2549 return D; 2550 } 2551 2552 bool VarDecl::isEscapingByref() const { 2553 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2554 } 2555 2556 bool VarDecl::isNonEscapingByref() const { 2557 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2558 } 2559 2560 bool VarDecl::hasDependentAlignment() const { 2561 QualType T = getType(); 2562 return T->isDependentType() || T->isUndeducedAutoType() || 2563 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2564 return AA->isAlignmentDependent(); 2565 }); 2566 } 2567 2568 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2569 const VarDecl *VD = this; 2570 2571 // If this is an instantiated member, walk back to the template from which 2572 // it was instantiated. 2573 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2574 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2575 VD = VD->getInstantiatedFromStaticDataMember(); 2576 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2577 VD = NewVD; 2578 } 2579 } 2580 2581 // If it's an instantiated variable template specialization, find the 2582 // template or partial specialization from which it was instantiated. 2583 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2584 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2585 auto From = VDTemplSpec->getInstantiatedFrom(); 2586 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2587 while (!VTD->isMemberSpecialization()) { 2588 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2589 if (!NewVTD) 2590 break; 2591 VTD = NewVTD; 2592 } 2593 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2594 } 2595 if (auto *VTPSD = 2596 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2597 while (!VTPSD->isMemberSpecialization()) { 2598 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2599 if (!NewVTPSD) 2600 break; 2601 VTPSD = NewVTPSD; 2602 } 2603 return getDefinitionOrSelf<VarDecl>(VTPSD); 2604 } 2605 } 2606 } 2607 2608 // If this is the pattern of a variable template, find where it was 2609 // instantiated from. FIXME: Is this necessary? 2610 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2611 while (!VarTemplate->isMemberSpecialization()) { 2612 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2613 if (!NewVT) 2614 break; 2615 VarTemplate = NewVT; 2616 } 2617 2618 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2619 } 2620 2621 if (VD == this) 2622 return nullptr; 2623 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2624 } 2625 2626 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2627 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2628 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2629 2630 return nullptr; 2631 } 2632 2633 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2634 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2635 return Spec->getSpecializationKind(); 2636 2637 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2638 return MSI->getTemplateSpecializationKind(); 2639 2640 return TSK_Undeclared; 2641 } 2642 2643 TemplateSpecializationKind 2644 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2645 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2646 return MSI->getTemplateSpecializationKind(); 2647 2648 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2649 return Spec->getSpecializationKind(); 2650 2651 return TSK_Undeclared; 2652 } 2653 2654 SourceLocation VarDecl::getPointOfInstantiation() const { 2655 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2656 return Spec->getPointOfInstantiation(); 2657 2658 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2659 return MSI->getPointOfInstantiation(); 2660 2661 return SourceLocation(); 2662 } 2663 2664 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2665 return getASTContext().getTemplateOrSpecializationInfo(this) 2666 .dyn_cast<VarTemplateDecl *>(); 2667 } 2668 2669 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2670 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2671 } 2672 2673 bool VarDecl::isKnownToBeDefined() const { 2674 const auto &LangOpts = getASTContext().getLangOpts(); 2675 // In CUDA mode without relocatable device code, variables of form 'extern 2676 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2677 // memory pool. These are never undefined variables, even if they appear 2678 // inside of an anon namespace or static function. 2679 // 2680 // With CUDA relocatable device code enabled, these variables don't get 2681 // special handling; they're treated like regular extern variables. 2682 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2683 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2684 isa<IncompleteArrayType>(getType())) 2685 return true; 2686 2687 return hasDefinition(); 2688 } 2689 2690 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2691 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2692 (!Ctx.getLangOpts().RegisterStaticDestructors && 2693 !hasAttr<AlwaysDestroyAttr>())); 2694 } 2695 2696 QualType::DestructionKind 2697 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2698 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2699 if (Eval->HasConstantDestruction) 2700 return QualType::DK_none; 2701 2702 if (isNoDestroy(Ctx)) 2703 return QualType::DK_none; 2704 2705 return getType().isDestructedType(); 2706 } 2707 2708 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2709 if (isStaticDataMember()) 2710 // FIXME: Remove ? 2711 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2712 return getASTContext().getTemplateOrSpecializationInfo(this) 2713 .dyn_cast<MemberSpecializationInfo *>(); 2714 return nullptr; 2715 } 2716 2717 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2718 SourceLocation PointOfInstantiation) { 2719 assert((isa<VarTemplateSpecializationDecl>(this) || 2720 getMemberSpecializationInfo()) && 2721 "not a variable or static data member template specialization"); 2722 2723 if (VarTemplateSpecializationDecl *Spec = 2724 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2725 Spec->setSpecializationKind(TSK); 2726 if (TSK != TSK_ExplicitSpecialization && 2727 PointOfInstantiation.isValid() && 2728 Spec->getPointOfInstantiation().isInvalid()) { 2729 Spec->setPointOfInstantiation(PointOfInstantiation); 2730 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2731 L->InstantiationRequested(this); 2732 } 2733 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2734 MSI->setTemplateSpecializationKind(TSK); 2735 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2736 MSI->getPointOfInstantiation().isInvalid()) { 2737 MSI->setPointOfInstantiation(PointOfInstantiation); 2738 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2739 L->InstantiationRequested(this); 2740 } 2741 } 2742 } 2743 2744 void 2745 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2746 TemplateSpecializationKind TSK) { 2747 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2748 "Previous template or instantiation?"); 2749 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2750 } 2751 2752 //===----------------------------------------------------------------------===// 2753 // ParmVarDecl Implementation 2754 //===----------------------------------------------------------------------===// 2755 2756 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2757 SourceLocation StartLoc, 2758 SourceLocation IdLoc, IdentifierInfo *Id, 2759 QualType T, TypeSourceInfo *TInfo, 2760 StorageClass S, Expr *DefArg) { 2761 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2762 S, DefArg); 2763 } 2764 2765 QualType ParmVarDecl::getOriginalType() const { 2766 TypeSourceInfo *TSI = getTypeSourceInfo(); 2767 QualType T = TSI ? TSI->getType() : getType(); 2768 if (const auto *DT = dyn_cast<DecayedType>(T)) 2769 return DT->getOriginalType(); 2770 return T; 2771 } 2772 2773 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2774 return new (C, ID) 2775 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2776 nullptr, QualType(), nullptr, SC_None, nullptr); 2777 } 2778 2779 SourceRange ParmVarDecl::getSourceRange() const { 2780 if (!hasInheritedDefaultArg()) { 2781 SourceRange ArgRange = getDefaultArgRange(); 2782 if (ArgRange.isValid()) 2783 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2784 } 2785 2786 // DeclaratorDecl considers the range of postfix types as overlapping with the 2787 // declaration name, but this is not the case with parameters in ObjC methods. 2788 if (isa<ObjCMethodDecl>(getDeclContext())) 2789 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2790 2791 return DeclaratorDecl::getSourceRange(); 2792 } 2793 2794 bool ParmVarDecl::isDestroyedInCallee() const { 2795 // ns_consumed only affects code generation in ARC 2796 if (hasAttr<NSConsumedAttr>()) 2797 return getASTContext().getLangOpts().ObjCAutoRefCount; 2798 2799 // FIXME: isParamDestroyedInCallee() should probably imply 2800 // isDestructedType() 2801 auto *RT = getType()->getAs<RecordType>(); 2802 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2803 getType().isDestructedType()) 2804 return true; 2805 2806 return false; 2807 } 2808 2809 Expr *ParmVarDecl::getDefaultArg() { 2810 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2811 assert(!hasUninstantiatedDefaultArg() && 2812 "Default argument is not yet instantiated!"); 2813 2814 Expr *Arg = getInit(); 2815 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2816 return E->getSubExpr(); 2817 2818 return Arg; 2819 } 2820 2821 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2822 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2823 Init = defarg; 2824 } 2825 2826 SourceRange ParmVarDecl::getDefaultArgRange() const { 2827 switch (ParmVarDeclBits.DefaultArgKind) { 2828 case DAK_None: 2829 case DAK_Unparsed: 2830 // Nothing we can do here. 2831 return SourceRange(); 2832 2833 case DAK_Uninstantiated: 2834 return getUninstantiatedDefaultArg()->getSourceRange(); 2835 2836 case DAK_Normal: 2837 if (const Expr *E = getInit()) 2838 return E->getSourceRange(); 2839 2840 // Missing an actual expression, may be invalid. 2841 return SourceRange(); 2842 } 2843 llvm_unreachable("Invalid default argument kind."); 2844 } 2845 2846 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2847 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2848 Init = arg; 2849 } 2850 2851 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2852 assert(hasUninstantiatedDefaultArg() && 2853 "Wrong kind of initialization expression!"); 2854 return cast_or_null<Expr>(Init.get<Stmt *>()); 2855 } 2856 2857 bool ParmVarDecl::hasDefaultArg() const { 2858 // FIXME: We should just return false for DAK_None here once callers are 2859 // prepared for the case that we encountered an invalid default argument and 2860 // were unable to even build an invalid expression. 2861 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2862 !Init.isNull(); 2863 } 2864 2865 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2866 getASTContext().setParameterIndex(this, parameterIndex); 2867 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2868 } 2869 2870 unsigned ParmVarDecl::getParameterIndexLarge() const { 2871 return getASTContext().getParameterIndex(this); 2872 } 2873 2874 //===----------------------------------------------------------------------===// 2875 // FunctionDecl Implementation 2876 //===----------------------------------------------------------------------===// 2877 2878 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2879 SourceLocation StartLoc, 2880 const DeclarationNameInfo &NameInfo, QualType T, 2881 TypeSourceInfo *TInfo, StorageClass S, 2882 bool UsesFPIntrin, bool isInlineSpecified, 2883 ConstexprSpecKind ConstexprKind, 2884 Expr *TrailingRequiresClause) 2885 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2886 StartLoc), 2887 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2888 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2889 assert(T.isNull() || T->isFunctionType()); 2890 FunctionDeclBits.SClass = S; 2891 FunctionDeclBits.IsInline = isInlineSpecified; 2892 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2893 FunctionDeclBits.IsVirtualAsWritten = false; 2894 FunctionDeclBits.IsPure = false; 2895 FunctionDeclBits.HasInheritedPrototype = false; 2896 FunctionDeclBits.HasWrittenPrototype = true; 2897 FunctionDeclBits.IsDeleted = false; 2898 FunctionDeclBits.IsTrivial = false; 2899 FunctionDeclBits.IsTrivialForCall = false; 2900 FunctionDeclBits.IsDefaulted = false; 2901 FunctionDeclBits.IsExplicitlyDefaulted = false; 2902 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2903 FunctionDeclBits.HasImplicitReturnZero = false; 2904 FunctionDeclBits.IsLateTemplateParsed = false; 2905 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2906 FunctionDeclBits.InstantiationIsPending = false; 2907 FunctionDeclBits.UsesSEHTry = false; 2908 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2909 FunctionDeclBits.HasSkippedBody = false; 2910 FunctionDeclBits.WillHaveBody = false; 2911 FunctionDeclBits.IsMultiVersion = false; 2912 FunctionDeclBits.IsCopyDeductionCandidate = false; 2913 FunctionDeclBits.HasODRHash = false; 2914 if (TrailingRequiresClause) 2915 setTrailingRequiresClause(TrailingRequiresClause); 2916 } 2917 2918 void FunctionDecl::getNameForDiagnostic( 2919 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2920 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2921 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2922 if (TemplateArgs) 2923 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2924 } 2925 2926 bool FunctionDecl::isVariadic() const { 2927 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2928 return FT->isVariadic(); 2929 return false; 2930 } 2931 2932 FunctionDecl::DefaultedFunctionInfo * 2933 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2934 ArrayRef<DeclAccessPair> Lookups) { 2935 DefaultedFunctionInfo *Info = new (Context.Allocate( 2936 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2937 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2938 DefaultedFunctionInfo; 2939 Info->NumLookups = Lookups.size(); 2940 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2941 Info->getTrailingObjects<DeclAccessPair>()); 2942 return Info; 2943 } 2944 2945 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2946 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2947 assert(!Body && "can't replace function body with defaulted function info"); 2948 2949 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2950 DefaultedInfo = Info; 2951 } 2952 2953 FunctionDecl::DefaultedFunctionInfo * 2954 FunctionDecl::getDefaultedFunctionInfo() const { 2955 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2956 } 2957 2958 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2959 for (auto I : redecls()) { 2960 if (I->doesThisDeclarationHaveABody()) { 2961 Definition = I; 2962 return true; 2963 } 2964 } 2965 2966 return false; 2967 } 2968 2969 bool FunctionDecl::hasTrivialBody() const { 2970 Stmt *S = getBody(); 2971 if (!S) { 2972 // Since we don't have a body for this function, we don't know if it's 2973 // trivial or not. 2974 return false; 2975 } 2976 2977 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2978 return true; 2979 return false; 2980 } 2981 2982 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 2983 if (!getFriendObjectKind()) 2984 return false; 2985 2986 // Check for a friend function instantiated from a friend function 2987 // definition in a templated class. 2988 if (const FunctionDecl *InstantiatedFrom = 2989 getInstantiatedFromMemberFunction()) 2990 return InstantiatedFrom->getFriendObjectKind() && 2991 InstantiatedFrom->isThisDeclarationADefinition(); 2992 2993 // Check for a friend function template instantiated from a friend 2994 // function template definition in a templated class. 2995 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 2996 if (const FunctionTemplateDecl *InstantiatedFrom = 2997 Template->getInstantiatedFromMemberTemplate()) 2998 return InstantiatedFrom->getFriendObjectKind() && 2999 InstantiatedFrom->isThisDeclarationADefinition(); 3000 } 3001 3002 return false; 3003 } 3004 3005 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 3006 bool CheckForPendingFriendDefinition) const { 3007 for (const FunctionDecl *FD : redecls()) { 3008 if (FD->isThisDeclarationADefinition()) { 3009 Definition = FD; 3010 return true; 3011 } 3012 3013 // If this is a friend function defined in a class template, it does not 3014 // have a body until it is used, nevertheless it is a definition, see 3015 // [temp.inst]p2: 3016 // 3017 // ... for the purpose of determining whether an instantiated redeclaration 3018 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3019 // corresponds to a definition in the template is considered to be a 3020 // definition. 3021 // 3022 // The following code must produce redefinition error: 3023 // 3024 // template<typename T> struct C20 { friend void func_20() {} }; 3025 // C20<int> c20i; 3026 // void func_20() {} 3027 // 3028 if (CheckForPendingFriendDefinition && 3029 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3030 Definition = FD; 3031 return true; 3032 } 3033 } 3034 3035 return false; 3036 } 3037 3038 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3039 if (!hasBody(Definition)) 3040 return nullptr; 3041 3042 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3043 "definition should not have a body"); 3044 if (Definition->Body) 3045 return Definition->Body.get(getASTContext().getExternalSource()); 3046 3047 return nullptr; 3048 } 3049 3050 void FunctionDecl::setBody(Stmt *B) { 3051 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3052 Body = LazyDeclStmtPtr(B); 3053 if (B) 3054 EndRangeLoc = B->getEndLoc(); 3055 } 3056 3057 void FunctionDecl::setPure(bool P) { 3058 FunctionDeclBits.IsPure = P; 3059 if (P) 3060 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3061 Parent->markedVirtualFunctionPure(); 3062 } 3063 3064 template<std::size_t Len> 3065 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3066 IdentifierInfo *II = ND->getIdentifier(); 3067 return II && II->isStr(Str); 3068 } 3069 3070 bool FunctionDecl::isMain() const { 3071 const TranslationUnitDecl *tunit = 3072 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3073 return tunit && 3074 !tunit->getASTContext().getLangOpts().Freestanding && 3075 isNamed(this, "main"); 3076 } 3077 3078 bool FunctionDecl::isMSVCRTEntryPoint() const { 3079 const TranslationUnitDecl *TUnit = 3080 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3081 if (!TUnit) 3082 return false; 3083 3084 // Even though we aren't really targeting MSVCRT if we are freestanding, 3085 // semantic analysis for these functions remains the same. 3086 3087 // MSVCRT entry points only exist on MSVCRT targets. 3088 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3089 return false; 3090 3091 // Nameless functions like constructors cannot be entry points. 3092 if (!getIdentifier()) 3093 return false; 3094 3095 return llvm::StringSwitch<bool>(getName()) 3096 .Cases("main", // an ANSI console app 3097 "wmain", // a Unicode console App 3098 "WinMain", // an ANSI GUI app 3099 "wWinMain", // a Unicode GUI app 3100 "DllMain", // a DLL 3101 true) 3102 .Default(false); 3103 } 3104 3105 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3106 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 3107 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 3108 getDeclName().getCXXOverloadedOperator() == OO_Delete || 3109 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 3110 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 3111 3112 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3113 return false; 3114 3115 const auto *proto = getType()->castAs<FunctionProtoType>(); 3116 if (proto->getNumParams() != 2 || proto->isVariadic()) 3117 return false; 3118 3119 ASTContext &Context = 3120 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3121 ->getASTContext(); 3122 3123 // The result type and first argument type are constant across all 3124 // these operators. The second argument must be exactly void*. 3125 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3126 } 3127 3128 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3129 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3130 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3131 return false; 3132 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3133 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3134 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3135 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3136 return false; 3137 3138 if (isa<CXXRecordDecl>(getDeclContext())) 3139 return false; 3140 3141 // This can only fail for an invalid 'operator new' declaration. 3142 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3143 return false; 3144 3145 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3146 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3147 return false; 3148 3149 // If this is a single-parameter function, it must be a replaceable global 3150 // allocation or deallocation function. 3151 if (FPT->getNumParams() == 1) 3152 return true; 3153 3154 unsigned Params = 1; 3155 QualType Ty = FPT->getParamType(Params); 3156 ASTContext &Ctx = getASTContext(); 3157 3158 auto Consume = [&] { 3159 ++Params; 3160 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3161 }; 3162 3163 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3164 bool IsSizedDelete = false; 3165 if (Ctx.getLangOpts().SizedDeallocation && 3166 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3167 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3168 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3169 IsSizedDelete = true; 3170 Consume(); 3171 } 3172 3173 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3174 // new/delete. 3175 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3176 Consume(); 3177 if (AlignmentParam) 3178 *AlignmentParam = Params; 3179 } 3180 3181 // Finally, if this is not a sized delete, the final parameter can 3182 // be a 'const std::nothrow_t&'. 3183 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3184 Ty = Ty->getPointeeType(); 3185 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3186 return false; 3187 if (Ty->isNothrowT()) { 3188 if (IsNothrow) 3189 *IsNothrow = true; 3190 Consume(); 3191 } 3192 } 3193 3194 return Params == FPT->getNumParams(); 3195 } 3196 3197 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3198 if (!getBuiltinID()) 3199 return false; 3200 3201 const FunctionDecl *Definition; 3202 return hasBody(Definition) && Definition->isInlineSpecified() && 3203 Definition->hasAttr<AlwaysInlineAttr>() && 3204 Definition->hasAttr<GNUInlineAttr>(); 3205 } 3206 3207 bool FunctionDecl::isDestroyingOperatorDelete() const { 3208 // C++ P0722: 3209 // Within a class C, a single object deallocation function with signature 3210 // (T, std::destroying_delete_t, <more params>) 3211 // is a destroying operator delete. 3212 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3213 getNumParams() < 2) 3214 return false; 3215 3216 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3217 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3218 RD->getIdentifier()->isStr("destroying_delete_t"); 3219 } 3220 3221 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3222 return getDeclLanguageLinkage(*this); 3223 } 3224 3225 bool FunctionDecl::isExternC() const { 3226 return isDeclExternC(*this); 3227 } 3228 3229 bool FunctionDecl::isInExternCContext() const { 3230 if (hasAttr<OpenCLKernelAttr>()) 3231 return true; 3232 return getLexicalDeclContext()->isExternCContext(); 3233 } 3234 3235 bool FunctionDecl::isInExternCXXContext() const { 3236 return getLexicalDeclContext()->isExternCXXContext(); 3237 } 3238 3239 bool FunctionDecl::isGlobal() const { 3240 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3241 return Method->isStatic(); 3242 3243 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3244 return false; 3245 3246 for (const DeclContext *DC = getDeclContext(); 3247 DC->isNamespace(); 3248 DC = DC->getParent()) { 3249 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3250 if (!Namespace->getDeclName()) 3251 return false; 3252 } 3253 } 3254 3255 return true; 3256 } 3257 3258 bool FunctionDecl::isNoReturn() const { 3259 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3260 hasAttr<C11NoReturnAttr>()) 3261 return true; 3262 3263 if (auto *FnTy = getType()->getAs<FunctionType>()) 3264 return FnTy->getNoReturnAttr(); 3265 3266 return false; 3267 } 3268 3269 3270 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3271 if (hasAttr<TargetAttr>()) 3272 return MultiVersionKind::Target; 3273 if (hasAttr<CPUDispatchAttr>()) 3274 return MultiVersionKind::CPUDispatch; 3275 if (hasAttr<CPUSpecificAttr>()) 3276 return MultiVersionKind::CPUSpecific; 3277 if (hasAttr<TargetClonesAttr>()) 3278 return MultiVersionKind::TargetClones; 3279 return MultiVersionKind::None; 3280 } 3281 3282 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3283 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3284 } 3285 3286 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3287 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3288 } 3289 3290 bool FunctionDecl::isTargetMultiVersion() const { 3291 return isMultiVersion() && hasAttr<TargetAttr>(); 3292 } 3293 3294 bool FunctionDecl::isTargetClonesMultiVersion() const { 3295 return isMultiVersion() && hasAttr<TargetClonesAttr>(); 3296 } 3297 3298 void 3299 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3300 redeclarable_base::setPreviousDecl(PrevDecl); 3301 3302 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3303 FunctionTemplateDecl *PrevFunTmpl 3304 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3305 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3306 FunTmpl->setPreviousDecl(PrevFunTmpl); 3307 } 3308 3309 if (PrevDecl && PrevDecl->isInlined()) 3310 setImplicitlyInline(true); 3311 } 3312 3313 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3314 3315 /// Returns a value indicating whether this function corresponds to a builtin 3316 /// function. 3317 /// 3318 /// The function corresponds to a built-in function if it is declared at 3319 /// translation scope or within an extern "C" block and its name matches with 3320 /// the name of a builtin. The returned value will be 0 for functions that do 3321 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3322 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3323 /// value. 3324 /// 3325 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3326 /// functions as their wrapped builtins. This shouldn't be done in general, but 3327 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3328 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3329 unsigned BuiltinID = 0; 3330 3331 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3332 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3333 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3334 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3335 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3336 BuiltinID = A->getID(); 3337 } 3338 3339 if (!BuiltinID) 3340 return 0; 3341 3342 // If the function is marked "overloadable", it has a different mangled name 3343 // and is not the C library function. 3344 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3345 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3346 return 0; 3347 3348 ASTContext &Context = getASTContext(); 3349 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3350 return BuiltinID; 3351 3352 // This function has the name of a known C library 3353 // function. Determine whether it actually refers to the C library 3354 // function or whether it just has the same name. 3355 3356 // If this is a static function, it's not a builtin. 3357 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3358 return 0; 3359 3360 // OpenCL v1.2 s6.9.f - The library functions defined in 3361 // the C99 standard headers are not available. 3362 if (Context.getLangOpts().OpenCL && 3363 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3364 return 0; 3365 3366 // CUDA does not have device-side standard library. printf and malloc are the 3367 // only special cases that are supported by device-side runtime. 3368 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3369 !hasAttr<CUDAHostAttr>() && 3370 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3371 return 0; 3372 3373 // As AMDGCN implementation of OpenMP does not have a device-side standard 3374 // library, none of the predefined library functions except printf and malloc 3375 // should be treated as a builtin i.e. 0 should be returned for them. 3376 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3377 Context.getLangOpts().OpenMPIsDevice && 3378 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3379 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3380 return 0; 3381 3382 return BuiltinID; 3383 } 3384 3385 /// getNumParams - Return the number of parameters this function must have 3386 /// based on its FunctionType. This is the length of the ParamInfo array 3387 /// after it has been created. 3388 unsigned FunctionDecl::getNumParams() const { 3389 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3390 return FPT ? FPT->getNumParams() : 0; 3391 } 3392 3393 void FunctionDecl::setParams(ASTContext &C, 3394 ArrayRef<ParmVarDecl *> NewParamInfo) { 3395 assert(!ParamInfo && "Already has param info!"); 3396 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3397 3398 // Zero params -> null pointer. 3399 if (!NewParamInfo.empty()) { 3400 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3401 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3402 } 3403 } 3404 3405 /// getMinRequiredArguments - Returns the minimum number of arguments 3406 /// needed to call this function. This may be fewer than the number of 3407 /// function parameters, if some of the parameters have default 3408 /// arguments (in C++) or are parameter packs (C++11). 3409 unsigned FunctionDecl::getMinRequiredArguments() const { 3410 if (!getASTContext().getLangOpts().CPlusPlus) 3411 return getNumParams(); 3412 3413 // Note that it is possible for a parameter with no default argument to 3414 // follow a parameter with a default argument. 3415 unsigned NumRequiredArgs = 0; 3416 unsigned MinParamsSoFar = 0; 3417 for (auto *Param : parameters()) { 3418 if (!Param->isParameterPack()) { 3419 ++MinParamsSoFar; 3420 if (!Param->hasDefaultArg()) 3421 NumRequiredArgs = MinParamsSoFar; 3422 } 3423 } 3424 return NumRequiredArgs; 3425 } 3426 3427 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3428 return getNumParams() == 1 || 3429 (getNumParams() > 1 && 3430 std::all_of(param_begin() + 1, param_end(), 3431 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3432 } 3433 3434 /// The combination of the extern and inline keywords under MSVC forces 3435 /// the function to be required. 3436 /// 3437 /// Note: This function assumes that we will only get called when isInlined() 3438 /// would return true for this FunctionDecl. 3439 bool FunctionDecl::isMSExternInline() const { 3440 assert(isInlined() && "expected to get called on an inlined function!"); 3441 3442 const ASTContext &Context = getASTContext(); 3443 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3444 !hasAttr<DLLExportAttr>()) 3445 return false; 3446 3447 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3448 FD = FD->getPreviousDecl()) 3449 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3450 return true; 3451 3452 return false; 3453 } 3454 3455 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3456 if (Redecl->getStorageClass() != SC_Extern) 3457 return false; 3458 3459 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3460 FD = FD->getPreviousDecl()) 3461 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3462 return false; 3463 3464 return true; 3465 } 3466 3467 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3468 // Only consider file-scope declarations in this test. 3469 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3470 return false; 3471 3472 // Only consider explicit declarations; the presence of a builtin for a 3473 // libcall shouldn't affect whether a definition is externally visible. 3474 if (Redecl->isImplicit()) 3475 return false; 3476 3477 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3478 return true; // Not an inline definition 3479 3480 return false; 3481 } 3482 3483 /// For a function declaration in C or C++, determine whether this 3484 /// declaration causes the definition to be externally visible. 3485 /// 3486 /// For instance, this determines if adding the current declaration to the set 3487 /// of redeclarations of the given functions causes 3488 /// isInlineDefinitionExternallyVisible to change from false to true. 3489 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3490 assert(!doesThisDeclarationHaveABody() && 3491 "Must have a declaration without a body."); 3492 3493 ASTContext &Context = getASTContext(); 3494 3495 if (Context.getLangOpts().MSVCCompat) { 3496 const FunctionDecl *Definition; 3497 if (hasBody(Definition) && Definition->isInlined() && 3498 redeclForcesDefMSVC(this)) 3499 return true; 3500 } 3501 3502 if (Context.getLangOpts().CPlusPlus) 3503 return false; 3504 3505 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3506 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3507 // an externally visible definition. 3508 // 3509 // FIXME: What happens if gnu_inline gets added on after the first 3510 // declaration? 3511 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3512 return false; 3513 3514 const FunctionDecl *Prev = this; 3515 bool FoundBody = false; 3516 while ((Prev = Prev->getPreviousDecl())) { 3517 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3518 3519 if (Prev->doesThisDeclarationHaveABody()) { 3520 // If it's not the case that both 'inline' and 'extern' are 3521 // specified on the definition, then it is always externally visible. 3522 if (!Prev->isInlineSpecified() || 3523 Prev->getStorageClass() != SC_Extern) 3524 return false; 3525 } else if (Prev->isInlineSpecified() && 3526 Prev->getStorageClass() != SC_Extern) { 3527 return false; 3528 } 3529 } 3530 return FoundBody; 3531 } 3532 3533 // C99 6.7.4p6: 3534 // [...] If all of the file scope declarations for a function in a 3535 // translation unit include the inline function specifier without extern, 3536 // then the definition in that translation unit is an inline definition. 3537 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3538 return false; 3539 const FunctionDecl *Prev = this; 3540 bool FoundBody = false; 3541 while ((Prev = Prev->getPreviousDecl())) { 3542 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3543 if (RedeclForcesDefC99(Prev)) 3544 return false; 3545 } 3546 return FoundBody; 3547 } 3548 3549 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3550 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3551 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3552 : FunctionTypeLoc(); 3553 } 3554 3555 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3556 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3557 if (!FTL) 3558 return SourceRange(); 3559 3560 // Skip self-referential return types. 3561 const SourceManager &SM = getASTContext().getSourceManager(); 3562 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3563 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3564 if (RTRange.isInvalid() || Boundary.isInvalid() || 3565 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3566 return SourceRange(); 3567 3568 return RTRange; 3569 } 3570 3571 SourceRange FunctionDecl::getParametersSourceRange() const { 3572 unsigned NP = getNumParams(); 3573 SourceLocation EllipsisLoc = getEllipsisLoc(); 3574 3575 if (NP == 0 && EllipsisLoc.isInvalid()) 3576 return SourceRange(); 3577 3578 SourceLocation Begin = 3579 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3580 SourceLocation End = EllipsisLoc.isValid() 3581 ? EllipsisLoc 3582 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3583 3584 return SourceRange(Begin, End); 3585 } 3586 3587 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3588 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3589 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3590 } 3591 3592 /// For an inline function definition in C, or for a gnu_inline function 3593 /// in C++, determine whether the definition will be externally visible. 3594 /// 3595 /// Inline function definitions are always available for inlining optimizations. 3596 /// However, depending on the language dialect, declaration specifiers, and 3597 /// attributes, the definition of an inline function may or may not be 3598 /// "externally" visible to other translation units in the program. 3599 /// 3600 /// In C99, inline definitions are not externally visible by default. However, 3601 /// if even one of the global-scope declarations is marked "extern inline", the 3602 /// inline definition becomes externally visible (C99 6.7.4p6). 3603 /// 3604 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3605 /// definition, we use the GNU semantics for inline, which are nearly the 3606 /// opposite of C99 semantics. In particular, "inline" by itself will create 3607 /// an externally visible symbol, but "extern inline" will not create an 3608 /// externally visible symbol. 3609 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3610 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3611 hasAttr<AliasAttr>()) && 3612 "Must be a function definition"); 3613 assert(isInlined() && "Function must be inline"); 3614 ASTContext &Context = getASTContext(); 3615 3616 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3617 // Note: If you change the logic here, please change 3618 // doesDeclarationForceExternallyVisibleDefinition as well. 3619 // 3620 // If it's not the case that both 'inline' and 'extern' are 3621 // specified on the definition, then this inline definition is 3622 // externally visible. 3623 if (Context.getLangOpts().CPlusPlus) 3624 return false; 3625 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3626 return true; 3627 3628 // If any declaration is 'inline' but not 'extern', then this definition 3629 // is externally visible. 3630 for (auto Redecl : redecls()) { 3631 if (Redecl->isInlineSpecified() && 3632 Redecl->getStorageClass() != SC_Extern) 3633 return true; 3634 } 3635 3636 return false; 3637 } 3638 3639 // The rest of this function is C-only. 3640 assert(!Context.getLangOpts().CPlusPlus && 3641 "should not use C inline rules in C++"); 3642 3643 // C99 6.7.4p6: 3644 // [...] If all of the file scope declarations for a function in a 3645 // translation unit include the inline function specifier without extern, 3646 // then the definition in that translation unit is an inline definition. 3647 for (auto Redecl : redecls()) { 3648 if (RedeclForcesDefC99(Redecl)) 3649 return true; 3650 } 3651 3652 // C99 6.7.4p6: 3653 // An inline definition does not provide an external definition for the 3654 // function, and does not forbid an external definition in another 3655 // translation unit. 3656 return false; 3657 } 3658 3659 /// getOverloadedOperator - Which C++ overloaded operator this 3660 /// function represents, if any. 3661 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3662 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3663 return getDeclName().getCXXOverloadedOperator(); 3664 return OO_None; 3665 } 3666 3667 /// getLiteralIdentifier - The literal suffix identifier this function 3668 /// represents, if any. 3669 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3670 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3671 return getDeclName().getCXXLiteralIdentifier(); 3672 return nullptr; 3673 } 3674 3675 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3676 if (TemplateOrSpecialization.isNull()) 3677 return TK_NonTemplate; 3678 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3679 return TK_FunctionTemplate; 3680 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3681 return TK_MemberSpecialization; 3682 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3683 return TK_FunctionTemplateSpecialization; 3684 if (TemplateOrSpecialization.is 3685 <DependentFunctionTemplateSpecializationInfo*>()) 3686 return TK_DependentFunctionTemplateSpecialization; 3687 3688 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3689 } 3690 3691 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3692 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3693 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3694 3695 return nullptr; 3696 } 3697 3698 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3699 if (auto *MSI = 3700 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3701 return MSI; 3702 if (auto *FTSI = TemplateOrSpecialization 3703 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3704 return FTSI->getMemberSpecializationInfo(); 3705 return nullptr; 3706 } 3707 3708 void 3709 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3710 FunctionDecl *FD, 3711 TemplateSpecializationKind TSK) { 3712 assert(TemplateOrSpecialization.isNull() && 3713 "Member function is already a specialization"); 3714 MemberSpecializationInfo *Info 3715 = new (C) MemberSpecializationInfo(FD, TSK); 3716 TemplateOrSpecialization = Info; 3717 } 3718 3719 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3720 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3721 } 3722 3723 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3724 assert(TemplateOrSpecialization.isNull() && 3725 "Member function is already a specialization"); 3726 TemplateOrSpecialization = Template; 3727 } 3728 3729 bool FunctionDecl::isImplicitlyInstantiable() const { 3730 // If the function is invalid, it can't be implicitly instantiated. 3731 if (isInvalidDecl()) 3732 return false; 3733 3734 switch (getTemplateSpecializationKindForInstantiation()) { 3735 case TSK_Undeclared: 3736 case TSK_ExplicitInstantiationDefinition: 3737 case TSK_ExplicitSpecialization: 3738 return false; 3739 3740 case TSK_ImplicitInstantiation: 3741 return true; 3742 3743 case TSK_ExplicitInstantiationDeclaration: 3744 // Handled below. 3745 break; 3746 } 3747 3748 // Find the actual template from which we will instantiate. 3749 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3750 bool HasPattern = false; 3751 if (PatternDecl) 3752 HasPattern = PatternDecl->hasBody(PatternDecl); 3753 3754 // C++0x [temp.explicit]p9: 3755 // Except for inline functions, other explicit instantiation declarations 3756 // have the effect of suppressing the implicit instantiation of the entity 3757 // to which they refer. 3758 if (!HasPattern || !PatternDecl) 3759 return true; 3760 3761 return PatternDecl->isInlined(); 3762 } 3763 3764 bool FunctionDecl::isTemplateInstantiation() const { 3765 // FIXME: Remove this, it's not clear what it means. (Which template 3766 // specialization kind?) 3767 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3768 } 3769 3770 FunctionDecl * 3771 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3772 // If this is a generic lambda call operator specialization, its 3773 // instantiation pattern is always its primary template's pattern 3774 // even if its primary template was instantiated from another 3775 // member template (which happens with nested generic lambdas). 3776 // Since a lambda's call operator's body is transformed eagerly, 3777 // we don't have to go hunting for a prototype definition template 3778 // (i.e. instantiated-from-member-template) to use as an instantiation 3779 // pattern. 3780 3781 if (isGenericLambdaCallOperatorSpecialization( 3782 dyn_cast<CXXMethodDecl>(this))) { 3783 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3784 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3785 } 3786 3787 // Check for a declaration of this function that was instantiated from a 3788 // friend definition. 3789 const FunctionDecl *FD = nullptr; 3790 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3791 FD = this; 3792 3793 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3794 if (ForDefinition && 3795 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3796 return nullptr; 3797 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3798 } 3799 3800 if (ForDefinition && 3801 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3802 return nullptr; 3803 3804 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3805 // If we hit a point where the user provided a specialization of this 3806 // template, we're done looking. 3807 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3808 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3809 if (!NewPrimary) 3810 break; 3811 Primary = NewPrimary; 3812 } 3813 3814 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3815 } 3816 3817 return nullptr; 3818 } 3819 3820 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3821 if (FunctionTemplateSpecializationInfo *Info 3822 = TemplateOrSpecialization 3823 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3824 return Info->getTemplate(); 3825 } 3826 return nullptr; 3827 } 3828 3829 FunctionTemplateSpecializationInfo * 3830 FunctionDecl::getTemplateSpecializationInfo() const { 3831 return TemplateOrSpecialization 3832 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3833 } 3834 3835 const TemplateArgumentList * 3836 FunctionDecl::getTemplateSpecializationArgs() const { 3837 if (FunctionTemplateSpecializationInfo *Info 3838 = TemplateOrSpecialization 3839 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3840 return Info->TemplateArguments; 3841 } 3842 return nullptr; 3843 } 3844 3845 const ASTTemplateArgumentListInfo * 3846 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3847 if (FunctionTemplateSpecializationInfo *Info 3848 = TemplateOrSpecialization 3849 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3850 return Info->TemplateArgumentsAsWritten; 3851 } 3852 return nullptr; 3853 } 3854 3855 void 3856 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3857 FunctionTemplateDecl *Template, 3858 const TemplateArgumentList *TemplateArgs, 3859 void *InsertPos, 3860 TemplateSpecializationKind TSK, 3861 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3862 SourceLocation PointOfInstantiation) { 3863 assert((TemplateOrSpecialization.isNull() || 3864 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3865 "Member function is already a specialization"); 3866 assert(TSK != TSK_Undeclared && 3867 "Must specify the type of function template specialization"); 3868 assert((TemplateOrSpecialization.isNull() || 3869 TSK == TSK_ExplicitSpecialization) && 3870 "Member specialization must be an explicit specialization"); 3871 FunctionTemplateSpecializationInfo *Info = 3872 FunctionTemplateSpecializationInfo::Create( 3873 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3874 PointOfInstantiation, 3875 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3876 TemplateOrSpecialization = Info; 3877 Template->addSpecialization(Info, InsertPos); 3878 } 3879 3880 void 3881 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3882 const UnresolvedSetImpl &Templates, 3883 const TemplateArgumentListInfo &TemplateArgs) { 3884 assert(TemplateOrSpecialization.isNull()); 3885 DependentFunctionTemplateSpecializationInfo *Info = 3886 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3887 TemplateArgs); 3888 TemplateOrSpecialization = Info; 3889 } 3890 3891 DependentFunctionTemplateSpecializationInfo * 3892 FunctionDecl::getDependentSpecializationInfo() const { 3893 return TemplateOrSpecialization 3894 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3895 } 3896 3897 DependentFunctionTemplateSpecializationInfo * 3898 DependentFunctionTemplateSpecializationInfo::Create( 3899 ASTContext &Context, const UnresolvedSetImpl &Ts, 3900 const TemplateArgumentListInfo &TArgs) { 3901 void *Buffer = Context.Allocate( 3902 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3903 TArgs.size(), Ts.size())); 3904 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3905 } 3906 3907 DependentFunctionTemplateSpecializationInfo:: 3908 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3909 const TemplateArgumentListInfo &TArgs) 3910 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3911 NumTemplates = Ts.size(); 3912 NumArgs = TArgs.size(); 3913 3914 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3915 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3916 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3917 3918 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3919 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3920 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3921 } 3922 3923 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3924 // For a function template specialization, query the specialization 3925 // information object. 3926 if (FunctionTemplateSpecializationInfo *FTSInfo = 3927 TemplateOrSpecialization 3928 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3929 return FTSInfo->getTemplateSpecializationKind(); 3930 3931 if (MemberSpecializationInfo *MSInfo = 3932 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3933 return MSInfo->getTemplateSpecializationKind(); 3934 3935 return TSK_Undeclared; 3936 } 3937 3938 TemplateSpecializationKind 3939 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3940 // This is the same as getTemplateSpecializationKind(), except that for a 3941 // function that is both a function template specialization and a member 3942 // specialization, we prefer the member specialization information. Eg: 3943 // 3944 // template<typename T> struct A { 3945 // template<typename U> void f() {} 3946 // template<> void f<int>() {} 3947 // }; 3948 // 3949 // For A<int>::f<int>(): 3950 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3951 // * getTemplateSpecializationKindForInstantiation() will return 3952 // TSK_ImplicitInstantiation 3953 // 3954 // This reflects the facts that A<int>::f<int> is an explicit specialization 3955 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3956 // from A::f<int> if a definition is needed. 3957 if (FunctionTemplateSpecializationInfo *FTSInfo = 3958 TemplateOrSpecialization 3959 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3960 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3961 return MSInfo->getTemplateSpecializationKind(); 3962 return FTSInfo->getTemplateSpecializationKind(); 3963 } 3964 3965 if (MemberSpecializationInfo *MSInfo = 3966 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3967 return MSInfo->getTemplateSpecializationKind(); 3968 3969 return TSK_Undeclared; 3970 } 3971 3972 void 3973 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3974 SourceLocation PointOfInstantiation) { 3975 if (FunctionTemplateSpecializationInfo *FTSInfo 3976 = TemplateOrSpecialization.dyn_cast< 3977 FunctionTemplateSpecializationInfo*>()) { 3978 FTSInfo->setTemplateSpecializationKind(TSK); 3979 if (TSK != TSK_ExplicitSpecialization && 3980 PointOfInstantiation.isValid() && 3981 FTSInfo->getPointOfInstantiation().isInvalid()) { 3982 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3983 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3984 L->InstantiationRequested(this); 3985 } 3986 } else if (MemberSpecializationInfo *MSInfo 3987 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3988 MSInfo->setTemplateSpecializationKind(TSK); 3989 if (TSK != TSK_ExplicitSpecialization && 3990 PointOfInstantiation.isValid() && 3991 MSInfo->getPointOfInstantiation().isInvalid()) { 3992 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3993 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3994 L->InstantiationRequested(this); 3995 } 3996 } else 3997 llvm_unreachable("Function cannot have a template specialization kind"); 3998 } 3999 4000 SourceLocation FunctionDecl::getPointOfInstantiation() const { 4001 if (FunctionTemplateSpecializationInfo *FTSInfo 4002 = TemplateOrSpecialization.dyn_cast< 4003 FunctionTemplateSpecializationInfo*>()) 4004 return FTSInfo->getPointOfInstantiation(); 4005 if (MemberSpecializationInfo *MSInfo = 4006 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4007 return MSInfo->getPointOfInstantiation(); 4008 4009 return SourceLocation(); 4010 } 4011 4012 bool FunctionDecl::isOutOfLine() const { 4013 if (Decl::isOutOfLine()) 4014 return true; 4015 4016 // If this function was instantiated from a member function of a 4017 // class template, check whether that member function was defined out-of-line. 4018 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 4019 const FunctionDecl *Definition; 4020 if (FD->hasBody(Definition)) 4021 return Definition->isOutOfLine(); 4022 } 4023 4024 // If this function was instantiated from a function template, 4025 // check whether that function template was defined out-of-line. 4026 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4027 const FunctionDecl *Definition; 4028 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4029 return Definition->isOutOfLine(); 4030 } 4031 4032 return false; 4033 } 4034 4035 SourceRange FunctionDecl::getSourceRange() const { 4036 return SourceRange(getOuterLocStart(), EndRangeLoc); 4037 } 4038 4039 unsigned FunctionDecl::getMemoryFunctionKind() const { 4040 IdentifierInfo *FnInfo = getIdentifier(); 4041 4042 if (!FnInfo) 4043 return 0; 4044 4045 // Builtin handling. 4046 switch (getBuiltinID()) { 4047 case Builtin::BI__builtin_memset: 4048 case Builtin::BI__builtin___memset_chk: 4049 case Builtin::BImemset: 4050 return Builtin::BImemset; 4051 4052 case Builtin::BI__builtin_memcpy: 4053 case Builtin::BI__builtin___memcpy_chk: 4054 case Builtin::BImemcpy: 4055 return Builtin::BImemcpy; 4056 4057 case Builtin::BI__builtin_mempcpy: 4058 case Builtin::BI__builtin___mempcpy_chk: 4059 case Builtin::BImempcpy: 4060 return Builtin::BImempcpy; 4061 4062 case Builtin::BI__builtin_memmove: 4063 case Builtin::BI__builtin___memmove_chk: 4064 case Builtin::BImemmove: 4065 return Builtin::BImemmove; 4066 4067 case Builtin::BIstrlcpy: 4068 case Builtin::BI__builtin___strlcpy_chk: 4069 return Builtin::BIstrlcpy; 4070 4071 case Builtin::BIstrlcat: 4072 case Builtin::BI__builtin___strlcat_chk: 4073 return Builtin::BIstrlcat; 4074 4075 case Builtin::BI__builtin_memcmp: 4076 case Builtin::BImemcmp: 4077 return Builtin::BImemcmp; 4078 4079 case Builtin::BI__builtin_bcmp: 4080 case Builtin::BIbcmp: 4081 return Builtin::BIbcmp; 4082 4083 case Builtin::BI__builtin_strncpy: 4084 case Builtin::BI__builtin___strncpy_chk: 4085 case Builtin::BIstrncpy: 4086 return Builtin::BIstrncpy; 4087 4088 case Builtin::BI__builtin_strncmp: 4089 case Builtin::BIstrncmp: 4090 return Builtin::BIstrncmp; 4091 4092 case Builtin::BI__builtin_strncasecmp: 4093 case Builtin::BIstrncasecmp: 4094 return Builtin::BIstrncasecmp; 4095 4096 case Builtin::BI__builtin_strncat: 4097 case Builtin::BI__builtin___strncat_chk: 4098 case Builtin::BIstrncat: 4099 return Builtin::BIstrncat; 4100 4101 case Builtin::BI__builtin_strndup: 4102 case Builtin::BIstrndup: 4103 return Builtin::BIstrndup; 4104 4105 case Builtin::BI__builtin_strlen: 4106 case Builtin::BIstrlen: 4107 return Builtin::BIstrlen; 4108 4109 case Builtin::BI__builtin_bzero: 4110 case Builtin::BIbzero: 4111 return Builtin::BIbzero; 4112 4113 case Builtin::BIfree: 4114 return Builtin::BIfree; 4115 4116 default: 4117 if (isExternC()) { 4118 if (FnInfo->isStr("memset")) 4119 return Builtin::BImemset; 4120 if (FnInfo->isStr("memcpy")) 4121 return Builtin::BImemcpy; 4122 if (FnInfo->isStr("mempcpy")) 4123 return Builtin::BImempcpy; 4124 if (FnInfo->isStr("memmove")) 4125 return Builtin::BImemmove; 4126 if (FnInfo->isStr("memcmp")) 4127 return Builtin::BImemcmp; 4128 if (FnInfo->isStr("bcmp")) 4129 return Builtin::BIbcmp; 4130 if (FnInfo->isStr("strncpy")) 4131 return Builtin::BIstrncpy; 4132 if (FnInfo->isStr("strncmp")) 4133 return Builtin::BIstrncmp; 4134 if (FnInfo->isStr("strncasecmp")) 4135 return Builtin::BIstrncasecmp; 4136 if (FnInfo->isStr("strncat")) 4137 return Builtin::BIstrncat; 4138 if (FnInfo->isStr("strndup")) 4139 return Builtin::BIstrndup; 4140 if (FnInfo->isStr("strlen")) 4141 return Builtin::BIstrlen; 4142 if (FnInfo->isStr("bzero")) 4143 return Builtin::BIbzero; 4144 } else if (isInStdNamespace()) { 4145 if (FnInfo->isStr("free")) 4146 return Builtin::BIfree; 4147 } 4148 break; 4149 } 4150 return 0; 4151 } 4152 4153 unsigned FunctionDecl::getODRHash() const { 4154 assert(hasODRHash()); 4155 return ODRHash; 4156 } 4157 4158 unsigned FunctionDecl::getODRHash() { 4159 if (hasODRHash()) 4160 return ODRHash; 4161 4162 if (auto *FT = getInstantiatedFromMemberFunction()) { 4163 setHasODRHash(true); 4164 ODRHash = FT->getODRHash(); 4165 return ODRHash; 4166 } 4167 4168 class ODRHash Hash; 4169 Hash.AddFunctionDecl(this); 4170 setHasODRHash(true); 4171 ODRHash = Hash.CalculateHash(); 4172 return ODRHash; 4173 } 4174 4175 //===----------------------------------------------------------------------===// 4176 // FieldDecl Implementation 4177 //===----------------------------------------------------------------------===// 4178 4179 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4180 SourceLocation StartLoc, SourceLocation IdLoc, 4181 IdentifierInfo *Id, QualType T, 4182 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4183 InClassInitStyle InitStyle) { 4184 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4185 BW, Mutable, InitStyle); 4186 } 4187 4188 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4189 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4190 SourceLocation(), nullptr, QualType(), nullptr, 4191 nullptr, false, ICIS_NoInit); 4192 } 4193 4194 bool FieldDecl::isAnonymousStructOrUnion() const { 4195 if (!isImplicit() || getDeclName()) 4196 return false; 4197 4198 if (const auto *Record = getType()->getAs<RecordType>()) 4199 return Record->getDecl()->isAnonymousStructOrUnion(); 4200 4201 return false; 4202 } 4203 4204 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4205 assert(isBitField() && "not a bitfield"); 4206 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4207 } 4208 4209 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4210 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4211 getBitWidthValue(Ctx) == 0; 4212 } 4213 4214 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4215 if (isZeroLengthBitField(Ctx)) 4216 return true; 4217 4218 // C++2a [intro.object]p7: 4219 // An object has nonzero size if it 4220 // -- is not a potentially-overlapping subobject, or 4221 if (!hasAttr<NoUniqueAddressAttr>()) 4222 return false; 4223 4224 // -- is not of class type, or 4225 const auto *RT = getType()->getAs<RecordType>(); 4226 if (!RT) 4227 return false; 4228 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4229 if (!RD) { 4230 assert(isInvalidDecl() && "valid field has incomplete type"); 4231 return false; 4232 } 4233 4234 // -- [has] virtual member functions or virtual base classes, or 4235 // -- has subobjects of nonzero size or bit-fields of nonzero length 4236 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4237 if (!CXXRD->isEmpty()) 4238 return false; 4239 4240 // Otherwise, [...] the circumstances under which the object has zero size 4241 // are implementation-defined. 4242 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4243 // ABI will do. 4244 return true; 4245 } 4246 4247 unsigned FieldDecl::getFieldIndex() const { 4248 const FieldDecl *Canonical = getCanonicalDecl(); 4249 if (Canonical != this) 4250 return Canonical->getFieldIndex(); 4251 4252 if (CachedFieldIndex) return CachedFieldIndex - 1; 4253 4254 unsigned Index = 0; 4255 const RecordDecl *RD = getParent()->getDefinition(); 4256 assert(RD && "requested index for field of struct with no definition"); 4257 4258 for (auto *Field : RD->fields()) { 4259 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4260 ++Index; 4261 } 4262 4263 assert(CachedFieldIndex && "failed to find field in parent"); 4264 return CachedFieldIndex - 1; 4265 } 4266 4267 SourceRange FieldDecl::getSourceRange() const { 4268 const Expr *FinalExpr = getInClassInitializer(); 4269 if (!FinalExpr) 4270 FinalExpr = getBitWidth(); 4271 if (FinalExpr) 4272 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4273 return DeclaratorDecl::getSourceRange(); 4274 } 4275 4276 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4277 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4278 "capturing type in non-lambda or captured record."); 4279 assert(InitStorage.getInt() == ISK_NoInit && 4280 InitStorage.getPointer() == nullptr && 4281 "bit width, initializer or captured type already set"); 4282 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4283 ISK_CapturedVLAType); 4284 } 4285 4286 //===----------------------------------------------------------------------===// 4287 // TagDecl Implementation 4288 //===----------------------------------------------------------------------===// 4289 4290 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4291 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4292 SourceLocation StartL) 4293 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4294 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4295 assert((DK != Enum || TK == TTK_Enum) && 4296 "EnumDecl not matched with TTK_Enum"); 4297 setPreviousDecl(PrevDecl); 4298 setTagKind(TK); 4299 setCompleteDefinition(false); 4300 setBeingDefined(false); 4301 setEmbeddedInDeclarator(false); 4302 setFreeStanding(false); 4303 setCompleteDefinitionRequired(false); 4304 TagDeclBits.IsThisDeclarationADemotedDefinition = false; 4305 } 4306 4307 SourceLocation TagDecl::getOuterLocStart() const { 4308 return getTemplateOrInnerLocStart(this); 4309 } 4310 4311 SourceRange TagDecl::getSourceRange() const { 4312 SourceLocation RBraceLoc = BraceRange.getEnd(); 4313 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4314 return SourceRange(getOuterLocStart(), E); 4315 } 4316 4317 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4318 4319 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4320 TypedefNameDeclOrQualifier = TDD; 4321 if (const Type *T = getTypeForDecl()) { 4322 (void)T; 4323 assert(T->isLinkageValid()); 4324 } 4325 assert(isLinkageValid()); 4326 } 4327 4328 void TagDecl::startDefinition() { 4329 setBeingDefined(true); 4330 4331 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4332 struct CXXRecordDecl::DefinitionData *Data = 4333 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4334 for (auto I : redecls()) 4335 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4336 } 4337 } 4338 4339 void TagDecl::completeDefinition() { 4340 assert((!isa<CXXRecordDecl>(this) || 4341 cast<CXXRecordDecl>(this)->hasDefinition()) && 4342 "definition completed but not started"); 4343 4344 setCompleteDefinition(true); 4345 setBeingDefined(false); 4346 4347 if (ASTMutationListener *L = getASTMutationListener()) 4348 L->CompletedTagDefinition(this); 4349 } 4350 4351 TagDecl *TagDecl::getDefinition() const { 4352 if (isCompleteDefinition()) 4353 return const_cast<TagDecl *>(this); 4354 4355 // If it's possible for us to have an out-of-date definition, check now. 4356 if (mayHaveOutOfDateDef()) { 4357 if (IdentifierInfo *II = getIdentifier()) { 4358 if (II->isOutOfDate()) { 4359 updateOutOfDate(*II); 4360 } 4361 } 4362 } 4363 4364 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4365 return CXXRD->getDefinition(); 4366 4367 for (auto R : redecls()) 4368 if (R->isCompleteDefinition()) 4369 return R; 4370 4371 return nullptr; 4372 } 4373 4374 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4375 if (QualifierLoc) { 4376 // Make sure the extended qualifier info is allocated. 4377 if (!hasExtInfo()) 4378 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4379 // Set qualifier info. 4380 getExtInfo()->QualifierLoc = QualifierLoc; 4381 } else { 4382 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4383 if (hasExtInfo()) { 4384 if (getExtInfo()->NumTemplParamLists == 0) { 4385 getASTContext().Deallocate(getExtInfo()); 4386 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4387 } 4388 else 4389 getExtInfo()->QualifierLoc = QualifierLoc; 4390 } 4391 } 4392 } 4393 4394 void TagDecl::setTemplateParameterListsInfo( 4395 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4396 assert(!TPLists.empty()); 4397 // Make sure the extended decl info is allocated. 4398 if (!hasExtInfo()) 4399 // Allocate external info struct. 4400 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4401 // Set the template parameter lists info. 4402 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // EnumDecl Implementation 4407 //===----------------------------------------------------------------------===// 4408 4409 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4410 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4411 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4412 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4413 assert(Scoped || !ScopedUsingClassTag); 4414 IntegerType = nullptr; 4415 setNumPositiveBits(0); 4416 setNumNegativeBits(0); 4417 setScoped(Scoped); 4418 setScopedUsingClassTag(ScopedUsingClassTag); 4419 setFixed(Fixed); 4420 setHasODRHash(false); 4421 ODRHash = 0; 4422 } 4423 4424 void EnumDecl::anchor() {} 4425 4426 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4427 SourceLocation StartLoc, SourceLocation IdLoc, 4428 IdentifierInfo *Id, 4429 EnumDecl *PrevDecl, bool IsScoped, 4430 bool IsScopedUsingClassTag, bool IsFixed) { 4431 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4432 IsScoped, IsScopedUsingClassTag, IsFixed); 4433 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4434 C.getTypeDeclType(Enum, PrevDecl); 4435 return Enum; 4436 } 4437 4438 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4439 EnumDecl *Enum = 4440 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4441 nullptr, nullptr, false, false, false); 4442 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4443 return Enum; 4444 } 4445 4446 SourceRange EnumDecl::getIntegerTypeRange() const { 4447 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4448 return TI->getTypeLoc().getSourceRange(); 4449 return SourceRange(); 4450 } 4451 4452 void EnumDecl::completeDefinition(QualType NewType, 4453 QualType NewPromotionType, 4454 unsigned NumPositiveBits, 4455 unsigned NumNegativeBits) { 4456 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4457 if (!IntegerType) 4458 IntegerType = NewType.getTypePtr(); 4459 PromotionType = NewPromotionType; 4460 setNumPositiveBits(NumPositiveBits); 4461 setNumNegativeBits(NumNegativeBits); 4462 TagDecl::completeDefinition(); 4463 } 4464 4465 bool EnumDecl::isClosed() const { 4466 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4467 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4468 return true; 4469 } 4470 4471 bool EnumDecl::isClosedFlag() const { 4472 return isClosed() && hasAttr<FlagEnumAttr>(); 4473 } 4474 4475 bool EnumDecl::isClosedNonFlag() const { 4476 return isClosed() && !hasAttr<FlagEnumAttr>(); 4477 } 4478 4479 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4480 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4481 return MSI->getTemplateSpecializationKind(); 4482 4483 return TSK_Undeclared; 4484 } 4485 4486 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4487 SourceLocation PointOfInstantiation) { 4488 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4489 assert(MSI && "Not an instantiated member enumeration?"); 4490 MSI->setTemplateSpecializationKind(TSK); 4491 if (TSK != TSK_ExplicitSpecialization && 4492 PointOfInstantiation.isValid() && 4493 MSI->getPointOfInstantiation().isInvalid()) 4494 MSI->setPointOfInstantiation(PointOfInstantiation); 4495 } 4496 4497 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4498 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4499 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4500 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4501 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4502 ED = NewED; 4503 return getDefinitionOrSelf(ED); 4504 } 4505 } 4506 4507 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4508 "couldn't find pattern for enum instantiation"); 4509 return nullptr; 4510 } 4511 4512 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4513 if (SpecializationInfo) 4514 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4515 4516 return nullptr; 4517 } 4518 4519 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4520 TemplateSpecializationKind TSK) { 4521 assert(!SpecializationInfo && "Member enum is already a specialization"); 4522 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4523 } 4524 4525 unsigned EnumDecl::getODRHash() { 4526 if (hasODRHash()) 4527 return ODRHash; 4528 4529 class ODRHash Hash; 4530 Hash.AddEnumDecl(this); 4531 setHasODRHash(true); 4532 ODRHash = Hash.CalculateHash(); 4533 return ODRHash; 4534 } 4535 4536 SourceRange EnumDecl::getSourceRange() const { 4537 auto Res = TagDecl::getSourceRange(); 4538 // Set end-point to enum-base, e.g. enum foo : ^bar 4539 if (auto *TSI = getIntegerTypeSourceInfo()) { 4540 // TagDecl doesn't know about the enum base. 4541 if (!getBraceRange().getEnd().isValid()) 4542 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4543 } 4544 return Res; 4545 } 4546 4547 //===----------------------------------------------------------------------===// 4548 // RecordDecl Implementation 4549 //===----------------------------------------------------------------------===// 4550 4551 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4552 DeclContext *DC, SourceLocation StartLoc, 4553 SourceLocation IdLoc, IdentifierInfo *Id, 4554 RecordDecl *PrevDecl) 4555 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4556 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4557 setHasFlexibleArrayMember(false); 4558 setAnonymousStructOrUnion(false); 4559 setHasObjectMember(false); 4560 setHasVolatileMember(false); 4561 setHasLoadedFieldsFromExternalStorage(false); 4562 setNonTrivialToPrimitiveDefaultInitialize(false); 4563 setNonTrivialToPrimitiveCopy(false); 4564 setNonTrivialToPrimitiveDestroy(false); 4565 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4566 setHasNonTrivialToPrimitiveDestructCUnion(false); 4567 setHasNonTrivialToPrimitiveCopyCUnion(false); 4568 setParamDestroyedInCallee(false); 4569 setArgPassingRestrictions(APK_CanPassInRegs); 4570 } 4571 4572 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4573 SourceLocation StartLoc, SourceLocation IdLoc, 4574 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4575 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4576 StartLoc, IdLoc, Id, PrevDecl); 4577 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4578 4579 C.getTypeDeclType(R, PrevDecl); 4580 return R; 4581 } 4582 4583 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4584 RecordDecl *R = 4585 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4586 SourceLocation(), nullptr, nullptr); 4587 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4588 return R; 4589 } 4590 4591 bool RecordDecl::isInjectedClassName() const { 4592 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4593 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4594 } 4595 4596 bool RecordDecl::isLambda() const { 4597 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4598 return RD->isLambda(); 4599 return false; 4600 } 4601 4602 bool RecordDecl::isCapturedRecord() const { 4603 return hasAttr<CapturedRecordAttr>(); 4604 } 4605 4606 void RecordDecl::setCapturedRecord() { 4607 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4608 } 4609 4610 bool RecordDecl::isOrContainsUnion() const { 4611 if (isUnion()) 4612 return true; 4613 4614 if (const RecordDecl *Def = getDefinition()) { 4615 for (const FieldDecl *FD : Def->fields()) { 4616 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4617 if (RT && RT->getDecl()->isOrContainsUnion()) 4618 return true; 4619 } 4620 } 4621 4622 return false; 4623 } 4624 4625 RecordDecl::field_iterator RecordDecl::field_begin() const { 4626 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4627 LoadFieldsFromExternalStorage(); 4628 4629 return field_iterator(decl_iterator(FirstDecl)); 4630 } 4631 4632 /// completeDefinition - Notes that the definition of this type is now 4633 /// complete. 4634 void RecordDecl::completeDefinition() { 4635 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4636 TagDecl::completeDefinition(); 4637 4638 ASTContext &Ctx = getASTContext(); 4639 4640 // Layouts are dumped when computed, so if we are dumping for all complete 4641 // types, we need to force usage to get types that wouldn't be used elsewhere. 4642 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4643 (void)Ctx.getASTRecordLayout(this); 4644 } 4645 4646 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4647 /// This which can be turned on with an attribute, pragma, or the 4648 /// -mms-bitfields command-line option. 4649 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4650 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4651 } 4652 4653 void RecordDecl::LoadFieldsFromExternalStorage() const { 4654 ExternalASTSource *Source = getASTContext().getExternalSource(); 4655 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4656 4657 // Notify that we have a RecordDecl doing some initialization. 4658 ExternalASTSource::Deserializing TheFields(Source); 4659 4660 SmallVector<Decl*, 64> Decls; 4661 setHasLoadedFieldsFromExternalStorage(true); 4662 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4663 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4664 }, Decls); 4665 4666 #ifndef NDEBUG 4667 // Check that all decls we got were FieldDecls. 4668 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4669 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4670 #endif 4671 4672 if (Decls.empty()) 4673 return; 4674 4675 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4676 /*FieldsAlreadyLoaded=*/false); 4677 } 4678 4679 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4680 ASTContext &Context = getASTContext(); 4681 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4682 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4683 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4684 return false; 4685 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4686 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4687 // We may be able to relax some of these requirements. 4688 int ReasonToReject = -1; 4689 if (!CXXRD || CXXRD->isExternCContext()) 4690 ReasonToReject = 0; // is not C++. 4691 else if (CXXRD->hasAttr<PackedAttr>()) 4692 ReasonToReject = 1; // is packed. 4693 else if (CXXRD->isUnion()) 4694 ReasonToReject = 2; // is a union. 4695 else if (CXXRD->isTriviallyCopyable()) 4696 ReasonToReject = 3; // is trivially copyable. 4697 else if (CXXRD->hasTrivialDestructor()) 4698 ReasonToReject = 4; // has trivial destructor. 4699 else if (CXXRD->isStandardLayout()) 4700 ReasonToReject = 5; // is standard layout. 4701 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4702 "field-padding")) 4703 ReasonToReject = 6; // is in an excluded file. 4704 else if (NoSanitizeList.containsType( 4705 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4706 ReasonToReject = 7; // The type is excluded. 4707 4708 if (EmitRemark) { 4709 if (ReasonToReject >= 0) 4710 Context.getDiagnostics().Report( 4711 getLocation(), 4712 diag::remark_sanitize_address_insert_extra_padding_rejected) 4713 << getQualifiedNameAsString() << ReasonToReject; 4714 else 4715 Context.getDiagnostics().Report( 4716 getLocation(), 4717 diag::remark_sanitize_address_insert_extra_padding_accepted) 4718 << getQualifiedNameAsString(); 4719 } 4720 return ReasonToReject < 0; 4721 } 4722 4723 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4724 for (const auto *I : fields()) { 4725 if (I->getIdentifier()) 4726 return I; 4727 4728 if (const auto *RT = I->getType()->getAs<RecordType>()) 4729 if (const FieldDecl *NamedDataMember = 4730 RT->getDecl()->findFirstNamedDataMember()) 4731 return NamedDataMember; 4732 } 4733 4734 // We didn't find a named data member. 4735 return nullptr; 4736 } 4737 4738 //===----------------------------------------------------------------------===// 4739 // BlockDecl Implementation 4740 //===----------------------------------------------------------------------===// 4741 4742 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4743 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4744 setIsVariadic(false); 4745 setCapturesCXXThis(false); 4746 setBlockMissingReturnType(true); 4747 setIsConversionFromLambda(false); 4748 setDoesNotEscape(false); 4749 setCanAvoidCopyToHeap(false); 4750 } 4751 4752 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4753 assert(!ParamInfo && "Already has param info!"); 4754 4755 // Zero params -> null pointer. 4756 if (!NewParamInfo.empty()) { 4757 NumParams = NewParamInfo.size(); 4758 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4759 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4760 } 4761 } 4762 4763 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4764 bool CapturesCXXThis) { 4765 this->setCapturesCXXThis(CapturesCXXThis); 4766 this->NumCaptures = Captures.size(); 4767 4768 if (Captures.empty()) { 4769 this->Captures = nullptr; 4770 return; 4771 } 4772 4773 this->Captures = Captures.copy(Context).data(); 4774 } 4775 4776 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4777 for (const auto &I : captures()) 4778 // Only auto vars can be captured, so no redeclaration worries. 4779 if (I.getVariable() == variable) 4780 return true; 4781 4782 return false; 4783 } 4784 4785 SourceRange BlockDecl::getSourceRange() const { 4786 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4787 } 4788 4789 //===----------------------------------------------------------------------===// 4790 // Other Decl Allocation/Deallocation Method Implementations 4791 //===----------------------------------------------------------------------===// 4792 4793 void TranslationUnitDecl::anchor() {} 4794 4795 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4796 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4797 } 4798 4799 void PragmaCommentDecl::anchor() {} 4800 4801 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4802 TranslationUnitDecl *DC, 4803 SourceLocation CommentLoc, 4804 PragmaMSCommentKind CommentKind, 4805 StringRef Arg) { 4806 PragmaCommentDecl *PCD = 4807 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4808 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4809 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4810 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4811 return PCD; 4812 } 4813 4814 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4815 unsigned ID, 4816 unsigned ArgSize) { 4817 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4818 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4819 } 4820 4821 void PragmaDetectMismatchDecl::anchor() {} 4822 4823 PragmaDetectMismatchDecl * 4824 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4825 SourceLocation Loc, StringRef Name, 4826 StringRef Value) { 4827 size_t ValueStart = Name.size() + 1; 4828 PragmaDetectMismatchDecl *PDMD = 4829 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4830 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4831 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4832 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4833 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4834 Value.size()); 4835 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4836 return PDMD; 4837 } 4838 4839 PragmaDetectMismatchDecl * 4840 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4841 unsigned NameValueSize) { 4842 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4843 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4844 } 4845 4846 void ExternCContextDecl::anchor() {} 4847 4848 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4849 TranslationUnitDecl *DC) { 4850 return new (C, DC) ExternCContextDecl(DC); 4851 } 4852 4853 void LabelDecl::anchor() {} 4854 4855 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4856 SourceLocation IdentL, IdentifierInfo *II) { 4857 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4858 } 4859 4860 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4861 SourceLocation IdentL, IdentifierInfo *II, 4862 SourceLocation GnuLabelL) { 4863 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4864 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4865 } 4866 4867 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4868 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4869 SourceLocation()); 4870 } 4871 4872 void LabelDecl::setMSAsmLabel(StringRef Name) { 4873 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4874 memcpy(Buffer, Name.data(), Name.size()); 4875 Buffer[Name.size()] = '\0'; 4876 MSAsmName = Buffer; 4877 } 4878 4879 void ValueDecl::anchor() {} 4880 4881 bool ValueDecl::isWeak() const { 4882 auto *MostRecent = getMostRecentDecl(); 4883 return MostRecent->hasAttr<WeakAttr>() || 4884 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 4885 } 4886 4887 void ImplicitParamDecl::anchor() {} 4888 4889 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4890 SourceLocation IdLoc, 4891 IdentifierInfo *Id, QualType Type, 4892 ImplicitParamKind ParamKind) { 4893 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4894 } 4895 4896 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4897 ImplicitParamKind ParamKind) { 4898 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4899 } 4900 4901 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4902 unsigned ID) { 4903 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4904 } 4905 4906 FunctionDecl * 4907 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4908 const DeclarationNameInfo &NameInfo, QualType T, 4909 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 4910 bool isInlineSpecified, bool hasWrittenPrototype, 4911 ConstexprSpecKind ConstexprKind, 4912 Expr *TrailingRequiresClause) { 4913 FunctionDecl *New = new (C, DC) FunctionDecl( 4914 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 4915 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 4916 New->setHasWrittenPrototype(hasWrittenPrototype); 4917 return New; 4918 } 4919 4920 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4921 return new (C, ID) FunctionDecl( 4922 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 4923 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 4924 } 4925 4926 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4927 return new (C, DC) BlockDecl(DC, L); 4928 } 4929 4930 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4931 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4932 } 4933 4934 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4935 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4936 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4937 4938 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4939 unsigned NumParams) { 4940 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4941 CapturedDecl(DC, NumParams); 4942 } 4943 4944 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4945 unsigned NumParams) { 4946 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4947 CapturedDecl(nullptr, NumParams); 4948 } 4949 4950 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4951 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4952 4953 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4954 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4955 4956 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4957 SourceLocation L, 4958 IdentifierInfo *Id, QualType T, 4959 Expr *E, const llvm::APSInt &V) { 4960 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4961 } 4962 4963 EnumConstantDecl * 4964 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4965 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4966 QualType(), nullptr, llvm::APSInt()); 4967 } 4968 4969 void IndirectFieldDecl::anchor() {} 4970 4971 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4972 SourceLocation L, DeclarationName N, 4973 QualType T, 4974 MutableArrayRef<NamedDecl *> CH) 4975 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4976 ChainingSize(CH.size()) { 4977 // In C++, indirect field declarations conflict with tag declarations in the 4978 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4979 if (C.getLangOpts().CPlusPlus) 4980 IdentifierNamespace |= IDNS_Tag; 4981 } 4982 4983 IndirectFieldDecl * 4984 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4985 IdentifierInfo *Id, QualType T, 4986 llvm::MutableArrayRef<NamedDecl *> CH) { 4987 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4988 } 4989 4990 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4991 unsigned ID) { 4992 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4993 DeclarationName(), QualType(), None); 4994 } 4995 4996 SourceRange EnumConstantDecl::getSourceRange() const { 4997 SourceLocation End = getLocation(); 4998 if (Init) 4999 End = Init->getEndLoc(); 5000 return SourceRange(getLocation(), End); 5001 } 5002 5003 void TypeDecl::anchor() {} 5004 5005 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 5006 SourceLocation StartLoc, SourceLocation IdLoc, 5007 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 5008 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5009 } 5010 5011 void TypedefNameDecl::anchor() {} 5012 5013 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 5014 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 5015 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 5016 auto *ThisTypedef = this; 5017 if (AnyRedecl && OwningTypedef) { 5018 OwningTypedef = OwningTypedef->getCanonicalDecl(); 5019 ThisTypedef = ThisTypedef->getCanonicalDecl(); 5020 } 5021 if (OwningTypedef == ThisTypedef) 5022 return TT->getDecl(); 5023 } 5024 5025 return nullptr; 5026 } 5027 5028 bool TypedefNameDecl::isTransparentTagSlow() const { 5029 auto determineIsTransparent = [&]() { 5030 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5031 if (auto *TD = TT->getDecl()) { 5032 if (TD->getName() != getName()) 5033 return false; 5034 SourceLocation TTLoc = getLocation(); 5035 SourceLocation TDLoc = TD->getLocation(); 5036 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5037 return false; 5038 SourceManager &SM = getASTContext().getSourceManager(); 5039 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5040 } 5041 } 5042 return false; 5043 }; 5044 5045 bool isTransparent = determineIsTransparent(); 5046 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5047 return isTransparent; 5048 } 5049 5050 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5051 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5052 nullptr, nullptr); 5053 } 5054 5055 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5056 SourceLocation StartLoc, 5057 SourceLocation IdLoc, IdentifierInfo *Id, 5058 TypeSourceInfo *TInfo) { 5059 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5060 } 5061 5062 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5063 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5064 SourceLocation(), nullptr, nullptr); 5065 } 5066 5067 SourceRange TypedefDecl::getSourceRange() const { 5068 SourceLocation RangeEnd = getLocation(); 5069 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5070 if (typeIsPostfix(TInfo->getType())) 5071 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5072 } 5073 return SourceRange(getBeginLoc(), RangeEnd); 5074 } 5075 5076 SourceRange TypeAliasDecl::getSourceRange() const { 5077 SourceLocation RangeEnd = getBeginLoc(); 5078 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5079 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5080 return SourceRange(getBeginLoc(), RangeEnd); 5081 } 5082 5083 void FileScopeAsmDecl::anchor() {} 5084 5085 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5086 StringLiteral *Str, 5087 SourceLocation AsmLoc, 5088 SourceLocation RParenLoc) { 5089 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5090 } 5091 5092 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5093 unsigned ID) { 5094 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5095 SourceLocation()); 5096 } 5097 5098 void EmptyDecl::anchor() {} 5099 5100 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5101 return new (C, DC) EmptyDecl(DC, L); 5102 } 5103 5104 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5105 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5106 } 5107 5108 //===----------------------------------------------------------------------===// 5109 // ImportDecl Implementation 5110 //===----------------------------------------------------------------------===// 5111 5112 /// Retrieve the number of module identifiers needed to name the given 5113 /// module. 5114 static unsigned getNumModuleIdentifiers(Module *Mod) { 5115 unsigned Result = 1; 5116 while (Mod->Parent) { 5117 Mod = Mod->Parent; 5118 ++Result; 5119 } 5120 return Result; 5121 } 5122 5123 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5124 Module *Imported, 5125 ArrayRef<SourceLocation> IdentifierLocs) 5126 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5127 NextLocalImportAndComplete(nullptr, true) { 5128 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5129 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5130 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5131 StoredLocs); 5132 } 5133 5134 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5135 Module *Imported, SourceLocation EndLoc) 5136 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5137 NextLocalImportAndComplete(nullptr, false) { 5138 *getTrailingObjects<SourceLocation>() = EndLoc; 5139 } 5140 5141 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5142 SourceLocation StartLoc, Module *Imported, 5143 ArrayRef<SourceLocation> IdentifierLocs) { 5144 return new (C, DC, 5145 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5146 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5147 } 5148 5149 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5150 SourceLocation StartLoc, 5151 Module *Imported, 5152 SourceLocation EndLoc) { 5153 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5154 ImportDecl(DC, StartLoc, Imported, EndLoc); 5155 Import->setImplicit(); 5156 return Import; 5157 } 5158 5159 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5160 unsigned NumLocations) { 5161 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5162 ImportDecl(EmptyShell()); 5163 } 5164 5165 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5166 if (!isImportComplete()) 5167 return None; 5168 5169 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5170 return llvm::makeArrayRef(StoredLocs, 5171 getNumModuleIdentifiers(getImportedModule())); 5172 } 5173 5174 SourceRange ImportDecl::getSourceRange() const { 5175 if (!isImportComplete()) 5176 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5177 5178 return SourceRange(getLocation(), getIdentifierLocs().back()); 5179 } 5180 5181 //===----------------------------------------------------------------------===// 5182 // ExportDecl Implementation 5183 //===----------------------------------------------------------------------===// 5184 5185 void ExportDecl::anchor() {} 5186 5187 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5188 SourceLocation ExportLoc) { 5189 return new (C, DC) ExportDecl(DC, ExportLoc); 5190 } 5191 5192 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5193 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5194 } 5195